1 Robust, quick and convenient intraoperative method to differentiate

2 parathyroid tissue

- 3 Toyone Kikumori, MD, PhD, Takahiro Inaishi, MD, Noriyuki Miyajima, MD, Masahiro
- 4 Shibata, MD, PhD, Dai Takeuchi, MD
- 5 Department of Endocrine and Breast Surgery, Nagoya University Hospital
- 6 Address for Correspondence: Toyone Kikumori, Department of Breast and Endocrine
- 7 Surgery, Nagoya University Hospital, 65 Tsurumaicho, Showaku, Nagoya, Japan,
- 8 466-8550. Tel: +81-52-744-2251; Fax: +81-52-744-2252;
- 9 E-mail: kikumori@med.nagoya-u.ac.jp
- 10

11 Abstract

12 Background: Identification of parathyroid tissue (PT) during surgery is necessary for its 13 preservation in situ or autotransplantation, to avoid postoperative hypoparathyroidism. 14 Frozen sections are the gold standard for distinguishing PT from other tissues during 15 thyroidectomy. Although frozen sections are very accurate, they are costly and require 16 pathologists and technical staff. PT is rich in mitochondria, which harbor Krebs-cycle 17 enzymes such as aspartate aminotransferase (AST). In contrast, lactate dehydrogenase 18 (LDH) is ubiquitously expressed. These two enzymes are routinely measured as leaked 19 enzymes. We hypothesized that the AST/LDH ratio in suspended tissue could 20 distinguish PT from other tissues. 21 *Methods:* We analyzed 94 specimens (43 parathyroid, 19 cancerous, 13 normal lymph 22 nodes, 10 adipose, 6 thyroid and 3 miscellaneous) from 55 patients who underwent 23 thyroid/parathyroid surgery between July 2018 and June 2019 in our institution. Trace 24 amounts of remnant autotransplantation PT were suspended in 1 ml of normal saline 25 and measured for AST and LDH. Approximately 1 mm³ of apparently distinct tissue 26 minced by scissors (e.g., thyroid gland, metastatic lymph node, etc.) or washouts of 27 needles used for preoperative aspiration biopsy were also measured for comparison.

28	<i>Results:</i> The AST/LDH ratios in suspended PT specimens were consistently higher than
29	those of other tissues ($P < 0.001$, Mann-Whitney test); 0.27 was the optimal cut-off
30	value, with 100% sensitivity and specificity.
31	<i>Conclusion:</i> This method quickly and conveniently distinguished PT from other tissues,
32	intraoperatively, with minimum cost and without dedicated pathological staff; and could
33	decrease incidence of postoperative hypoparathyroidism, especially in settings with
34	limited access to pathologists.

36 Introduction

37 A persistent worldwide increase in thyroid cancer incidence has increased the number of thyroid surgeries.¹ Postoperative hypoparathyroidism (PH) can complicate outcomes 38 39 among thyroid surgery patients. Preservation in situ or autotransplantation are standard 40 procedures to avoid PH. Identification of parathyroid tissue (PT) is necessary for either 41 technique. Frozen sections are the gold standard for distinguishing PT from lymph nodes, thyroid nodules or fat during thyroidectomy.² Although frozen sections are very 42 accurate, they are costly (approximately \$200 in Japan) and require pathologists and 43 44 technical staff. Furthermore, use of frozen sections is often unfeasible in areas with few pathologists.³ Even Japan, a highly developed country, is facing a shortage of 45 pathologists.⁴ An alternative approach—intraoperative parathyroid hormone (PTH) 46 measurement using fine needle aspiration washout fluids—has been developed.⁵ 47 48 However, it also requires a dedicated apparatus and is still costly. As PT is rich in mitochondria, where the Krebs cycle functions as an energy source,⁶ it 49 50 has abundant Krebs-cycle enzymes, including aspartate aminotransferase (AST). In 51 contrast, lactate dehydrogenase (LDH) is utilized as a marker of common injuries and organ damage because it is ubiquitously expressed. These two enzymes are routinely 52 53 measured as leaked enzymes in clinical examinations, at low cost. We therefore

54	hypothesized that the ratio of AST to LDH in the tissue suspension could distinguish PT
55	from other tissues. If PT could be confirmed at a lower financial and technical burden,
56	these obstacles to exploration of parathyroid-like tissue could be minimized and
57	unintentional discard of PT could be reduced.
58	Materials and Methods
59	We analyzed 94 specimens from 55 randomly selected patients who underwent thyroid
60	or parathyroid surgery between July 2018 and June 2019 in our institution; their
61	characteristics, surgical indications and information about their specimens are shown in
62	Table 1. All measurements obtained from submitted samples were analyzed. This study
63	was approved by the institutional ethical review board, which waived consent in view of
64	the study's retrospective design.
65	Tissues that appeared macroscopically to be PT were isolated from the excised tissue.
66	Prior to autotransplantation, confirmation of the nature of the tissue was made by a
67	frozen section of a small portion (approximately 1 mm ³) of the excised tissue. The
68	remaining tissue was soaked in sterile normal saline and stored until the identity of PT
69	was confirmed. PT that was confirmed by frozen section was then minced into pieces to
70	obtain a gel-like consistency by scissors onto culture dishes and transplanted in the
71	patient's sternocleidomastoid muscle. Trace amount of remnant tissue on the dish 5

72	(presumably equal to 1 mm ³) was suspended in 1 ml of normal saline, and the
73	suspension was sent to the biochemical laboratory in our hospital. AST and LDH were
74	measured by a standard automatic analyzer (Labospect 800, Hitachi High-Technologies
75	Corporation, Tokyo, Japan) using commercially available reagents for automatic
76	analyzers (Quick Auto Neo AST JS-HLS for AST, Shino-test Corporation, Tokyo, Japan
77	and Quick Auto Neo LDH JS-HLS for LDH, Shino-test Corporation, Tokyo, Japan) in
78	the same manner as in a normal clinical blood sample. Approximately 1 mm ³ of
79	apparently distinct tissue (e.g., thyroid gland, metastatic lymph node, etc.) minced by
80	scissors or washouts of needles used for preoperative aspiration biopsy were also
81	analyzed for comparison in the same manner. The AST/LDH ratio was calculated using
82	raw measurement values (IU/L). If the concentration was below the measurement limit
83	(< 1 IU/L for AST, < 5 IU/L for LDH), 1 or 5 was assigned to AST or LDH, respectively.
84	Statistical analysis was performed using JMP 14.2.0 (SAS institute, Japan, Tokyo). $P <$
85	0.05 was considered significant.
86	Results
07	

Levels of AST and LDH were readily measurable in most specimens (Table 2). Most
notably, the AST/LDH ratio of PT was consistently and significantly higher than those
of other tissue types (PT vs other tissues, *P* < 0.001, Mann–Whitney test; Figure 1). The

90	AST/LDH ratios did not significantly differ among other tissue types. Receiver
91	operating characteristic curve analysis indicated that 0.27 was the optimal cut-off ratio,
92	(Figure 1), and predicted PT with 100% sensitivity and specificity.
93	Discussion
94	Identification of PT is major requirement for its preservation in situ or
95	autotransplantation, for avoiding PH. Several methods are currently used to confirm PT,
96	but they are all expensive and depend on access to pathological staff or dedicated
97	apparatus. In contrast, AST and LDH are measured in routine laboratory tests all over
98	the world. Medical facilities where thyroid or parathyroid surgeries are performed
99	would be expected to have in-facility laboratories to measure these enzymes.
100	Our study shows that the simple ratio of these routine clinical test results in the tissue
101	suspensions could be a robust tool in identifying PT. Additionally, using the AST/LDH
102	ratio eliminates the influence of dilution for each specimen. Results will be highly
103	reproducible in common clinical settings.
104	In this study, suspended minced tissue was handled similarly to routine clinical blood
105	samples. Therefore, results took 30 to 40 minutes. However, clotting can be omitted to
106	obtain measurable specimen, which might allow the AST and LDH levels to be

107	ascertained in approximately 15 min after mincing the suspected tissue. Some analyzers
108	(e.g. FUJIFILM NX500) can analyze these enzymes of blood sample in less than 10
109	minutes according to the product catalog. Thus, the turnaround time for this method
110	could be equivalent to a frozen section and intraoperative PTH assay-but at the cost of
111	less than \$3 in Japan. Approximately 1 mm ³ of minced PT or parathyroid-like tissue
112	was enough to measure AST and LDH, and is equivalent to that used in a frozen section.
113	Therefore, measurement of AST and LDH in a suspension of minced tissue is unlikely
114	to hamper successful PT autotransplantation or pathological diagnosis of the resected
115	tissues.
116	The AST/LDH ratio of parathyroid showed a wide distribution in our study. This could
116 117	The AST/LDH ratio of parathyroid showed a wide distribution in our study. This could be attributable to various proportions of oxyphilic cells (with abundant mitochondria)
117 118	be attributable to various proportions of oxyphilic cells (with abundant mitochondria)
117 118	be attributable to various proportions of oxyphilic cells (with abundant mitochondria) and adipocytes. ⁶ Other than PT, the AST/LDH ratios did not significantly differ between
117 118 119	be attributable to various proportions of oxyphilic cells (with abundant mitochondria) and adipocytes. ⁶ Other than PT, the AST/LDH ratios did not significantly differ between cancerous tissues and other tissue types; this seems to contradict the Warburg effect
 117 118 119 120 	be attributable to various proportions of oxyphilic cells (with abundant mitochondria) and adipocytes. ⁶ Other than PT, the AST/LDH ratios did not significantly differ between cancerous tissues and other tissue types; this seems to contradict the Warburg effect (Aerobic glycolysis is dominant in cancerous tissues, where LDH functions as a key

124	This study has some limitations. Although our result showed that the AST/LDH ratio
125	predicts PT with neither false positivity nor false negativity, we need to interpret
126	deliberately because the method was only validated in a relatively small number of
127	cases at a single institution. Thyroid tissue may undergo oxyphilic cell change;
128	oxyphilic cell tumors may also arise. These tissues should be rich in mitochondria, ^{11, 12}
129	and might give false positive results. On the other hand, increased proportion of
130	adipocytes in parathyroid with age has been reported, ⁶ and might give false negative
131	results. Therefore, further studies with large numbers of cases are warranted to validate
132	this method. Although AST and LDH measurements are performed in a relatively
133	standardized manner worldwide, the optimal threshold for AST/LDH ratio to distinguish
134	PT may also require adjustment in each institution. Another limitation is that this
135	method is only applicable for autotransplantation because it requires a small piece of
136	resected tissue. However, the AST/LDH ratio could be determined using fine-needle
137	aspiration washout fluids in place of measurement of PTH.
138	This method will be a cost- and labor-effective solution to reducing PH incidence, both
139	in low-resource countries with pathologist shortages and in developed countries, by
140	providing an alternative to frozen sections, at minimal cost.

Conflicts of Interest:

142 The authors declare no conflicts of interest.

References

145	1.	Jegerlehner S, Bulliard JL, Aujesky D, Rodondi N, Germann S, Konzelmann I,
146		et al. Overdiagnosis and overtreatment of thyroid cancer: A population-based
147		temporal trend study. PloS one. 2017;12:e0179387.
148	2.	Shaha AR, Jaffe BM. Parathyroid preservation during thyroid surgery. American
149		journal of otolaryngology. 1998;19:113-7.
150	3.	Hitchcock CL. The future of telepathology for the developing world. Archives of
151		pathology & laboratory medicine. 2011;135:211-4.
152	4.	Aozasa K. Current status of the Japanese society of pathology with its 100th
153		anniversary. Japan Medical Association journal : JMAJ. 2012;55:416-8.
154	5.	Pelizzo MR, Losi A, Boschin IM, Toniato A, Pennelli G, Sorgato N, et al. Rapid
155		intraoperative parathyroid hormone assay in fine needle aspiration for
156		differential diagnosis in thyroid and parathyroid surgery. Clinical chemistry and
157		laboratory medicine. 2010;48:1313-7.
158	6.	Isono H, Shoumura S, Emura S. Ultrastructure of the parathyroid gland.
159		Histology and histopathology. 1990;5:95-112.

160	7.	Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current
161		concepts of cancer metabolism. Nature reviews Cancer. 2011;11:325-37.
162	8.	Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg
163		effect: the metabolic requirements of cell proliferation. Science.
164		2009;324:1029-33.
165	9.	Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N,
166		Boutet-Bouzamondo N, et al. Estrogen-related receptor alpha modulates lactate
167		dehydrogenase activity in thyroid tumors. PloS one. 2013;8:e58683.
168	10.	Ringel MD. Metastatic dormancy and progression in thyroid cancer: targeting
169		cells in the metastatic frontier. Thyroid. 2011;21:487-92.
170	11.	Kendall CH, McCluskey E, Meagles JN. Oxyphil cells in thyroid disease: a
171		uniform change? J Clin Pathol. 1986;39:908-12.
172	12.	Katoh R, Harach HR, Williams ED. Solitary, multiple, and familial oxyphil
173		tumours of the thyroid gland. The Journal of pathology. 1998;186:292-9.
174		
175		

176 Figure legend

177	Scatterplot shows AST/LDH ratios in suspensions of various tissues, logarithmically
178	plotted on the graph. The median and standard deviation (SD) for each of the tissue
179	types are indicated at the bottom of the figure. Thyroid cancer: local recurrences,
180	metastatic lymph nodes and primary tumor; miscellaneous tissues: median cervical cyst,
181	connective tissue and thymus. Bold horizontal line: optimal threshold value to
182	distinguish parathyroid from other tissues (0.27). NA: not applicable

184 Acknowledgment

185	We thank M	Iarla Brunker,	from Edanz	Group	(www.edanzediting.	.com/ac), for editin	ıg a
-----	------------	----------------	------------	-------	--------------------	----------------------	------

186 draft of this manuscript. This study has no funding to declare.

Table 1Patient characteristics, surgical indications and specimen information.

Sex $(M:F)$	11:44
Age (mean, (range))	54y, (13-86)

Pathology of surgical indication

Papillary thyroid cancer	40
Follicular adenoma or hyperplasia	7
Follicular thyroid cancer	4
C-cell hyperplasia	1
Medullary thyroid cancer	1
Parathyroid cancer [*]	1
Parathyroid adenoma [†]	1
Total	55

Analyzed Specimens

Parathyroid		43
Papillary thyroid	d cancer	
	Primary tumor	1
	Local recurrence	2
	Metastatic lymph node	14
Follicular thyro	id cancer	
	Local recurrence	2
Normal lymph r	node	13
Normal thyroid		6
Adipose tissue		10
Miscellaneous		
	Median cervical cyst	1
	Connective tissue	1
	Thymus	1
Total		94

*Thyroid was measured.

[†]Adipose tissue was measured.

Table 2.

Patients' age, sex, tissue types, AST and LDH values (IU/L) and AST/LDH ratios in the tissue suspension

parathyroid

age sex	62 F	34 F	40 F	13 M	42 F	42 F	42 F	67 F	33 F	47 F	31 F	24 M	56 F	14 F	34 M	25 F
Surgical Indication	FTC	PTC	PTC	CCH	PTC	PTC	PTC	PTC	PTC	PTC	PTC	FA	PTC	PTC	PTC	FTC
AST (IU/L)	31	16	6	13	52	56	26	3	9	15	13	3	3	19	22	28
LDH (IU/L)	46	$<5^{\dagger}$	20	25	129	157	94	5	10	43	46	$<5^{\dagger}$	7	31	68	38
AST/LDH	0.67	3.20	0.30	0.52	0.40	0.36	0.28	0.60	0.90	0.35	0.28	0.60	0.43	0.61	0.32	0.74
parathyroid																
age sex	67 F	60 M	60 M	78 F	70 F	70 F	$75~\mathrm{F}$	43 F	78 M	37 F	53 M	53 M	66 F	72 F	83 F	50 M
Surgical Indication	PTC	FA	FA	PTC	PTC	PTC	PTC	PTC	FA	PTC	PTC	PTC	PTC	PTC	PTC	PTC
AST (IU/L)	42	59	35	15	72	49	54	23	21	19	25	23	30	4	32	32
LDH (IU/L)	57	133	78	35	159	134	142	70	46	48	68	66	92	15	$<5^{\dagger}$	99
AST/LDH	0.74	0.44	0.45	0.43	0.45	0.37	0.38	0.33	0.46	0.40	0.37	0.35	0.33	0.27	6.40	0.32
parathyroid																
age sex	38 F	14 M	65 F	$65~\mathrm{F}$	$77~\mathrm{F}$	$77~\mathrm{F}$	47 F	47 F	47 F	47 F	56 F					
Surgical Indication	PTC	MTC	PTC	PTC	PTC	PTC	FA	FA	FA	FA	PTC					
AST (IU/L)	41	12	15	18	59	78	24	29	34	8	17					
LDH (IU/L)	70	11	42	38	216	153	52	79	73	25	47					
AST/LDH	0.59	1.09	0.36	0.47	0.27	0.51	0.46	0.37	0.47	0.32	0.36					

age sex	$58~{ m F}$	74 M*	74 F*	42 F	74 F	67 F*	77 F*	74 M	56 F	67 F	85 F*	60 F*	$75~\mathrm{F}$	68 F*	38 F*	38 F*
source	L (FTC)	\mathbf{L}	М	М	Μ	М	\mathbf{L}	М	М	М	М	М	Р	Μ	М	М
AST (IU/L)	30	1	1	40	56	< 1‡	2	8	34	95	14	29	87	23	9	13
LDH (IU/L)	254	19	23	293	774	10	21	174	268	1806	209	1593	583	204	234	378
AST/LDH	0.12	0.05	0.04	0.14	0.07	0.10	0.10	0.05	0.13	0.05	0.07	0.02	0.15	0.11	0.04	0.03

thyroid cancer

age sex	56 F*	86 F*	60 M*
source	M (FTC)	М	М
AST (IU/L)	5	11	2
LDH (IU/L)	46	142	88
AST/LDH	0.11	0.08	0.02

normal lymph node													
age sex	42 F	14 F*	14 F	14 F	14 F	70 F	$75~\mathrm{F}$	43 F	43 F	73 F*	14 M	$77 \ F$	47 F
Surgical Indication	PTC	PTC	PTC	PTC	PTC	PTC	PTC	PTC	PTC	PTC	MTC	PTC	FA
AST (IU/L)	15	1	4	4	5	19	111	15	7	5	21	9	20
LDH (IU/L)	239	6	52	69	38	266	1836	218	103	135	236	126	274
AST/LDH	0.06	0.17	0.08	0.06	0.13	0.07	0.06	0.07	0.07	0.04	0.09	0.07	0.07
adipose tissue													
age sex	74 F	48 F	63 F	74 M	56 F	67F	78 F	53 F	50 M	38 F			
Surgical Indication	PTC	FA	ParaA#	PTC	PTC	PTC	FA	PTC	PTC	PTC			
AST (IU/L)	6	4	3	3	9	48	7	7	2	17			
LDH (IU/L)	140	32	39	58	75	231	95	49	27	101			
AST/LDH	0.04	0.13	0.08	0.05	0.12	0.21	0.07	0.14	0.07	0.17			
normal thyroid								miscella	aneous				
age sex	40 F	42 F	56 F	47 F	78 F	47 F		50 F*§	$50 \ M^{\circ}$	14 M¶			
Surgical Indication	ParaC**	PTC	PTC	FA	PTC	FA		PTC	PTC	MTC	-		
AST (IU/L)	33	16	31	23	81	23		10	1	36			
LDH (IU/L)	321	125	261	211	359	178		242	17	546			
AST/LDH	0.10	0.13	0.12	0.11	0.23	0.13		0.04	0.06	0.07			

All specimens of thyroid cancer were obtained from papillary thyroid cancers except for those indicated as follicular thyroid cancer (FTC).

CCH: C-cell hyperplasia; FA: follicular adenoma or hyperplasia; L: local recurrence; M: metastatic lymph node; MTC: medullary thyroid cancer; P: primary tumor; ParaA: parathyroid adenoma; ParaC: parathyroid cancer; PTC: papillary thyroid cancer.

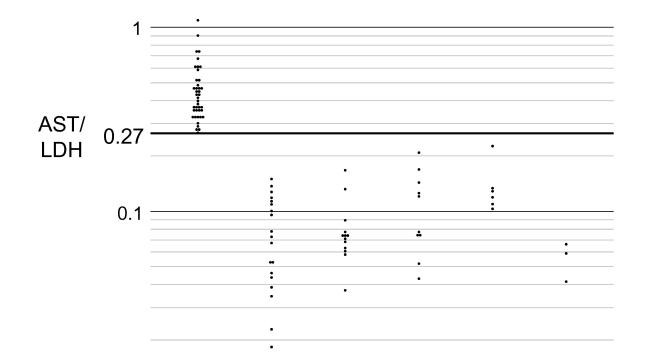
* Specimen was obtained by preoperative fine needle aspiration biopsy.

†As concentration was below measurement limit (< 5 IU/L), 5 was used to calculate AST/LDH ratio.

‡As concentration was below measurement limit (< 1 IU/L), 1 was used to calculate AST/LDH ratio.

§ Median cervical cyst

I Connective tissue


¶ Thymus

The AST/LDH ratio of this parathyroid adenoma was 0.63.

** The AST/LDH ratio of this parathyroid carcinoma was 0.21.

Figure 1

0.01						
0.01	parathyroid	thyroid cancer	normal lymph node	adipose tissue	normal n thyroid	niscellaneous
median	0.43	0.07	0.07	0.10	0.12	0.06
SD	1.19	0.04	0.03	0.05	0.04	0.01