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The Ott-Antonsen ansatz is a powerful tool to extract the behaviors of coupled phase oscillators, but it imposes
a strong restriction on the initial condition. Herein, an extension of the Ott-Antonsen ansatz is proposed to relax
the restriction, enabling the systematic approximation of the behavior of a globally coupled phase oscillator
system with an arbitrary initial condition. The proposed method is validated on the Kuramoto-Sakaguchi model
of identical phase oscillators. The method yields cluster and chimera-like solutions that are not obtained by the

conventional ansatz.
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I. INTRODUCTION

Coupled oscillator systems are important in both the pure
science of synchronization phenomena [1-3] and engineering
applications such as electric power [4] and wireless com-
munication networks [5]. It also plays a central role in un-
derstanding biological phenomena such as neural networks
[6,7] and the synchronous rhythm of cardiomyocytes [8].
The most representative models of coupled phase oscilla-
tors are the Kuramoto model [9] and its generalization, the
Kuramoto-Sakaguchi model [10]. In recent years, Ott and
Antonsen [11] proposed a powerful ansatz to analyze these
models, and it has deepened the understanding of behaviors of
coupled oscillator systems. The Ott-Antonsen ansatz (OAA)
has been successfully employed in systems with distributed
natural frequencies [12—14] and systems with external driving
[15,16]. The OAA essentially reduces a system consisting
of numerous coupled phase oscillators to a two-dimensional
nonlinear oscillator system [11,17]. The process is conven-
tionally understood as follows: if the initial distribution of
oscillator phases is set to a two-parameter distribution family
called the Poisson kernel, the phase distribution after time
evolution remains in the Poisson kernel [18]. Thus, the OAA
strongly restricts the initial condition, although it is effective
for understanding a globally coupled oscillator system. In
general, the origin of diversity in dynamical behaviors can be
rooted in both the native properties of oscillators and the initial
condition. The restriction of the OAA hinders the full un-
derstanding of the dependence of system behaviors on initial
conditions. In the present paper, the OAA is extended to
systematically relax the restrictions on the initial distribution
for understanding the initial-condition dependence of compli-
cated behaviors in phase oscillator systems.
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The present paper makes three main claims. First, the Pois-
son kernel appearing in the OAA is claimed to be equivalent
to a Cauchy-Lorentz distribution (CLD). Therefore, the OAA
is interpreted as follows: if the initial phase distribution is set
to a CLD, the phase distribution remains in the distribution
family of CLD. Second, as an extension of the conventional
OAA, it is claimed that if the initial phase distribution is set
to a superposition of CLDs, the phase distribution remains in
the superposition of CLDs. Consequently, an arbitrary initial
condition can be analyzed systematically by approximating
the phase distribution as a superposition of CLDs. Third, com-
pared to the conventional OAA, the extended version is more
helpful to understand complicated behaviors of the system. To
show the advantage, the extended OAA is employed for the
Kuramoto-Sakaguchi model of identical phase oscillators, and
it yields a variety of dynamical behaviors including a cluster
solution [19,20] that could not be obtained by the conventional
OAA.

II. OTT-ANTONSEN ANSATZ

To overview the derivation of the OAA, let us consider a
system of N phase oscillators globally coupled via mean-field
couplings, i.e., the Kuramoto-Sakaguchi model [10]:

K N
0; = w; — ﬁZsin(e,-—ejJra), 1)

j=1

where 6; denotes the phase of the ith oscillator, w; the natural
frequency of the oscillator i, and K > 0 the coupling constant.
A constant « determines whether the coupling is attractive
(cosa > 0) or repulsive (cos < 0). Many interesting phe-
nomena are known for cases with distributed natural fre-
quencies [12—14,21-23]. The natural frequency distribution is
assumed to be g(w).

The phase distribution of the oscillators is discrete when
the number of oscillators is finite but continuous in the
thermodynamic limit N — oco. Let us consider a situation
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where the phases of the oscillators are given according to a
certain distribution. When the number of oscillators is finite,
the empirical (observed) distribution and true distribution for
the phases are different. However, as the number of oscillators
increases, the empirical distribution approaches the true dis-
tribution. Naturally, the true distribution is well approximated
by the empirical distribution when the number of oscillators
is sufficiently large. In this situation, by the self-averaging
property, the empirical distribution of oscillator phases with
a natural frequency w,

1
PO, tw) = o Z(S[Q —0;@)], 2)
@ jew

evolves by the following nonlinear Fokker-Planck equation
[3,9,24]:

PO, tlw) _ 9 KO®6.)]P®. 1 3
T__E[w_ 00,NPO, tlw), (3)
00,1):= %[Z*(t)ei(eJ’“) — z(t)e Ot 4)

where z* indicates the complex conjugate of z. In Eq. (2), N,
denotes the number of oscillators with a natural frequency o,
and the sum is taken over all oscillators of a natural frequency
w. The Kuramoto order parameter z(¢) is defined as [9,25]

N
(1) := Zexp[iej(t)] ) 5)

J=1

In the thermodynamic limit N — oo, z(t) is evaluated as

z(t):/dwg(a))/ do exp (i0)P(9, t|w) . (6)

In the study of phase oscillators, the phase is often de-
fined in the domain 0 < 6 < 2. However, in this paper,
the phase is defined in —oco < 6 < co. Such an extension
of the domain of 8 does not affect the dynamics given by
Eq. (1). Therefore, the phase distribution P(0, f|w) is also
defined in the domain —oco < 6 < co. The observed phase
is 6 mod 27, but our definition of phase takes into account
how many revolutions the oscillators have made around the
origin. Then, the phase distribution Pys(6, t|w) based on the
observed 6 mod 2 is given using our phase distribution as
Pos(0, t|lw) = Z;‘;_w P(0 + 2mn, t|w), where the domain of
Pops(0, t|lw) is 0 < 0 < 2m. Note that P(0, t|w) satisfies the
natural boundary condition, i.e., it approaches zero as 6 —
F00. Otherwise, Pys(0, t|w) diverges according to its relation
to P(0, t|w), which is nonnegative.

It is convenient to apply the Fourier transform to both sides
of Eq. (3). Denoting p?(t) := ffooo do exp (—isO)P(0, t|w),
the Fokker-Planck equation (3) is expressed as

. . sK . »
§0) = —isop () + 3 [Py — e p ] ()

To obtain this expression, the natural boundary condition for
P(6, t|w) was used. Note that p¢(¢) is related to the character-
istic function ¢, (s, t) := f do exp (is@)P(0, t|w) for the em-
pirical distribution by p?(t) = ¢, (—s, t). In general, Eq. (7)
has an infinite hierarchy and cannot be solved. To resolve the
hierarchy, Ott and Antonsen [11] assumed that there exists an

appropriate complex variable A, (t) and
pe(t) = AS (1) ()

holds for all nonnegative s > 0. As Ott and Antonsen stated
in their paper [11], in Kuramoto oscillator systems, both
partially synchronized and desynchronized solutions can be
expressed in the form of Eq. (8). The original motivation for
this substitution is to restrict the discussion to a distribution
family that includes well-known stationary solutions. Note
that this substitution restricts the possibly considered distri-
bution family P(6, ¢|w). This ansatz for p{ is called the OAA.
The OAA is found to be equivalent to

b (=s.1) = exp[—=5Yo (1) + isit(1)] &)

for all nonnegative s > 0 with appropriate real variables y,,(t)
and ., (¢). The distribution with such a characteristic function
is a CLD. The parameters i, and y, play the roles of the
location and half-width at half-maximum of the peak in CLD,
respectively.

The Ott-Antonsen manifold is a two-dimensional manifold
that is invariant under a time evolution, and it has been
discussed in relation to the Poisson kernel [18]. Because
the Poisson kernel is defined in the domain of 0 < 0 < 27,
from the above argument, it is a superposition of a CLD
by shifting 2zn (n € Z). CLD is a family of distributions
characterized by two parameters: peak location and half-width
at half-maximum. The manifold formed by these two param-
eters is the Ott-Antonsen manifold. In discussions on coupled
phase oscillator systems using the OAA, the natural frequency
distribution g(w) is often assumed to be a CLD [11]. However,
if the initial phase distribution in the ensemble of oscillators
with the same natural frequency is taken as a CLD, the phase
distribution at any time is given by a CLD, regardless of the
shape of the frequency distribution g(w).

By introducing a complex variable A, :=exp
[—yo() 4+ iy, ()], from the evolution equation (7) with
the OAA (8), the evolution for A, is given as

A ; K —i K * o A2

A, = iwA, + —ze™" — =7 eA (10)

2 2

with z(t) = f dwg(w)A,(t). When a phase distribution is as-

sumed to be a CLD, the evolution equation (10) is straightfor-

wardly obtained by averaging the dynamics (1). By introduc-

ing a complex variable A; = exp [i6;(¢)], Eq. (1) is rewritten
in the same form as Eq. (10):

( . K —ia K * i A2
A,-:lwAi—i—Eze — EZ A7 (11

When the phase distribution for oscillators with the natural
frequency w is given by a CLD

PeL[0116 (1), ya)(t)] = l yw(tZ) 2 s
7 [0 — no®)” +y,@)
the averaged quantity A, := > jewAj/No is given by the pole
of Por[0146(t), Vw(t)] in the thermodynamic limit as A,,(t) =
exp (i0) o=y, (1 )+iy, 1) = Aw- Thus, the set of oscillators obey-
ing the CLD is reduced to a single oscillator with a complex
phase evolving with Eq. (11). It is concluded that the OAA
is a reduction method for degrees of freedom owing to the
representative property of a pole in a CLD.

12)
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III. EXTENSION OF OAA

As discussed in Sec. II, the conventional OAA considers
only the case where the initial phase distribution is a CLD.
In the analysis of systems with distributed natural frequencies
[11-14], the OAA restricts the initial distribution of a phase
oscillator group with each frequency to a CLD. Consequently,
the CLD for each frequency evolves as per Eq. (10).

To extend the conventional OAA, it is worth mentioning
that, in Eq. (10), oscillators belonging to different CLDs
interact only through the Kuramoto order parameter. This
is true even when the natural frequency distribution is sig-
nificantly sharp. Then, it is possible to consider the case
where the width of the natural frequency distribution around
a certain frequency w approaches zero. In this case, it is
concluded that the phase distribution of oscillators with the
natural frequency w is given by a superposition of CLDs
satisfying the OAA. To formulate this idea, for simplicity, let
us consider a set of phase oscillators with a single natural
frequency. By dividing the N oscillators into M groups, the
empirical distribution of the vth group is formally defined as
P,9,t) = ]% Zjegv 8[0 — 0;(1)], where the sum is taken for
all oscillators in the vth group €2, and N, is the number of
oscillators in €2, of O(N). Consequently, oscillators belong-
ing to different groups interact only via the Kuramoto order
parameter. If the initial distribution of P, is a CLD, the time
evolution is exactly given by the OAA. In other words, if
the initial phase distribution is given as a superposition of M
CLDs, the empirical distribution at any time remains to be a
superposition of M CLDs:

M
PO,1) = ZFVPCLWIMV(I), n(l, 13)

v=I

where r, := N,,/N is the ratio of the vth distribution. Because
the conventional OAA holds for each group, the evolution
equation is given as

‘ . K —i K * I A2
A, = iwA, + —ze " — —7"'%A], (14)
2 2
M
2(t) =) rA), (15)
v=1

where A, corresponds to the characteristic function of
P,(6,t), which is assumed to be a CLD. In this framework, the
Ott-Antonsen manifold is extended to 2M dimensions. That
is, if the superposition of arbitrary CLDs is set as an initial
phase distribution, the time evolution of the phase distribu-
tion is exactly given. This fact is useful for systematically
approximating the behavior of a system starting from an ar-
bitrary initial distribution. The approximated system behavior
can be obtained with arbitrary accuracy if the initial phase
distribution is approximated as a superposition of CLDs to the
required accuracy.

Note that A, = exp (—y, + i) plays the role of a local
Kuramoto order parameter for the vth group because A, cor-
responds to the ensemble average of exp (i¢;) in the group as
A, = NLU Zjeﬂ\, exp (i0;). Therefore, y, = —In|A,| indicates
the degree of desynchronization in the group. y, =0 and
y» — oo indicate phase-locked and desynchronized solutions,

respectively. In the case of M = N and r, = 1/N for all v,
Eq. (14) reproduces the dynamics for each oscillator Eq. (11).

Equation (14) can also be expressed in terms of y, and
o as

Y = —Ke 7V sinhy, cos (u —a — 1), (16)

fy =w+Ke ¥ coshy,sin(u—a —pn,),  (17)

where y and p are defined by the Kuramoto order parameter
as z =exp(—y +iu). Equations (16) and (17) are useful
for directly evaluating the degree of desynchronization in the
group but are unsuitable for numerical calculations because
the constraint y,, > 0 should be imposed and y, may diverge.
It is recommended to solve Eq. (14) for stable numerical
calculations.

To guarantee the correctness of the above extension of the
OAA, it is worth mentioning its mathematical background.
The conventional OAA is interpreted as follows: if the initial
phase distribution is a CLD, the phase distribution remains in
the CLD family at any arbitrary time. The evolution equation
for the distribution function is given through the characteristic
function. The characteristic function is the Fourier transform
of the distribution function, and the Fourier transform is a
linear transformation. Therefore, the evolution of the superpo-
sition of CLDs is given by the superposition of characteristic
functions, and the OAA holds for each CLD.

IV. DEVIATION FROM TRUE SOLUTIONS

Equation (14) is exact in the thermodynamic limit when
the initial phase distribution is given by a superposition of
CLDs. However, such a situation seems somewhat unrealistic.
In some cases, it is not practical to express the initial phase
distribution by a superimposition of CLDs. In other cases, the
thermodynamic limit does not hold, because the system con-
sists of a finite number of oscillators. This section discusses
how the proposed extended OAA deviates from reality.

Even when the number of oscillators N is finite or the
oscillator distribution is not given by a superposition of CLDs,
Eq. (11) for each oscillator exactly holds. Considering the en-
semble average of A in the vth group, i.e., the local Kuramoto
order parameter for the vth group A,(¢) := NL. Zjegv Aj(t),
the exact dynamics for A, is given as

A, = iwA, + 5z " 72 (A%, (18)

where (A?), = NLV Ziefzv A?. This equation differs from
Eq. (14) only in the third term on the right-hand side. Note
that (A2), becomes equal to A2 when the oscillator phases in
2, obeys a CLD. If the phase distribution is not a CLD, the
values of {A;}jcq, must be known to evaluate (A?),. Here, the
deviation between the extended OAA and the realistic system
can always be evaluated by the third term on the right-hand
side in Eq. (18). When the number of oscillators is finite, the
phase distribution is regarded not as a superposition of CLDs
but as a discrete distribution. Thus, the deviation from the
OAA due to both the finite size effect and non-CLD phase
distribution can be evaluated based on the same criterion.
With the proposed method, in principle, an approximation
of the initial distribution as a superposition of M CLDs yields
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an approximation of the time evolution of a system with
arbitrary accuracy. Any initial distribution can be approx-
imated well if M is sufficiently large. M = N reproduces
the true dynamics by Eq. (11), which is equivalent to the
original dynamics given by Eq. (1). However, in practice,
calculations with a large M are impossible. At present, there
is no clear criterion for determining the appropriate value
of M that effectively reduces the deviation from the reality.
However, because the origin of the deviation is (A2), as shown
above, if the second moment of {A;};cq, can be evaluated
correctly, the deviation from the reality vanishes. Although
the time evolution of the ensemble average of {A;}cq,, i.€.,
A,, is exactly given by Eq. (18), the dynamics for the second
moment, i.e., (A%),, is unknown. To obtain (A%), without any
assumption, an infinitely hierarchical calculation is required.
Even if (A2), is exactly given at the initial time, A2 predicted
by Eq. (14), which plays the role of an approximation of (A2),
in Eq. (18), gradually departs from the true value of (42),,. For
this reason, the deviation accumulates over time.

V. STABILITY OF SOLUTIONS

Under the extended OAA, the variable A, obeys the dy-
namics given by Eq. (14), where the Kuramoto order param-
eter z is evaluated using Eq. (15). The conventional OAA
corresponds to the case of M = 1, and the evolution equation
for z is given as

7 =iwz+ gz(e_i"‘ —|z%e™). (19)
Because |z| < 1 and the real part of the coefficient for z in
the right-hand side of Eq. (19) give the growth rate of |z|,
|z| increases monotonically to |z| — 1 when the coupling
is attractive, i.e., cosa > 0. Therefore, in this case, all the
oscillators become in phase. On the other hand, if the coupling
is repulsive, i.e., cosa < 0, |z| decreases monotonically to
|z| = 0. In the conventional OAA because identical oscilla-
tors are considered and z = A, = exp (—y + i) in this case,
z — 0 implies a uniform distribution of oscillator phases.
However, systems with repulsive coupling exhibit compli-
cated behaviors [19,20,23,26], even if the system consists
of identical oscillators. A typical example was given by a
cluster solution [19,20]. In the repulsive case, there is a
possibility that multiple clusters exist and cancel each other’s
phase effects to satisfy z = 0, but this phenomenon cannot be
described by the conventional OAA, in which z = 0 implies a
uniform phase distribution.

In contrast to the conventional OAA, the extended OAA
retains the possibility of a nontrivial phase distribution satisfy-
ing z = 0. By decomposing A, into z and its variation around
zasA, = z+ A,, the dynamics for z and A, are obtained as

K M
¢ = iwz+ Sale™™ — |z]%e™) — ; , (20
M
A, = iwA, — K|z]2e® A, + <Z )
21

with Zf’;l ryA, = 0. Note that, in the dynamics of z for
the extended OAA, a nonlinear term with respect to A, has
been added to the dynamics of z for the conventional OAA
Eq. (19). Because of this nonlinearity, we cannot simply
conclude that repulsive coupling, i.e., cosa < 0, leads to a
completely desynchronized solution. By taking a complicated
initial distribution, a nontrivial behavior that is not predicted
by the conventional OAA may occur.

As in Eq. (14), different groups interact only through the
Kuramoto order parameter z. Therefore, if A, = A,, (v £ V')
is realized at a certain moment, the two groups €2, and
2, exhibit the same time evolution afterwards. Since A,
completely determines the phase distribution in €2, under the
OAA, A, = A, implies no distinction exists between the two
groups. Therefore, if A, = A,, holds, the two groups can be
regarded as united. To keep the two groups distinguishable,
A, — A, # 0 must always hold. Because the evolution of
A, — A, is given as

. . K
A, —A, = [ia)— 2 el (A, + A, )}(A —A)), (22)
the growth rate A, for |A, — A,/| is obtained as
K
Ay = —ERG—'[e“x (A, + A (23)

If A,y <0, the two groups €2, and €2, become indistin-
guishable. On the other hand, if A,, > 0 is satisfied, |A, —
A,/| monotonically increases. Because A, has the restriction
|A,| < 1, the quantity |A, — A,/| has an upper bound. There-
fore, A,y = 01is achieved after a long time to stop the growth
of |[A, — A, | in the case of A,, > 0. Generally, |A, — A,/ is
bounded as 0 < |A, — Ay| < 2,but A,,, = 0 may be satisfied
before |A, — A,/| reaches its upper or lower bound, i.e., 2 or
0. For such solutions, their existence and stability should be
investigated in detail.

A. Steady solutions

In the present paper, a steady solution with constant |A, |
for all v is considered. Because

d .
Evmz = K(1 — |A,[")Re(eZ*A,), 24)

such a solution satisfies |A,| = 1 or Re(¢®z*A,) = 0. Thus,
the trivial solution is given by z = 0. On the other hand,
for the solution of Re(e®z*A,) =0 with z # 0, the angle
between A, and z on the complex plane is always fixed as
—a £ /2. However, if such a fixing of phases is realized
for all v, the phase of z is inconsistently given by the linear
combination z = ZU  "vA,. Thus, in the case of z # 0, there
should be several groups satisfying Re(e®z*A,) # 0. Because
another choice of a steady |A, | is given by |A, | = 1, the steady
solution with z # 0 is given by Re(e*z*A,) =0 for v =
1,2,...,Myand |A,| = 1forv=M; +1,...,M,where 0 <
M; < M is a constant integer. Therefore, the steady solution
is classified into two types: (i) a trivial stationary solution, i.e.,
z = 0, and (ii) a nontrivial steady solution, i.e., Re(e’*z*A,) =
O0forv=1,...,M; and |A)|=1 forv=M;+1,...,. M
with z # 0.
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Forstable [A,| =1(v =M, +1,...,M), when |A,]| is ini-
tiated as |A,| = 1 — § with a small positive parameter &, |A, |
must increase afterwards. Because K(1 — |A4,|?) > 0 in such
a situation, according to Eq. (24), Re(e®®z*4,) > 0 should
hold to increase |A, |. Note that Re(e’*z*A,) = 0 holds for v =
1,..., M, for the nontrivial solution z # 0. Then, according to
Eq. (23), the growth rate of |A, — A,/| is given as A,y < 0 for
vefl,...,M}and v € (M| + 1, ..., M}. Thus, the groups
in the nontrivial solution merge into one group. The stability
of the solution |A,| =1 for all v (M; = 0) was discussed
previously [20]. In this case, multiple phase-locked groups
merge into one phase-locked group. On the other hand, for
the solution with M; > 1, A, forv € {1,..., M} and A,/ for
v e {M;+1,...,M} must be at an angle different from z.
However, because A,, < 0, A, and A, approach each other.
This is an obvious contradiction. Therefore, it is concluded
that the solution with M| > 1 cannot exist stably. Only a non-
trivial stable solution satisfying A; = - - - = Ay with |A,| = 1,
i.e., |z| = 1, is possible.

It is concluded that stable steady solutions are classified
into two categories: (i) z = 0, which includes nontrivial solu-
tions such as cluster and chimera solutions satisfying A, 7% 0
as well as the well-known uniform distribution A,, = 0 for all
v, and (ii) the phase-locked solution |z| = 1, which can be
analyzed by the conventional OAA. Because the stability of
|A,] = 1 was assumed in the above argument, the stability
of each steady solution must be analyzed in detail. With the
conventional OAA, for the phase-locked solution |z| = 1, it
is known that the solution is stable in the attractive case and
unstable in the repulsive case. On the other hand, for the
solution z = 0, the stability analysis requires a framework
beyond the conventional OAA. The stability to a perturba-
tion for the solution z =0 will be discussed in the next
subsection.

Note that the argument on the steady solutions does not
depend on the value of M. Because the choice M = N re-
produces the original N-body dynamics (11), only two steady
solutions are possible, i.e., z = 0 or |z| = 1, even in a system
of a finite number of oscillators.

B. Stability to perturbation

To discuss the stability of a solution after a long time, it
is necessary to track the evolution of a small perturbation
8A, around the solution after a long time AS'. §A, follows the
evolution equation:

bA, = iwdA, + Te 8z — e (AY)*87" — K23 AMSA, |

(25
where zq = Y/ r,A" and 8z =Y r,6A,. When dis-
cussing the stability, it is often useful to denote the order
parameters as zy = Re'® and A% = R,e'® . However, the
phases ® and ®, are ill defined when R =0 and R, =0,
respectively. When discussing the stability of asynchronous
states R = 0 or R, = 0, such notations of the order parameters
cause inconvenience. In general cases, Eq. (25) is suitable
for discussing the stability of solutions. Equation (25) can be

expressed simply using a 2M x 2M matrix W as follows:

2M
Bv = Z WywBy (26)

v'=1

where W, is given as

W = (0 — Ke“ZiAN)ouw + e s, @)
Wywmt = —geio‘ (A%’ (28)
Wotatr = Wyt (29)
Wosatw i = W (30)

for1 <v,v < M.B,isdefinedas B, =8A, forl <v<M
and B, =06A}_,, forM +1 < v < 2M.

Now, let us focus on the stability of the solution zg = 0.
In this case, from Eq. (14), A, (v =1,2,..., M) rotates at a
constant speed on a circle with a constant radius. Therefore,
the Lyapunov exponent of the whole system can be easily
calculated as the average of the eigenvalues of W on a constant
|A, |. From Eq. (25), it is found that the perturbation satisfying
réA, +ry8A, =0 and §A,, =0 for all v’ # v,V gives
the eigenstate of W with its eigenvalue iw because zy = 0
and 8z = 0. Considering all pairs of (v, V"), such eigenvalues
are (M — 1) fold. Because W has eigenvalues of complex
conjugate pairs, +iw gives 2(M — 1) of the 2M eigenvalues
of the matrix W. Because trW = K cosa when zi = 0, the
real parts of the remaining two nontrivial eigenvalues are

%cos «. Thus, the largest Lyapunov exponent is given by

%(cosa for cosa > 0 and zero for cosa < 0 with M > 2.
Therefore, zg = 0 is an unstable solution for the attractive
case. Note that this conclusion does not depend on a real-
ization of {AS'}. Not only a solution with a uniform phase
distribution, but also cluster solutions in which ziz = 0 with
A% #£0 for v are unstable in the attractive case. On the
other hand, for the repulsive case, z = 0 yields a stable limit
cycle for M > 2. Note that M = 1 is a special case, where the
largest Lyapunov exponent is given by % cos o, which implies
the uniformly distributed solution is stable in the repulsive
case. Therefore, a nontrivial solution satisfying zyq = 0 may
be realized as a stable limit-cycle solution in the repulsive
case. These conclusions in the repulsive case are independent
of the realization of {A%'}. Thus, a cluster solution in which
A, # 0 for all v as well as a chimera solution in which
A, #0 and A, = 0 for Fv'(# v) can be realized. Recalling
that M = N reproduces the dynamics of each oscillator, the
above arguments hold even in the case of a finite number of
oscillators.

VI. NUMERICAL RESULTS: CLUSTER AND
CHIMERA-LIKE SOLUTIONS

Finally, to show the advantage of the higher-dimensional
version of the OAA, let us consider a variety of solutions
including a cluster solution [19,20] and chimera-like solution
[23] in the Kuramoto-Sakaguchi model [10] of identical phase
oscillators. In the study of oscillator systems, a cluster and
chimera are frequently used terms, and their definitions must
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time

FIG. 1. Chimera-like cluster solution of three groups of oscilla-
tors with the same natural frequency w in the repulsive coupling case.
Top panel: time evolution of u,. Middle panel: time evolution of y,.
Bottom panel: time evolution of Kuramoto order parameter z. The
parameters are set to w = 1.0, K =1.0,0 =37/4, and r; = r, =
r3 = 1/3. The initial values are setto y; = y», = 0.1, 3 = 5.0, u; =
0.0, u, = 3.0, and 3 = 1.5. The solid, dashed, and dotted lines in
the top and middle panels correspond to the solutions of Eq. (14) for
Ay, A,, and Aj, respectively. The circle, triangle, and square marks in
the top and middle panels correspond to the numerical solutions of
Eq. (1) for Aj, A,, and A3, respectively. In the bottom panel, the solid
line and circle marks correspond to the solutions of Egs. (14) and (1),
respectively. In the calculation of Eq. (1), the numbers of oscillators
were taken as N; = N, = N3 = 10°.

be clarified. In this paper, a cluster refers to a group of
oscillators belonging to a CLD, although it has been defined
as a group of oscillators with zero phase difference in many
previous reports. In [20], Gong et al. showed that in the
Kuramoto-Sakaguchi model consisting of identical oscillators
with repulsive coupling, multiple clusters, each of which is
characterized by zero phase difference, cannot exist stably. It
is worth mentioning that such analyses focused on the oscilla-
tors with zero phase difference only. As mentioned in the pre-
vious section, the phase-locked solution |A,| = 1 for all v is
unstable. However, there remains a possibility where multiple
groups with distributed phases exist. To handle such situations
in this paper, a cluster is defined as a group of oscillators
belonging to a CLD. This definition includes the conventional
definition of a cluster characterized by zero phase difference.
On the other hand, the chimera state was defined in [23] as
“an array of identical oscillators splits into two domains: one
coherent and phase locked, the other incoherent and desyn-
chronized.” However, from the standpoint mentioned above,
the “phase locked” condition is too strict to characterize a
coherent state. In a subdomain of various systems, a coherent
state would be realized with a local Kuramoto order parameter
0 < |A,] < 1. Thus, in this paper, by using our definition of
clusters, a chimera state is defined as a state in which the
clusters of A, # 0 and A, = 0 coexist. Below, the coexistence
of clusters with A, # 0 and A, >~ 0 is numerically shown.
However, such a state is called a chimera-like state in this pa-
per because the exact asynchrony A, = 0 cannot be confirmed
numerically.

In the case of M = 3, a nontrivial cluster solution with
z = 0 is numerically observed. The solution of Eq. (14) and
the direct numerical solution of Eq. (1) for the repulsive case

(a) 7 ey 5 L : ”
E e TR ¢ e
—Tr N L. y Loyl —TT o ) (I £ f
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—TT WS ] - N BB
0 100000 200000 300000 0 100000 200000 300000
site index site index

FIG. 2. Phase distributions obtained from the direct calculation
of Eq. (1) corresponding to the result shown in Fig. 1. The site
indices0t0 10° — 1, 10°t02 x 10° — I, and 2 x 10°to 3 x 10° — 1
correspond to the oscillators belonging to the clusters of A;, A,, and
Aj, respectively. The panels (a)—-(d) correspond to the snapshots at
t =0,5, 10, 15, respectively. For the convenience of viewing, the
points are plotted by thinning out at a rate of 1/250.

are shown in Fig. 1. The solutions for Egs. (14) and (1)
agree very well. For the solutions of Eq. (14), u, and y,
are evaluated as u, = argA, and y, = —In |A, |, respectively.
Further, the snapshots of the corresponding oscillator phases
obtained using Eq. (1) are shown in Fig. 2. The oscillators
in the two clusters corresponding to A; and A, are almost
antiphase, and the oscillators in the cluster corresponding to
Ajz are almost uniformly distributed after a long time. Note that
such a chimera-like cluster solution cannot be obtained by the
conventional OAA as mentioned in the previous section. Note
also that the numerical solution of Eq. (1) with finite N and
that of Eq. (14) obtained in the thermodynamic limit N — oo
are stable, as mentioned in the previous section. When the
initial values for A, (v = 1, 2, 3) are identical, the results are
the same as in the conventional OAA, i.e., Ay, Ay, and Aj
all correspond to characteristic functions of uniform distri-
butions; in other words, A, = 0. As the difference between
the initial values of A, increases, the solutions A;, A,, and A3
gradually split, resulting in a nontrivial cluster solution.
Nontrivial dynamical behavior is observed even in the at-
tractive coupling case, as shown in Fig. 3. The Kuramoto order
parameter |z| increases with oscillation, whereas |z| increases
monotonically in the prediction of the conventional OAA. As

time

FIG. 3. Nontrivial evolution of three groups of oscillators with
the same natural frequency w in the attractive coupling case. The
parameters are settow = 1.0, K = 1.0, = 1.87 /4, and ry = r, =
r3 = 1/3. The initial values are setto y; = y» = 1.0, y3 = 0.1, u,
0.0, u2 = 1.0, and p3 = 3.0.
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FIG. 4. Phase distributions obtained from the direct calculation
of Eq. (1) corresponding to the result shown in Fig. 3. The panels (a)—
(h) correspond to the snapshots at r = 0, 5, 10, 15, 20, 25, 30, 35,
respectively.

shown in Fig. 4, it is possible to predict the chimera-like
state in the transient regime by using the extended version of
the OAA. As mentioned in the previous section, multicluster
or chimera-like solutions with z = 0 are forbidden as stable
solutions in the attractive case.

Several numerical experiments showed that the stability
of z is independent of M. Synchronous solutions of |z| = 1
were obtained for the attractive case, i.e., cos « > 0, and asyn-
chronous solutions of z = 0 were obtained for the repulsive
case, i.e., cosa < 0, for several initial conditions. In other
words, the behavior of the Kuramoto order parameter z after
a long time is independent of the initial condition. Thus,
the stability of the solutions discussed in Sec. V has been
validated numerically.

VII. CONCLUSION

To conclude, the OAA, which is a method for reducing the
high number of degrees of freedom of globally coupled phase
oscillators to a two-dimensional manifold, has been extended
for reduction to a high-dimensional manifold. The conven-
tional two-dimensional Ott-Antonsen manifold has been clar-
ified to be a manifold of a CLD, which is characterized by
two parameters. Owing to the representative property of the
poles of a CLD, the many-body problem of phase oscillators
has been reduced to a single oscillator problem under the
conventional OAA. By taking advantage of the linearity of
the characteristic function with respect to the superposition
of empirical distributions, the extension of OAA has been

realized by the superposition of CLDs. Since the extended
OAA is exact in the thermodynamic limit, it would be a pow-
erful tool to investigate the behaviors of a system consisting of
many phase oscillators. Moreover, this extension enables the
systematic approximation of the behavior of coupled phase
oscillator systems with arbitrary initial conditions.

The extended OAA has been employed for the Kuramoto-
Sakaguchi model of identical phase oscillators to show a
variety of dynamical behaviors. It has been shown that cluster
and chimera states, which cannot be obtained by the conven-
tional OAA, exist in the Kuramoto-Sakaguchi model in the
repulsive regime. From a linear stability analysis, these states
were found to be stable. The conventional chimera state was
found in systems with couplings dependent on the distances
between the oscillators [23]. It was previously believed that
the chimera state could stably exist only in the presence of
intermediate nonlocal couplings and neither global nor local
couplings. However, it has been shown that chimera states
can also exist stably in the presence of all-to-all couplings,
where there is no concept of distance. This fact may deepen
the understanding of the origin of complicated behaviors of
oscillator systems.

The proposed method can be applied to a wide range of
phase oscillator systems. In this paper, systems consisting
of identical oscillators without noise have been analyzed.
However, our proposed method can be applied to nonidentical
cases, where the natural frequencies are distributed, as well
as to systems under the influence of common noise. Further,
it can also be applied to systems with a time delay by using
an approach similar to that shown by Ott and Antonsen [11].
The proposed method is applicable to all systems where the
conventional OAA can be applied. Since our method restricts
the phase distribution of the system to a superposition of
CLDs, it is not exact in the presence of noncommon noise.
Further studies are required to apply the proposed method to
such a noisy case.

Although the stability of cluster and chimera states has
been discussed in this paper, the question of which cluster
or chimera state will appear spontaneously as a result of
relaxation remains to be solved. In addition, this question is
related to the natural number of clusters. In our analysis, the
number of clusters M was given. However, in general, A, =
A, can be realized, and the number of clusters can change. It
is necessary to discuss the stability of the solution A, — A,/ in
detail. The investigations for natural nontrivial solutions and
numbers of clusters are topics for future studies.
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