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Abstract

Thousands are killed every day in traffic accidents, and drivers are mostly to blame.
Autonomous driving technology is the ultimate technological solution to this problem.
Moreover, autonomous driving technologies provide new social experience, reduce car-
bon emissions, reduce fuel consumption, save time and support aging communities.
Planning, which determines the movement of autonomous vehicles, is the cornerstone
of autonomous agent navigation. It is also one of the most difficult tasks to perform,
because the safety of the vehicle, its passengers and other road users depend upon it.

Despite the thousands of autonomous vehicles currently operating on public roads
for testing, there are still many unresolved problems with autonomous driving tech-
nology. For example, these systems are designed to drive defensively, but safety
threats occur continuously while moving in traffic, especially in complex situations
that involve interaction with human drivers. Better, more innovative, solutions for
autonomous understanding of the intentions of other road users are still needed in
order to achieve more natural driving performance. Another problem is that au-
tonomous driving technology is still not standardized. Roads need to be mapped and
driven on multiple times before automated driving tests can be conducted, and ev-
ery development team has its own specific, closed implementations. This portability
problem is the result of poor utilization of road network mapping standards.

Planning applications consist of multiple modules with different input/output
spaces, and these modules need to be integrated correctly. Another challenge is the
lack of open-source planning projects that allow cooperation between development
teams globally. Problems such as social interaction, understanding the intentions of
other road users, and environment differences between various countries cannot be
solved by just one team of developers, no matter how resourceful they are.

Open-source autonomous driving planners should also meet certain standards,
such as the ability to support multiple platforms and adherence to mapping standards,
as well as having acceptable performance, usability and extensibility. Although sev-
eral open-source motion planners are currently available, unfortunately they all have
drawbacks, such as poor utilization of standard road network maps, inability to sup-
port multiple platforms, difficulty of use and customization, and a lack of tutorials
and support.

One reason that existing solutions for global planning (i.e., point-to-point naviga-
tion) are not efficient or portable enough is that they do not use standard road network
maps. Likewise, performance of local planning algorithms tends to be improved by
using imprecise object representations, and intention and trajectory estimation so-
lutions for surrounding vehicles are currently able to achieve acceptable results in
custom situations, but they usually cannot be generalized for other driving scenarios.
And current generalized intention estimation techniques are still unable to achieve
acceptable performance.

In order to address these problems, in this dissertation we describe the develop-
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ment of an open-source, integrated planner for autonomous navigation called "Open-
Planner". This planner is composed of a global path planner, a behavior planner,
a probabilistic trajectory and intention predictor, and a local planner. The global
planner generates smooth, global paths which are used as a reference, after consider-
ing traffic costs annotated in a road map. A road network map and a goal location
are required to compute a global path and then execute it while avoiding obstacles.
The local planner generates smooth, obstacle-free local trajectories, which are then
used by a trajectory tracker to achieve low-level control. The behavior state genera-
tor then uses surrounding vehicle estimated intentions to handle tasks such as object
following, obstacle avoidance, emergency stopping, stopping at stop signs and traffic
light negotiation.

A novel technique for estimating the intention and trajectory probabilities of sur-
rounding vehicles is also introduced, which enables long-term planning and reliable
decision making. First, the behavior planner models an average driver following the
driving rules, utilizing information provided by a road network map to provide the
agent control signal. Next, a customized particle filter is integrated with the planner
to model the uncertainty of various intentions and trajectories. This probabilistic
filter uses multiple sensing cues, such as pose, velocity, acceleration and turn signal
information. The proposed estimation method supports various sensor modalities,
depending on the availability of different types of sensing information. Finally, by
using the sensor data, the probabilistic process is able to estimate the probabilities
of various trajectories and intentions.

The integrated planner described in this dissertation was evaluated using simu-
lation, and through field experimentation with a non-holonomic, Ackerman steering-
based mobile robot. Results from our simulation and field experimentation indicate
that the proposed planner can generate global and local paths dynamically, navigate
smoothly through highly dynamic environments and operate reliably in real time, by
utilizing the probabilities of the estimated intentions and trajectories of other road
users.

This integrated planner has already been implemented as part of Autoware, which
is an open-source autonomous driving framework, built using the Robot Operating
System (ROS). Autoware has drawn a lot of attention internationally, and has been
utilized in several projects by academic and commercial teams. Collaboration and
feedback from the open-source autonomous driving community has allowed us to
tackle some of the problems mentioned above.
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Chapter 1

Introduction

Thousands of people around the world die every day in traffic accidents [1]. According

to a 2018 World Health Organization report, a road user dies every 23 seconds [2].

The report also notes that the number of traffic deaths world-wide has reached 1.35

million a year. Injuries suffered in traffic accidents are now the leading killer of people

between the ages of 5 and 29. Besides deaths, tens of millions more are injured or

disabled every year, with many suffering life-altering injuries with long-term effects.

These losses take a huge toll on families and communities.

There are several causes for the high number of traffic fatalities and injuries; rapid

urbanization, low safety standards, insufficient law enforcement, people driving while

distracted, fatigued, or under the influence of drugs or alcohol, speeding and failure

to wear seat-belts or helmets. Drivers are responsible for most of these accidents, as

opposed to equipment failure or road hazards.

Many researchers are trying to tackle this problem by eliminating the human

factor, using state of the art technology to replace human drivers with a collection of

sensors, hardware and software, in order to achieve automated driving. Self-driving

vehicles (autonomous vehicles) are close to becoming a reality. Interest in this field

was sparked by the DARPA Challenge in 2005 [3] and DARPA Urban Challenge in

2007 [4]. However, after more than a decade of development autonomous driving

(AD) is still far from achieving its ultimate automation objectives. Figure 1-1 shows

the milestones for autonomous driving, starting with the classical 100% human driver
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Figure 1-1: Automation levels and milestones for autonomous driving, as defined by
the Society of Automotive Engineers (SAE).

(no automation) to futuristic, 100% computer automated systems (full automation)

[5].

An autonomous vehicle is a combination of a drive by wire system, sensors, a

computation platform and a collection of algorithms. Figure 1-2 shows Nagoya Uni-

versity’s autonomous driving testing platform. This is the vehicle used to test the

proposed integrated planner in a full-scale autonomous driving test. Autonomous

driving still a difficult problem however, due to the vast number of possible situations

that can occur in dynamic driving environments. In this work, I propose a solution

to one of the most challenging autonomous driving tasks, which is planning. My

research objective is to develop an open-source framework for planning which can

achieve the following goals:

∙ Fosters international collaboration, so that different development teams can

share feedback and solve problems using the same framework.

∙ Provides a complete autonomous driving software package, include all of the

planning modules (global planner, local planner, intention prediction and be-

havior planner).

∙ Integrates the various planning modules so that they can be used as separate

APIs or within a Robot Operating System (ROS).
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Figure 1-2: sensor suite for Nagoya University Autonomous vehicle.

∙ Broad platform support, so that the system will work with wide range of au-

tonomous platforms.

∙ Broad map support, so that the system will support standard and open-source

map formats.

∙ Broad environment support, so that the system will work indoors, outdoors, on

a wide variety of structured streets and off-road.

∙ Incorporates intention awareness, so that the system is able to predict the move-

ment of other vehicles and plan accordingly.

1.1 Problem Definition

1.1.1 Planning as the brain for Autonomous Driving

Autonomous driving requires perception, localization, control and planning. Al-

though there are currently many open-source resources available to researchers for

perception, localization and control, there are few open-source planners that are gen-

eral enough to be used directly, or which could be easily modified to suit a particular
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Figure 1-3: Level 4+ autonomous driving software stack.

application. This is because planning is the core module that connects everything

together and it is also application dependent. Planning is also one of the most diffi-

cult autonomous driving tasks, as it determines the vehicle’s actions, and the safety

of the vehicle, its passengers and other road users depend on its correct operation.

Planning consists of multiple modules that need to be integrated together cor-

rectly, as shown in Figure 1-3. This section introduces autonomous driving planning

challenges from different points of views, concentrating on the most difficult ones.

1.1.2 Social Interaction Challenges

For a very long time, autonomous vehicles will share the roads with human drivers,

thus understanding the behavior of other drivers is one of the most challenging prob-

lems for autonomous vehicles to resolve. The ability to predict the intentions and

trajectories of other vehicles is a very complex task, which even humans sometimes

fail at, leading to traffic accidents.

Three words are often used interchangeably to express a driver or vehicle’s actions;

intention, behavior and maneuver [6]. ’Maneuver’ is more specific than the other two

and can include more than one action, especially during lateral changes of direction.

’Intention’ and ’Behavior’ are generally used to describe a driver’s action, from doing

nothing to the complicated, three-step passing of a slower vehicle. In this dissertation

’Behavior’ is used to refer to the ego vehicle’s actions or the estimated actions of

other vehicles before filtering. ’Intention’ is used for an estimated set of actions after
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Figure 1-4: Vehicle turning across heavy oncoming traffic.

filtering. ’Intention Prediction’ refers to guessing what another driver has in mind.

Therefore, in this dissertation ’Intention’ means driving behavior that is expected to

be, or is currently being, executed by other vehicles.

The first common scenario is avoiding a traffic deadlock by letting a vehicle from

the other side of the street enter an unregulated parking area. Figure 1-4 shows an

intersection with a convenience store by the corner. The traffic light is red and a bus

is stopped at the light. A vehicle traveling in the opposite direction wants to turn

right to enter to the store’s parking lot. If the vehicle following the bus does not

yield, the turning vehicle will be blocked and will have to wait until another vehicle

yields or until there are no vehicles coming from the opposite direction. This could

take a while and might block the intersection.

A second common scenario is shown in Figure 1-5. A bus is stopping at a bus

stop located on a two-way street. The vehicle behind the bus needs to figure out

that this bus is stopping for a while. It has the choice of either waiting for the bus

to move forward, or trying to pass the bus. The decision depends on whether or not

there are vehicles coming from the opposite direction, and if so, on their intentions.

The decision should also take into account what happens if the bus begins moving

forward again (i.e., the intention of the bus driver), so that the passing maneuver can

be aborted if necessary.
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Figure 1-5: Passing a stopped vehicle on a two-way street.

1.1.3 Location and Culture Challenges

Although cars have been in common use for a long time, some aspects of driving

differ from country to country, and even from city to city. We can summarize these

differences as follows:

∙ In some countries vehicles travel on the left side of the road, in others vehicles

travel on the right.

∙ Infrastructure differs from country to country and even from city to city in

the same country. For example, the quality and design of roads, differences in

signage and lane markings, use of traffic circles, etc.

∙ Driving rules and habits differ. For example, how close you can drive to the car

in front of you, how close you can come to a vehicle when cutting back in after

passing it, whether or not you need to stop for pedestrians waiting to cross at

crosswalks that are not at an intersection, how far ahead of a turn you need to

signal and which lane you should enter after making a cross-traffic turn onto a

four-lane road.

∙ Social interaction rules are different, such as when to use the vehicle’s horn,

lights, hand motion, head motion, or even only eye contact to allow or forbid

another road user from performing an action.
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∙ Traffic laws are more strictly enforced in some countries than in others. What

are traffic violations in some countries may be considered just rude behavior in

others.

From the above examples, we can see that developing an autonomous driving

planner that can handle all of these issues is an impossible task for one team. No

single company or university can provide solutions to all of these problems. We

believe solving these problems requires international cooperation between researchers

and companies from around the globe, by sharing data, experience and solutions.

1.2 Basic Planning Components

To achieve full planning, pipeline inputs such as agent position, detected objects,

maps, traffic information and goal location are needed. The output will be a smooth,

obstacle free trajectory. The traditional approach is to develop multiple planners that

solve the problem step by step, as shown in Figure 1-3. A global planner, local plan-

ner, intention predictor and behavior planner are all needed. Previously developed

planners have tended to be either proprietary or open-source. Open-source planners

are usually difficult to use, are designed for a specific environment or platform, or

lack sufficient documentation or tutorials, as in [7][8][9].

1.2.1 Global Planner

The global planner module calculates the directed path that the vehicle should follow

from start to goal. This process is also known as ’routing’ or ’navigation’, and an

example of this process is shown in Figure 1-6. Global planning algorithms such as

A* [10] and Anytime Dynamic A* [11] can solve global planning problems, but they

usually require special customization and can only achieve marginal performance. The

global planner proposed in this dissertation uses a road network map to represent the

environment, and dynamic programming to search for a solution.
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Figure 1-6: Navigation/Routing as an example a global planner.

1.2.2 Local Planner

The local planner module is responsible for selecting an obstacle free path from among

multiple sampled paths. Examples of local planning results are shown in Figure 1-7.

Sampling-based local path planning is a common method used to generate smooth

trajectories, such as in [12][13]. Obstacle representation and trajectory selection are

often bottlenecks, however. In Chapter 3 of this work, a clever method of representing

detected obstacles is proposed, which improves both accuracy and performance.

Figure 1-7: Local planner selecting the best path.

1.2.3 Intention prediction

It is important to estimate what other road users are currently doing, as well as their

future trajectories, especially in complex scenarios such as the one shown in Figure

1-8. Solutions for this problem were proposed in [14][15], but there are problems with

these solutions such as a lack of generalization for both driving scenarios and sensing

models, as well as trade-offs between accuracy and performance. In this dissertation,

I propose a behavior planner that can deal with many different driving situations.

Performance of probabilistic filtering is also improved by reducing the dimensions of

the state space.
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Figure 1-8: Understanding other road users’ intentions and likely trajectories is very
useful in highly dynamic environments.

1.2.4 Behavior Planner

Also known as a ’decision maker’, the behavior planner module selects the most

appropriate action for the ego vehicle to execute. Examples of these actions are

commands such as Forward, Follow, Change Lanes, Stop for Stop Sign, and Stop

for Red Light, etc. The state machine shown in Figure 1-9 illustrates some of the

behaviors that these kinds of planners generate. State machines are a simple and

efficient way to represent such behaviors, as described in [16][17].

Start

Forward

End

Swerve

Emergency 
Stop

Follow

Traffic Light Stop

Traffic Light Wait

Start Signal

Stop Line Stop

Stop Line Wait

Figure 1-9: Behavior states are usually a connected graph of actions that the vehicle
could execute.

1.3 Contributions

This section summarizes the contributions made by this dissertation, which are:

∙ Development of a complete, integrated open-source planner for autonomous
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driving (Chapter 3).

∙ Introduction of a new technique for estimating the intentions and trajectories

of surrounding vehicles (Chapter 4).

In addition to these two, main contributions, several other contributions were also

introduced in this work:

∙ Utilization of road network maps.

∙ Use of flexible routing costs for global planning.

∙ Precise object representation to improve obstacle avoidance.

∙ Improvements to the performance of the particle filter.

∙ Increased flexibility, allowing additional types of sensing measurements.

Additional details are provided in Section 1.4.

1.4 Proposed Solution

In this section, the proposed integrated planner is introduced. Its success, based on

its introduction as an open-source autonomous driving planner, is also discussed. A

comparison of our planner and leading open-source planners is also provided.

1.4.1 OpenPlanner: An Open-Source, Integrated Planner

The implementation of the open-source, integrated planner introduced in this work is

called OpenPlanner. Its architecture is illustrated in Figure 1-10. It includes a global

planner that generates global reference paths using a vector (road network) map. The

local planner then uses this global path to generate an obstacle-free, local trajectory

from a set of sampled roll-outs. It uses various costs, such as collision, traffic rules,

transition and distance from center, to select the optimal trajectory. An intention

and trajectory estimator calculates the probabilities associated with other vehicles’
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intentions and trajectories, while the behavior generator uses predefined traffic rules

and sensor data to function as a decision maker.

OpenPlanner 

Smooth Obstacle Free Trajectory 

Start Pose 
(Current Pose) 

Goal Pose 
Global Planner 

Local Planner 

Detected 
Obstacles 

Traffic Lights 
Color 

Trajectory 
Generator 

Behavior State Generator 

Vector map (set of waypoints and types for) 

Lane Info. Intersection Info. Traffic lights and signs  

Trajectory 
Evaluator 

Intention 
and 
Trajectory 
Estimator 

Figure 1-10: Architecture of the proposed integrated planner.

The research presented in this thesis was originally developed for autonomous

driving applications. Its source code is included in the Autoware repository [18].

Autoware is an open-source, autonomous driving framework developed by Nagoya

University, which is used by many researchers for autonomous driving research and

development [19][20]. Autoware is based on the Robot Operating System (ROS) de-

scribed in [21], and is a collection of ROS packages plus additional helper libraries.

OpenPlanner will work with any mobile robot or vehicle by simply adjusting its pa-

rameters, and has been tested with both differential drive and non-holonomic robots.

OpenPlanner has been used by many international research teams, which have

made diverse and innovative contributions by applying it to wide range of autonomous

driving planning problems around the world, for example:

∙ The Roboat project: The objective of this project is to encourage the use

of Amsterdam’s canals for transportation, using a fleet of autonomous boats
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[22][23].

∙ Autonomous driving map editor: road network map editor developed at

the University of Konkuk, Korea [24].

∙ ADAS Demo: An Advanced Driver Assistance System (ADAS) demo for a

major Hong Kong-based technology company.

Details of the contributions made through the development of OpenPlanner, which

were summarized in Section 1.3, include:

∙ The utilization of road network maps improves planner portability, and enables

the planner to handle more complex traffic scenarios.

∙ Use of flexible routing costs in the global planner allows integration with HMI

modules, providing a seamless method of working with dynamic maps.

∙ Precise object representation using object contours instead of bounding boxes

improves obstacle avoidance accuracy.

Table 1-11 compares OpenPlanner to the top open-source planners currently avail-

able. Moreover, our planner is being continuously improved thanks to feedback re-

ceived from the open-source community.

1.4.2 Trajectory and Intention Estimation

We have developed a novel method of estimating the probabilities of the intentions

and trajectories of surrounding vehicles, using an existing behavior planner with a

particle filter. This estimation process is a very important function of the planner,

allowing it to handle complex traffic situations. Figure 1-12 shows the estimator

successfully predicting that the bus is going to stop at the bus stop before it fully

executes the action. It is also able to estimate whether the following vehicle is yielding

to the ego vehicle or passing it.

Details of the contributions of this work related to intention estimation, summa-

rized in Section 1.3, are as follows:
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Figure 1-11: Comparison of OpenPlanner with leading open-source planners.

Ego vehicleStopped Bus

Yielding vehicle

Figure 1-12: Bus stop situation.

∙ Utilization of an improved behavior planner allows the modeling of the internal

parameters of the surrounding vehicles, which represent the behavior of an

average driver.

∙ Use of a multi-cue particle filter reduces the dimensions of the state space within

the particle filter, improving performance.

∙ Ability to use a variety of sensing measurements provides the flexibility of adding

new sensing models or even disabling existing models.
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1.5 Data Circulation and Social Impact

Data circulation, especially of real-world data, is essential for the development of au-

tonomous driving applications. The concept of Real-World Data Circulation (RWDC)

is utilized by the open-source integrated planner described in this dissertation. Data

is generated from simulations, robot testing and real vehicle testing, and then shared

with other teams for analysis. We also used other open data sets to test and improve

our work. Figure 1-13 shows the RWDC concept as implemented for this project.

Figure 1-13: Relationship between OpenPlanner and RWDC. First sensor data is
collected, then maps and simulation environment is built and shared with open-source
community, then we develop and test planning algorithms, finally experiments data
is shared with the development community.

Providing the integrated planner as open-source has contributed to another form

of data circulation. It enabled teams to work with the same data formats, thus the

data sharing is much easier. Teams around the world shared real data from their

experiments, which enabled other teams to solve more challenging problems.

The social impact of developing the proposed integrated planner as an open-source

project is demonstrated by the number of projects which are already utilizing it (see

Section 1.4.1). In addition, the original paper in which this integrated planner was

proposed [25] has been downloaded more than 3,000 times. Other research projects

were also made easier by utilizing our planner. Furthermore, saving lives is the ulti-

36



mate objective of development of better planners for autonomous driving. Another

social impact is demonstrated by the Roboat project [23], which is shifting trans-

portation around Amsterdam from land to water, using a fleet of autonomous boats.

In Chapter 5, we explain in more detail the concept of RWDC and the social value

of the work presented in this dissertation.

1.6 Thesis Structure

In Chapter 2, we review the previous research that inspired our work. In Chapter 3,

we explain in detail the components of OpenPlanner, with intention and trajectory

estimation discussed at length in Chapter 4. The relationship between OpenPlanner

and the real-world data circulation is explained in Chapter 5. Finally, in Chapter 6,

this dissertation is concluded and future work is discussed. Figure 1-14 shows where

each planning component is explained in the thesis.

OpenPlanner 

Smooth Obstacle Free Trajectory 

Start Pose 
(Current Pose) 

Goal Pose 
Global Planner 

Local Planner 

Detected 
Obstacles 

Traffic Lights 
Color 

Trajectory 
Generator 

Behavior State Generator 

Road Network Map (set of waypoints and types for) 

Lanes Areas Traffic lights and signs  

Trajectory 
Evaluator 

Intention and 
Trajectory 
Estimator 

Object Tracker 

Stop Lines Curbs 

Chapter 3 
Section 3.2 

Chapter 4 
Chapter 3 

Section 3.3 
Chapter 3 

Section 3.3 

Chapter 3 
Section 3.4 

Figure 1-14: The integrated planner (OpenPlanner) is explained mainly in Chapters
3 and 4.
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Chapter 2

Previous Work

Autonomous driving requires several levels of planning, including global planning,

path planning, local planning and behavior planning. Museum tour guide robots are

one example of autonomous navigation in indoor mobility [26]. Studies on long-range

outdoor robot navigation [27][28] have shown that state-of-the-art planning techniques

can achieve good results. Moreover, the well-known DARPA Urban Challenge has

shown that robotic navigation of car-like vehicles operating in real traffic is feasible

[16][12].

In robotics, planning is the task of finding a collision-free trajectory, from a start-

ing position to a goal location, and thus it determines navigation decisions. Auto-

mated planning has been widely studied, from simple collision avoidance in simulated

environments [29] to advanced algorithms which include vehicle constraints and un-

certainty [30][31]. Planning for robot navigation usually involves the computation of

global and local plans. Global planners compute paths from a current position to a

goal location by satisfying optimal functions, usually using distance constraints as in

Dijkstra [32]. Task planners function as an orchestrator by deciding when to start,

stop, create a new plan, switch to an emergency state, and so on. In the follow-

ing subsections we will cite examples of related work for each specific aspect of our

proposed planning system.
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2.1 Behavior Planning

The other important planning function besides path planning is task planning, which

is also known as behavior generation. It generally uses a state machine to represent

tasks and apply the rules that govern transitions between these tasks. In [17] re-

searchers transformed a continuous driving behavior state into discrete state spaces,

and then used a search algorithm to obtain the optimal task sequence to reach the

goal condition in a symbolic space.

2.2 Global Planning

Some global path planners, such as A* [10], use heuristic functions, while others, such

as Anytime dynamic A* [11] and the D* algorithm [33], employ re-planning in addi-

tion to heuristic functions. In [34], Hybrid A* is introduced, which combines three

methods, heuristics, re-planning and a kinematically feasible search model, as shown

in Figure 2-1. There are topological approaches as well, such as Voronoi graphs [35],

which also compute collision free paths. These techniques are based on grid maps

updated with sensor information, also known as cost maps. Such techniques cre-

ate global planes for unstructured environments like off-road navigation and parking

situations.

Figure 2-1: Graphical comparison of search algorithms. Left: A* associates costs
with centers of cells and only visits states that correspond to grid-cell centers. Center:
Field D* associates costs with cell corners and allows any linear path from cell to cell.
Right: Hybrid A* associates a continuous state with each cell, and the score is the
cost of its associated continuous state [34].

Networks of structured roads extending for several kilometers are another type of

environment. With environments of this size, cost maps become impractical and a
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different method of environment presentation is needed.

At the 2007 DARPA Urban Challenge, teams received a road network definition

file (RNDF) for the complete course, which they used to globally plan their robot’s

motion through the challenge objectives, as described in [36][12]. Dynamic program-

ming techniques for global planning were used by Stanford University’s team, as

described in [12], which involved dynamic programming with accelerating nodes. An

example of map and planning results from [36] are shown in Figure 2-2.

Figure 2-2: Global planning: DP propagates values through a crude discrete version
of the environment map. The color of the RNDF is representative of the cost to move
to the goal from each position in the graph. Low costs are green, and high costs are
red [36].

Clearly, this kind of structured environmental information made it practical for

teams to plan global paths, which included lane changes, intersection negotiation,

stop signs, traffic lights and parking. Since then, RNDFs have become essential for

autonomous navigation. In [37], an optimized RNDF for autonomous driving was

introduced. The type of RNDF maps used in this work are called vector maps.

Although the structure of these maps is similar to open street maps [29], they are

much more precise and include additional, regularly updated, information.
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2.3 Local Planning

Several types of local planners have been proposed. Potential field approaches assign

repulsive forces to obstacles and attractive forces to obstacle-free spaces [33]. Other

successful obstacle avoidance algorithms consider vehicle constraints while predicting

the future position of the vehicle [38]. The global dynamic window approach inte-

grates global path information and uses it for obstacle avoidance [39][40].

More recently developed planners take human factors into account, in order to

compute paths which are comfortable for passengers [41][42]. Efficient methods of

local planning which generate multiple rollouts, starting from the center of a vehicle

and running parallel to a reference path, have also been introduced [12][13]. These

roll-outs are then linearly sampled and optimized to satisfy vehicle kinematics [36],

as shown in Figure 2-3.

Figure 2-3: Planner rollouts in an urban setting, with multiple discrete choices [36].

Object detection and tracking is an important component of many local plan-

ning approaches, including our own. Noisy sensors, faulty detection algorithms and

weather conditions contribute to false positive and false negative obstacle detection,

while imprecise object representation methods, such as bounding boxes, also have
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drawbacks. For example, from a detection point of view, a 20 cm error of margin is

not a problem as long as the detection results are correct, but from planning perspec-

tive this 20 cm could lead to catastrophic results, as illustrated in Figure 2-4. It is

essential that local planning methods have reliable object tracking capabilities, espe-

cially in outdoor, autonomous navigation applications. In [43], multiple hypothesis

tracking (MHT) was used to achieve multiple target tracking, while other researchers

have used probabilistic filters, such as Kalman or Particle filters.

Figure 2-4: Red points represents the actual observed point cloud from LiDAR sensor
data. The green box represents the bounding box. Pink lines represent the bounding
contour. For objects with irregular shapes, bounding box error margins can become
problematic.

2.4 Trajectory and Intention Estimation

The problem of estimating the behavior of other vehicles can be divided into two

parts, trajectory estimation and intention estimation. Note that there is a difference

in the state space between the two tasks; trajectories are continuous in an 𝑥, 𝑦, 𝑧, 𝜃, 𝑣

space [44][45], but intentions, such as going forward, turning, slowing down, yielding,

etc., are discrete, and are usually modeled using a state machine, and solved using

search-based algorithms [12][25]. Others have used one model for both trajectory and

intention estimation however, as in [46][47].
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One method of estimating the trajectories of other vehicles is to use deterministic

models, as in [44]. This approach requires an accurate physical model of the moving

object and the environment, and it can only estimate the trajectory a short time in

the future, e.g., about one second. Another problem with this approach is that it

does not account for observational uncertainties. Trajectories can also be estimated

using machine learning, such as in [48][49][50]. Results using the machine learning

approaches are good for predicting trajectories in specific situations, such as highway

merging and exiting, at four-way intersections, etc. The main issue with this approach

is difficulty providing sufficient driving scenario samples for training. Since some

behaviors occur only rarely, machine learning approaches generalize these situations

poorly.

2.4.1 Probabilistic Methods

To develop a successful trajectory and intention estimator for autonomous vehicles,

two major uncertainties need to be addressed, observational uncertainty and motion

uncertainty. One common way to model such uncertainty is by using a Dynamic

Bayesian Network (DBN) [51]. Figure 2-5 shows a DBN with a state 𝑋, motion

control signal 𝑢 and observation 𝑍.

Figure 2-5: A dynamic Bayesian network characterizing the evolution of controls,
states and measurements [51].

In [52], a driving behavior estimation and classification model is developed based

on Hidden Markov Models (HMMs). HHMs are a popular solution for modeling time

series data, representing probability distributions over a sequence of observations,
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hence their use for estimating intention states [53]. Let’s denote an observation at

time 𝑡 by the variable 𝑍𝑡, with the assumption that the observations are sampled at

discrete, equally-spaced time intervals. A hidden state, in this case driving intention

𝑋, at time 𝑡, is denoted by 𝑋𝑡, satisfying the Markovian property. Thus, the joint

distribution of a sequence of states and observations can be factored as shown in

Equation 2.1 [53]. This factorization of the joint probability is represented graphically

in Figure 2-6.

𝑃 (𝑋1:𝑇 , 𝑍1:𝑇 ) = 𝑃 (𝑋1)𝑃 (𝑍1|𝑋1)
𝑇∏︁
𝑡=2

𝑃 (𝑋𝑡|𝑋𝑡−1)𝑃 (𝑍𝑡|𝑋𝑡) (2.1)

Figure 2-6: A Bayesian network specifying the conditionally independent relationships
of a Hidden Markov Model [53].

Recently, there have been attempts to develop approaches that can address both

trajectory and intention uncertainties in one step. In [54], an intention-aware planning

application was proposed in which Partially Observable Markov Decision Processes

(POMDP) were used to represent both trajectory and intention uncertainty, and the

uncertainty problem was then solved using a Monte Carlo (MC) sampling method.

In [14] POMDP was also used for decision making. Observations, i.e., the behaviors

of other drivers, are usually modeled as a DBN, and then the whole system is solved

using value iteration. In [14] the focus was only on modeling highway merging sit-

uations, and generalization to more complex driving situations was not addressed.

Another POMDP model was introduced in [15], using a point-based solution. Thus,

we can see that POMDP provides a rich framework for uncertainty modeling. When

using POMDP, the model is represented by 𝑋,𝐴,𝑍, 𝑇, 𝑍,𝑅, 𝛾, in which 𝑋 repre-
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sents the state, 𝐴 represents actions or control decisions, 𝑍 represents observations,

𝑇 represents the transition function between actions and states, 𝑍 is an observation

function that connects the action and previous state to observations, 𝑅 is a reward

function deriving the system objectives, and 𝛾 is a discount factor between 0 and 1.

The output of the system, in this case the estimated state, is called the belief state,

denoted 𝑏. According to Bayes theorem, this belief state can be calculated as shown

in Equation 2.2 [51].

𝑏𝑎𝑧(�́�) ∝
∑︁
𝑥

𝑏(𝑥)𝑇 (𝑥, 𝑎, �́�)𝑍(𝑎, �́�, 𝑧) (2.2)

Thus, the process model’s state can be represented as 𝑝(𝑠|𝑠, 𝑎) = 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎).

Knowledge about the system state can be represented by the belief distribution 𝑏 ∈ 𝐵,

and this belief can be updated after observing 𝑧 ∈ 𝑍 using observation model 𝑝(𝑧|𝑠) =

𝑝(𝑧|𝑠𝑠+1). Value iteration is a common method used to solve discrete POMDPs. At

each iteration, the system receives a reward 𝑟 : 𝑋 × 𝐴 → ℜ . The goal of the

POMDP solver is to find a poly 𝜋 : 𝐵 → 𝐴 which maximizes the value 𝑉 : 𝐵 → ℜ

for initial belief 𝑏0. The value 𝑉 is the expected sum of rewards for belief 𝑏0 over time

𝑡, discounted by 𝛾 ∈ [0, 1), as shown in Equation 2.3:

𝑉𝜋(𝑏0) = 𝐸

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑥𝑡, 𝜋(𝑏𝑡))

]︃
(2.3)

Issues with MDP and POMDP approaches are the need to discretize the state

space in order for the algorithm to become computationally tractable, but even this

technique cannot produce real-time results. Beside the performance issues, all pre-

vious studies have concentrated on one type of traffic situation, without generalizing

the model for use in other complex traffic scenarios. One source of the generalization

problem is the use of primitive and custom lane-based road representations.
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General Markovian filtering methods, such as the Kalman Filter (KF) and Parti-

cle Filter (PF), are known for their ability to model noise in data [51], allowing them

to handle different types of uncertainty. Particle filters, due to their ability to ap-

proximate almost any distribution, are especially useful for modeling both continuous

and discrete data. In [55], a particle filter was used with a dynamic vehicle model to

estimate driver intention.

The basic idea behind particle filtering is to approximate a belief state with a set

of weighted particles or samples [53], as shown in Equation 2.4. 𝑋𝑡 is the state vector

at time 𝑡, 𝑧 is the observation, and 𝑋 𝑖
𝑡 represents the 𝑖-th sample of 𝑋𝑡. Equation

2.4 allows us to compute the posterior using importance sampling. Because it is

difficult to sample from the target distribution, we instead sample from proposal or

importance distribution 𝑞(𝑥), then weight the samples, as shown in Equation 2.5:

𝑃 (𝑋𝑡|𝑧1:𝑡) ≈
𝑁𝑠∑︁
𝑖=1

𝑤𝑖
𝑡𝛿(𝑋𝑡, 𝑋

𝑖
𝑡) (2.4)

𝑤𝑖 ∝ 𝑃 (𝑥𝑖
1:𝑡|𝑧1:𝑡)

𝑞(𝑥𝑖
1:𝑡|𝑧1:𝑡)

(2.5)

One key feature of the particle filter is that the posterior is approximately rep-

resented by a set of particles, where each particle includes a state vector 𝑥 and an

associated weight 𝑤. The weights have to be normalized, for example:
∑︀

𝑖 𝑤
(𝑖)
𝑡 = 1.

When conventional particle filters are used to solve complex problems, such as

estimating a vehicle’s intention, they tend to perform very slowly due to the large

dimensions of the state. Another problem is that the vehicle’s state information is

not mix of continuous and discrete data. One solution to these problems is to use a

multi-cue particle filter [56]. Different sensing cues with variable levels of confidence

could easily utilize the autonomous driving system’s sensing modules, such as object

detection, scene recognition and turn signal sensing.

For the estimation problem, the major uncertainty is observational uncertainty.
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One example is human decision uncertainty, which affects the estimation of intention

and occurs when a driver changes his mind suddenly, and goes left instead of right,

for example. Other sources of uncertainty are the limitations of vehicle sensors and

of the perception algorithms used to calculate the states of the surrounding vehicles.

As a general rule, the more sensing information that is available, the more reliably

algorithms can model the posterior distribution.

2.4.2 Utilization of Multiple Sensors

Multiple sensing cues were used to update a particle filter in [57][56]. Although it

is a simple solution, it is effective for two reasons. First, having more information

allows better design and modeling. Second, not all autonomous vehicles or robots are

equipped with the same set of sensors, hence using a multi-cue particle filter allows

better integration and a higher level of generalization.

2.4.3 Environment Representation

Environment representation is very important for state modeling. Some studies

[50][57][58] have used very simple, custom-built road networks which provide ba-

sic driving rules in a simulation environment, but since they do not use a standard

mapping format they are difficult to integrate with other autonomous driving systems.

2.5 Open-source planners

The two major open-source planners currently available are the Open Motion Plan-

ning Library (OMPL) [7] and Navigation Stack [8]. OMPL is basically a collection

of APIs which can be used with or without ROS, while Navigation Stack is part of

ROS and cannot be used outside it. Our implementation of OpenPlanner is similar

to OMPL in that it is a collection of C++ APIs which can be used as a black box

on a wide range of platforms. It also has ROS nodes that can be used directly with

Autoware or any other ROS-based framework.
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Open-rdc is open-source, robotic navigation programming software [9] based on

the ROS Navigation Stack [8]. It can be used as an extension of Navigation Stack

for applications involving differential-drive mobile robots. Open-rdc was developed

for use at the Tsukuba Real World Robot Challenge (RWRC) in 2015. Another

recently released integrated planner, known as the Apollo AD Planner, is part of the

Apollo open-source autonomous driving framework [59]. Although it can handle most

autonomous driving challenges, there are some problems with this planner. These

include:

∙ Limited map support. Apollo AD Planner only supports a modified version of

OpenDRIVE [60]. No open-source documentation is available for the modified

map format.

∙ Difficult to use as a stand-alone library.

∙ Difficult to customize for mobile robot applications.

Figure 2-7 shows the capabilities of each open-source planner in regards to gener-

ally desirable features for planning frameworks. When developing OpenPlanner, we

tried to address the drawbacks of other open-source planners, as much as possible.
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             Planner 
 

  Feature 

Open Motion 
Planning Library 

(OMPL) 

ROS Navigation 
Stack 

Open Robotics 
Design & Control  

Open-RDC 

Mobile Robot 
Programming 

Toolkit 
MRPT 

Apollo AD Planner 

Platform Support Robots  Robots Robots Robots Autonomous Vehicles 

Environment 
Support 

Indoor Indoor, Side-alk Indoor, Sidewalk Indoor 
Pre-driven structured 

roads 

Library APIs  Independent  - - Independent  - 

ROS Support Yes Yes Yes Via bridge - 

Integration - - - - Apollo  

Map Support 
Cost map + point 

cloud 
Cost map Cost map 

Cost map + point 
cloud 

Customized 
OpenDRIVE 

Global Planning Yes - - - Yes 

Local Planning Yes Yes Yes Yes Yes 

Behavior Planning Custom - - - Yes 

Figure 2-7: Comparison of major open-source planners. Apollo AD planner is the
only planner that supports autonomous driving applications.
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Chapter 3

Integrated Planner for Autonomous

Navigation

3.1 Introduction

Although there are currently many open-source resources available to researchers for

perception, localization and control, it is difficult to find an open-source planner that is

general enough to be used directly or which can be easily modified to suit a particular

application. For example, global and local planning are either tightly coupled or are

developed totally separately. There are two main problems with tightly coupling

global and local planning. First, they can’t be used separately. The second problem

is scalability, since it is not possible to use larger maps. Therefore, when developing

OpenPlanner we employed the integrated approach, as shown in Figure 3-1. We

developed separate global and local planning modules, but they share a standard

interface which facilitates efficient interchangeability between the modules, while also

allowing each module to be used separately.

The open-source, integrated planner introduced in this chapter can be used for

autonomous navigation of mobile robots in general, including autonomous driving

applications. It is designed to use vector maps or road network maps and all of the

discrete information they contain, such as the locations of traffic lights, traffic signs,

intersections, stop lines, and so on, which is one of its main advantages over other
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OpenPlanner 

Smooth Obstacle Free Trajectory 

Start Pose 
(Current Pose) 

Goal Pose 
Global Planner 

Local Planner 

Detected 
Obstacles 

Traffic Lights 
Color 

Trajectory 
Generator 

Behavior State Generator 

Vector map (set of waypoints and types for) 

Lane Info. Intersection Info. Traffic lights and signs  

Trajectory 
Evaluator 

Intention 
and 
Trajectory 
Estimator 

Figure 3-1: The Integrated Planner Architecture. It is developed as separate modules
with easy to use well defined module interface. which makes it efficient and easy to
use.

open-source, general purpose planners like OMPL and Navigation Stack. Use of vec-

tor maps allows easier and faster global and local planning by removing kinematic

optimization from the planning equation. Instead, vector maps handle that problem.

Of course, global planners like RRT* [61] and Hybrid A* are useful in undefined

spaces, such as parking lots and off-road areas. In these situations, we can switch to

a free space planner for global planning and still use OpenPlanner’s behavior state

machine and local planner. Another advantage our planner has over Navigation Stack

is that it can be used with non-holonomic platforms.

The function of behavior state machines is hard to generalize because the manner

in which they are used differs from one robot to the next. ROS, for example, provides

basic behavior state machine functionality which the user can customize. OpenPlan-

ner also provides basic behavior state machine functionality, and adding new states is

as easy as with ROS. OMPL, on the other hand, doesn’t provide a state machine or

discrete behavior planning. Regarding the mapping requirements of these planners,

both Navigation Stack and OMPL require cost maps, which OpenPlanner does not
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require, unless switching to a free space planner; only a vector map is needed. In

summary, OpenPlanner is more suitable for autonomous robot navigation systems

that obey traffic rules, since it requires only a vector map and a goal location for

global planning, and only requires current position and detected obstacles for local

planning and behavior state generation. Recently, a complete autonomous driving

planner has been release as part of the Apollo Open-source project [59]. Like Open-

Planner, Apollo’s planner has a global planner, local planner and behavior planner.

But currently, OpenPlanner edges out Apollo’s planner on several key points:

∙ OpenPlanner can rely exclusively on road network maps to navigate, so roads do not

need to be driven beforehand.

∙ OpenPlanner supports standard and open-source map formats, such as OpenDRIVE

[60] and Lanelet2 [62].

∙ OpenPlanner supports multiple platforms and environments.

Figure 3-2 shows a summary of problems with existing open-source planners, and

how our integrated planner resolves these issues.

Challenges with other open-source 
planners 

How OpenPlanner overcomes these 
challenges (Contributions) 

Difficult to use their internal functions separately.  

Includes several integration interfaces, such as Library APIs, and 

ROS nodes.  

Easy to use, with several tutorials included.  

Designed to support specific environments (indoor, outdoor, 

highway, etc.).  
Environment support depends on map availability.  

Designed for one target platform (differential robots, slow 

speed mobility, autonomous vehicles, etc.).  

Can support multiple platforms by tuning only a small number 

of parameters.  

Tested with different platforms (mobility scooter, full size 

autonomous vehicle, robot boat).  

Map support: Either cost maps are used, which are difficult to 

create and maintain, or non-standard maps are used, as in the 

case of the Apollo planner.  

Uses standard opens-ource road network maps (vector maps, 

OpenDRIVE, lanelet2 and custom KML maps). Mapping tools 

are also available.  

Missing functionality: Currently only the Apollo planner 

includes all planning modules (Global, Local, Behavior).  
All planning modules are provided separately as ROS nodes.  

Simple object representation is used to improve performance, 

such as bounding boxes.  

Precise object representation to improve local planning 

accuracy.  

Performance is not guaranteed.  
Even with 100 obstacles, performance of the entire planning 

stack is still more than 10Hz.  

Figure 3-2: Contributions of the proposed OpenPlanner integrated planner, in relation
to issues with current, state-of-the-art, open-source planners.
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As a result of the contributions shown in Figure 3-2, OpenPlanner is being used

in several international projects:

∙ Roboat project: The objective of this project to encourage the use of Ams-

terdam’s canals for transportation, using a fleet of autonomous boats [22][23].

∙ Autonomous driving map editor: An open-source map editor for autonomous

driving applications, created at the University of Konkuk, Korea [24].

∙ ADAS Demo: Advanced Driver Assistant System (ADAS) demo for a major

Hong Kong based technology company.

In addition, the paper in which our integrated planner was introduced has been

downloaded over 3,000 times, and cited 17 times.

3.2 Global Planning

Autonomous vehicle planning is divided into two main categories, depending on the

driving environment. The first type of planning involves unstructured environments

like those encountered during off-road driving or in parking situations, locations in

which we cannot use vector maps. The most suitable type of mapping in these situa-

tions is a cost map. The second type of environment involves structured environments

where we have clearly defined roads, traffic lanes, intersections, etc., as well as traffic

signs, all of which can be described in vector maps.

The global planner handles path routing. It takes the vector map, a start position

and a goal position as input and then finds the shortest or lowest cost path using

dynamic programming [16]. The global planner used by OpenPlanner can support

complicated vector maps, but for this study the maps used were very simple. The

entire map for the Tsukuba RWRC is shown in Figure 3-3. We annotated the map

manually with traffic rules and features, such as traffic lights and stop lines, from

start to goal.
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Meters
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Goal

Figure 3-3: Tsukuba Real World Robot Challenge vector map.

3.2.1 Road Network Maps Utilization

One of the most widely used approaches for autonomous vehicle navigation is the use

of vector maps, sometimes called high definition road network maps to differentiate

them from maps used in geographic information system (GIS) applications such as

open street maps [29]. Vector maps include data that autonomous navigation modules

need to make sense of the surrounding environment. Table 3.1 shows some common

components of vector maps and the potential uses of each component in autonomous

driving systems. OpenPlanner uses a 2.5D map, which means it includes elevation

information used only when needed. This allows increased planning performance since

most planning is done in 2D, but 3D information can also be used in rare situations,

such as when very steep slopes are encountered.

Representing the center of lanes in vector maps with high order polynomials will

help us interpolate way-points having the required density, but the disadvantage of

using polynomial curves is computational overhead. There is no problem if the map

is loaded from a file once, but if the map is updated from a map server it can slow the

planning process. For this reason, we developed an efficient algorithm to adjust the
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Table 3.1: Vector map components, in order of importance to most planning algo-
rithms.

Component Potential usage
Lanes network: Lane ID, Previous lanes, Next lanes, List
of central way-points

Generating global reference path and lane change com-
mands using global planner

Traffic light Traffic light detection

Stop lines Stop lines for traffic lights, stop signs and intersection)

Traffic signs Signs detection and planning

Lane boundaries and road signs Safety and localization

density of lane center lines, as shown in Table B.1 in appendix B. The center lines of

manually created maps are not smooth due to human error, so an additional step of

smoothing using the conjugate gradient (CG) method [63] is applied.

Although the Tsukuba RWRC map is very simple, Figure 3-3, as is our testing

map for the Nagoya University campus Figure 3-4, OpenPlanner also supports road

network compatible vector maps such as the one shown in Figure 3-5.

 0 400

Meters

Start
Goal

Figure 3-4: Experimental vector map for Nagoya University.

3.2.2 Global Path Cost Function

The main objective of path planning is to find the optimal path from a starting point

to a goal, but in structured environments we must follow the traffic rules, such as

driving in the center of the lane, traveling in the right direction, changing lanes only

when allowed to and moving into the correct lane to make right or left turns.

When using dynamic programming to find the optimal path, we trace possible

56
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Meters

Figure 3-5: Vector map with complex structures.
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(b)

Figure 3-6: Searching the map for the shortest path. Line color indicates route cost.
Cost is represented by distance, green color is closest distance to Start and red color
is max distance reached at the Goal position.

routes forward starting from the current position of the vehicle to the goal. During

route tracing, we construct a tree of possible paths which follow the defined rules until

the vehicle reaches the goal, as shown in Figure 3-6 (a). The colors code in Figure

3-6 indicate relative distance from Start position, green is closest to the start position

and red is furthest point reached (Goal). Once we reach the goal, we trace the route

back from the goal to the start position, annotating the path with all the information

the local planner needs to generate a local trajectory, as shown in Figure 3-6 (b). The

local planner needs to know traffic direction, lane change locations, positions of stop

lines, positions of traffic lights and speed limits.

Sample global paths generated for a complex vector map are shown in Figures
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3-7 and 3-8, the latter of which includes a lane change. Color represents relative

distance from start to goal. In Figure 3-4, we show the global path for one of the

testing environments, which simply represents the same vector map shown in Figure

3-4. Tables B.2 and B.3 in appendix B show the algorithms used to find the global

path.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Start

Goal

Figure 3-7: Example of complex global planning, disabling lane change. Taking
maximum rout available. Color represents relative distance, green color is closest
distance to Start and red color is max distance reached at the Goal position.
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Figure 3-8: Global planning including lane change. Taking shortest rout available.
Color represents relative distance, green color is closest distance to Start and red color
is max distance reached at the Goal position.
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3.3 Trajectory Planning

A local trajectory planner is a set of functionality that generate a smooth trajectory

which can be tracked by path-following algorithms, such as Pure Pursuit [64]. For

OpenPlanner, we adapted the roll-out generation approach (Fig. 3-9), in which the

behavior generator can demand a re-plan at any time to generate fresh, smooth,

roll-out trajectories. Re-planning will be discussed in detail in the next subsection.

Inputs for the local path planner are the global reference path and the current

position. Several candidate trajectories are then generated as roll-outs and the local

planner selects the one with the lowest collective cost. Figure 3-9 shows seven possible

rollout trajectories, including the center one. We used a modified version of the

Stanford approach presented in [16].

(a) (b) (c)

Figure 3-9: Local Planner in action, in a) central trajectory is free, in b) obstacle
blocks central trajectory so the most feasible one was the most right trajectory, in c)
the most feasible one was the second on the left.

3.3.1 Trajectory Generation

Roll-out generation needs to be executed in real time, as it is a basic requirement that

all local planners be able to work in real time. The target processing time therefore

is a maximum of 0.1 seconds so that the controller can respond quickly to changes

in velocity. The inputs of the roll-out generation algorithm are current position,

planning distance, number of roll-outs and the next section of the global path. The
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output is n smooth trajectories, running from the center of the vehicle out to the

maximum planning distance.

The sampled roll-outs are divided into three sections as shown in Figure 3-10.

The closest section to the vehicle is the car tip margin, which is the distance from the

center of the robot to the point of lateral sampling, the length of which determines

the smoothness of steering when switching between trajectories. The next section is

called the roll-in margin, which is the distance from the outer limit of the car tip

margin to the point of parallel lateral sampling, the length of which is proportional

to the vehicle’s velocity. The faster the vehicle is traveling, the longer this section

should be to generate smooth change. The section farthest from the vehicle is called

the roll-out section, which runs from the outer limit of the roll-in zone to the end of

the length of the local trajectory. Straight-forward lateral sampling is performed by

moving perpendicularly from the global path for a fixed distance, which is called the

roll-out density.

Figure 3-10: Sections for generating roll outs.

The generation of roll-outs by the local trajectory planner algorithm includes

three main steps, the first of which is extracting the section of interest from the

global path using the current position of the vehicle and maximum planning distance.

The second step is to sample the new perpendicular way-points which correspond

to the extracted section of the global path. The sampling starts from the car-tip

margin with a lateral distance of zero, then increases gradually to reach the roll-out

density calculated using each trajectory index at the end of the roll-in margin. The

third step is to smooth each sampled trajectory using a conjugate gradient, which is

non-linear iterative optimization technique that eliminates the discontinuity of roll-
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outs resulting from the sampling step. This also improves curvature, which leads to

smoother steering.

The density of trajectory vertices (way-points) is adjusted using piece wise in-

terpolation, as shown in Table B.1 in appendix B. Many parametric interpolation

techniques are very sensitive to input noise and propagate that to the output (e.g.,

cubic splines can lead to arbitrarily large oscillations in the output as input vertices

get closer to each other) [65]. Therefore, we use a combination of piece wise inter-

polation and conjugate gradient smoothing to generate smoother trajectories. The

resulting trajectories are generally kinodynamically feasible because we are using vec-

tor maps, thus we assume that all lanes are kinodynamically feasible. Figure 3-11

shows the steps of roll-out generation, and implementation is demonstrated in Table

B.4 in appendix B.

(a) (b) (c) (d)

Figure 3-11: Steps for generating local trajectories: (a) original map, (b) path section
extracted from global path, (c) sampling, (d) smoothing using conjugate gradient.

3.3.2 Trajectory Selection Cost Function

In addition to roll-out generation, the other important function of the local planner

is obstacle avoidance within a lane, i.e., swerving. Obstacle avoidance is the process

of selecting the best possible trajectory from the roll-outs generated using algorithm

in Table B.4 in appendix B. Inputs to the obstacle avoidance process are the roll-outs
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and detected obstacles, and the output is the selected trajectory. We use an additive

cost function to evaluate each trajectory, which calculates three different normalized

cost measurements, priority cost, collision cost and transition cost, the smallest of

which is selected.

Obstacle detection is achieved using another module in Autoware [18] which out-

puts two types of obstacle representations, bounding boxes and clusters of point cloud

data, as shown in Figure 3-12. Obstacle representation is essential for both accuracy

and performance, and by using bounding boxes we can dramatically improve obstacle

detection performance, but at the expense of accuracy. Using the point cloud data

greatly improves detection accuracy but degrades performance drastically. We solved

this trade-off problem by using only a sample of the contour points from the clusters

of point cloud data, with a maximum of 16 points for each obstacle.

(a) (b) (c) (d)

Figure 3-12: Obstacle data representation using only the contour points from the
point cloud data. In (a) we show sample random point cloud points. Step 1 of the
contour calculation is shown in (b); we find the point cloud center point and from that
point we divide the point cloud into 8 quarters, number of quarters is a parameter
and could be changed to get higher resolution contours. In (c) we show step 2 of the
process, for each quarter we calculate Euclidean distance between center and each
point belongs in this quarter, then we find the point with maximum distance. (d)
shows the final contour result with only the selected points from each quarter.

The maximum number of contour points is one of the parameters of the local

planner, and by increasing this number we can achieve finer representation, which

leads to more accurate obstacle avoidance. Figure 3-12 (b) shows an example of

obstacle detection using 16 contour points. Contour representation is calculated in

three stages: first, we divide the 𝑥𝑦 plane into n sectors; second, we find the distance
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and angle between each point and the center point, and use the angle to assign the

point to a sector; third, we select the final contour points, which will be the points

at the maximum distance from the center of each sector.

Center cost

Center cost constrains the vehicle to drive along the center of a lane at all times,

and each roll-out is calculated using the absolute distance from this lane-centered

trajectory.

Transition cost

Transition cost constrains the vehicle from jumping roll-outs, which contributes to

smoother swerving. This cost is calculated using the normalized perpendicular dis-

tance between roll-outs as well as the currently selected trajectory.

Collision cost

Collision cost is calculated in two stages to improve performance. In the first stage,

we test each trajectory by measuring the distance from the obstacle contour points

to each generated trajectory. Since all of the trajectories are parallel to the center

trajectory after the roll-in section, we don’t have to apply an explicit test after the

roll-in distance. The obstacle test is achieved using a "point inside a circle" test,

where each contour edge provides the test points, circles centers are the way-points,

and the radius of each circle is half the vehicle width plus a detection margin of error.

The second stage of collision cost calculation is checking distances between the de-

tected obstacles and the generated trajectories after the roll-in limit. After the roll-in

limit all generated trajectories are parallel, so we don’t need to calculate the collision

cost for each trajectory separately. We calculate the distance from the contour points

of the detected obstacles to the central trajectory, then use the signed distance from

each trajectory to the central trajectory to find the collision cost for each trajectory.

Figure 3-13 shows color coded center costs, and Figure 3-14 illustrates the normalized

total cost when there is an obstacle.
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Figure 3-13: Center cost keeps the robot in the center of a lane. Selected trajectory
color is pink, with other trajectories colors represent cost, with green is the smallest
cost and red is the largest.

Figure 3-14: Effect of an obstacle on cost calculation.

3.4 Behavior Planning

The behavior state generation module of OpenPlanner functions as the decision maker

of the system. It is a finite state machine in which each state represents a traffic situa-

tion. Transitions between states are controlled by intermediate parameters calculated

using current traffic information and pre-programmed traffic rules. Figure 3 shows

the currently available states in the OpenPlanner system.

Start

Forward

End

Swerve

Emergency 
Stop

Follow

Traffic Light Stop

Traffic Light Wait

Start Signal

Stop Line Stop

Stop Line Wait

Figure 3-15: Current System Behavior States.
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Situations like stopping at a traffic light, deciding to change lanes, stopping and

waiting at a stop sign and yielding to pedestrians are difficult to handle using one

algorithm. Like other traffic rules, these events are definite in nature but the rules vary

from country to country. Moreover, special traffic rules or objectives could be added

or disabled any time. We call responses to these events behaviors, tasks, objectives,

states or situations. In this study, we use the term "behavior state" to represent all of

these event responses, as well as to refer to the transition rules between these states.

Figure 3-15 shows the behavior states used for OpenPlanner during the Tsukuba Real

World Robot Challenge. Table 3.2 shows the transition rules for each state.

Table 3.2: Behavior states transition conditions.

State Switch to Condition
Start Forward receive start signal from joystick

Forward Swerve current trajectory is blocked, not all trajectories are blocked

Forward Follow all trajectories are blocked

Forward Traffic light stop traffic light is red within the stopping distance range

Forward Stop sign stop stop sign within the stop distance range

Forward Mission accom-
plished

goal position within the distance range

Swerve Follow all trajectories are blocked

Swerve Forward drive parallel to the center

Follow Forward not all trajectories are blocked

Traffic light stop Traffic light wait not green light and velocity is zero

Traffic light stop Forward green traffic light

Traffic light wait Forward green traffic light

Stop sign stop Stop sign wait velocity is zero

Stop sign wait Forward after stopping for time range

Any state Emergency stop receive emergency stop signal

Emergency stop Forward no emergency stop signal

There are several parameters controlling transitions between states. These param-

eters are calculated deterministically every iteration. Theoretically, a probabilistic

approach should result in smoother transitions, but it is slower and more complicated

to implement and maintain over a wide range of applications. One solution to this

problem is to introduce timers and counters. For example, when an obstacle is mov-

ing very close to a threshold, the behavior generator will rapidly switch back and

forth between the Swerve and Follow states. A counter or timer can break this cycle.
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Another situation in which counters will give better results is when a traffic light

switches to red or green and the light detector is not reliable enough to handle the

change. In such cases, it is necessary to receive the signal multiple times to assure the

reliability of the signal and switch to the next state. Therefore in the initialization

of each behavior state we set a minimum transition time, so that a state will keep

executing itself unless a set amount of time has elapsed or emergency state conditions

are met.

3.5 Experiment Results

In this study we use an Ackerman-based steering robot, based on a mobility scooter,

which was used in the Tsukuba RealWorld Robot Challenge (RWRC) [66] where

we tested the planner. RWRC is an annual mobile robot challenge held in the city

of Tsukuba, Japan. The robots participating in the event must be able to achieve

accurate localization and autonomous navigation in a dynamic environment, handle

traffic lights and street crossing situations, navigate through an automatic sliding

door, go inside a shopping mall and search for a designated person. Our goal in

participating in the RWRC was to use OpenPlanner to achieve as many of these tasks

as possible. Many innovative and effective planning algorithms are developed for this

challenge every year, but unfortunately most of these planners are proprietary. Every

year, new participants develop their own planning systems from scratch, and only

a limited number of the outlines and details of these systems are described, usually

quite briefly, in published papers. Thus, one of the motivations for us to develop an

open source planner was to provide the robotics community with a planner that is

easy to understand and use which can also be continuously developed by its users.

The first field test was conducted on the campus of Nagoya University, and a

diagram of the route is shown in Figure 3-16 . The second field test took place at

the Tsukuba RWRC event, the vector map of which is shown in Figure 3-3 . The

objectives of these experiments were to test global planning performance from any

current position to any goal position on the map and to evaluate performance of
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obstacle avoidance, stops at stop signs and stops at traffic lights. Additionally, we

also evaluated smoothness, performance, accuracy, practicality and usability. In the

simulation environment, we used real life vector maps composed of lines, intersections,

stop lines and traffic signs as shown in Figures 3-5 and 3-6. For field experiments, we

added traffic information to the map manually.

Start

Goal

Figure 3-16: Experimental vector map with stop lines and traffic light.

The experiment platform is shown in Figure 3-17, same platform is used in [67]. It

is a modified mobility scooter so it could be controlled by computer. It includes one

HDL32 Velodyne LIDAR sensor which is used for localization and object detection.

In addition to the 3D LIDAR we use three 2D LIDAR for curbs and near obstacles

detection. For the software part we had multiple ROS nodes for localization, obstacle

detection, control, global planning, local planning and path following. In appendix A

we provide technical information about OpenPlanner for ROS users.

Figure 3-17: Tsukuba Challenge hardware platform.

In this section we will discuss the qualitative results first, then present key results
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Table 3.3: Parameters configurations.

Parameter Configuration
path density Usually keep path density between 0.25 and 1 meter, with 0.5 is most recommended. Sure

for very small robots higher path density is required but we never tested the planner on such
platform

roll out numbers The more roll out we have we achieve smoother avoidance but slower performance. We used
from 6 to 12 roll outs with 8 giving the best combination of accuracy and smoothness

sampling tip margin Length of the vehicle gave us good results which was 1.2 meters

sampling out margin Affects smoothness off obstacle avoidance, but setting it too big will delay the avoidance until
the vehicle become very close to the obstacle, good values for it was between 5 and 8

following distance This value should be greater than "distance to avoid" and good values for "following distance"
is 12 meters

distance to avoid Good value for this parameter is 8 meters

from our simulation, experiments on the Nagoya University campus and participa-

tion in the Tsukuba RWRC event. Both the simulation and field tests had positive

results. The table 3.3 shows the used parameter configurations for simulation and

field experiments. Summary of our experiments is listed in table 3.4.

Table 3.4: Experiments.

Experiment Environment Objectives

Simulation

0 150

Meters

- Stability and correctness: the planner should correctly plans trajec-
tory and behavior every time.

- Complex routing: the global planner can find shortest path in a
complex map.

- Behaviors coverage: the planner can generate all the designed plan-
ning behaviors.

Nagoya University

 0 400

Meters

Start
Goal

- Performance: the planner can perform real time at minimum 10hz.

- Parameter tuning: Smooth actions by tuning the parameters.

- Accuracy: the planner was able avoid obstacle accurately even in nar-
row passages.

- Completeness: the planner could handle different traffic situations.

Tsukuba Challenge

 0 680

Meters

Start

Goal

- Dynamic routing: automatic rerouting when perception based behav-
ior is not available.

- Highly dynamic: the planner should navigated through busy unex-
pected environment.

3.5.1 Qualitative results

The first qualitative aspect of our experiment is to evaluate stability, which means

OpenPlanner should work all the time. Even if faulty data is provided, meaningful

error messages should appear but the planner should never stop operating or crash.
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We tested this in a simulated environment by running the planner from any start

point on the map, stopping localization at some point, and by jumping from point to

point on the map manually and then switching to autonomous mode.

The second qualitative aspect is completeness, which means the system delivers

smooth switching between different states and never remains stuck in one state. Ex-

periments showed that the local planner stops successfully at stop signs and at traffic

lights when they are red. Switching between follow, forward and obstacle avoidance

states also worked properly, but smoothness of transitions depended on the reliabil-

ity of the obstacle detection node. When encountering an obstacle-free path while

navigating the map in Figure 3-16, the resulting sequence of driving behaviors were:

Forward, Stop Sign, Wait Sign, Forward, Light Stop, Wait Light, Forward, Finish.

3.5.2 University campus experiment

Here we will concentrate on one section of the campus field test map, shown in Figure

3-16, which consists of two straight lines, one curve, one stop line and one traffic

light. Figure 3-18 (a) shows the curvature of the generated path, and the smoothed

output of that path is shown in Figure 3-18 (b). Smoothing improves path following

performance without the need to relax the control parameters.
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Figure 3-18: The angle of each way-point shows curvature of the generated path with
and without smoothing.

Results when navigating the map section shown in Figure 3-16 are displayed in

Figure 3-20, which shows the simulation results when navigating this section without

any obstacles. Behaviors are represented by the blue line and behavior ID values. The
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orange line represents the trajectory index, which is the currently selected roll-out

number. In this experiment we used 7 roll-outs, with 3 representing the number of

the center trajectory. Figure 3-19 illustrates the behavior transition flow during this

experiment.

Forward

Traffic 
Light 
Stop

Traffic 
Light 
Wait

Start 
Signal

Stop 
Line 
Stop

Stop 
Line 
Wait

Forward

Forward

Figure 3-19: Behavior state flow while navigating the simulated vector map without
obstacles.
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Figure 3-20: Simulation test results when navigating without obstacles. Behavior ID
values: 2 = move forward; 5 = stop for traffic light; 6 = wait for traffic light; 7 =
stop for stop sign; 8 = wait for stop sign; 11 = avoid obstacle.

Using the OpenPlanner in simulation mode enabled us to insert obstacles of ran-

dom sizes. We repeated the previous experiment after adding two obstacles while

the robot was moving, one obstacle before the stop sign and the other after the stop

sign. Figure 3-21 shows that both state transition and trajectory switching results
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were smooth. Figure 3-22 is a diagram of the behavior state transition flow when

navigating this section with obstacles.
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Figure 3-21: Simulation test results when navigating with obstacles. Behavior ID
values: 2 = move forward; 5 = stop for traffic light; 6 = wait for traffic light; 7 =
stop for stop sign; 8 = wait for stop sign; 11 = avoid obstacle.
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ForwardStop 
LineForwardSwerve
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Figure 3-22: Behavior state flow while navigating the simulated vector map with
obstacles.

Field experiment results for the same map section, shown in Figure 3-23, were

similar and generally stable, with the vehicle stopping at the stop line and traffic

light and avoiding obstacles when necessary. However, noisy input data resulted in

an additional state transition.
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Figure 3-23: Field test results. Behavior ID values: 2 = move forward; 5 = stop for
traffic light; 6 = wait for traffic light; 7 = stop for stop sign; 8 = wait for stop sign;
11 = avoid obstacle.

3.5.3 Tsukuba RWRC experiment

One of the most difficult tasks during the Tsukuba event was the street crossing,

which required stopping at a traffic light, crossing the street, making a very tight

U-turn, stopping at a second traffic light and crossing the street again. By using

vector maps we were able to dynamically choose to continue through this stage or

bypass it. The default behavior of the planner is to find the shortest route from

the current position to the goal, so normal route selection would result in the route

shown in Figure 3-24 (a). If we wanted to attempt the task and cross the street, we

could simply increase the cost associated with the shortcut. Figure 3-24 (b) shows the

planner choosing the longer route to avoid the high cost assigned to the shortcut. The

resulting global paths are shown in Figures 3-25 (a) and (b) respectively. Behavior

states when following both routes are simulated in Figure 3-26 (a) and (b).

72



  

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(a)

  

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b)

Figure 3-24: Section from Tsukuba challenge path represented by red rectangle in
Figure 3-3. Global planning dynamic cost calculation, (a) without and (b) with a
high shortcut penalty.

(a) (b)

Figure 3-25: Section from Tsukuba challenge path represented by red rectangle in
Figure 3-3. Global planning final paths, (a) without and (b) with a high shortcut
penalty.

3.5.4 Performance

In the campus field experiment, we were able to achieve real time performance of 14.6

iterations per second for local planning and behavior state generation, while detecting

an average of 62 obstacles and an average total of 1,255 contour points (Figure 3-27).

For each iteration we calculate the obstacles contours, track the obstacles using a

Kalman filter, calculate the costs and then generated an new roll-outs if needed.
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Figure 3-26: Behavior state results when selecting the shortest route (top) or choosing
to cross the street (bottom). Behavior ID values: 2 = move forward; 5 = stop for
traffic light; 6 = wait for traffic light; 7 = stop for stop sign; 8 = wait for stop sign;
11 = avoid obstacle.

In Figure 3-27 yellow curve represents the execution time for cost calculation step

and blue curve represents the number of detected obstacles, we can see that both

curves almost have the same trend; when number of detected obstacles increases the

execution time increases and vice versa. Cost calculation is clearly a performance

bottleneck. At this point, no performance enhancement techniques were used, not

even a compiler optimization directive, but we were still able to achieve real time per-

formance. The next objectives for OpenPlanner are smoother obstacle presentation

and a larger number of generated roll-outs.

3.5.5 Accuracy

Our mobility scooter was able to avoid static and moving obstacles successfully, de-

pending on localization accuracy. Our testing platform had an original localization

accuracy of within 10 cm, so we added 20 cm to its width and length as a safety

margin for the robot As a result, in some cases the robot got as close as 5 cm to an

obstacle while avoiding it. Recorded videos of experiments including visualization of

environment is shown at OpenPlanner channel [68] on youtube. We tested several

parameters using the same route section illustrated in Figure 3-28. Since we added a

20 cm safety margin to the width and length of the robot, it became difficult for the

robot to drive in a straight line in the narrower sections. By changing the car tip and
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Figure 3-27: Performance results of campus field test. Y axis on the left shows
processing time used for calculating (obstacle tracking, trajectory cost, behavior se-
lection, and trajectory generation) in seconds, with relation to number of detected
obstacles represented by right Y axis.

roll-in parameters, we were able to achieve a smoother driving path when traveling

through this section. Figure 3-29 shows data from several trials while navigating

through the section shown in Figure 3-28.

1.5 meters

Figure 3-28: A narrow pathway was used in the campus testing area to evaluate
performance when avoiding nearby obstacles.
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Figure 3-29: Driving between cones and trees generated many changes of direction.
In (a), using smallest roll-in margin, the motorized scooter changes direction more
quickly but not smoothly. In (b) we used bigger car tip and roll-in margins, so the
results became smoother.

3.6 Conclusion and Summary

OpenPlanner is an integrated planner in the sense that it performs global, local and

behavior planning. It is an open source planner for the robotics community to take

advantage of, use, modify and build on. In this chapter we explained our methodology,

vector map design and the dynamic programming of the global planner. Also we

explained how the local planner generates trajectories and safe trajectory selection

criterion. We outlined behavior state generation using a state machine transition

matrix and explained the functions and usage of related ROS nodes. We conducted

a simulation experiment and then performed two field tests, one on the campus of

Nagoya University and the other at the Tsukuba Real World Robot Challenge. Our

results showed that OpenPlanner is able to plan trajectories through complex vector

maps and navigate through dynamic environments while handling a variety of discrete

behaviors such as stopping at stop signs and traffic lights and avoiding obstacles.

Without further optimization, OpenPlanner can function in real time at more than

10 Hz, even when number of obstacles increases to around 100. OpenPlanner can

also generate very smooth trajectories, which allows for much smoother control.

The main contribution introduced in this chapter is to provide an integrated plan-

ner as an open source resource for the robotics community to use and enhance. The
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source code is available as a collection of ROS packages within the Autoware project.

It can be used as a stand-alone package or within the Autoware framework. It can

use .kml format RNDF map files, which can be easily created and modified, and Au-

toware supported vector maps. The basic functionality of OpenPlanner is available as

shared libraries, thus users can use it for development outside the ROS environment.

In this study we demonstrated that OpenPlanner can operate effectively and safely

in dynamic environments by using a modified motorized scooter to successfully nav-

igate through the Tsukuba Real World Robot Challenge and by navigating similar

environments on the Nagoya University campus. Successful autonomous navigation

requires avoidance of moving objects and pedestrians, the ability to follow moving

objects along a path, navigating through narrow corridors, negotiating automatic

doors, and stopping for traffic lights and stop signs. In our field tests, OpenPlanner

demonstrated its ability to perform all of these tasks.
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Chapter 4

Behavior planner based intention and

trajectory estimation

4.1 Introduction

4.1.1 Problem Definition

Predicting with a high level of confidence what other vehicles are doing is essential for

autonomous driving, and is one of the basic functions of a successful planner. Actions

of other vehicles also include their probable intentions and future trajectories. The

planner uses this information to generate suitable plans, i.e., ego-vehicle actions and

trajectories.

In Section 2.4, we reviewed the literature to find a solution for the intention es-

timation problem. Three main approaches were discussed; deterministic modeling,

machine learning and probabilistic modeling. Because it is essential to model uncer-

tainties, we rejected the deterministic approach. In addition, we couldn’t use machine

learning due to a lack of data for all possible driving situations, especially the rarer

ones. Finally, we determined that a probabilistic approach fits our problem domain,

and chose to employ a particle filter. Several points should be kept in mind when

choosing an intention estimator:

∙ It is important to find a reliable approximation to driving distribution (esti-
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mation prior), i.e., able to solve 𝑃 (𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) where 𝑥𝑡 is the state, 𝑢𝑡 motion

model, and 𝑥𝑡−1 is the previously estimated state.

∙ Due to the complex nature of driving states, which contain a mixture of con-

tinuous and discrete variables, a conventional particle filter is not suitable.

∙ If a state’s dimensions are too high, thousands of particles will be needed to

represent the distribution, leading to much slower performance.

4.1.2 Contributions

The main contribution of this work is the development of a new method for esti-

mating the intentions and trajectories of surrounding vehicles which can accurately

handle most complex urban driving situations in real time. We accomplished this

by using a behavior planner as the complex motion model, and integrating it with

non-parametric probabilistic filter (a multi-cue particle filter) to handle uncertainty.

Figure 4-1 highlights the main issues with the conventional approach and shows how

we solved these problems.

Challenges using a conventional particle 
filter for estimation 

Contributions of proposed approach 

Difficult to model the complex motion parameters of 

surrounding vehicles. 
Behavior planner is used as the motion model.  

The state consists of both continues and discrete variables.  
Multi-cue particle filter is used with variable confidence 

factors.  

Since the state dimensions are high, thousands of particles are 

needed to capture the posterior distribution.  

Separate particle filters are used for each intention and 

trajectory combination. 

Multi-cue particle filter uses joint distribution to aggregate the 

weights of different sensing cues, leading to particle 

deprivation.  

Weighted sum of different cues is used instead of the joint 

distribution.  

Figure 4-1: Issues with conventional particle filter estimation algorithms and contri-
butions of the proposed estimation method by addressing these problems.

4.1.3 Solution Approach

’Intention’ and ’behavior’ are generally used interchangeably to describe a driver’s

actions, which includes doing nothing (e.g., waiting for a traffic light to change), to
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executing the complex, three-step maneuver used when passing a slower vehicle. In

this work, we use ’behavior’ to refer to the ego vehicle’s actions or to the estimated

actions of other vehicles before filtering. When we use ’intention’, we mean the

estimated set of actions after filtering [55][69].

Environment representation, such as representing custom-built road networks

which provide some driving rules in a simulated environment, is very important for

state modeling. In this work, we used the standard road network map format used

in the full, autonomous driving software stack [19].

In this chapter, we describe our intention and trajectory probability estimation

algorithm, which utilizes a behavior planner [25] working in passive mode, wrapped

in a multi-cue particle filter [56] for uncertainty modeling.

Particle Filter(s)(1)

Road Network Map Observations

Behaviors

Hypothesis xt

Trajectory probabilitiesIntention probabilities

Trajectory Extraction(2)

Weights calculation(4)

Trajectories

Passive Behavior Planner(3)

Figure 4-2: Proposed intention and trajectory estimation system. Multi-cue particle
filters use a passive behavior planner as a motion model. Step (1) is explained in
Section 4.3, Step (2) is explained in Section 4.4.1, Step (3) is explained in Section 4.2,
and Step (4) is explained in section 4.4.3.

Figure 4-2 shows the system architecture of our proposed intention and trajectory
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estimation system. The proposed algorithm consists of three main parts; a trajectory

extractor, a passive behavior planner and multi-cue particle filters. Road network

maps were explained previously in Section 3.2.1. Observations are the tracked ob-

jects, which are the output of a third-party object detection and tracking module.

Finally, the algorithm outputs intention and trajectory probabilities which will be

utilized later by the local planner. A detailed description of this system is provided

in this chapter. First, the estimation algorithm extracts all of the possible driving

trajectories and their embedded traffic rules from a road network map. Second, par-

ticles are sampled from the motion model function, which for this approach is the

passive open planner. Third, weights are calculated for each sampled particle using

the observations. Finally, the weights are normalized and the probabilities for each

intention and trajectory are calculated.

4.2 Passive Behavior Planner

Recently developed behavior planners, such as OpenPlanner (discussed in Chapter 3),

can generate deterministic behaviors for a vehicle to execute. The behavior planner

represents other vehicles by estimating their internal parameters. The more accurately

the planner can model the actions of the other vehicles, the better the estimation

results that can be achieved.

(a) (b)

Figure 4-3: Comparison of our original behavior planner, OpenPlanner (a), to our
modified behavior planner, Passive OpenPlanner (b).
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The passive behavior planner shown in Figure 4-2 is a stripped-out version of

the integrated planner described in Chapter 3. Figure 4-3 provides a comparison

of the original OpenPlanner and Passive OpenPlanner. The integrated planner is

so flexible that we were able to take out unnecessary modules such as the Global

Planner, Intention Estimation and Object Tracking. It is called a passive planner

because no feedback is available, thus the control signal doesn’t have a direct impact

on the observed state, and it has become similar to an open loop planner.

Another difference is that integrated planner output trajectory, then this trajec-

tory is sent to a path following module to generate the desired control signal for the

vehicle. But the passive behavior planner does that internally by simulating a ’move

step’ which output directly the control signal velocity 𝑣, acceleration 𝑎, behavior

𝑏𝑒ℎ, and the expected current position 𝑝𝑜𝑠𝑒. Figure 4-4 (a) shows the intention state

we are estimating. For each intention state in Figure 4-4 (a) there should exist a

behavior that models the intention inside the passive behavior planner, Figure 4-4

(b). Multiple behaviors can model single intention and vice versa.

(a)

Start

Forward

End

Swerve

Emergency 
Stop

Follow

Traffic Light Stop

Traffic Light Wait

Start Signal

Stop Line Stop

Stop Line Wait

(b)

Figure 4-4: Comparison of intentions to be estimated (a), to behaviors modeled by
the passive behavior planner (b).

4.3 Uncertainty Modeling using Particle Filter

The basic idea behind particle filtering is to approximate the belief state 𝑏𝑒𝑙(𝑥𝑡) at

time 𝑡 by a set of weighted samples 𝜒𝑡 as in Equation 4.1 [53]. 𝑥𝑡 is the state vector,

where 𝑧 is the observation vector, 𝜒𝑖
𝑡 means the 𝑖’th sample of state 𝑥𝑡. Equation
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4.1 enable computing the posterior using importance sampling. Because it is hard

to sample from the target distribution, we sample from a proposal or importance

distribution 𝑞(𝑥), then weight the samples according to 4.2.

𝑃 (𝑥𝑡|𝑧1:𝑡) ≈
𝑁𝑠∑︁
𝑖=1

𝑤𝑖
𝑡𝛿(𝑥𝑡, 𝜒

𝑖
𝑡) (4.1)

𝑤𝑖 ∝ 𝑃 (𝑥𝑖
1:𝑡|𝑧1:𝑡)

𝑞(𝑥𝑖
1:𝑡|𝑧1:𝑡)

(4.2)

In particle filter the sample of a posterior distribution is called particles and de-

noted 𝜒 in definition 4.3 with 𝑀 is the maximum number of particles. each particle

𝑥
[𝑚]
𝑡 is a concrete instantiation of the state at time 𝑡.

𝜒𝑡 := 𝑥
[1]
𝑡 , 𝑥

[2]
𝑡 , ..., 𝑥

[𝑚]
𝑡 (4.3)

Including the hypothesis 𝑥𝑡 in the particle set 𝜒𝑡 require that it is proportional

to the Bayes filter posterior believe 𝑏𝑒𝑙(𝑥𝑡) = 𝑃 (𝑥𝑡|𝑧𝑡, 𝑢𝑡) as In 4.4. Where 𝑧 is the

observation and 𝑢 is the control signal.

𝑥
[𝑚]
𝑡 ∝ 𝑃 (𝑥𝑡|𝑍𝑡, 𝑢𝑡) (4.4)

The particle importance factor is denoted 𝑤
[𝑚]
𝑡 . The particle weight 𝑤

[𝑚]
𝑡 is the

probability of the measurement 𝑧𝑡 under the particle 𝑥
[𝑚]
𝑡 and is given by Equation

4.5. Thus the set of weighted particles approximate the Bayes filter posterior 𝑏𝑒𝑙(𝑥𝑡).

𝑤
[𝑚]
𝑡 = 𝑃 (𝑧𝑡|𝑥[𝑚]

𝑡 ) (4.5)
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4.3.1 General Particle Filter Algorithm

The general particle filter algorithm is shown in Algorithm 1. where 𝜒𝑡−1 is the

particle set from the previous iteration. 𝑢𝑡 is the most recent control signal. 𝑧𝑡 is the

most recent observation. 𝑚 is the current process particle from particle set 𝜒𝑡−1 with

size 𝑀 . 𝑥
[𝑚]
𝑡 is the hypothetical state for current time step 𝑡 and it is generated from

the 𝑚’th particle in 𝜒𝑡−1.

Algorithm 1 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝐹𝑖𝑙𝑡𝑒𝑟(𝜒𝑡−1, 𝑢𝑡, 𝑧𝑡)

1: 𝜒𝑡 = 𝜒𝑡 = 𝜑
2: for 𝑚 = 1 𝑡𝑜 𝑀 do
3: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥

[𝑚]
𝑡 ≈ 𝑝(𝑥𝑡|𝑢𝑡, 𝑥

[𝑚]
𝑡−1)

4: 𝑤
[𝑚]
𝑡 = 𝑝(𝑧𝑡|𝑥[𝑚]

𝑡 )

5: 𝜒𝑡 = 𝜒𝑡 + [𝑥
[𝑚]
𝑡 , 𝑤

[𝑚]
𝑡 ]

6: end for
7: for 𝑚 = 1 𝑡𝑜 𝑀 do
8: 𝑑𝑟𝑎𝑤 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤

[𝑖]
𝑡

9: 𝑎𝑑𝑑 𝑥
[𝑖]
𝑡 𝑡𝑜 𝑋𝑡

10: end for
11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜒𝑡

At the start in line 1 two empty sets of particles 𝜒𝑡,𝜒𝑡 are initialized to empty set

𝜑. Then for each particle 𝑚 in the particle set 𝜒𝑡−1, we use its associated previous

state 𝑥
[𝑚]
𝑡−1 to sample state 𝑥

[𝑚]
𝑡 and calculate the importance factor 𝑤

[𝑚]
𝑡 . Then insert

both the sampled state and the importance factor into the particle set 𝜒𝑡.

Line 3 represent the sampling step of 𝑥
[𝑚]
𝑡 from the state transition distribution

𝑝(𝑥𝑡|𝑢𝑡, 𝑥
[𝑚]
𝑡−1). The importance factors 𝑤𝑡 are used to incorporate the measurement

𝑧𝑡 into the particle set. In Line 4 the particle weight 𝑤
[𝑚]
𝑡 is calculated using the

probability of the measurement 𝑧𝑡 under the sampled state 𝑥
[𝑚]
𝑡 .

The actual trick for particle filter is the resampling step, Lines 7 to 10. For each

particle 𝑚 in the particle set 𝜒𝑡 we draw a particle 𝑥
[𝑖]
𝑡 with probability proportional

to its weight 𝑤
[𝑖]
𝑡 and add this particle to the resulting particle set 𝜒𝑡. The main

objective of this step is to remove particles with low importance, which move the

particles distribution away from previous belief to become closer to the target belief.
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Table 4.1: State space variable description

Variable Description
𝑝𝑜𝑠𝑒(𝑥, 𝑦) ∈ 𝑅2 Position vector in meters
𝜃 ∈ 𝑅 Direction (heading) 𝜃 in radians
𝑣 ∈ 𝑅 Velocity in meters, only positive
𝑎 ∈ 𝑅 Acceleration in meter/second
𝑇.𝑆 ∈ {−1, 0, 1, 2} Turning signal ∈ {𝑁𝑜𝑛𝑒, 𝐿𝑒𝑓𝑡, 𝐵𝑜𝑡ℎ,𝑅𝑖𝑔ℎ𝑡}

𝑇𝑟𝑎𝑗 ∈ 𝑍
Trajectory index, from all possible driving
trajectories

𝐵𝑒ℎ ∈ 𝑍
Behavior state index, from all behaviors sup-
ported in the behavior planner such as For-
ward, Stop, Yield, Park, Right and Left

Table 4.2: Observation variable description

Variable Description
𝑝𝑜𝑠𝑒(𝑥, 𝑦) ∈ 𝑅2 Position vector in meters
𝜃 ∈ 𝑅 Direction (heading) 𝜃 in radians
𝑣 ∈ 𝑅 Velocity in meters, only positive
𝑎 ∈ 𝑅 Acceleration in meter/second
𝑇.𝑆 ∈ {−1, 0, 1, 2} Turning signal ∈ {𝑁𝑜𝑛𝑒, 𝐿𝑒𝑓𝑡, 𝐵𝑜𝑡ℎ,𝑅𝑖𝑔ℎ𝑡}

4.3.2 Custom Particle Filter using Passive Behavior Planner

First it is important to define the problem’s state space vector 𝑥 and observation

vector 𝑧. Table 4.1 describes the state vector 𝑥.

Observations could come from third party modules, such as object tracking and

turn signal detection. Table 4.2 shows description of the utilized observations.

The main modifications introduced is the use of a deterministic behavior planner

(Passive behavior planner) as the state transition distribution to generate the hypo-

thetical state 𝑥
[𝑚]
𝑡 replacing line 3 in Algorithm 1 with Equation 4.6. The behavior

planner is assumed to function as an expert driver who will follow the traffic rules as

indicated by the road network map. This also enables us to use the simple motion

model estimated by the behavior planner, thus replacing the behavior planner with

a better one should result in a better model.
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𝑥
[𝑚]
𝑡 ≃ 𝑃𝑎𝑠𝑠𝑖𝑣𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑃 𝑙𝑎𝑛𝑛𝑒𝑟(𝑧𝑡, 𝑥𝑡−1,𝑚𝑎𝑝) (4.6)

Multi-cue particle filter allow the use of several weak measurement cues to be

accumulated into a strong estimator. It is flexible to add more sensing cues later

for better estimation. The modification to the general particle filter algorithm 1 is

in line 4, we replace the weight likelihood function with multi-cue one 4.7. In this

technique we used measurement cues such as position 𝑝𝑜𝑠𝑒, direction 𝑑𝑖𝑟, velocity

𝑣𝑒𝑙, acceleration 𝑎𝑐𝑐 and turning signal 𝑠𝑖𝑔. The importance factor 𝛼 used to keep

the weight normalized where 𝛼𝑝𝑜𝑠𝑒 +𝛼𝑑𝑖𝑟 +𝛼𝑣𝑒𝑙 +𝛼𝑎𝑐𝑐 +𝛼𝑠𝑖𝑔 = 1. More detailed about

the weight calculation in section 4.4.3. The modifications introduced to the general

particle filter algorithm is presented in Algorithm 2.

𝑤
[𝑚]
𝑡 = 𝑝(𝑧𝑡|𝑥[𝑚]

𝑡 ) = 𝛼𝑝𝑜𝑠𝑒.𝑃 (𝑧𝑝𝑜𝑠𝑒,𝑡|𝑥[𝑚]
𝑡 ) + 𝛼𝑑𝑖𝑟.𝑝(𝑧𝑑𝑖𝑟,𝑡|𝑥[𝑚]

𝑡 ) + 𝛼𝑣𝑒𝑙.𝑝(𝑧𝑣𝑒𝑙,𝑡|𝑥[𝑚]
𝑡 )

+ 𝛼𝑎𝑐𝑐.𝑝(𝑧𝑎𝑐𝑐,𝑡|𝑥[𝑚]
𝑡 ) + 𝛼𝑠𝑖𝑔.𝑝(𝑧𝑠𝑖𝑔,𝑡|𝑥[𝑚]

𝑡 ) (4.7)

Algorithm 2 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝐹𝑖𝑙𝑡𝑒𝑟(𝜒𝑡−1, 𝑧𝑡,𝑚𝑎𝑝)

1: 𝜒𝑡 = 𝜒𝑡 = 𝜑
2: for 𝑚 = 1 𝑡𝑜 𝑀 do
3: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥

[𝑚]
𝑡 ≈ 𝑃𝑎𝑠𝑠𝑖𝑣𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑃 𝑙𝑎𝑛𝑛𝑒𝑟(𝑧𝑡, 𝑥𝑡−1,𝑚𝑎𝑝)

4: 𝑤
[𝑚]
𝑡 =

∑︀𝑐𝑢𝑒 𝑝(𝑧𝑡|𝑥[𝑚]
𝑡 )

5: 𝜒𝑡 = 𝜒𝑡 + [𝑥
[𝑚]
𝑡 , 𝑤

[𝑚]
𝑡 ]

6: end for
7: for 𝑚 = 1 𝑡𝑜 𝑀 do
8: 𝑑𝑟𝑎𝑤 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤

[𝑖]
𝑡

9: 𝑎𝑑𝑑 𝑥
[𝑖]
𝑡 𝑡𝑜 𝑋𝑡

10: end for
11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜒𝑡

A separate particle filter for each trajectory and intention needed to be estimated

is used. This improves performance by reducing the dimensions of each particle filter.

From Table 4.1 state dimension is 𝐷8 which needs a very large number of particles.
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We were able to reduce this number to 𝐷6. In additional to improve the performance

having separate particle filters enable use to control the particles population. In

the resample steps we remove the particles with insignificant weight, that could lead

to particle impoverishment. Minimum number of particles is essential to keep all

intentions represented in the algorithm results.

4.4 Estimation Algorithm

The proposed algorithm consists of three steps; Trajectory extraction (Initialization),

particle sampling and measurement update (weight calculation).

4.4.1 Trajectory Extraction (Initialization)

For the detected vehicle, all possible driving trajectories from the road network map is

extracted. Then two additional trajectories to represent branching right and branch-

ing left are added. In Figure 4-5 the pink box shows the detected vehicle. Left side

shows the center lines of the road network map, while the right side shows the four

extracted trajectories; the two branching trajectories, one for going straight and an-

other one for turning left. The long path represents the global plan for the simulated

vehicle. When a new trajectory appears, a new set of particles are sampled from the

initial prior distribution in 4-6.

Figure 4-5: Extracting all possible vehicle trajectories from a road network map.
After all of the existing paths are extracted, the additional branching paths (right)
are added.
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Figure 4-6: Prior sampling distribution, manually designed with fixed parameters for
the particle filter’s motion model initial condition.

4.4.2 Particle Sampling

Particle sampling follow line 3 in Algorithm 1. In this step we trying to create

hypothesis particle state 𝑥𝑚
𝑡 using the state transition 𝑝(𝑥𝑡|𝑢𝑡, 𝑥

[𝑚]
𝑡−1). State transition

probability follow the motion assumed for each particle. Usually simple motion model

such as vehicle kinematics are used. It is important that this distribution presents

the previous believe.

The passive behavior planner works as expert driving that models the internal

parameter of driving process. So it can represent the distribution of the state transi-

tion better than simple motion model, including more complex driving scenarios. For

that reason we used the passive behavior planner as the motion model, see modified

Algorithm 2 line 3.

The behavior planner takes into consideration road network map and other ob-

served vehicles. Simply for each particle the behavior planner calculate state 𝑥𝑡 from

𝑥𝑡−1 by using the map and current observations as in Equation 4.6.

For example if the detected vehicle is 10 meters away from a stop line at an

intersection, and the previous state 𝑥
[𝑚]
𝑡−1 is similar to Table 4.3 column 𝑡 − 1. From

the passive behavior planner point of view this vehicle should stop. So the state 𝑥𝑡

for particle 𝑚 will look like column 𝑡(𝑠𝑡𝑜𝑝) in Table 4.3. Column 𝑡(𝑛𝑜𝑠𝑡𝑜𝑝) shows the
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Table 4.3: Sampling step explained by example, state transition from 𝑥
[𝑚]
𝑡−1 to 𝑥

[𝑚]
𝑡

𝑥𝑡−1 𝑥𝑡, 𝑠𝑡𝑜𝑝𝑠𝑖𝑔𝑛 𝑥𝑡, 𝑛𝑜𝑠𝑡𝑜𝑝𝑠𝑖𝑔𝑛
𝑣 = 5 𝑣 ≈ 4 𝑣 ≈ 5
𝑎 = 0 𝑎 ≈ −1 𝑎 ≈ +0
𝑠𝑖𝑔 = 𝑁𝑜𝑛𝑒 𝑠𝑖𝑔 = 𝑁𝑜𝑛𝑒 𝑠𝑖𝑔 = 𝑁𝑜𝑛𝑒

𝐵𝑒ℎ = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝐵𝑒ℎ = 𝑆𝑡𝑜𝑝 𝐵𝑒ℎ = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑

state transition if there is no stop sign in the intersection.

4.4.3 Weight Calculation

In this step the sampled particles are filtered by calculating how far the hypothesis

distribution is from the measurement sensing cues. The weight for each particle is

calculated against the sensing data, such as position, direction, velocity, acceleration

and turn signal information using Equation 4.8. It is important to take sensing noise

into consideration. We can use the same sensing noise value for each measurement,

but that will not be accurate because the sensors vary in their degree of precision. But

we can incorporate that noise into weight calculation 4.8 by replacing the importance

factor 𝛼 for each sensing cue with the sensing variance or noise model. Importance

factors 𝛼 must satisfy the condition that
∑︀𝑐𝑢𝑒 𝛼 = 1.

𝑤
[𝑚]
𝑡 = 𝛼𝑝𝑜𝑠𝑒.𝑤

[𝑚]
𝑝𝑜𝑠𝑒,𝑡 + 𝛼𝑑𝑖𝑟.𝑤

[𝑚]
𝑑𝑖𝑟,𝑡 + 𝛼𝑣𝑒𝑙.𝑤

[𝑚]
𝑣𝑒𝑙,𝑡 + 𝛼𝑎𝑐𝑐.𝑤

[𝑚]
𝑎𝑐𝑐,𝑡 + 𝛼𝑠𝑖𝑔.𝑤

[𝑚]
𝑠𝑖𝑔,𝑡 (4.8)

Position Cue Weight

Equations 4.10 and 4.9 represent the distribution 𝑃 (𝑧𝑝𝑜𝑠𝑒,𝑡|𝑥[𝑚]
𝑡 ). 𝑤

[𝑚]
𝑝𝑜𝑠𝑒,𝑡 is the distance

difference between observed position 𝑧𝑝𝑜𝑠𝑒 and particle position 𝑥
[𝑚]
𝑝𝑜𝑠𝑒,𝑡.

𝑤
[𝑚]
𝑝𝑜𝑠𝑒,𝑡 =

⎧⎪⎨⎪⎩
1.0

𝑑
, 𝑖𝑓𝑑 > 𝑝𝑜𝑠𝑒𝑒𝑟𝑟

1.0

𝑝𝑜𝑠𝑒𝑒𝑟𝑟

(4.9)

𝑑 =
√︀

(𝑥𝑧−𝑥)2+(𝑦𝑧−𝑦)2 (4.10)
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Direction Cue Weight

Equation 4.11 represents the distribution 𝑃 (𝑧𝑑𝑖𝑟,𝑡|𝑥[𝑚]
𝑡 ). Direction weight 𝑤

[𝑚]
𝑑𝑖𝑟,𝑡 is

calculated using the difference between both observed 𝑧𝜃 and sampled 𝑥
[𝑚]
𝑑𝑖𝑟,𝑡. Dis-

continuity in angle differences could be problematic, so a special function is used in

Equations 4.11 and 4.12 which contains information about vehicle heading semantics.

𝑤
[𝑚]
𝑑𝑖𝑟,𝑡 =

⎧⎪⎨⎪⎩
1.0

|𝜃𝑑𝑖𝑓𝑓 (𝑧𝜃, 𝜃)|
, 𝑖𝑓 |𝜃𝑑𝑖𝑓𝑓 | > 𝑑𝑖𝑟𝑒𝑟𝑟

1.0

𝑑𝑖𝑟𝑒𝑟𝑟

(4.11)

𝜃𝑑𝑖𝑓𝑓 (𝜃1, 𝜃2) =

⎧⎨⎩ 2𝜋 − (𝜃1 − 𝜃2), 𝑖𝑓𝜃1 > 𝜃2

2𝜋 − (𝜃2 − 𝜃1), 𝑖𝑓𝜃2 > 𝜃1
(4.12)

Velocity Cue Weight

Equation 4.13 represents the distribution 𝑃 (𝑧𝑣𝑒𝑙,𝑡|𝑥[𝑚]
𝑡 ). Velocity weight 𝑤

[𝑚]
𝑣𝑒𝑙,𝑡 is calcu-

lated using the difference between both observed by object tracker 𝑧𝑣𝑒𝑙 and sampled

velocity using passive behavior planner 𝑥
[𝑚]
𝑣𝑒𝑙,𝑡.

𝑤
[𝑚]
𝑣𝑒𝑙,𝑡 =

⎧⎪⎨⎪⎩
1.0

|𝑧𝑣𝑒𝑙 − 𝑣|
, 𝑖𝑓 |𝑧𝑣𝑒𝑙 − 𝑣| > 𝑣𝑒𝑙𝑒𝑟𝑟

1.0

𝑣𝑒𝑙𝑒𝑟𝑟

(4.13)

Acceleration Cue Weight

Equation 4.14 represents the distribution 𝑃 (𝑧𝑎𝑐𝑐,𝑡|𝑥[𝑚]
𝑡 ). Acceleration weight 𝑤

[𝑚]
𝑎𝑐𝑐,𝑡

is calculated using the difference between both observed by object tracker 𝑧𝑎𝑐𝑐 and

sampled acceleration using passive behavior planner 𝑥
[𝑚]
𝑎𝑐𝑐,𝑡.

𝑤
[𝑚]
𝑎𝑐𝑐,𝑡 =

⎧⎪⎨⎪⎩
1.0

|𝑧𝑎𝑐𝑐 − 𝑎|
, 𝑖𝑓 |𝑧𝑎𝑐𝑐 − 𝑎| > 𝑎𝑐𝑐𝑒𝑟𝑟

1.0

𝑎𝑐𝑐𝑒𝑟𝑟

(4.14)
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Turning Signal Cue Weight

Equation 4.15 and 4.16 represents the distribution 𝑃 (𝑧𝑠𝑖𝑔,𝑡|𝑥[𝑚]
𝑡 ). Turning signal

weight 𝑤
[𝑚]
𝑠𝑖𝑔,𝑡 is calculated using the difference between both observed 𝑧𝑠𝑖𝑔 and sampled

𝑥
[𝑚]
𝑠𝑖𝑔,𝑡. If both values match we assign only 0.9 to the weight. We assume that there

is 0.1 noise attached to the turning signal measurements.

𝑤
[𝑚]
𝑠𝑖𝑔,𝑡 = 𝑆𝑑𝑖𝑓𝑓 (𝑧𝑠𝑖𝑔, 𝑆) (4.15)

𝑆𝑑𝑖𝑓𝑓 (𝑆1, 𝑆2) =

⎧⎨⎩ 0.9, 𝑖𝑓𝑆1 = 𝑆2

0.1, 𝑖𝑓𝑆1 ̸= 𝑆2

(4.16)

Implementation considerations

There are multiple approaches for weight; in our experiments we tried several meth-

ods. Finally we selected equation 4.9-4.16 as they are the most computationally

efficient and provide explanatory results. Theoretically equation 4.8 is supposed to

calculate the joint probability of all sensing information [56]. One problem with using

joint probability and multiply all probabilities is lots of particles doesn’t lie in the

vicinity of the correct state. That leads to particle deprivation which requires the use

of huge number of particles. Another problem is when one sensing cue importance

factor becomes very low, other sensing weights contribute much less. To solve both

problems, in equation 4.7 and 4.8 we used aggregation of the weights instead of the

joint probability with the assumption that all sensing cues are independent.

After weight calculation we normalize the particles so that
∑︀

𝑚 𝑤
[𝑚]
𝑡 = 1. Then

particles with small weight are removed and are replaced with new samples drawn

from particles with the highest confidence level. This sampling step relies on the

motion model that estimates the path the observed vehicle is expected to follow,
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which in this study is the passive behavior planner. It estimates the motion and

intentions of other vehicles according to the observed circumstances Equation 4.6.

4.4.4 Importance factor setup

Initially the importance factor 𝛼 for each measurement cue distribution is the same

𝛼 = 0.2, satisfying the criteria
∑︀𝑐𝑢𝑒 𝛼 = 1. But this importance factors could be

utilized more efficiently. Sensors and sensing modules usually calculate variance or

noise probability to express the reliability of its data. These variances could be

mapped to the importance factor so when one sensing measurement is not reliable

enough its importance factor should decrease, thus contribute less to the total weight.

In our experiments we used the importance factor to disable some measurement cues

manually. For example in section 4.5.2 to compare between results of having turning

signal measurement or not, we set 𝛼𝑠𝑖𝑔 = 0 and the other importance factors such

that 𝛼𝑝𝑜𝑠𝑒 = 𝛼𝑑𝑖𝑟 = 𝛼𝑣𝑒𝑙 = 𝛼𝑎𝑐𝑐 = 0.25.

4.5 Evaluation Results

In this section we present a detailed analysis of the results of our estimation process.

We evaluated our proposed intention and trajectory estimation system using multiple

simulated driving situations. The objective of these evaluations is to demonstrate that

the proposed method can accurately estimates trajectories and intention probabilities

at various driving scenarios, such as three-way intersection, four-way intersection,

intersection with and without stop signs, and bus stops. These driving scenarios are

depicted from the National Highway Traffic Safety Administration (NHTSA) report

[70].

The simulated vehicles operate using an active version of the behavior planner.

State and generated behaviors for the simulated vehicles are considered as the ground

truth. There is no information sharing between the planner for the simulated vehicles

and the ego vehicle’s planner. An additional perception simulation module received

the ground truth for vehicle pose and size, which was then published in a similar

93



message format as the object detection algorithm. The perception simulator added

random noise to the position and point cloud data before publishing. Starting condi-

tions are fixed for each experimental trial in order to facilitate a comparison between

the results. Finally, the ground truth from the simulated vehicle and the estimation

results from our proposed method are compared to measure performance. All simula-

tions used actual intersections from the road network map of the area around Nagoya

University.

Two values are used to discriminate intentions and trajectories. Average weight,

which is the average of all of the particles’ normalized weights, represents signal

behavior at each time step. The average is calculated after the re-sampling step. The

second value is probability, which is the ratio between the remaining particles (after

elimination of the weak ones) to the maximum number particles. This probability is

calculated before the re-sampling step. Both measurements can be used in different

ways, but usually average weight changes more smoothly over time.

In the particle filter re-sampling step, weak particles are replaced with new par-

ticles. These new particles are randomly drawn from the normal distribution around

the previous best state. Sometimes when new particles are generated, the weight

calculation spikes. After few iterations it converges to the general trend. Increasing

the number of particles minimize these spikes but hurts the performance. In the

experiments we conducted these changes (spikes) never big enough to affect the esti-

mation process. Intentions is abbreviated in the graphs by the first character of each

intention, Moving Forward (F), Stopping (S), Branching Left (L), Branching Right

(R), Yielding (Y), Accelerating (A), and Parking (P).

Table 4.4 shows a summary of all experiments discussed in this section.

4.5.1 Three-way Intersection

In this experiment, Figure 4-7, there are two possible trajectories the simulated vehicle

can follow. Forward trajectory until the intersection and then continuing forward

towards Goal F, or a forward trajectory until the intersection and then turning left

towards Goal L. Assumptions for this experiments are that the traffic light is green
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Table 4.4: Experiments.

Experiment Environment Objectives

Three way Intersection - Shows weight calculation and estimated intentions and tra-
jectories associated with different Goals

Four Way Intersection (Goal F)
No Stopping, Turn Signal On

- Estimating the intention and trajectory of going forward
assuming the detection of turning signal.

Four Way Intersection
(Goal F)
No Stopping, Turn Signal Off

- Estimating the intention and trajectory of going forward
without using the turning signal measurement.

Four Way Intersection
(Goal F)
Stopping, Turn Signal On

- Estimating the intention and trajectory of going forward
with stopping and using turning signal measurement.

Four Way Intersection
(Goal F)
Stopping, Turn Signal Off

- Estimating the intention and trajectory of going forward
with stopping and excluding turning signal measurement.

Four Way Intersection
(Goal L)
Turn Signal On

- Estimating the intention and trajectory of going left in-
cluding turning signal measurement.

Four Way Intersection
(Goal L)
Turn Signal Off

- Estimating the intention and trajectory of going left ex-
cluding turning signal measurement.

Bus Stop (Parking)

Ego vehicleStopped Bus

Yielding vehicle

- Estimating the parking intention.

Bus Stop (Overtake) - Estimating the yielding intention to generate overtake be-
havior.

and that turn signal sensing is not available.

Figure 4-8 shows the speed profile and the state transition for the planner gen-

erated behaviors. The target intentions are mapped to the velocity profile graph.

Figure 8 shows the average weights of the particles associated with each intention

(Forward, Stop and Yield). The most probable intention to be selected by the plan-

ner at each time step for Trajectory L is shown in Figure 4-10. For Trajectory F,

Intention weights associated with it is shown in Figure 4-10.

Trajectory probability estimation can be achieved either by averaging the weights
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Figure 4-7: Simulated vehicle paths. Red dotted lines represent the global paths for
the simulated vehicle. Simulations run separately for Goal F and Goal L.
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Figure 4-8: State transition and velocity profile of the simulated vehicle when moving
toward Goal L

of all of the particles associated with the trajectory, or by only using the particles

associated with the Forward intention. Intuitively, Forward intention weights should

be sufficient to discriminate between trajectories, and the data from our experiments

support that intuition.

4.5.2 Four-way Intersection

In this experiment, Figure 4-12, the simulated vehicle starts from the common starting

position and moves towards one of three goals; Forward (F), Left (L) or Right (R).
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Figure 4-9: Data associated with Trajectory L, comparing the average weights to the
ground truth velocity profile and behaviors.

  

3 45 87 12
9

17
1

21
3

25
5

29
7

33
9

38
1

42
3

46
5

50
7

54
9

59
1

63
3

67
5

71
7

75
9

80
1

84
3

88
5

92
7

96
9
10

11
10

53
0

1

2

3

4

0
2
4
6
8
10
12
14

Forward = 0, Stop = 1, Yield = 4

Velocity Best Behavior for Path 1

Time Step

In
te

n
ti

o
n

V
e

lo
c

it
y

ForwardTurn StoppingForward Slowdown

Y

S

R

F

L

Figure 4-10: The most probable estimated intention at each time step for Trajectory
L

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
2
4
6
8
10
12
14

Velocity Forward Weight F Stopping Weight F Yielding Weights F

Time Step

W
e

ig
h

ts

V
e

lo
c

it
y

ForwardTurn StoppingForward Slowdown

Figure 4-11: Data associated with Trajectory F, comparing the average weights to
the ground truth velocity profile and behaviors.
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The experiment repeats from starting position to each goal, and during each trial

we enable or disable the ability to use turn signals as a sensing cue. In addition, we

enable or disable stopping at the stop sign. The analysis of our results shows the effect

of adding more sensing information on the accuracy of the resulting probabilities.

Figure 4-12: Testing scenario with a four-way intersection. The simulated vehicle
starts at the position of the blue car model then moves toward one of three goals (L,
F, R).

Goal F: No Stopping, turn signal sensing on

From the perspective of a human driver, it is highly probable that the vehicle will

continue to move forward without stopping or slowing down if no right or left turn

signal is observed and the vehicle is moving faster than turning speed. Thus, the

estimated intention should be Forward and the estimated trajectory should be the

’go forward’ trajectory, Trajectory F. Figure 4-13 shows the resulting average weights

used to estimate the intention of the observed vehicle in Figure 4-14. At times, the

weights are similar, so confidence when selecting an intention is low, but at other

times it is clear that there is only one likely intention, although there is still a small

possibility of other intentions. The critical intersection zone is indicated in the graph,

approximately between the 150th and 400th time steps. In Figure 4-13 it is obvious

that the predicted intentions match the ground truth behaviors with high confidence

most of the time, especially in the intersection zone. In this experiment, Trajectory

F was predicted with high probability, as shown in Figure 4-15, where the probability

of Trajectory F is about 0.8.
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Figure 4-13: Average weight data associated with Trajectory F, including indicator
sensing and not stopping for the stop sign.
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Figure 4-14: Most probable estimated intention at each time step, including turn
signal data and not stopping at the stop sign.

Goal F: No Stopping, turn signal sensing off

Results in Figures 4-16 and 4-17 are the same as in the previous experiment, indicating

that in this scenario turn signal information does not have much effect on the final

estimation results. However, when we compare Figures 4-13 and 4-16, we see that

the intention weights are slightly higher when turn signal information is included.

The same relationship could be observed for trajectory estimation when comparing

Figure 4-15 (with turn signal information), and Figure 4-18 (without turn signal

information).
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Figure 4-15: Trajectory estimation for moving towards Goal F, including turn signal
data and not stopping for the stop sign.
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Figure 4-16: Average data weights associated with Trajectory F, when deactivating
turn signal sensing and not stopping for the stop sign.

Goal F: Stopping, turn signal sensing on/off

Figure 4-19 shows the weights and selected intentions when turn signal information is

not included. Figure 4-20 shows the weights and selected intentions when turn signal
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Figure 4-17: Most probable estimated intention at each time step, when not using
turn signal information and without stopping.
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Figure 4-18: Trajectory estimation for moving towards Goal F, when not using turn
signal data and not stopping for the stop sign.

sensing is included. We can see from the results how using the turn signal data affects

the results.

When the vehicle stops at the intersection, we lose forward velocity as a clue for

helping choose the most likely trajectory, so there is not enough evidence for the
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particle filter to converge towards one of the three trajectories, especially when turn

signal information is not taken into consideration. In Figure 4-21, we can see that the

algorithm was confused and couldn’t estimate the correct trajectory when the vehicle

stopped for the stop sign, but that it estimated correctly once the vehicle started to

move again. This problem is resolved by using the turn signal data, as shown in Figure

4-22, the prediction algorithm gives a higher confidence to the correct trajectory even

though the vehicle is stopped. Although the algorithm selected the Forward trajectory

as best choice, the Left and Right trajectories still have probabilities as high as the

intended one. This could happen when the driver forgets to use the turn signal or

changes his mind at the last moment.
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Figure 4-19: Average weights and intention index data associated with Trajectory F,
when not including turn signal data and stopping for the stop sign.
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Figure 4-20: Average weights and intention index data associated with Trajectory F,
when including turn signal data and stopping for the stop sign.

Goal L

This experiment is similar to section 4.3.1 experiment, Figure 4-23 compares the effect

of using turn signal data on how early we can estimate the vehicle’s trajectory. In the

worst-case scenario (no turn signal data) the algorithm can still estimate the vehicle’s

trajectory accurately once the vehicle starts turning at the intersection (within 1 to

2 seconds).

Goal R

When conducting the Goal R experiment, we obtained similar result as in our Goal

L experiment. We are able to obtain consistent estimation results, but we still could

not predict the driver’s intention when the vehicle stopped at the intersection without

turn signal information. In fact, even human drivers cannot correctly predict which
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Figure 4-21: Trajectory estimation for moving towards Goal F, without turn signal
data and stopping for the stop sign.

direction a vehicle will turn from a stop without turn signal information, until the

moment that the vehicle starts to turn.

4.5.3 Bus Stop and Parking Scenario

Other frequent driving scenarios include attempting to avoid parked vehicles and

buses waiting at bus stops. A simple rule that humans use is to observe and under-

stand a driver’s hazard lights vs. turn signals, i.e., whether the lights on both sides

of the vehicle are flashing, or only on the right or left side. Another strategy is to

determine if the vehicle is stopped by the side of the road without any stop line or

traffic light nearby.

In Figure 4-24 the ego vehicle is coming from behind in the same lane as the bus.

Another vehicle is moving forward in the adjacent lane, blocking the ego vehicle from
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Figure 4-22: Trajectory estimation for moving towards Goal F, with turn on signal
data and stopping for the stop sign.

passing the bus. The algorithm needs to estimate with high confidence that this bus

is stopping and that the stop is not caused by other traffic circumstances, such as

a traffic light, stop sign or normal traffic jam. To help handle such a scenario, we

added a new intention (Parking). Figure 4-25 shows the estimated intentions of the

bus against its tracked velocity profile. In this experiment hazard lights are used to

differentiate general stopping from waiting by the roadside.

4.5.4 Overtaking Scenario

In case of passing the parked bus, ego vehicle’s planner needs to identify if the vehicle

in the adjacent lane is yielding or not. If a yielding intention is estimated with enough

confidence, the ego vehicle can safely change lanes. Figure 4-26 shows the estimated

intentions for the vehicle driving alongside the ego vehicle. The results indicate that
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Figure 4-23: Comparison between weights associated with trajectories when moving
towards Goal L, with (top) and without (bottom) turn signal data.

the vehicle has yielded to let the ego vehicle pass the bus. In this case, the ego vehicle

planner will decide a safe lane change trajectory.

4.6 Conclusion and Summary

In this chapter we proposed an intention and trajectory estimation method for pre-

dicting the behavior of surrounding vehicles. The final goal of the proposed method
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Ego vehicleStopped Bus

Yielding vehicle

Figure 4-24: A bus is stopping at a bus stop. The ego vehicle is traveling in the same
lane as the bus, while another vehicle is traveling in the adjacent lane.
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Figure 4-25: Data associated with a bus stopping at a bus stop. Top: weights asso-
ciated with each intention. Bottom: most probable intention at each time step.

is to associate a probability with each intention and trajectory. This is a very impor-

tant step before decision making in an autonomous driving system’s planning process.
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Figure 4-26: Data associated with the vehicle in the adjacent lane. Top: weights
associated with each intention. Bottom: most probable intention at each time step.

Our method works by first associating a particle filter with each intention and trajec-

tory. Then, a deterministic behavior planner is used to provide the expected motion

model for each particle. After that, the particle weights are calculated by finding

the difference between the expected state and the actual sensing information, using

multiple sensing inputs such as position, velocity, acceleration and turn signal status.

Our results show that our proposed method has the ability to accurately discriminate

between various possible intentions and trajectories in a variety of complex driving

situations. Contributions of this work are as follows:

∙ By using a behavior planner, we were able to model the intentions and tra-

jectories of surrounding vehicles. Our results show that any new behavior the
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planner supports, including ’socially aware’, ’complex’ or ’rare’, can be easily

integrated into the estimator, and that our model works reliably prior to the

filtering step.

∙ By using a particle filter, we were able to address the problem of sensing uncer-

tainty.

∙ Particle filter performance was improved by reducing particle state dimension-

ality. This was achieved by assigning a separate filter to each intention or

trajectory.

∙ By using multiple sensing cues, our method allows earlier estimation and in-

creases estimation confidence. The proposed method also has the ability to

handle sensing problems such as variations in sensor accuracy, adding a new

sensor or losing an existing sensor.

The next step is to integrate the estimated probabilities with the ego vehicle’s behav-

ior planner, in order to plan smoother velocity profiles and generate safer decisions.

From the target application point of view, this work is targeting level 4 and level 5 Au-

tonomy. More computational platform based optimization is needed to support level

3 active safety application. The algorithm design is flexible enough to improve the

performance using multi processor or GPU based in vehicle computational platforms.
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Chapter 5

Real World Data Circulation and

Social Impact

In this chapter, I will discuss the work described in this dissertation and the concept

of Real World Data Circulation (RWDC). In addition, I will introduce two examples

which illustrate utilization of RWDC and explain their social value. The first example

is a project to automate the creation road network maps, and the second is based

on my experience working as an intern at an autonomous driving initiative project.

The idea of RWDC is based on openly creating organizing and sharing data as raw

data or well data sets, these data capture the problem enabling teams to explore

more possibility offline, analyzing existing solutions and developing new ones based

on the openly shared data. After development another set of data is created and

shared which help bench-marking the problem’s solution. Data circulation creates a

modern and unique way for international collaboration to tackle the most challenging

technological problems.

5.1 Autonomous Driving Planning

Previously in this dissertation, I have described the development of a complete, inte-

grated, open-source planner for autonomous driving, the implementation of which is

called OpenPlanner [25], a component of the Autoware [18] platform.
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5.1.1 Contribution to Society

Our development of OpenPlanner, and its introduction as an open-source application,

has so far achieved the following:

∙ Hundreds of users, as well as feedback from the autonomous mobility commu-

nity.

∙ International collaboration with several different teams, working in different

countries and focused on different goals.

∙ Experiment and data sharing between development teams to improve the plat-

form and create safer autonomous driving systems.

∙ Use of our planner in multiple projects which directly improve daily life, such

as the Roboat project [23]

5.1.2 Data Circulation

In Figure 5-1, a data circulation graph shows how our planner leverages RWDC

to evolve and become more reliable. A variety of data is shared, such as sensing

data, position data, driver-related data, environment-related data, HD maps and

road network maps. Some logs become standard ROS bag files, while other logs

are customized and require conversion tools. Cleaning, analyzing and organizing the

shared data is also important in order to construct usable data sets for learning and

bench marking. For example LIDAR data, sensor log is recorded while driving, these

logs help creating HD maps, which are essential for localization, after that these HD

maps are shared by another team. Another team uses the shared HD maps to collect

driving data including images from camera, and then these driving logs are shared.

Another team uses the maps and LIDAR data and image data to develop and test

new algorithm, these algorithms is used to drive a vehicle in reality or in simulation

and collect and share driving data, and so on.

Another example of data circulation is the open-source code itself. The code of

the planning algorithm is itself data, in addition to being a generator and analyzer
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of data. Figure 5-2 illustrates the idea of open-source application development as a

form of data circulation.

Figure 5-1: Relationship between OpenPlanner and RWDC.

Figure 5-2: OpenPlanner and other open-source code projects as examples of RWDC.

5.2 Automated road network mapping (ASSUREMaps)

The Creative Research Project (CRP) is one of the main activities for the Leading

Program at Nagoya University [71]. Every year, the Leading Program offers funding

through the CRP to one of several proposed research projects. In 2017, our team

proposed ASSURE Maps, which uses various types of driving data to automatically
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create road network maps. In this section I will describe the ASSURE Maps project

and its results.

ASSURE Maps was a contribution to the search for solutions to the autonomous

driving planning problem. Most autonomous driving planners, including OpenPlan-

ner, utilize road structure maps. High quality road network maps improve the ac-

curacy and performance of planning dramatically, resulting in safer and smarter au-

tonomous vehicles.

5.2.1 Introduction

Accurate road network maps are an essential part of reliable autonomous driving

systems. Their structure is similar to the navigation maps widely used in modern

cars, and they share many of the same features. Currently available road network

maps are GPS based, thus their accuracy is within a few meters. Another limitation

of current maps is their low level of detail. For example, GPS road network maps do

not include traffic signs or lane marking locations, or the type of traffic lights.

Starting in 2007, the Defense Advanced Research Projects Agency’s (DARPA)

Urban Challenge introduced a simple road network definition file (RNDF) for teams

to use to navigate through the competition course [3] [4]. Since then, improved

RNDFs, and more recently HD road network maps or vector maps, are being used

for public road testing of autonomous vehicles. These maps are still been created

and annotated manually, using simple graphing tools, which is a slow and inefficient

process that also suffers from frequent human errors.

Since there are millions of kilometers of roads which need to be accurately mapped,

the current process is far too slow and expensive. Furthermore, there is a famous

saying in the autonomous driving community: "Whoever owns the maps, owns the

autonomous driving business". Since the majority of the roads globally do not have

an accurate Road Network Maps yet, and since the current process for generating

vector maps is slow, costly and prone to human error, our ASSURE Maps project

focused on developing a method of automatically building HD road network maps for

autonomous vehicles. The goals of the ASSURE Maps project (and the source of the
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project’s name) were as follows:

∙ Accurate road network maps

∙ Secure cloud service

∙ Smart mapping tools

∙ Updated maps

∙ Rich details

∙ Evaluated results

We can see from Figure 5-3 that the autonomous driving market will grow rapidly

over the next 20 years. Therefore ASSURE Maps has much potential, since it fills a

serious gap in the autonomous driving technology sector.

Figure 5-3: Business potential of autonomous driving (in millions of dollars).

Our project was focused on road network map generation, but there is another

type of map currently being used for autonomous driving applications, which are

known as point cloud maps. These maps are primarily used for detecting objects and

features in the immediate driving environment. Figure 5-4 shows examples of both

types of maps. Point cloud maps are generated using high quality Light Detection

and Ranging (LiDAR) sensors mounted on vehicles. Road network maps, on the other

hand, are essential for Level 4 and Level 5 autonomous driving planning, and crucial

for safety since they allow autonomous systems to comply with road traffic rules. The

majority of roads globally do not have accurate road network maps yet, as the current

process of generating vector maps manually is lengthy, costly and inefficient, slowing

the process of wider adoption of autonomous vehicles.
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(a) (b)

Figure 5-4: Road Network map (left), Point cloud map (right).

5.2.2 Project Design

The ASSURE Maps system consists of two main modules. The first module uses

automatic map generation (AMG) APIs, and the second uses smart mapping tools

(SMT), as shown in Figure 5-5. ASSURE’s AMG APIs function as the internal

engine that loads data logs (LiDAR, camera images, GPS data and odometry) and

extracts map semantic information. The smart mapping tools module functions as a

review tool which help users control the output of the AMG APIs and creates data

sets for the system’s machine learning-based components.

Figure 5-5: ASSURE Maps Architecture.

As shown in Figure 5-6, the system reads data from collected data sets, which can

be saved as either a ROS bag file or as a collection of .csv files. The system needs

at least a video camera and LiDAR sensors to build accurate maps. ASSURE smart

tools load the data from the log files, start the AMG APIs to generate the maps
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(showing the intermediate results using a graphic user interface (GUI)), and then

save the generated map as an initial map. A group of data annotation experts then

review the generated map and correct any errors. The corrections by the experts is

then sent back to the machine learning module to improve detection of map elements.

Finally, the corrected map is used with the input data to create the End-to-End data

set, which is used for a machine learning step to generate a complete scene from the

data.

Figure 5-6: ASSURE Maps system design.

5.2.3 Experiment Results

We created LIDAR processing APIs to detect road lines, curbs and markings. We

also created APIs to process video images to detect road lines and markings. We

then fused these results to improve detection accuracy. We also created a Deep

Learning module to detect traffic objects such as intersections, stoplights, road signs

and markings, then projected the results to the LIDAR frame. Finally, we stitched

together the results from all of the modules and used semantic road rules to extract

the final road network map.

Figure 5-7 shows the extracted map items from the LiDAR data, showing we were

able to successfully detect curbs, lines and markings. Figure 5-8 shows the extracted

information from the vision detection system, which allowed us to detect traffic light,
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intersections, markings and lines.

Figure 5-9 shows the resulting map after fusion of the data from the LiDAR and

visual modules. The generated map is projected on the ground truth map to verify

the results. By the end of the project, we were able to create an HD map of an entire

road in 10 minutes, which previously took days to create manually.

Figure 5-7: LIDAR based detection of the map data (curbs, markings and lines).

Figure 5-8: Visual detection of map data (traffic lights, intersections, markings and
lines).

Figure 5-9: Resulting map after fusing data from LiDAR and visual detection mod-
ules.
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5.2.4 RWDC in ASSURE maps

The relationship between ASSURE Maps and RWDC is two-fold. The first example is

shown in Figure 5-10. The ASSURE Maps business model is based on using customer

data - with customer approval of course - to improve our detection and mapping

algorithms. The second example is the data circulation that occurs at the core of

the system development process. Figure 5-11 shows how data is utilized within the

ASSURE mapping system.

Figure 5-10: Relationship between ASSURE Maps and RWDC from a business per-
spective.

Figure 5-11: Relationship between ASSURE Maps and RWDC from a system devel-
opment perspective.

5.3 Autonomous driving Tech-Lead Internship

One of the major requirements for graduation from the Leading Program (and also

a great learning opportunity) is participation in Global Challenge II (GC II), which
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requires participants to work internationally with a top university or company R&D

department active in the same field as their field of study. The required work period

is from three to six months, with the objective of enabling the student to experience

working abroad in cooperation with an international team to achieve state-of-the-

art research results. During my internship I worked with a UK-based technology

company called Linaro for 3 months. It was a great opportunity to utilize my past

experience, learn about new technology, meet new people, face new challenges and

gain new experiences. My main motivation was to link my PhD studies with work in

the autonomous driving technology industry.

5.3.1 Introduction

Linaro is an open-source collaborative engineering organization developing software

for the Arm ecosystem. In 2010, they began a new initiative to build state-of-the-art

autonomous vehicle software components and architecture, leveraging systems-on-a-

chip (SoCs) from the Arm ecosystem for use with open-source autonomous driving

frameworks such as Autoware. As an autonomous driving tech-lead, there were many

tasks I needed to handle, which involved both software and hardware projects, as

shown in Figure 5-12.

Figure 5-12: Roles of an Autonomous Driving Tech-Lead. They have many technical
roles, but also have non-technical (business) tasks.
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5.3.2 Autoware Performance analysis

Producing high performance SoCs for autonomous driving applications is essential,

and part of my work was to evaluate the performance of the full Autoware autonomous

driving software stack when operating on the following computing machines:

∙ A powerful, Intel-based desktop computer with GPU chip support.

∙ A mid-range, Intel-based laptop without GPU chip support.

∙ An SoC supported ARM developer box PC, developed through the collaborative

work of multiple open architecture/open-source initiatives.

Figure 5-13 shows a comparison of the performance of the three computing plat-

forms. The testing involved launching the full Autoware stack on each machine and

logging the performance for each module separately. The Autoware modules tested

were Localization, Object Detection, Planning, Visualization and Data Playback.

Figure 5-13: Comparison of the three main computing machines used for Autoware
performance testing.

Performance results are shown in Figure 5-14, which clearly shows that perfor-

mance depends on the type of algorithm and implementation used. The powerful

PC outperforms the other two computing machines with almost all of the modules.

Only for image-based object detection did the developer box equipped with an AI

accelerator outperform the other two computing machines. It is important to take

advantage of all of the processing power provided by the SoC, and the developer box

has 24 ARM processors at its disposal. In Figure 5-15 we show the results of a per-

formance comparison when using a special localization implementation designed for
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use with multiple processors. We can see that the ARM-based chip can outperform

the powerful PC when a customized solution is introduced.

Figure 5-14: Comparing the performance of testing each Autoware module on each
platform.

Figure 5-15: Comparison between two implementation of Localization, one is using
general purpose processor, and the other is leveraging the multiprocessor capability
of the computing machine.

Another task I was assigned during my internship was the creation of an internal

report that summarized results for the following:

∙ Internal resources assessment

∙ Linaro road map overlapping the Autoware foundation road map

∙ Linaro’s contribution to the Autoware foundation within the ARM eco-system

∙ Future designs needed to satisfy ISO 26262 safety standards

∙ ARM platform problems and proposed solutions
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5.3.3 RWDC for the Internship

The work at Linaro establish RWDC in similar way to that of any of work on au-

tonomous driving systems, as shown in Figure 5-16.

Figure 5-16: Relationship between RWDC and my work at Linaro for GC II.

By the end of my internship, I was able to understand autonomous driving sys-

tems from a different perspective, learn about new computing methods designed for

automotive applications (SoCs and AI accelerators), and learn about the automotive

functional safety requirements for autonomous driving systems (ISO 26262).
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Chapter 6

Conclusion and Future Work

Autonomous driving is an important part of the effort to save lives by improving

traffic safety. The development of better planning systems for autonomous driving is

at the heart of efforts to improve autonomous driving, as the development of better

planning techniques is essential for safer autonomous driving applications. Planning

for autonomous driving is not straightforward, since many different modules need to

be developed and integrated, and many different situations need to be anticipated and

handled correctly. The main objective of a successful autonomous driving planner is

generation of smooth, obstacle-free trajectories that can be followed by a trajectory-

following controller. Although hundreds of autonomous vehicles are now operating

on public streets every day, collecting data and testing new technologies, there are

still many problems to be resolved with current state-of-the-art automated driving

systems, such as portability, accuracy and maneuvering smoothly through complex

intersections.

Autonomous driving planning modules such as global planning, local planning,

intention and trajectory prediction, and behavior planning are essential, and planners

should be able to handle dynamic environments, successfully generate routes using

complex maps, estimate the intentions of surrounding vehicles and generate safe and

smooth trajectories.
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6.1 Conclusion

In this dissertation I have described my work to develop a complete, integrated, open-

source planner for autonomous driving. The proposed implementation of this planner,

OpenPlanner, is open-source, so the robotics community can freely take advantage

of it, use it, modify it and build on it. OpenPlanner relies heavily on efficiently

generated road network maps to improve driving safety.

In Chapter 3 I described the use of dynamic programming for global planning by

searching the road network map using multiple additive costs. I also explained how

the local planner generates trajectories, outlined behavior state generation using state

machine transition and explained the functions and usage of related ROS nodes. I

then described multiple experiments using both simulation and a modified, motorized

scooter to demonstrate the effectiveness of the OpenPlanner integrated planner, by

showing that it can operate effectively and safely in dynamic traffic environments.

Table 6.1 shows summary of these experiments.

Table 6.1: Experimental results for proposed integrated planner.

Experiment Environment Results

Simulation

0 150

Meters

- The planner can correctly generate trajectories and select
suitable behavior.
- The global planner was able to find shortest path on a
complex map.

Nagoya
University

 0 400

Meters

Start
Goal

- The planner was able to perform in real time at a mini-
mum of 10hz, with an average of 100 objected detected.
- The planner was able to generate smooth trajectories and
avoid obstacles even in narrow passage.
- The planner was able to handle different traffic situations.

Tsukuba
Challenge

 0 680

Meters

Start

Goal

- The planner achieved automatic rerouting even when
perception-based behavior was not available.
- The planner successfully navigated through a busy, unfa-
miliar environment.

In addition to our own experiments at Nagoya University, OpenPlanner has also

been used by several other projects such as:

∙ Roboat project [22][23].
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∙ Autonomous driving map editor [24].

∙ ADAS Demo in Hong Kong and USA.

In Chapter 4, I introduced an intention and trajectory estimation method for

predicting the actions of surrounding vehicles by associating a probability with each

intention and trajectory. This is a very important step before decision making in an

autonomous driving system’s planning process. A behavior planner is used to model

the expected motion of surrounding vehicles, and particle filters are associated with

each intention and trajectory. After that, the particle weights are calculated by finding

the difference between the expected state and actual sensing information. Multiple

sensing inputs, such as position, velocity, acceleration and turn signal status are used.

Our results show that the proposed method has the ability to accurately discriminate

between various possible intentions and trajectories in a variety of complex driving

situations. A summary of our experimental results is shown in Table 6.2.

Table 6.2: Experimental results for intention and trajectory estimation.

Experiment Environment Results

Three way
Intersection

- The estimator successfully assigned higher probabilities
to the correct intention and trajectory for both Goal F and
Goal L.

Four Way
Intersection

- The method showed successful estimation of intention and
trajectory when there was sufficient sensing information.
- The method was tested in different situations, such as the
vehicle stopping and not stopping at a stop line, and using
or not using a turn signal.
- There was only one situation in which the estimator could
not predict the trajectory, which was when the vehicle
stopped at the stop line and no turn signal information
was available. However, even the best human driver can’t
predict where the vehicle will go next in this situation

Bus Stop
(Parking &
Yielding)

Ego vehicleStopped Bus

Yielding vehicle

- Our method successfully estimated the parking intention
of the bus and the intention of the vehicle in the other
lane as to whether it would or would not yield. This is
important because the planner needs to decide whether to
wait behind the bus or to pass it.
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6.2 Future Work

Although our integrated autonomous driving planner has been used successfully with

different platforms in multiple environments, it still has not been tested on public

roads. Achieving a speed of more than 30 kilometers/hour on a public road is one

of our future goals. In addition, the intention and trajectory estimator is currently

integrated chauvinistically with the planner. Another future goal is to use MDP to

calculate optimal motion actions rather the current optimization method. It would

also be interesting to try other methods of trajectory representation, such as repre-

sentation using polynomials. Finally, for intention estimation filtering, using other

probabilistic methods such as an HMM could improve performance dramatically.
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Appendix A

Implementation

In this section, we explain how the open source nature of OpenPlanner makes it easy

for other engineers and researchers to use and modify it. OpenPlanner’s source code

is part of the Autoware framework and is divided into two parts, op global plnner

and op local planner. Both set of nodes use three shared libraries, op_utility.so,

op_planner.so and op_simu.so, which contain reusable functionality for all planning

tasks. Since the OpenPlanner ROS nodes basically use these libraries as the system’s

core functionality, the basic planner could be used outside ROS with any other plat-

form, for example as in [67]. [72].

A.0.1 op global planner node

The op global planner node functions as a global planner by finding the reference path

to the goal position, and can be run upon request. The reference path contains mul-

tiple trajectories which guide the local planner to execute lane changes. By disabling

the lane change option, only one trajectory is returned, if possible. Inputs for the

global planner node include a vector map, current position and goal position. Output

is the shortest path or paths from the map after taking into account predefined traffic

costs, as shown in Figures 3-7 and 3-8 .
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Table A.1: Global planner parameters description

Parameter Description

pathDensity distance between every two way points in the generated path. the longer the path
the slower fixing the path density will be. recommended values ranging from [1,0.1]
meter. it is useful when spars vector map is used.

enableSmoothing use CG to smooth the generated path. only use this if the vector map has misaligned
and spars way points.

enableLaneChange when the vector map includes lane change information the planner will find multiple
small trajectories which contains lane change information and one reference path to
goal. when enabling the lane change option global planner should be called regularly
to plan for the next lane change.

enableRvizInput in simulation mode user can select goal position using rviz [ref to rviz], if not local
planner will send the goal information using the proper ros topic name.

mapSource select between different map sources, currently the node can use Autoware map mes-
sages or load the map from our custom .kml file

mapFileName when mapSource is set to 2, this should contain the kml map file name

The launch file for the global planner node has several parameters that enable

users to control the behavior and performance of the node, as shown in Table A.1

Additionally, the global planning node could be used with any local planner. It is the

responsibility of the task planner to invoke the global planner node and send it the

goal position. Currently, the goal position can also be specified using rviz (ROS vi-

sualization); in simulation mode, start and goal positions are specified in this manner.

A.0.2 op local planner nodes

The local planner nodes functions as a local planner. When there is a global path

available, it generates roll-out trajectories and then selects the best one to output, de-

pending on the obstacles detected. Also it outputs behavior state messages (current

state, maximum velocity, minimum velocity, stopping distance, following distance,

following velocity). Values in these messages are calculated to support a variety of dif-

ferent controllers. In our testing environment, we used a feed-forward PID controller

which only uses current trajectory, state and maximum velocity. Other controllers

may use following distance or velocity to generate smoother control signals. Users

can choose to run off a way-point follower or use Pure Pursuit nodes from Autoware

to follow the generated trajectory. Description of the important parameters for local
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Table A.2: Local planner parameters description

Parameter Description

mapSource select between different map sources, currently the node can use Autoware
map messages or load the map from our custom .kml file

mapFileName when mapSource is set to 2, this should contain the kml map file name

maxVelocity maximum velocity that planner should not exceed

maxLocalPlanDistance length of the local trajectory roll-outs

samplingTipMargin length of the roll-outs tip margin

samplingOutMargin length of roll-outs roll in margin

rollOutDensity distance between each two roll-out trajectories

rollOutsNumber number of roll-outs not including the center trajectory, this number should
be even number

pathDensity distance between each way-points of the local trajectory

minFollowingDistance distance threshold for exiting following behavior

maxFollowingDistance distance threshold for entering following behavior

minDistanceToAvoid distance threshold for obstacle avoidance behavior

enableSwerving enable obstacle avoidance inside the lane (no lane change)

enableFollowing enable following next car with the same velocity

enableTrafficLightBehavior enable wait for traffic light to be green, if this is enabled and not traffic light
detection is available, planner will assume that it is always red

enableLaneChange enable obstacle avoidance to through lane change (over tack)

width vehicle width in meters

length vehicle length in meters

wheelBaseLength vehicle wheel base in meters

turningRadius vehicle min turning radius in meters

planner node is provided in Table A.2.
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Appendix B

Algorithms

B.1 Algorithms

In this section we list the main algorithms used in OpenPlanner. The algorithm in

Table B.1 fix errors in the vector map raw data by interpolating points along the path

with fixed distance. In Tables B.2 and B.3 the main algorithm for finding global path

between start and goal points. The algorithm in Tables B.4 and B.5 used to generate

roll out trajectories for the local planner.

135



Table B.1: Algorithm for interpolating path points with fixed density.

Algorithm 1 Adjust path waypoints density (maxDistance)

01: remainingDistance = 0

02: for I = 0 to pathSize() - 1

03: d := distance(Pi, Pi+1)

04: nNewPoints := d / maxDistance

05: if remainingDistance == 0

06: newPath := Pi

07: end if

08: a = angle(Pi+1, Pi)

09: for j = 0 to nNewPoints -1

10: Pix’ := Pix’ + maxDistance * cos(a)

11: Piy’ := Piy’ + maxDistance * sin(a)

12: newPath := Pi

13: end for

14: end for

15: return newPath

Table B.2: Algorithm for finding global path connecting start point to goal point.

Algorithm 2 FindGlobalPath (sNode , goal)

01: procedure FindGlobalPath(sPose, gPose)

02: sNode := FindStartNode(sPose)

03: gNode := BuildSearchTree(sNode, gPose)

04: path := emptyPath

05: paths := emptyPathsList

06: TraceToStart(gNode, sNode, path, paths)

07: return paths

08: end procedure
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Table B.3: Detailed algorithms of procedure in Table B.2.

Algorithm 2 procedures
01: procedure BuildSearchTree

02: s := sNode

03: while (not s.isEmpty ) do

04: node = popSmallestCost(s)

05: if IsGoalAchieved(node, goal, MIN-DIST)

06: return node

07: end if

08: if IsNewNode(node)

09: if node.LeftLane

10: synamic leftNode = ExpandLeft(node.LeftLane)

11: CalculateCost(node, leftNode)

12: s := leftNode

13: end if

14: if node.RighttLane

15: rightNode = ExpandRight(node.RighttLane)

16: CalculateCost(node, rightNode)

17: s := rightNode

18: end if

19: for i = 0 to node.NextNodes

20: nextNode = ExpandNext(node.NextNodes[i])

21: CalculateCost(node, nextNode)

22: s := nextNode

23: end for

24: end if

25: end while

26: end procedure

27:

28: procedure TraceToStart(node, sNode, path, paths)

29: if (node NOTEQUAL sNode)

30: if (node.previousNodes.size() > 0)

31: paths := path

32: prevNode = FindMinCost(node.previousNodes)

33: TraceToStart(prevNode, path, paths)

34: node.dir = FORWARD

35: path := node

36: else if (node.leftNode)

37: TraceToStart(node.leftNode, path, paths)

38: node.dir = LEFT

39: path := node

40: else if (node.rightNode)

41: TraceToStart(node.rightNode, path, paths)

42: node.dir = RIGHT

43: path := node

44: end if

45: end if

46: end procedure
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Table B.4: Algorithm to generate roll out trajectories used in local planner.

Algorithm 3 GenerateRollOuts(sPose, maxDistance, globalPath, nRollOuts)

01: path-section := ExtractPlanningSection(sPose, maxDistance, globalPath)

02: SampleTrajectories(sPose, path-section, nRollOuts)

03: rollouts := SmoothRollOuts(rawRollOuts)

04: return rollouts

Table B.5: Detailed algorithms of procedure in Table B.4.

Algorithm 3 procedures
01: procedure ExtractPlanningSection(sPose, maxDistance, globalPath)

02: index := FindClosestWaypoint(sPose, globalPath)

03: while distance LESSTHAN maxDistance

04: pathSection := globalPath(index++)

05: end while

06: FixPathDensity(pathSection)

07: SmoothPath(pathSection)

08: return pathSection

09: end procedure

10:

11: procedure SampleTrajectories(sPose, pathSection, nRollOuts, carTipMargin, rollInMargin, rollOutMargin)

12: rollOuts := CreateList(nRollOuts)

13: for i = 0 to nRollOuts

14: rollOuts[i] = AddCarTipSection(pathSection, carTipMargin)

15: distanceFromCenter = rollOutDensity * (i - nRollOuts/2)

16: rollOuts[i] = SampleRollInSection(pathSection, distanceFromCenter, rollInMargin)

17: rollOuts[i] = AddRollOutSection(pathSection, rollOutMargin)

18: SmoothPath(rollOuts[i])

19: end for

20: return rawRollOuts

21: end procedure

22:

23: procedure SmoothRollOuts(rawRollOuts)

24: return rollOuts

25: end procedure
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