
252
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

PAPER Special Section on Intelligent Transport Systems

An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles

Abraham MONRROY CANO†a), Eijiro TAKEUCHI†, Shinpei KATO††, Nonmembers,
and Masato EDAHIRO†, Member

SUMMARY We present an accurate and easy-to-use multi-sensor fu-
sion toolbox for autonomous vehicles. It includes a ‘target-less’ multi-
LiDAR (Light Detection and Ranging), and Camera-LiDAR calibration,
sensor fusion, and a fast and accurate point cloud ground classifier. Our
calibration methods do not require complex setup procedures, and once the
sensors are calibrated, our framework eases the fusion of multiple point
clouds, and cameras. In addition we present an original real-time ground-
obstacle classifier, which runs on the CPU, and is designed to be used with
any type and number of LiDARs. Evaluation results on the KITTI dataset
confirm that our calibration method has comparable accuracy with other
state-of-the-art contenders in the benchmark.
key words: LiDAR, cameras, sensor fusion, calibration, autonomous driv-
ing, ground detection

1. Introduction

The field of autonomous vehicles has undergone amazingly
fast development in recent years. Demonstrations from soft-
ware giants such as Google, NVIDIA and Intel show that we
are closer than ever to achieve the deployment of fully au-
tonomous driving systems on general roads. Nevertheless,
these solutions are completely closed, not providing feed-
back to the research community.

The importance of the benefits to society of the deploy-
ment of autonomous vehicle technology has been widely
discussed [1]. Reduction of road accidents, safe mobility for
the elderly, independent transportation for the disabled, and
reduction of traffic congestion are just a few of the potential
benefits promised by the adoption of autonomous driving
technology.

An autonomous vehicle requires several sensors to un-
derstand its surroundings, and act accordingly in different
scenarios [2]. Images from camera devices, range data from
LiDARs, speed information from radars, and other sensor
data is fused to achieve single-digit centimeter-level accu-
racy of the object detection. Thanks to the fast development
of autonomous driving technologies, the cost of these sen-
sors is rapidly reducing.

A lot of research has been carried out in the calibra-
tion, fusion and classification field. However, most existing

Manuscript received March 14, 2019.
Manuscript revised June 25, 2019.
†The authors are with Graduate School of Information Science,

Nagoya University, Nagoya-shi, 464-8603 Japan.
††The author is with Graduate School of Information Science

and Technology, The University of Tokyo, Tokyo, 113-8656 Japan.
a) E-mail: amonrroy@ertl.jp

DOI: 10.1587/transfun.2019TSP0005

Fig. 1 Successful calibration result of six wide-angle cameras, one rotat-
ing LiDAR and four MEMS (micro electro-mechanical systems) LiDARs.
Each LiDAR is shown in different color.

work focus on a unique sensor type (i.e. rotating LiDAR),
or are not designed to function with multiple sensors simul-
taneously.

The integration of multiple LiDARs and cameras al-
lows the system to benefit from redundant, complementary
and timely information. Moreover, multiple sensors dis-
tributed around the vehicle improve the field of view, and
hence the safety of the system and its users. Nevertheless,
increasing the number of sensors requires better synchro-
nization, fast and reliable fusion techniques, and optimized
processing methods due to the increased bandwidth. Fig-
ure 1 shows a successful integration of multiple LiDAR and
camera sensors of different types using this work.

In this paper, we present an open and easy-to-use per-
ception framework for multi-LiDAR, multi-camera calibra-
tion, fusion, and a point cloud ground classifier. Our ex-
perience with autonomous vehicles has showed that these
phases are the foundation for any higher level perception
system, whether it is based on traditional machine learn-
ing [3] or deep learning. New approaches such as [4]–[6]
are good examples of state-of-the-art systems that require
a solid calibration and fusion framework. In summary, the
main contributions of this work are as follows:

• The proposal of a reliable LiDAR-to-LiDAR extrinsic
calibration based on 3D shape matching.

• Implementation of an easy-to-use “target-less” Camera-
to-LiDAR extrinsic calibration method built around a
user interface.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
253

Table 1 Feature comparison among tested Camera-LiDAR algorithms.

Method Open-source Data Available ROS Compatible Target-Type LiDAR Type Camera Type
Geiger, et al. [18] X O X Chessboard Rotating Single
Naroditsky, et al. [12] X X X Blackboard Rotating Single
Velas, et al. [13] O X O Custom board Rotating Single
Weimin, et al. [15] O O X Chessboard Rotating Single
Pandey, et al. [16] O O X Target-less Rotating Omni
This work O O O Target-less any any

• A real-time pixel to point cloud fusion algorithm.

• The proposal of an accurate, and real-time ground clas-
sifier for point cloud that works regardless the type and
number of LiDARs.

This paper is arranged as follows: Section 2 presents
previous work on the fields related to each of the parts of our
toolbox. Section 3 contains the theory and implementation
details for each component. Section 4 shows the evaluations
we carried out and their results. Afterwards, Sect. 5 analy-
ses these results and presents our findings. Finally, Sect. 6
summarizes and suggests the follow-up work required to im-
prove our framework.

2. Related Work

Extrinsic calibration can be defined as the process of cal-
culating the relative position in space between sensor co-
ordinate frames. This can be achieved by looking for co-
observable features in the data from both sensors. Calibrat-
ing different sensors may use similar optimization methods.
However, the features to search for are dependent on the sen-
sor. In the following subsections we will summarize some
of the most recent developments in each area.

2.1 LiDAR-LiDAR Extrinsic Calibration

To the best of our knowledge, at the time of writing, very
few publications can be found that address the calibration
of multiple multi-layer LiDAR sensors. In [7] a method
to calibrate a single-layer LiDAR is presented. This work
maximizes the mutual information entropy, through the es-
timation of the projection coefficients between the spaces.

The work presented in [8], shows a semi-automatic ex-
trinsic calibration method for multiple LiDARs and cam-
eras. In this work, features are inserted in the field of view of
the sensors with the help of spheres. These are detected with
the help of the PointCloud Library (PCL) [9] segmentation
and sphere fitting toolbox. The rigid body transformation is
calculated using the Iterative Closest Point (ICP) algorithm
[10].

2.2 Camera-LiDAR Extrinsic Calibration

While there is extensive work in this field, most of it focuses
on the calibration of a single LiDAR and a camera. In this
subsection we can classify the available methods into two:

1. The target category requires predefined and specific

setups to ease the identification of shared features between
the sensors. Under this class we can find notable mentions
such as [11], [12], [13], [14], [8], and [15], which take ad-
vantage of the purposely inserted features, fixing the num-
ber of targets and optimizing the calibration algorithm under
these constraints. The work presented by [8], [11], and [15]
require the construction of a setup consisting of several spe-
cific targets, and scatter them across the shared field of view
of the camera and the LiDAR. This approach works well in
laboratories and closed environments. However, its appli-
cation is difficult in the field. Moreover, all the mentioned
work, except in [15], are not open-sourced, reducing their
impact and reachability.

2. The target-less methods focus on finding inherent
features to the scene in both sensors. In this category [16]
is a notable mention. It requires an initial rough position
estimate between the sensors, provided by the user. In this
position, it generates an image projection of the LiDAR re-
flectance values using the given camera projection matrix. It
then slowly modifies the transformation to try to match the
generated reflectivity image with the camera gray-scale im-
age. To measure the error, it compares the camera brightness
histogram, and the LiDAR’s reflectivity histogram. Since
this method relies completely on the reflectivity values, it
requires manual pre-calibration of the LiDAR unit [17], in-
stead of using the parameters given by the manufacturer.
This extra step involves the use of specific equipment, mak-
ing this method difficult to deploy and test in practical situ-
ations.

Table 1 presents a feature summary comparison of the
Camera-LiDAR calibration methods mentioned. From this
we can compare characteristics such as integration, required
target type, and sensing devices. After a quick analysis, we
can identify the need of a method that works with different
types of cameras and LiDARs, while maintaining the target-
less property. Target-less methods offer the possibility to
calibrate without the need of a special setup, or target. This
feature allows users to reduce the time required to obtain the
calibration parameters.

2.3 Camera-LiDAR Fusion

Having both sensors extrinsically calibrated, we can per-
form fusion at a point-to-pixel level. This enables both sen-
sors to complement each other. The camera can integrate
distance information for each of the 3D points projected on
the image, while the LiDAR can extract color information
to each of the points projected onto the camera field of view.

254
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

The work presented in [19] achieves fusion using distinct
shots taken with a single camera pointing towards the Li-
DAR field of view. Having the camera intrinsics known and
using photogrammetry techniques, they obtain the colored
point cloud. However, this approach requires several pre-
computations and is not capable of real-time performance.
A different approach can be found in [13]. In this work, the
authors integrate the intrinsic and extrinsic calibration over
several phases. Nevertheless, they neither present the fusion
method nor their findings on computation time.

2.4 Point Cloud Ground Classifier

The last part of our calibration framework involves the
ground removal. This step is essential to ease the identi-
fication of obstacles on the road. Most work on this field
([20], [21], [22], and [23]) is focused on airborne applica-
tions, with LiDARs attached to a flying drone and pointing
towards the ground. These methods can also be applied to
both the rotating and solid-state LiDARs usually found in
autonomous vehicles. However, these methods are not de-
signed to be executed in real time.

Ground classification is often confused with road clas-
sification. This kind of research is focused on autonomous
driving applications. The work by [24], and [25] present the
current state-of-the-art developments. However, these re-
quire large labeled datasets, a frequently ignored limitation
for its real application. For this reason, most of this work
does not perform well when the resolution of the LiDAR
sensor is changed, requiring a new dataset.

3. Theory and Implementation

In this section, we will explain each of the contributing parts
of the framework, the theory behind each one, and its corre-
sponding open-source implementation.

During the remaining sections we will employ the fol-
lowing coordinate frame conventions, which observe the
ROS (Robot Operating Systems) [26] standard. In sum-
mary:

• All systems are right handed.

• LiDAR coordinates: x axis points forward, y axis ex-
tends to the left, and z faces upwards.

• Camera frames follow: z points forward, x extends to
the right, and y faces downwards.

3.1 LiDAR-LiDAR Extrinsic Calibration

LiDAR sensors obtain the distance to an object by illuminat-
ing it with a pulsed laser, and measuring the time required
to reflect and return. The 3D version of these sensors are
offered by manufacturers as multi-layered, electro mechan-
ical based, or solid-state devices. In all these cases, the de-
vice is equipped with one or more laser transceivers. Either
by moving a single or multiple lasers, or pulsing the array

constantly, the device generates a 3D point cloud, instead
of a single 2D scan. This allows the device to generate 3D
shapes with high resolution. Taking advantage of this fea-
ture, our LiDAR-LiDAR extrinsic calibration is based on
a shape-based approach. Moreover, as originally shown in
[27], the transformations obtained by this approach produce
considerably lower error, while also performing up to three
times faster than point-to-point based algorithms (i.e. ICP).

LiDAR-to-LiDAR calibration can be applied in a va-
riety of sensor configurations. For example, new LiDAR
technologies provide faster readings, reduced cost, non-
mechanical solutions, velocity reading included on each
point, etc. However, these sensors tend to have a narrower
field of view, compared to their traditional mechanical coun-
terparts. For this reason, extrinsic calibration is required
when using several of these sensors. Another setting for
multi-LiDAR application would be the integration of multi-
ple LiDARs on bigger vehicles, such as SUVs, trucks, buses,
etc., where a single rotating LiDAR would not be able to
cover the entire field of view.

3.1.1 Theory

In order to extrinsically calibrate the sensors, both must have
shared features as suggested by [7]. Our strategy employs
the Normal Distributions (ND) method [28], [27] to match
shapes, instead of a direct PDF (Probability Density Func-
tion) projection matching as presented in [7]. The ND al-
gorithm tries to successively find the rigid transformation
(Eq. (1)) between the b and a point cloud coordinate frames
where Rab is a rotation matrix, represented by the rotation
on the three coordinate axes as shown in Eq. (2). The trans-
lation vector between these two spaces is represented by t
as shown in Eq. (3).

pa = Rab ∗ pb + tab (1)
R(α, β, γ) = R(α) × R(β) × R(γ) = cosα −sinα 0

sinα cosα 0
0 0 1

 ×
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

×

 1 0 0
0 cosγ −sinγ
0 sinγ cosγ

(2)

t = (tx ty tz) (3)

To solve this problem, and assuming we have an initial
estimate pose (x, y, z, raw, pitch, and yaw), the ND algo-
rithm uses the Newton algorithm to maximize Eq. (4), when
comparing the point clouds we wish to align, where w, pi,
and
∑

i are the desired pose (matching parameter), the mean
vector, and the covariance matrix respectively.

Fitness(X, w) =

N−1∑
i

exp(
−(xi − pi)T ∑−1

i (x − pi)
2

) (4)

This calculation involves: 1) the partitioning of the
point cloud Pa in smaller k regions, called Voxels. Voxels

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
255

are quantized versions of a point cloud, obtained by dividing
the space into cubic lattices. The points are assigned to the
appropriate Voxel, by rounding the coordinate value of each
point pi; 2) The computation of the normal vectors nk,i for
each of the Mk points inside the Voxels; 3) The probability
distribution for the resulting normal vectors, which requires
the calculation of the average p and covariance matrix Σk as
shown in Eqs. (5) and (6), respectively.

pk =
1

Mk

Mk−1∑
i=0

xki (5)

Σk =
1

Mk

Mk−1∑
i=0

(xki − pk)(xki − pk)T (6)

Finally, the normal distribution for each Voxel is esti-
mated as:

e(x)k ≈ e(
(x − pk)t∑−1

k (x − pk)
2

) (7)

3.1.2 Implementation

Our implementation follows the original design by [27], in-
tegrated in the PCL (Point Cloud Library) library [9]. The
parameters we used are: 0.1 and 1.0 meters for the voxel
sizes on the downscaling step, for the point clouds to be
aligned; the termination value for the score as 0.01 (ε); the
step size for the optimization as 0.1; and 400 as the maxi-
mum number of iterations before forcing the termination of
the algorithm when the algorithm cannot converge. As de-
fined in [27], the algorithm requires a rough estimated initial
pose. In summary, the inputs required by our tool are:

• The point clouds generated by the LiDAR sensors to be
aligned. These can be obtained directly from the sen-
sor, in an online fashion, or from previously recorded
data.

• An optional voxel size for both point clouds. A larger
value will accelerate the process, but will decrease the
accuracy due to a larger quantization.

• A rough estimation of the transformation between the
sensors, in the form (x, y, z, raw, pitch, yaw).

The LiDAR-to-LiDAR calibration tool is implemented
as a ROS node. This approach allows us to add an abstrac-
tion layer between the sensors and the algorithm, enabling
our node to support any kind of LiDAR sensor, as long as
we can add its respective driver. Figure 2 shows a high-level
diagram of the node.

The resulting transformation matrix is then registered

Fig. 2 High-level diagram of the LiDAR-to-LiDAR calibration tool.

in the ROS Transformations Tree (TF). The TF eases the
conversion between the coordinate frames in a synchronized
manner. In the specific case of LiDAR-to-LiDAR calibra-
tion, this transformation is static. This means that the trans-
formation will not change over time, since both sensors are
fixed to the vehicle’s chassis.

3.2 Camera-LiDAR Extrinsic Calibration

We decided to implement our method as a semi-automatic
calibration tool. The user is required to select the corre-
sponding points between the image and point cloud, using a
point-and-click approach. This method removes the neces-
sity to setup a special room, or create particular markers or
targets to identify the corresponding points. Moreover, this
allows our method to work with not only RGB cameras, but
also other types of projective cameras, such as infrared ones.

3.2.1 Theory

The Camera-LiDAR extrinsic calibration follows the same
idea as the LiDAR-LiDAR extrinsic calibration. Find the
relative transformation between both spaces with the help
of shared features between spaces. However, in the case of
cameras and LiDARs, these do not represent the data in the
same number of dimensions. To find the relationship be-
tween them, we need to add an extra step. Knowing that Li-
DARs represent the points in an orthogonal 3D space using
euclidean coordinates (x, y, z); and that cameras represent
2D points in a perspective space (u, v), we can relate these
spaces through a linear transformation in the form:

pcam = P ∗ R ∗ t ∗ plidar (8)

where:

pcam represents the final projected points in image
space.

P is the camera projection matrix, also known as the
camera intrinsics, or the intrinsics parameters.

R is the rotation matrix on 3D space as mentioned in
Eq. (2).

t is the translation vector between the camera and
the LiDAR, described on Eq. (3).

plidar is the LiDAR point cloud in 3D space.

Multiplying all of these, we derive the following ma-
trix: uv

1

 =

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

xy
z

 (9)

Equation (9) represents the complete relationship be-
tween the LiDAR and the camera spaces, where u and v rep-
resent the coordinates in pixel space, and x, y and z represent
the 3D space in the LiDAR frame.

To obtain the transformation parameters m, we need to

256
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

solve the generated system of equations. However, it is im-
portant to note that knowing in advance the intrinsic parame-
ters of the setup helps to simplify this problem. Knowing the
projection parameters, we would only need to find the Euler
rotations (α, β, γ) and the translation vector t. Since our ob-
jective is to obtain the extrinsic calibration we will assume
the intrinsic matrix P is known. To obtain these parameters
we followed the well-established intrinsic calibration meth-
ods integrated in OpenCV [29].

Having simplified the parameters calculation, we pro-
ceed to estimate the pose between the intrinsically calibrated
camera to the LiDAR sensor. This problem is commonly
known as Perspective-n-Point (PnP). To solve it we em-
ployed the Efficient PnP method [30]. This algorithm esti-
mates the R and t matrices minimizing the re-projection er-
ror using the Gauss-Newton method, given the correspond-
ing 2D-3D points (in our case, pcam and plidar), and the cam-
era intrinsics (P). Even if the method requires as low as five
points to calculate the parameters, we ask the user to provide
at least nine corresponding points, as shown in [30].

3.2.2 Implementation

As previously mentioned, to feed the point correspondences
between the points in LiDAR space and camera space, we
developed a simple, yet effective point-and-click user inter-
face (UI) solution. This UI shows the image and the point
cloud in parallel. The user can quickly identify the corre-
spondences between image and the projected point cloud
by clicking on the screen. This approach removes any spe-
cific setup or marker prerequisite, and enables our method
to work virtually anywhere, as long as the user is able to
identify features between the image and point cloud.

Similarly to the LiDAR-LiDAR calibration tool, the
camera-LiDAR extrinsic calibration is a ROS node. It can
connect to any camera and LiDAR supported by the system.
Figure 3 shows the components of the calibration tool.

Figure 4 presents the user interface displayed to allow
the selection of the corresponding points between 3D and
2D space.

Finally, the node is designed to work with both a real
sensor or use previously recorded data. This feature al-
lows the selection of points located at different instants in
time, easing the selection of better matching features be-
tween both sensors.

3.3 Image-Cloud Fusion

With the Camera-LiDAR extrinsic calibration complete, we
can fuse the data from both sensors. The range information
from the LiDAR can be projected to the 2D space. Simi-
larly, the color information contained in the image can be
back-projected to the LiDAR space. Figure 5 illustrates this
concept. The point cloud projected to the image is displayed
using a color map representing the distance between the Li-
DAR and the object being observed. The red color repre-
sents a closer distance, while a blue color represents a fur-

Fig. 3 High-level diagram of the camera-to-LiDAR calibration tool.

Fig. 4 UI presented to the user to ease the selection of corresponding
points.

Fig. 5 Result of the real time Image-Cloud fusion using a Velodyne
HDL-64 and a wide-angle camera.

ther one. This kind of point cloud representation is specially
useful when detecting and tracking objects [4]–[6]. For this
reason, we decided to present an open real-time solution to
this problem. Our approach uses a hashing function to tem-
porarily store the 3D-2D correspondences. This enables us
to back-project the color information in constant time O(1),
at the cost of O(n) storage space.

3.3.1 Theory

With the help of Eq. (8) and having known the matrices P,
R and t from the calibration steps, we can obtain the corre-
spondence between the LiDAR points and the image pixels.
The distance for each point is calculated on the ground plane
as
√

x2 + y2.
In order to back-project the color information from the

image to the LiDAR’s point cloud, we use an unordered map
data structure. We define the unordered map as a list of or-
dered pairs < (u, v), (x, y, z) >, that use the point coordinates
in both spaces as the hashing function for indexing. Defin-
ing the map this way, allows us to find the correspondences
in constant time O(1).

The implementation of the node was done following

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
257

Fig. 6 High-level diagram of the image-cloud fusion.

the ROS messaging standard. An outline of the node is
shown in Fig. 6.

3.4 Ground Classification

The final component of the framework presented in this
work is a ground classifier for point cloud data. We call
it the Ray Ground Filter. It is a binary classifier (Ground
or No-Ground) for the points in the point cloud. As previ-
ously mentioned in Sects. 1 and 2, this step is important to
ease the implementation of higher level perception methods,
since it determines the points considered as an obstacle for
its classification and tracking.

3.4.1 Theory

The first phase of the Ray Ground Filter algorithm involves
converting the point cloud from Euclidean space to an alter-
native quantized polar space. The new space is partitioned
into a fixed number of radial dividers or rays. The steps
involved in this conversion are:

1. Remove the points which are above the height of
the LiDAR hlidar. It is important to remove objects
above the vehicle that are not considered obstacles (i.e.
bridges, signals, etc.).

Pe = {(x, y, z) ∈ R × R × R | z < hlidar} (10)

2. Convert the points from 3D Euclidean space (x, y, z)
to 2D Polar space (r, θ), while also storing the point’s
height (z) and a reference to the original point, where
θ ∈ [0, 2π).

Pp = {(θ, r, z)} , such that
θ = atan(y, x)

r =

√
x2 + y2

z = z

(11)

3. Quantize θ into N radial dividers.

N = ceil(2π/α ∗ i) |α ∈ [0, 2π] (12)

where α is a value decided by the user. We use a 100th
of a degree (1.74 e-04 rad).

4. Create a list for each of the N radial dividers.

Fig. 7 Diagram of the radial dividers (rays) used in the ray ground algo-
rithm. Showing only 0 to π for simplicity.

Fig. 8 Ray ground filter classification diagram following triangle geome-
tries inside a ray. The points shown in blue color were classified as ground,
while the red ones as obstacles.

5. Assign the points to the quantized angle and add it to
the list. Figure 7 shows each the radial dividers gener-
ated and differentiated by color.

∀p ∈ Pp, n = f loor(pθ/α) (13)

6. Order all the points inside of each of the rays (un-
ordered lists).

At this point we achieve a new point cloud formed by
N lists. Each one of these lists contain points of a new type
(x, y, z, i, r, θ, n), where (x, y, z) are the original coordinates;
i represents the intensity of the laser reflectivity; θ is the an-
gle in polar coordinates; and n is the index of the quantized
radial divider or ray to which this points belong; and k is the
number of points in each of the ordered rays.

With all the points organized and ordered, we proceed
to classify them into two classes Ground and No-Ground
using a triangle geometry, as shown in Fig. 8. The adjacent
side of the triangle is defined as the distance (di) between
two consecutive points in the ray.

di = ri − ri−1, i ∈ (0, k] (14)

The first point in the ray is classified using the same
geometry shape. However, the initial point is a virtual one
located below the LiDAR sensor hlidar. The opposite side
is calculated according to a given angle threshold (γ), while
d and γ define the maximum height difference to which the
next point in the ray might be (hopposite).

If the next point falls inside the triangle geometry, the
point is considered to be of the same class as the previous
point.

hi,opposite = tan(γ) ∗ di

if hi,opposite < hmin,

then hi,opposite = hmin

(15)

258
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

Otherwise, it triggers a change of class. However, the
points located closer to the sensor tend to be adjacent due to
the laser arrangement, triggering a class change on uneven
terrain. For this reason, if hopposite is less than a given value
hmint , the change is not generated (Fig. 8).

If a change of class is detected when the previous class
was No-Ground, then the point needs to be re-classified to
ensure it is Ground. To achieve this, we re-calculate the
geometry of the triangle using the distance between the last
point classified as Ground and the current one.

3.4.2 Implementation

The classifier was implemented as a ROS node. The node
can receive a point cloud from any LiDAR sensor. It re-
quires as inputs:

• A point cloud of type (x, y, z) or (x, y, z, i).

• The height of the LiDAR sensor hlidar.

• The quantization angle for the radial divisions α.

• The angle γ which defines the maximum height of a
consecutive point.

• The minimum height threshold between points hmin.

To accelerate the processing, the conversion from (x, y, z) to
(θ, r, z), and the quantization is performed in parallel. The
resulting radial dividers are stored in N vectors. If the host
architecture supports OpenMP, the node will perform con-
version and sorting on each one of the CPU cores, reducing
the load and accelerating execution.

Figure 9 presents the high-level architecture design of
the classifier. Finally, the result of ground classification on
the KITTI dataset on a Velodyne HDL-64 can be seen in
Fig. 10. Blue colored points denote the ones classified as
ground, while the red points indicate those belonging to an
obstacle.

Due to nature of the algorithm, it can virtually work
with any type and/or number of LiDARs. It also does not

Fig. 9 High-level diagram of the ray ground classifier component.

Fig. 10 Ray ground filter on KITTI dataset. Image shown only for refer-
ence.

require a large dataset for a training phase. Moreover, the al-
gorithm was implemented completely using the CPU, allow-
ing it to work on low-power and embedded systems without
a GPU.

4. Evaluation

4.1 LiDAR-LiDAR Extrinsic Calibration

LiDAR to LiDAR evaluation using well-established re-
sources is difficult. Currently there are no public datasets
including the assessment of multiple LiDARs. For this rea-
son, we decided to prepare two vehicles with different set-
tings, obtain the ground truth, and evaluate our method.

The first setup is built on top of a Toyota Prius
sedan. We mounted a rotating LiDAR (Velodyne HDL-
64, with a 360 degrees field of view), and four low-cost
smaller Micro-Electro-Mechanical-based Scanning LiDARs
(MEMS). Each MEMS LiDAR had 140 degrees of horizon-
tal field of view. To obtain the position and Euler rotations,
we used a chessboard pattern as a guide to manually identify
points between each of the LiDAR frames using the changes
in intensity. Having identified the corresponding points, we
calculated the rigid-transformation matrix between the ro-
tating LiDAR, and each of the solid-state ones using the
Singular-value decomposition (SVD) method. The manu-
ally obtained measurements are shown in Fig. 11.

The second setup consisted of five rotating Velodyne
HDL-16 LiDARs mounted on a Toyota Alphard minivan.
The ground truth was calculated in the same way as in the
Prius setup. Figure 12 shows the setup and the obtained
measurements.

Using our LiDAR-to-LiDAR extrinsic calibration tool,
we collected a database of 20 different experiments. The av-
erage resulting parameters are shown in Table 2 and Table 3,
for the Prius and Alphard setups respectively. Figure 13 dis-
plays the average accuracy and standard deviation for the
calculations compared to the manually obtained points.

Finally, the extrinsic calibration obtained using our

Fig. 11 Manually obtained measurements used as ground truth to eval-
uate our method. Prius setup, Velodyne HDL-64 and four narrow MEMS
LiDARS.

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
259

Table 2 Prius Setup. LiDAR-LiDAR extrinsic calibration quantitative results between each of the
narrow field of view LiDARs, and a rotating LiDAR. All units are in meters. Reporting absolute error.

Rotating to Front LiDAR Rotating to Left LiDAR Rotating to Right LiDAR Rotating to Rear LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error Ground Truth Our method Error Ground Truth Our method Error
X [meters] 2.70 2.67724 0.0228 1.450 1.4387 0.0113 1.450 1.44314 0.0069 -1.90 -1.8782 0.0218
Y [meters] -0.10 -0.10886 0.0089 0.950 0.9574 0.0074 -0.950 -0.9678 0.0178 0.08 0.0737 0.0063
Z [meters] -1.54 -1.56121 0.0212 -1.100 -1.0274 0.0726 -1.100 -1.1095 0.0095 -1.34 -1.3665 0.0265
α [rads] 1.57 1.5708 0.0008 3.140 3.096 0.0440 3.140 3.13085 0.0091 1.57 1.5708 0.0008
β [rads] 0.00 0.0074 0.0074 0.000 -0.0537 0.0537 -3.140 -3.1368 0.0032 3.13 3.1153 0.0147
γ [rads] 1.57 1.5708 0.0008 1.570 1.5243 0.0457 -1.570 -1.5773 0.0073 -1.57 -1.5708 0.0008

Table 3 Alphard Setup. LiDAR-LiDAR extrinsic calibration quantitative results between each the
top LiDAR, and a five rotating LiDAR covering blind spots. All units are in meters. Reporting absolute
error.

Top to Front LiDAR Top to Right LiDAR Top to Left LiDAR Top to Rear LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error Ground Truth Our method Error Ground Truth Our method Error
X [meters] 2.75 2.75793 0.00793 -1.70 -1.7198 0.0198 -1.74 -1.74005 0.00005 -2.14. -2.1429 0.0029
Y [meters] 0.05 0.04227 0.01227 -0.95 -0.95033 0.00033 0.93 0.9391 0.0091 -0.05 -0.0453 0.0153
Z [meters] -1.31 -1.31587 0.00587 -1.3500 -1.39294 0.04294 -1.45 -1.46752 0.016752 -1.23. -1.23756 0.00756
α [rads] 0.00 0.00584 0.00584 0.03 0.0394 0.0094 0.0 -0.0273 0.0273 0. -0.0267 0.0267
β [rads] 0.05 0.06284 0.01284 0.00 -0.0032 0.0032 0.0 -0.02206 0.02206 0. 0.0206 0.0206
γ [rads] 0.00 0.01505 0.01505 -1.57 -1.5782 0.0082 1.58 1.58036 0.00036 3.1415 3.14124 0.00034

Fig. 12 Manually obtained measurements used as ground truth to evalu-
ate our method. Alphard setup, five Velodyne VLP-16.

Fig. 13 Prius Setup. Average absolute error for 20 repeated calculations
of the extrinsic parameters between LiDARs. X, Y, Z error is reported in
meters, while Yaw, Pitch, Roll in radians.

method can be seen in Figs. 14 and 15 for the Prius and Al-
phard setups respectively. For the Prius Setup, white points
represent the point cloud belonging to the rotating LiDAR,
while the colored ones belong to the other low-resolution
MEMS LiDARs. In a similar way, for the Alphard setup,
white points represent the point cloud generated by the top
rotating lidar, while the colored ones belong to the other ro-
tating sensors located to the front, left, right, and rear of the
vehicle.

4.2 Camera-LiDAR Extrinsic Calibration

To evaluate our method, we took as reference the regarded
KITTI dataset [18]. The authors of the dataset calibrated

Fig. 14 Prius Setup. Result of extrinsic calibration between rotating Li-
DAR (shown in white), and four MEMS narrow view LiDAR sensors (dis-
played in blue, green, pink, and red).

Fig. 15 Alphard Setup, result of extrinsic calibration of five rotating Li-
DARs (top: white; front: cyan; right: purple; left: orange; and rear: yel-
low).

their sensors using the method described in [11]. This ap-
proach is used in other work as standard baseline.

To calibrate the LiDAR and the camera we randomly
selected a frame, as shown in Fig. 4. Then, we proceeded
to point and click the correspondent points in the image and

260
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

Table 4 Camera-LiDAR extrinsic calibration results comparison. Units
in meters and radians.

Parameter KITTI Ground
Truth

Geiger, et.al.[11] Our method Absolute Error

X [meters] 0.27 0.2717 0.3017 0.0317
Y [meters] -0.06 -0.076 -0.089 0.029
Z [meters] -0.08 -0.04 -0.0937 0.0137
Yaw [rads] 1.57 -1.5632 -1.5625 0.039
Pitch [rads] 0.0 0.0006 0.0012 0.0356
Roll [rads] -1.57 -1.5559 -1.5622 0.358

Fig. 16 Translation absolute error compared with number of selected
points on the Alphard Setup.

Fig. 17 Rotation absolute error compared with number of selected points
on the Alphard Setup.

the point cloud. Table 4 shows our results compared to the
measurements reported by [18]. However, it is important to
note that our approach lets the user to select data from as
many frames as needed over the time. This helps to ease
the matching process over the image field, and at different
ranges.

4.3 Image-Cloud Fusion

Due to the nature of the back-projection calculation, the re-
sults of Image-Cloud fusion depend on the accuracy of both
the camera intrinsics, and extrinsics parameters. For this
reason, to evaluate this section of the framework, we de-
cided to carry out instead a performance evaluation. We
measured the average performance of our tool on four differ-

Table 5 Fusion measurements for different sensors and cameras on an
Intel Core i7-6700K CPU with 4 cores. A. Baumer VLG-22C@ 20 Hz; B.
PointGrey Grasshopper3@15 Hz; C. PointGrey Grasshopper3@15 Hz; D.
PointGrey Flea2 @ 15 Hz

.
Camera Image Resolution Velodyne LiDAR Point cloud size Execution (ms)
A 1288x960 HDL-64 ∼ 120,000 116
B 800x600 HDL-32 ∼ 70,000 78
C 1384x1036 VLP-16 ∼ 25,000 50
D 1384x1032 HDL-64 ∼ 120,000 128

Table 6 Classification performance of the ray ground classifier on the
point clouds by sensor type.

Measurement HDL-64 HDL-32 VLP-16
Accuracy 0.8247 0.8429 0.8461
TP 0.8429 0.7737 0.6954
FP 0.1952 0.1025 0.0653
TN 0.8047 0.8974 0.9346
FN 0.1570 0.2262 0.3045
Precision 0.8258 0.8560 0.8619

Execution time (ms) 55 20 11

ent camera and LiDAR setups. Table 5 shows the arrange-
ments used for this purpose. Figure 18 presents qualitative
fusion results for each arrangement. All these tests were per-
formed on a desktop computer running Ubuntu 16.04, ROS
Kinetic, with an Intel Core i7-6700K CPU with 4 cores, and
16 GB of RAM. The node was compiled with OpenMP to
distribute the execution on the multi-core system.

4.4 Ray Ground Classifier

To evaluate the classification accuracy, we decided to man-
ually label 12 point clouds. We chose four random point
clouds for each of the most commonly used Velodyne sen-
sors: HDL-64, HDL-32 and VLP-16. Each scan was taken
from previously recorded log data from various urban set-
tings. For the Velodyne HDL-64 case, we used the point
clouds provided by the KITTI dataset. The average results
for the point clouds classified can be seen in Table 6. In this
table we also included the average execution time for each
sensor model. The execution time was measured on a desk-
top computer running on an Intel Core i7-6700K CPU with
4 cores, and 16 GB of RAM with OpenMP enabled.

Finally, qualitative results on three different sensors
can be seen on Fig. 19. The last sub figure shows the Ray
Ground classifier working on four merged Velodyne VLP-
16 LiDARs. These were previously calibrated using our
method presented in Sect. 3.1.2.

5. Discussion

5.1 LiDAR-LiDAR Extrinsic Calibration

Like any other approximation algorithm, the ND algorithm
may fail to converge under the maximum number of itera-
tions. This is due to the absence of differentiable features,
leading to the cost-function to become insensitive to the ro-
tational parameters. In Fig. 13, we can observe that when
providing a feature rich environment, the ND algorithm can

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
261

Fig. 18 Fusion results on different setups a) BaumerVLG-22 and HDL-64; b) Grasshopper3 and
HDL-32; c) Grasshopper and VLP-16; d) Flea2 and HDL-64 (KITTI).

Fig. 19 Ground classification, using our ray ground algorithm on a) Velodyne HDL-64 (KITTI); b)
Velodyne HDL-32; c) Velodyne VLP-16; d) four Velodyne VLP-16 calibrated. The points belonging to
the road are shown in blue, while obstacles are painted in red.

obtain highly accurate results. The error on the x-axis, even
if it is considerably low, presents a higher value than the
rest of the parameters. While analyzing this difference, we
found out that this was caused by an inaccurate internal laser
calibration from the manufacturer. Figure 2 shows that the
points hitting the wall (the x-axis), display an uneven wall
surface.

During our indoor and outdoor experiments, we real-
ized that selecting a complex and/or asymmetric environ-
ment leads to a faster convergence. Since our tool shows the

calibration result after completing each set of iterations in
real-time, the user can quickly identify if the selected set-
ting is appropriate for calibration. Thus, from our experi-
ments we conclude that it is important to have large objects
(i.e. walls or other vehicles) in the shared field of view of
the LiDARs being calibrated. It is important to note, that
our method requires features to be shared between the sen-
sor views, otherwise calibration will not be possible.

When calibrating more than two LiDAR sensors that
all share an overlapping field of view, the calibration must

262
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

be performed N-1 times, where N is the number of sensors.
In situations when multiple LiDARs only share a field of
view with some of the other sensors, the obtained solution
might not converge to a local optima. This is because the
NDT algorithm is designed to match only two point clouds
at a time. To overcome this, one approach would be to com-
plete calibration N-1 times, and afterwards repeat calibra-
tion N-1 times using a different order. If the same solution
is obtained, the current solution is very likely to be a global
optima. Nevertheless, this cannot be confirmed due to the
lack of extra information from other sensors. If a different
solution is obtained, then an average between the solutions
might be used. To further improve the optimization of the
calibration parameters, a bundle adjustment-like approach
could be performed. This would allow to tune the individual
calibration results to maximize global consistency.

5.2 Camera-LiDAR Extrinsic Calibration

As mentioned in Sect. 3.2, our method provides an easy and
practical way to quickly obtain the extrinsic calibration be-
tween the Camera and LiDAR. It does not require the prepa-
ration of a specific setting, or marker of any kind. For this
reason, it allows calibration of the sensors while directly
connected to them, or the use of previously recorded data.
Since our method depends completely on the points fed to
the algorithm, its accuracy highly depends on the ability of
the user to find proper correspondences. During our exper-
iments we found it is easier to observe the shared features
between sensors when there are objects nearby. This is due
to the nature of the multi-layered laser and the perspective
camera model. After several experiments we defined the
following guidelines to ease the calibration process. Users
familiar with these, were able to obtain the parameters in as
short as one minute.

1) Capture a single scene with different objects scat-
tered around the field of view. 2) It is easier to identify ob-
jects’ corners, points hitting lowest and highest points of an
identified object in the point cloud. 3) Since our method al-
lows the selection of points regardless time of the the frame,
using recorded log data eases the selection of these points
while the car is running in a urban scenario. Taking advan-
tage of this attribute is highly recommended in cases where
a static scenario does not contain enough identifiable fea-
tures. 4) As shown in Figs. 16 and 17, selecting more points
will obtain a reduced error on the translation parameters.
However, if the selected features are not easily identifiable,
selecting more points will increase the final absolute error.

Finally, an additional advantage of our method is that
it also allows the calibration regardless of the image format.
Figure 20 shows a successful extrinsic calibration between
a thermal vision camera and a Velodyne HDL-64.

5.3 Image-Cloud Fusion

The image-cloud fusion node is an example of an applica-
tion of a successful integration of sensor fusion. It com-

Fig. 20 Successful calibration of a thermal vision camera (FLIR ADK),
and a Velodyne HDL-64.

plements and integrates distance and color data between the
sensors, providing extra information to other perception ap-
plications. We consider that this tool will help other re-
searchers in the development of real-time perception sys-
tems. As previously mentioned, recent developments based
on deep learning require the post-fusion data to be fed to
the network [4]–[6]. All these techniques perform the data
fusion off-line, forwarding it at a later phase. Our method
provides a real-time solution to this problem in many appli-
cations. It is important to note that the performance might
be reduced when using higher resolution images and LiDAR
sensors.

5.4 Ray Ground Classifier

The Ray Ground Classifier presents an elegant and effective
way to classify the ground on complex point clouds. Being
a shape and rule based method, is possible to use it on dif-
ferent sensor types and setups. It requires few or none of its
parameters to be tuned for successful application. Moreover,
being implemented completely on the CPU, it can be ported
to other embedded architectures. Our evaluation shows that
it achieves a high accuracy across different sensor types as
indicated in Table 6. Due to its nature, it does not require
specific measurements, such as rings numbers or specific
intensity ranges, making our approach sensor independent.
Figure 19 presents qualitative results of the ground classifi-
cation on four Velodyne VLP-16 LiDAR sensors, previously
calibrated with the approach presented in Sect. 4.1.

During our experiments and evaluation, we found out
that to obtain better classification results it is important to
set correctly the height of the LiDAR (hlidar), and the angle
threshold of the maximum slope (γ). The first one is usually
known and when it is not, it can be estimated by averaging
the first point of each of the rays. The latter can be quickly
estimated using the UI provided by ROS, while analyzing
the height values in the ground of the point cloud. Finally,
we also carried out experiments on steep roads. On these
we found out the classifier to be reliable, when changing
the slope parameter. However, we also found that keeping a
high slope value on regular roads might cause misdetections.

6. Conclusion

We described an open-source multi-sensor fusion toolbox

MONRROY CANO et al.: AN OPEN MULTI-SENSOR FUSION TOOLBOX FOR AUTONOMOUS VEHICLES
263

for autonomous vehicles. It is composed of a LiDAR-to-
LiDAR extrinsic calibration algorithm, a Camera-LiDAR
extrinsic calibration method, Multi-LiDAR fusion, Camera-
LiDAR fusion, and a ground classification method.

Our LiDAR-to-LiDAR calibration algorithm success-
fully adapts a state-of-the-art matching algorithm. Through
several experiments, we showed that provides calibration to
the centimeter-level accuracy, without requiring a special
setup. We also shared recommendations and limitations on
Sect. 5.1 to ease the use of our calibration tool.

We introduced an easy-to-use Camera-to-LiDAR ex-
trinsic calibration method. It applies the latest developments
on camera pose estimation in computer vision. Instead of re-
quiring the preparation of an specific setup, or the printing
of predefined markers, a UI is provided, so the user feeds the
corresponding points between the camera and LiDAR space
to our algorithm. To accelerate this task, we also shared the
guidelines we defined through experimentation in Sect. 3.2.
Our method achieved error as low as one centimeter, com-
parable to other state-of-the-art developments in the field. It
is important to note that our method will fail to obtain an
accurate calibration if the intrinsic parameters are incorrect.
The application of our method becomes challenging when
using low resolution LiDARs in combination with telephoto
lenses. Users can have a hard time to find shared features
between images and point clouds. In these cases, targets
might be inserted manually. We found that cones, or highly
reflective materials are easy to identify between images and
point clouds.

The third part of our framework, presented a real-time
image and point cloud fusion. The tool integrates the range
data to the image space. It also allows point cloud back-
projecting the color information to the 3D space. To the
best of our knowledge, it is the first real-time open-source
available as the time of writing.

The final part of our framework is an accurate geomet-
ric and rule-based ground classifier. Thanks to the nature
of the algorithm, and the low number of configurable pa-
rameters, it can be used with virtually any kind of LiDAR
sensor, including data composed by several LiDARs. More-
over, our method performed on average as fast as 55 ms
for the high-resolution Velodyne HDL-64. It averaged 20
and 11 ms on the HDL-32 and VLP-16 sensors respectively,
achieving real-time performance on the three tested sensors.

Our multi-sensor fusion toolbox is integrated in the au-
tonomous driving framework known as Autoware [31]. The
source code can be downloaded from the following URL
〈https://gitlab.com/autowarefoundation/autoware.ai〉. Fu-
ture work on our toolbox will involve the full automation
of the calibration methods. For instance, employing recent
developments on the Structure from Motion field. We also
plan to implement the fusion and classification algorithms
on GPUs to further accelerate its execution.

References

[1] D.J. Fagnant and K. Kockelman, “Preparing a nation for au-

tonomous vehicles: Opportunities, barriers and policy recommenda-
tions,” Transportation Research Part A: Policy and Practice, vol.77,
pp.167–181, 2015.

[2] U. Ozguner, C. Stiller, and K. Redmill, “Systems for safety and au-
tonomous behavior in cars: The DARPA grand challenge experi-
ence,” Proc. IEEE, vol.95, no.2, pp.397–412, 2007.

[3] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for au-
tonomous driving in urban environments,” Proc. Robotics: Science
and Systems IV, Zurich, Switzerland, vol.34, 2008.

[4] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint 3D
proposal generation and object detection from view aggregation,”
arXiv preprint arXiv:1712.02294, 2017.

[5] M. Simon, S. Milz, K. Amende, and H.M. Gross, “Complex-YOLO:
Real-time 3D object detection on point clouds,” arXiv preprint
arXiv:1803.06199, 2018.

[6] C.R. Qi, W. Liu, C. Wu, H. Su, and L.J. Guibas, “Frustum Point-
Nets for 3D object detection from RGB-D data,” arXiv preprint
arXiv:1711.08488, 2017.

[7] A. Alempijevic, S. Kodagoda, J. Underwood, S. Kumar, and G. Dis-
sanayake, “Mutual information based sensor registration and cali-
bration,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2006.

[8] M. Pereira, D. Silva, V. Santos, and P. Dias, “Self calibration of mul-
tiple LiDARs and cameras on autonomous vehicles,” Robot. Auton.
Syst., vol.83, pp.326–337, 2016.

[9] R.B. Rusu and S. Cousins, “3D is here: point cloud library (PCL),”
Robotics and automation (ICRA), 2011 IEEE International Confer-
ence on, pp.1–4, IEEE, 2011.

[10] P.J. Besl and N.D. McKay, “A method for registration of 3-D
shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol.14, no.2,
pp.239–256, Feb. 1992.

[11] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic
camera and range sensor calibration using a single shot,” Robotics
and Automation (ICRA), 2012 IEEE International Conference on,
pp.3936–3943, IEEE, 2012.

[12] O. Naroditsky, A. Patterson, and K. Daniilidis, “Automatic align-
ment of a camera with a line scan LiDAR system,” Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on, pp.3429–
3434, IEEE, 2011.

[13] M. Vel’as, M. Španěl, Z. Materna, and A. Herout, “Calibration of
RGB camera with velodyne LiDAR,” 2014.

[14] K. Kwak, D.F. Huber, H. Badino, and T. Kanade, “Extrinsic cali-
bration of a single line scanning LiDAR and a camera,” Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Confer-
ence on, pp.3283–3289, IEEE, 2011.

[15] W. Wang, K. Sakurada, and N. Kawaguchi, “Reflectance intensity
assisted automatic and accurate extrinsic calibration of 3D LiDAR
and panoramic camera using a printed chessboard,” Remote Sens-
ing, vol.9, no.8, p.851, 2017.

[16] G. Pandey, J.R. McBride, S. Savarese, and R.M. Eustice, “Automatic
targetless extrinsic calibration of a 3D LiDAR and camera by maxi-
mizing mutual information,” AAAI, 2012.

[17] J. Levinson and S. Thrun, “Unsupervised calibration for multi-beam
lasers,” Experimental Robotics, pp.179–193, Springer, 2014.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[19] A. Abdelhafiz, B. Riedel, and W. Niemeier, “Towards a 3D true col-
ored space by the fusion of laser scanner point cloud and digital
photos,” Proc. ISPRS Working Group V/4 Workshop (3D-ARCH),
Citeseer, 2005.

[20] K. Zhang, S.C. Chen, D. Whitman, M.L. Shyu, J. Yan, and C. Zhang,
“A progressive morphological filter for removing nonground mea-
surements from airborne LiDAR data,” IEEE Trans. Geosci. Remote
Sens., vol.41, no.4, pp.872–882, 2003.

[21] X. Meng, L. Wang, J.L. Silván-Cárdenas, and N. Currit, “A multi-
directional ground filtering algorithm for Airborne LiDAR,” ISPRS

http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1109/jproc.2006.888394
http://dx.doi.org/10.1109/jproc.2006.888394
http://dx.doi.org/10.1109/jproc.2006.888394
http://dx.doi.org/10.15607/rss.2008.iv.023
http://dx.doi.org/10.15607/rss.2008.iv.023
http://dx.doi.org/10.15607/rss.2008.iv.023
https://arxiv.org/abs/1712.02294
https://arxiv.org/abs/1712.02294
https://arxiv.org/abs/1712.02294
https://arxiv.org/abs/1803.06199
https://arxiv.org/abs/1803.06199
https://arxiv.org/abs/1803.06199
https://arxiv.org/abs/1711.08488
https://arxiv.org/abs/1711.08488
https://arxiv.org/abs/1711.08488
http://dx.doi.org/10.1109/iros.2006.282248
http://dx.doi.org/10.1109/iros.2006.282248
http://dx.doi.org/10.1109/iros.2006.282248
http://dx.doi.org/10.1109/iros.2006.282248
http://dx.doi.org/10.1016/j.robot.2016.05.010
http://dx.doi.org/10.1016/j.robot.2016.05.010
http://dx.doi.org/10.1016/j.robot.2016.05.010
http://dx.doi.org/10.1109/icra.2011.5980567
http://dx.doi.org/10.1109/icra.2011.5980567
http://dx.doi.org/10.1109/icra.2011.5980567
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/icra.2012.6224570
http://dx.doi.org/10.1109/icra.2012.6224570
http://dx.doi.org/10.1109/icra.2012.6224570
http://dx.doi.org/10.1109/icra.2012.6224570
http://dx.doi.org/10.1109/icra.2011.5980513
http://dx.doi.org/10.1109/icra.2011.5980513
http://dx.doi.org/10.1109/icra.2011.5980513
http://dx.doi.org/10.1109/icra.2011.5980513
https://ieeexplore.ieee.org/document/6094490
https://ieeexplore.ieee.org/document/6094490
https://ieeexplore.ieee.org/document/6094490
https://ieeexplore.ieee.org/document/6094490
http://dx.doi.org/10.3390/rs9080851
http://dx.doi.org/10.3390/rs9080851
http://dx.doi.org/10.3390/rs9080851
http://dx.doi.org/10.3390/rs9080851
http://dx.doi.org/10.1007/978-3-642-28572-1_13
http://dx.doi.org/10.1007/978-3-642-28572-1_13
http://dx.doi.org/10.1109/cvpr.2012.6248074
http://dx.doi.org/10.1109/cvpr.2012.6248074
http://dx.doi.org/10.1109/cvpr.2012.6248074
http://dx.doi.org/10.1109/tgrs.2003.810682
http://dx.doi.org/10.1109/tgrs.2003.810682
http://dx.doi.org/10.1109/tgrs.2003.810682
http://dx.doi.org/10.1109/tgrs.2003.810682
http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001

264
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.1 JANUARY 2020

J. Photogrammetry and Remote Sensing, vol.64, no.1, pp.117–124,
2009.

[22] F. Pirotti, A. Guarnieri, and A. Vettore, “Ground filtering and vege-
tation mapping using multi-return terrestrial laser scanning,” ISPRS
J. Photogrammetry and Remote Sensing, vol.76, pp.56–63, 2013.

[23] D. Maturana and S. Scherer, “3D convolutional neural networks
for landing zone detection from LiDAR,” Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pp.3471–3478,
IEEE, 2015.

[24] Z. Chen and Z. Chen, “RBNet: A deep neural network for uni-
fied road and road boundary detection,” International Conference on
Neural Information Processing, pp.677–687, Springer, 2017.

[25] X. Han, J. Lu, C. Zhao, S. You, and H. Li, “Semisupervised and
weakly supervised road detection based on generative adversarial
networks,” IEEE Signal Process. Lett., vol.25, no.4, pp.551–555,
2018.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A.Y. Ng, “ROS: An open-source robot operating
system,” ICRA Workshop on Open Source Software, p.5, Kobe,
Japan, 2009.

[27] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration
for autonomous mining vehicles using 3D-NDT,” J. Field Robotics,
vol.24, no.10, pp.803–827, 2007.

[28] E. Takeuchi and T. Tsubouchi, “A 3-D scan matching using im-
proved 3-D normal distributions transform for mobile robotic map-
ping,” Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pp.3068–3073, IEEE, 2006.

[29] G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[30] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: Efficient
perspective-n-point camera pose estimation,” Int. J. Comput. Vis.,
vol.81, no.2, pp.155–166, 2009.

[31] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Mi-
cro, vol.35, no.6, pp.60–68, 2015.

Abraham Monrroy Cano received his B.E
from the National University of Mexico and his
M.S. degree from Nagoya University in 2008
and 2016, respectively. He is currently a Ph.D.
student in the Graduate School of Informatics,
Nagoya University. His research interests in-
clude deep learning, image processing, and au-
tonomous vehicles.

Eijiro Takeuchi received his Bachelor, Mas-
ters and PhD degrees from the Intelligent Robot
Laboratory, University of Tsukuba, Japan. From
2008 to 2014, he worked at Tohoku University,
Japan, as Assistant Professor. Since 2014, he
moved to Nagoya University, Japan, where he
is currently an Associate Professor at the Grad-
uate School of Informatics. His main interest
is localization, mapping in Robotics and au-
tonomous driving.

Shinpei Kato received the BS, MS, and PhD
degrees from Keio University in 2004, 2006,
and 2008, respectively. He is an associate pro-
fessor in the School of Information Science, The
University of Tokyo. He was also with the Uni-
versity of Tokyo, Carnegie Mellon University,
and the University of California, Santa Cruz,
from 2009 to 2012. His research interests in-
clude operating systems, real-time systems, and
parallel and distributed systems.

Masato Edahiro received the PhD degree
from Princeton University in 1999. He is a pro-
fessor in the School of Informatics, Nagoya Uni-
versity. He was also at NEC Corporation from
1985 to 2010. His research interests include
graph and network algorithms, and software for
multi- and many-core processors.

http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.08.003
http://dx.doi.org/10.1016/j.isprsjprs.2012.08.003
http://dx.doi.org/10.1016/j.isprsjprs.2012.08.003
http://dx.doi.org/10.1109/icra.2015.7139679
http://dx.doi.org/10.1109/icra.2015.7139679
http://dx.doi.org/10.1109/icra.2015.7139679
http://dx.doi.org/10.1109/icra.2015.7139679
http://dx.doi.org/10.1007/978-3-319-70087-8_70
http://dx.doi.org/10.1007/978-3-319-70087-8_70
http://dx.doi.org/10.1007/978-3-319-70087-8_70
http://dx.doi.org/10.1109/lsp.2018.2809685
http://dx.doi.org/10.1109/lsp.2018.2809685
http://dx.doi.org/10.1109/lsp.2018.2809685
http://dx.doi.org/10.1109/lsp.2018.2809685
http://dx.doi.org/10.1002/rob.20204
http://dx.doi.org/10.1002/rob.20204
http://dx.doi.org/10.1002/rob.20204
https://doi.org/10.1109/IROS.2006.282246
https://doi.org/10.1109/IROS.2006.282246
https://doi.org/10.1109/IROS.2006.282246
https://doi.org/10.1109/IROS.2006.282246
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/mm.2015.133
http://dx.doi.org/10.1109/mm.2015.133
http://dx.doi.org/10.1109/mm.2015.133

