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ABSTRACT
The deformation of a vortex ring caused by its impingement on a sphere was numerically investigated using a proposed vortex-in-cell method.
The method was validated by simulation of the collision of a vortex ring with a rigid planar surface and proved to be most satisfactory in the
analysis of the dynamics of a vortex structure. In a coaxial collision, the behavior of the vortex structure is similar to that in the case of a
planar surface. A secondary vortex ring is formed owing to the separation of the boundary layers on the sphere, caused by the effect of the
primary vortex ring. The interaction between the secondary and primary vortex rings plays an important role in the dynamics of the vortex
structure when the secondary vortex ring is completely formed. In a noncoaxial collision, the structure of the secondary vortex is moder-
ately different from that in the coaxial collision. Moreover, the vortex structure in the coaxial collision is two-dimensional, in which the
vorticity field is dominated by two transverse components, whereas that in the noncoaxial collision is three-dimensional. The total kinetic
energy in both the cases decreases gradually during the entire period of evolution, whereas the enstrophy reduces in the early stage, then
increases considerably, before a gradual reduction in the final stage. The enstrophy reaches a peak when the secondary vortex ring is com-
pletely formed, at which stage the effects of vortex stretching and vorticity production at the solid boundary are higher than that of vortex
diffusion.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5122260., s

I. INTRODUCTION

Vortex dynamics is the key to understanding the phenomena
in fluid dynamics that are observed in both environmental pro-
cesses and engineering applications such as leapfrogging of circu-
lar vortex rings,1 evolution of an elliptic vortex ring,2 airplanes,3

bridge piers, and heat exchangers.4 A comprehensive understand-
ing of the flow phenomena is important for improving design- and
control-related engineering devices. Many researchers have made
considerable efforts in extending their knowledge of the phenom-
ena in vortex dynamics. Among these, the impingement of a vortex
ring on a rigid surface has been used widely to study the dynam-
ics of the vortex structure. The employed rigid surfaces are a pla-
nar surface,5–11 an inclined planar surface,12,13 a rough surface,14

a permeable surface,15 a cylindrical surface,16 and a spherical sur-
face.17,18 Allen et al.17 investigated the symmetric collision of a vortex
ring with a moving sphere, in which the diameter of the vortex ring

is larger than that of the sphere. The primary vortex ring passes
through the sphere followed by the secondary vortex ring. The colli-
sion of a vortex ring with a sphere of a larger diameter, such that
the vortex ring does not pass through the sphere, was not inves-
tigated. Felderhofa18 proposed a theory of the collision of a vortex
ring with a sphere to predict the behavior of the flow. However, this
theory is limited in the case of an inviscid incompressible flow, i.e.,
the vortex diffusion (the viscous term in the Navier–Stokes equa-
tions) effects are neglected. In this study, the deformation of a vor-
tex ring caused by its impingement on a larger sphere in a viscous
incompressible fluid was numerically investigated using a vortex-in-
cell (VIC) method and the characteristics of vortex dynamics were
explained.

The VIC method is a hybrid Eulerian–Lagrangian vortex
method, also known as a remeshed vortex particle method. It uses
the vortex particles transporting the flow quantities in a Lagrangian
frame with grid-based formulas to calculate the flow fields. In this
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method, the fluid flow is discretized into vortex particles that carry
the flow momentum in terms of vorticity and move at the flow
velocity given at the location of the particles. After moving to the
Lagrangian locations, the vortex particles are redistributed onto the
Eulerian grid while ensuring that the flow momentum is conserved.
Subsequently, the velocities and vorticities of the vortex particles
are calculated by solving the Poisson and momentum equations on
the grid, respectively. Compared to the traditional Eulerian meth-
ods, the VIC method has the advantages of the Lagrangian vor-
tex methods in the analysis of vortex dynamics such as formation,
deformation, breakdown, coalescence, and decay of eddies of vari-
ous scales. It also offers a lower numerical dissipation or diffusion
when solving the convection term in a linear form.19 Moreover, in
solving the linear convection term and redistribution of the vor-
tex particles, the Courant–Friedrichs–Lewy condition to guarantee
the simulation convergence is not required, leading to a choice of a
larger time step that can adapt to the simulation. Compared to the
Lagrangian vortex methods, this method avoids a high cost in the
calculation of the velocity of the vortex elements obtained using the
Biot–Savart integral with O(N2) operations, where N is the num-
ber of vortex elements. The cost can be reduced significantly when
the Poisson equation is solved on the grid using the iterative succes-
sive overrelaxation (SOR) method with O(N3/2) operations or the
direct fast Fourier transform (FFT) method with O(N log2N) opera-
tions, where N is the number of grid nodes. In addition, this method
overcomes the problem of distortion in the vortex distribution that
occurs in the Lagrangian vortex methods. Owing to the nature of the
features of the Lagrangian description and fluid strain, there is a clus-
tering of vortex elements leading to their deficiency in some regions,
where a certain number of vortex elements is required to maintain
the continuity of the vorticity field.20 The redistribution of vortex
particles onto the Eulerian grid in the calculation procedure resolves
this problem adequately. Moreover, the use of grid-based formulas
allows a combination of the VIC method and an immersed boundary
method to enforce the no-slip condition of flow on moving bodies
having complex geometries. This has the advantage of a smart grid in
which the flow quantities can be discretized in a consistent manner
to improve the accuracy of the method.21 Therefore, the VIC method
has the advantages of the Eulerian mesh-based methods as well
as the Lagrangian mesh-free methods and limits the disadvantages
of each.

The VIC method was introduced to simulate inviscid incom-
pressible flows by Christiansen22 and adapted later for viscous
incompressible flows by Cottet and Koumoutsakos.23 The method
was combined with the penalization method (a type of immersed
boundary method) to simulate the flow around a moving body by
Cottet and Poncet.19 The accuracy of the method was improved
using staggered-grid schemes in the investigation by Uchiyama
et al.21 Subsequently, the VIC method was proved to be robust
and efficient to simulate flows around two tandem cylinders.24

Moreover, it was also suitable to be applied to simulations of
gas–liquid two-phase flows.25–28 In this study, based on previ-
ous investigations,21,24 a VIC method was developed to simulate
the deformation of a vortex structure caused by its impingement
on a rigid body surface. The remainder of this paper is orga-
nized as follows: the numerical method is detailed in Sec. II, the
results are discussed in Sec. III, and the conclusions are presented
in Sec. IV.

II. NUMERICAL METHODS
A. Basic equations

The mass and momentum Navier–Stokes equations for the
flow of a viscous incompressible fluid in a domain Ω are written in
convective form as

∇ ⋅ u = 0, x ∈ Ω, (1)

∂u
∂t

+ (u ⋅ ∇)u = −1
ρ
∇p + ν∇2u + g, (2)

where x = (x, y, z), u = (u, v, w), p, ν, t, and g are the coordi-
nate, velocity, pressure, kinematic viscosity, time, and gravitational
acceleration, respectively. Taking the curl operation on both sides
of Eq. (2), the momentum equation for the fluid flow is written in
vorticity–velocity form as

∂ω
∂t

+ (u ⋅ ∇)ω = (ω ⋅ ∇)u + ν∇2ω, (3)

where the vorticity field is defined as

ω = ∇× u. (4)

In Eq. (3), the second term on the left is vortex convection, and the
first and second terms on the right are vortex stretching and dif-
fusion, respectively. The vortex convection (u ⋅ ∇)ω expresses the
motion of vortices with the conservation of the flow momenta and
their shapes. The vortex stretching (ω ⋅∇)u represents the lengthen-
ing of vortices in the three-dimensional fluid flow, associated with a
corresponding increase of the component of vorticity in the stretch-
ing direction. In other words, the vortex stretching expresses the
interaction between the local vector vorticity ω and the velocity gra-
dient ∇u. In turbulent flows, the vortex stretching is the cause of
the process of the turbulence energy cascade involving the transfer
of energy from the large scales of motion to the small scales. The
vortex diffusion ν∇2ω accounts for the diffusion of vortices by vis-
cosity. The vector velocity, based on Helmholtz’s theorem, is decom-
posed into an irrotational vector field ∇ϕ and a solenoidal vector
field∇ × ψ as

u = ∇ϕ +∇× ψ, (5)

where ψ and ϕ are the vector and scalar potentials of the velocity
field, respectively. Taking the curl of Eq. (5) and substituting the
properties of the irrotational and solenoidal vector fields, ∇ × (∇ϕ)
= 0 and ∇ ⋅ψ = 0, respectively, into the result, the Poisson equation
for ψ is derived as

∇2ψ = −ω. (6)

The Laplace equation for ϕ is obtained by substituting Eq. (5) into
Eq. (1) as

∇2ϕ = 0. (7)

B. Vortex-in-cell method
In the VIC method, the fluid is discretized into vortex parti-

cles p at location xp, moving at a speed of u(xp) given by the flow
velocity at the particle location, and carrying the vorticity ω(xp). The
momentum equation for the fluid flow, Eq. (3), is rewritten in the
Lagrangian form of vortex particles as
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dxp
dt
= u(xp), (8)

dω(xp)
dt

= (ω(xp) ⋅ ∇)u(xp) + ν∇2ω(xp). (9)

Initially, the vortex particles are located on the grid and their vor-
ticities ω(xp) are calculated using Eq. (9) to account for the vortex
diffusion and stretching. Subsequently, they convect, according to
Eq. (8), carrying their updated vorticities ω(xp). The particle veloc-
ity u(xp) is computed using Eq. (5), in which ψ and ϕ are obtained
by solving the Poisson and Laplace equations (6) and (7) on the
grid, respectively. After the particle convection, the vortex particles
with vorticities ω(xp) at the Lagrangian points xp are redistributed
onto the grid nodes xq while ensuring the conservation of the flow
momentum. The vorticity of the vortex particles on the grid nodes,
ω(xq), is attained by interpolating from that of vortex particles on
the Lagrangian points, ω(xp), as

ω(xq) =
Np

∑
p
ω(xp)W(

xq − xp
Δx

)W( yq − yp
Δy

)W( zq − zp
Δz
), (10)

where xq = (xq, yq, zq), xp = (xp, yp, zp), Δx, Δy, and Δz are the cell
widths, Np is the number of vortex particles, and W(x) is a third-
order accurate kernel-interpolation function,23

W(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 5
2
∣x∣2 +

3
2
∣x∣3 if ∣x∣ ≤ 1,

1
2
(2 − ∣x∣)2(1 − ∣x∣) if 1 < ∣x∣ ≤ 2,

0 if ∣x∣ > 2.

(11)

The vorticity is a solenoidal vector field, i.e., ∇ ⋅ω = 0. How-
ever, when solving the momentum equation (9) and redistributing
the particles from the Lagrangian to Eulerian locations (10) the vor-
ticity does not satisfy the above-mentioned property, i.e., ∇ ⋅ω ≠ 0
and must be corrected in the simulation procedure. There are two
approaches used widely to correct the vorticity field such as the pro-
jection method explained in detail in Ref. 28 and a method in which
the vorticity field is modified using Eq. (4)21 because of

∇ ⋅ ω = ∇ ⋅ (∇× u) = ∇× (∇ ⋅ u) = 0. (12)

In the current study, the vorticity is corrected using Eq. (4) after
every 50 time steps.

C. Penalization method
The penalization method was combined with the VIC method

to implement the no-slip condition of fluid flow on the solid body
surface.19 In the penalization method, the momentum equation of
fluid flow, Eq. (3), is rewritten as follows:

∂ω
∂t

+ (u ⋅ ∇)ω = (ω ⋅ ∇)u + ν∇2ω +∇× (λχs(us − u)), (13)

where λ is the penalization parameter, us is the solid body veloc-
ity, and χs identifies the solid and fluid regions. us and χs are
calculated as

us = u1
s ∪ u2

s ∪ . . . ∪ uNb
s , x ∈ Ω, (14)

χs = χ1
s ∪ χ2

s ∪ . . . ∪ χNb
s , x ∈ Ω, (15)

respectively, where the superscripts 1, 2, and Nb indicate the first,
second, and Nbth bodies immersed in the fluid, respectively. Each
χis, i = 1, 2, . . ., Nb, is expressed as

χis(x) = {
1 if x ∈ Si,
0 if x ∈ Ω / Si,

(16)

where Si denotes the solid region occupied by the ith body. In
the penalization method, the fluid is treated as a continuous phase
throughout the solid body by smoothing the value of χis near the
fluid–solid interface using the following Heaviside function:

χs(di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if di < −ε,
1
2
[1 +

di

ε
+

1
π

sin (π d
i

ε
)] if ∣di∣ ≤ ε,

1 if di > ε,

(17)

where di is the sign distance from the grid node to the surface of the
ith solid body shown in Fig. 1 and ε is set to be

√
3Δx. If the two solid

bodies touch each other, χis is calculated as

χis(x) = max(χis(x), χ j
s (x)), x ∈ Si ∩ Sj. (18)

The no-slip condition of the flow is enforced over a region with
a thickness of 2ε along the body surface. The nonzero values of the
velocity and vorticity fields still exist inside near the solid body. The
values of the flow quantities such as vorticity fluxes and shear stresses
on the solid body surface are not captured accurately. However, the
method can reproduce well the flow characteristics around the solid
body. Applying the splitting method to Eq. (13), the penalization
velocity is expressed as

FIG. 1. Two-dimensional configuration of the fluid region and solid region occu-
pied by the ith body. di indicates the sign distance from the grid node to the body
surface. 2ϵ is the thickness of the region along the solid surface in which the flow
penetrates. χs identities the fluid and solid regions, and its value equals 0, 1, and
0.5 when the grid nodes are in the fluid, solid regions, and on the solid body sur-
face, respectively. χs is smoothed using the Heaviside function when the grid node
near the body surface.
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∂u
∂t
= λχs(us − u). (19)

By choosing λ = 1/Δt, where Δt is the time step, and applying
the forward finite-difference scheme, the penalization velocity is
derived as

uλ = (1 − χs)u + χsus. (20)

The penalization vorticity is calculated by a summation of its previ-
ous simulation-time-step value, and the change in it is obtained from
the change in velocity and is derived as

ωλ = ω +∇× (uλ − u). (21)

D. Numerical procedure
If the flow quantities at time t are known, the flow at time (t +

Δt) is calculated by the following procedure:

● calculate the vorticity of the vortex particle ω(xp) using
Eq. (9) to account for the vortex stretching and diffusion,

● calculate the convection of the vortex-particle xp using
Eq. (8),

● redistribute the vortex particle from the Lagrangian to Eule-
rian points using Eq. (10),

● calculate the vector potential of the velocity ψ using Eq. (6),
● calculate the scalar potential of the velocity ϕ using Eq. (7),
● calculate the fluid velocity u using Eq. (5),
● correct the vorticity field ωcorrected to satisfy the solenoidal

condition using Eq. (4),
● calculate the solid velocity us using Eq. (14),
● calculate χs using Eq. (15) to identify the solid and fluid

regions,
● calculate the penalization velocity uλ using Eq. (20) to

enforce the no-slip condition of flow on the body surface,
● calculate the penalization vorticity ωλ using Eq. (21), and
● initialize the values of the velocity and vorticity fields u = uλ

and ω = ωλ, respectively, for the next time step.

In this study, the fourth-order accurate staggered-grid finite-
difference schemes are applied to spatial derivatives. The convec-
tion of the particle, Eq. (8), is solved using the first-order accu-
rate forward-finite-difference scheme and the temporal variation of
Eq. (9) is solved using the second-order Adams–Bashforth method.
The simulation is tested using the convective outflow condition
detailed in Ref. 28 as well as the periodic condition, in which
the Poisson equation (6), is solved by using the SOR method
or FFT method. The same simulation results are obtained using
both the conditions. The computational cost of solving the Pois-
son equation using the FFT method is much lower than that using
the SOR method. Therefore, the periodic condition is applied to
simulations.

III. RESULTS AND DISCUSSION
A. Collision of a vortex ring with a plane

A simulation of the collision of a vortex ring with a solid plane
is implemented to evaluate the ability of the method to examine the
deformation of a vortex caused by its impingement on a solid body
surface. The conditions of the simulation are the same as those in an

FIG. 2. Two-dimensional configuration of initial conditions of collision of a vortex
ring with a solid plane: The computational domain is (−4R, 4R) × (−4R, 4R) ×
(−2R, 6R). The vortex ring is described by a Gaussian distribution function. The
vortex ring has radius R, a core radius σ = 0.21R, a circulation Γ0 = 1, at the initial
position of (x0, y0, z0) = (0, 0, 3R), at ReΓ = 1743, and the distance between the
vortex ring and the plane is 3R.

experimental investigation by Chu et al.9 The configuration of the
initial conditions of the simulation is shown in Fig. 2. A vortex ring
at the outset of the simulation is described by a Gaussian distribution
function as

ωθ =
Γ0

πσ2 e
−

ρ2(x,y,z)
σ2 , (22)

where

ρ2(x, y, z) = (R −
√
(x − x0)2 + (y − y0)2)2 + (z − z0)2. (23)

The vortex ring has a radius R, a core radius σ = 0.21R, and an initial
circulation Γ0 = 1, moving vertically downward at a Reynolds num-
ber (ReΓ = Γ0/ν) of 1743, at the initial position of (x0, y0, z0) = (0,
0, 3R). The initial distance between the vortex ring and plane is 3R.
A computational domain of (−4R, 4R) × (−4R, 4R) × (−2R, 6R) is
divided into four grid resolutions of cube cells as discussed later and
the nondimensional time step, Δt∗ = ΔtΓ0/R2, is 0.005. The nondi-
mensional flow quantities are defined as t∗ = tΓ0/R2, w∗ = wR/Γ0,
ω∗y = ωyR2/Γ0, and |ω∗| = |ω|R2Γ0.

Figure 3 shows the effect of grid resolution on the results of
simulation. The profiles of the velocity and vorticity at the lowest
grid resolution of 120 × 120 × 120 nodes are quite different from
those at other grid resolutions. With an increase in grid resolution,
these profiles approach those at the highest grid resolution of 240
× 240 × 240 nodes. Therefore, the results of simulation are conver-
gent with an increase in the grid resolution. The relative errors in
these profiles at two grid resolutions, namely, 200 × 200 × 200 nodes
and 240 × 240 × 240 nodes, are calculated as

∣max(w∗
(200×200×200)) −max(w∗

(240×240×240))∣
max(w∗

(240×240×240))
= 6%, (24)

∣max(ω∗y(200×200×200)) −max(ω∗y(240×240×240))∣
max(ω∗y(240×240×240))

= 0.04%. (25)

Phys. Fluids 31, 107108 (2019); doi: 10.1063/1.5122260 31, 107108-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 3. Convergence study: Profiles of
vertical velocity w∗ and vorticity compo-
nent ω∗y along a horizontal line passing
through the vortex ring center at t∗ = 24
at four grid resolutions, as shown in the
legend.

These errors are acceptable and the grid resolution of 200 × 200 ×
200 nodes is applied to the other simulations. Moreover, a simula-
tion with a computation domain of (−5R, 5R) × (−5R, 5R) × (−2R,
6R) and a grid resolution of 250 × 250 × 200 nodes is tested and
shows that the computational domain does not affect the results. In
this study, the investigation of the effects of the time step upon the
simulation results are not carried out. However, the time step used in
this simulation is referenced from the simulation of the collision of
a vortex ring with a circular cylinder28 and it was proved to be good
enough to capture the dynamics of the collision of a vortex with a
solid surface.

Figure 4 describes the time evolution of distribution of the vor-
ticity component ωy on the x–z plane passing through the centerline
of the vortex ring. As the vortex ring moves toward the plane, the
boundary layers are formed on the plane, as shown at t∗ = 6 in the
middle column of the figure. This is due to the effect of the ambient
flow of the vortex ring, induced as a consequence of the spread of
the vorticity. At t∗ = 12, the layers appear to be compressed by the
primary vortex ring, leading to their separation from the plane. Sub-
sequently, they roll up to form the secondary vortex ring at t∗ = 16
and interact with the primary ring at t∗ = 18. From t∗ = 20, the sec-
ondary vortex ring moves around the primary ring and the boundary
layers continue to separate from the plane owing to the effect of the
primary vortex ring. There are some differences between the results
obtained by the simulation and the experiment due to improper
visualization of the vortex structure by the experiment. In the exper-
iment, the ink is used to represent the movement of fluid particles.
The ink injected only from the cylinder is transported by the flow
moving from the inside to the outside of the cylinder. The move-
ment of fluid particles carrying the ink forms the primary vortex ring
which is observed completely. However, there is no ink injected from
the sphere surface; therefore, the movement of fluid particles around
the sphere is not represented. The formation of the boundary lay-
ers and the secondary vortex ring, as shown at t∗ = 6, 12, and 16 in
the left column of the figure, is not satisfactory. The ink visualizing
the primary vortex ring is extracted by the secondary ring and the
boundary layers to form thin layers, as shown at t∗ = 16, 18, and 20.
The interactions between the primary and secondary vortex rings as
well as the primary vortex ring and the boundary layers are observed.
In general, the time evolution of the vortex structure observed
by the present simulation (VIC) agrees with that obtained by the
experiment (Expt.)9 and the Lattice Boltzmann method (LBM).15

This proves that the present numerical method can capture the

characteristics of the dynamics of a vortex ring impinging on a rigid
solid body.

Figure 5 shows a comparison of the displacement of the pri-
mary vortex core on the x–z plane as obtained by the Expt., the finite
different method (FDM),9 the LBM,15 and the VIC. The vorticity at
the center of the vortex ring is negligible, whereas that at the center
of the vortex core is almost maximum. In the present investigation,
the displacement of the primary vortex core is estimated as

xc =∬
H

xω∗y /∬
H

ω∗y , (26)

zc =∬
H

zω∗y /∬
H

ω∗y , (27)

where

H = {x > 0 ∧ y = 0 ∧ ω∗y ≤ −4.5 + 0.04t∗}. (28)

From Eqs. (26)–(28), it is established that the center of the pri-
mary vortex core is the center of the vorticity distribution within
the region H enclosed by a vorticity contour ω∗y = −4.5 + 0.04t∗.
This establishment is to obtain the center of the vortex eye, where
the vortex particles move around. The primary vortex ring is
enlarged when it moves down toward the plane. However, it moves
slightly upward at the position of x/R ≈ 1.8 due to its interaction
with the second vortex ring. In the final stage, the primary vor-
tex ring moves slightly downward and is extended horizontally.
The results of the present simulation agree well with the existing
results.

The dynamics of a three-dimensional vortex structure, induced
by the collision of a vortex ring with a plane, is shown in Fig. 6.
When the primary vortex ring moves toward the plane, a disc-
shaped boundary layer is formed on the plane, as shown at t∗ = 12.
This layer rolls up to form the secondary vortex ring at t∗ = 16 and
interacts with the primary vortex ring at t∗ = 18. From t∗ = 20, the
secondary vortex ring decreases in size and moves slightly down-
ward, whereas the primary ring continues increasing in size horizon-
tally. The strength of both the vortex rings reduces with time due to
the effect of vortex diffusion, as explained later.

The time evolution of the total kinetic energy and enstrophy are
shown in Fig. 7, where Ek(t) and Es(t) are calculated as

Ek(t) =
1

LxLyLz ∭
Ω

0.5u2dxdydz, (29)

Phys. Fluids 31, 107108 (2019); doi: 10.1063/1.5122260 31, 107108-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 4. Time evolution of collision of vor-
tex ring with solid plane: results of exper-
iment (a),9 present simulation (b), and
Lattice Boltzmann (LBM) method (c).15

In (b), the positive and negative values
of the vorticity component ω∗y are rep-
resented in red and blue with the color
scale in the range from −0.5 to 0.5.

Es(t) =
1

LxLyLz ∭
Ω

0.5ω2dxdydz, (30)

respectively, where Lx, Ly, and Lz are the sizes of the domain. There
is a decrease in the total kinetic energy during the entire period of

evolution owing to its transformation into thermal energy. The
enstrophy, which represents the total vorticity in the domain,
reduces gradually from t∗ = 0 to t∗ ≈ 8, as the effect of vortex dif-
fusion is greater than those of the vortex stretching and penalization
term. It is observed that the vortex diffusion creates a flow around
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FIG. 5. Displacement of primary vortex core in the x–z plane: Plots are obtained
by Expt. (black dotted line), FDM (red dotted line),9 LBM (green dotted line),15 and
VIC (blue dotted line).

the vortex ring with a reduction in the total vorticity. The stretch-
ing of the vortex is due to the transformation of the vortex structure
from two dimensions, in which the vorticity is composed of ωx and
ωy, to three dimensions, in which the vorticity is composed of ωx,

ωy, and ωz , and an increase in the total vorticity. The effect of the
penalization term accounts for the generation of the vorticity
induced by the body surface, as explained later. From t∗ = 8 to
t∗ = 15, the enstrophy increases significantly when the boundary
layer separates from the plane. During this period, the vorticity
induced by the solid surface is higher than the effect of vortex diffu-
sion. The enstrophy is maximum at t∗ = 15 when the second vortex
ring is formed. From t∗ = 16, the enstrophy decreases because the
generation of the vorticity induced by the interaction of the flow
with the body surface is less than the vortex diffusion effects. The
time evolution of the total kinetic energy and enstrophy are calcu-
lated at four grid resolutions, as shown in the legend and are found
to be convergent with an increase in the grid nodes.

Figure 8 shows the effects of vortex stretching (Term I), vortex
diffusion (Term II), and penalization (Term III) terms on the time
evolution of the rate of change of enstrophy, based on the concept
by Chu et al.,8 as formulated in detail in Appendix. From t∗ = 0
to t∗ = 6, the effects of these terms are low and the strength of the
primary vortex ring remains almost unchanged as it is far from the
plane. From t∗ = 6 to t∗ ≈ 15, the effects of terms I and III on the
rate of change of enstrophy increase significantly, whereas a consid-
erable reduction is observed due to term II. The explanation for this
is that when the primary vortex ring is near the plane, the boundary

FIG. 6. Dynamics of vortex structure induced by collision of vortex ring with a plane. Isosurface of the vorticity magnitude plotted at |ω∗| = 1. (a) t∗ = 6. (b) t∗ = 12. (c) t∗ =
16. (d) t∗ = 18. (e) t∗ = 20. (f) t∗ = 24.

FIG. 7. Time evolution of total kinetic
energy, Ek (t), represented in (a) and total
enstrophy, Es(t), represented in (b). The
values of Ek (t) and Es(t) are calculated in
the whole computational domain at four
grid resolutions shown in the legend.
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FIG. 8. Effects of vortex stretching (Term I), vortex diffusion (Term II), and
penalization term (Term III) on the rate of change of enstrophy.

layer is formed which rolls up to form the secondary vortex ring
causing an increase in the total vorticity. During this period, the
interaction between the primary vortex ring and the body surface
generates the vorticity (Term III) and is the cause of transformation
of the vortex structure from two to three dimensions (Term I). When
the vortex structure is transformed to three dimensions, the effect of
the diffusion term increases simultaneously, due to the diffusion of
three components of vorticity. The maximum effects of these terms
are observed at t∗ ≈ 15, at which time the secondary vortex ring is
completely formed. This is followed by a subsequent reduction in
the rate of change of enstrophy. This is because the interaction of
the primary vortex ring with the secondary ring plays a main role
in the dynamics of the vortex structure. Once the secondary vortex
ring is completely formed, the interaction between the primary vor-
tex ring and the boundary layer becomes weak, leading to a decrease
in the generation of vorticity from the solid body. From the figure,
it can be seen that the effects of the vortex stretching and penaliza-
tion terms always lead to an increase in the total vorticity, whereas a
reduction is caused due to vortex diffusion.

B. Coaxial collision of a vortex ring with a sphere
The time evolution of deformation of a vortex ring caused by

its impingement on a sphere is numerically investigated. The con-
ditions for the simulation, similar to those in the experiment, are
shown in Fig. 9. The diameter of the sphere is D = 30 mm. A pis-
ton moves from B to A at a speed of upiston(B→A) = 3.33 mm/s
and then from A to B at upiston(A→B) = 5 mm/s. A computational
domain of 2.33D × 2.33D × 4.66D is discretized into 200 × 200 × 400
cube cells and the nondimensional time step, Δt∗ = Δtupiston(A→B)/D,
is 1.667 × 10−4. The nondimensional time, component of vortic-
ity, and magnitude of vorticity are defined as t∗ = tupiston(A→B)/D,
ω∗y = ωy(D/upiston(A→B)), and |ω∗| = |ω|(D/upiston(A→B)), respec-
tively. The kinematic viscosity of the fluid is ν = 1 mm2/s. In this
case, the solid velocity of Eq. (14) is given by

u1
s = usphere = 0, (31)

u2
s = ucylinder = 0, (32)

u3
s = upiston. (33)

FIG. 9. Configuration of simulation conditions of the coaxial collision of a vortex
ring with a sphere.

Figure 10 shows the early stage of formation of the vortex rings.
At t∗ = 0.083 and 0.167, the piston moves upward and a vortex ring
is formed inside the cylinder due to rolling up of the shear layer gen-
erated at the tip of the cylinder. At t∗ = 0.25, the piston moves down-
ward and a primary vortex ring starts forming outside the cylinder
whereas the ring inside the cylinder continues moving upward. At
t = 0.333, the vortex ring inside the cylinder collides with the pis-
ton, while the primary vortex ring outside the cylinder is completely
formed. In this study, the characteristics of the collision of the pri-
mary vortex ring with a sphere are investigated, whereas a discussion
of the collision of the vortex ring with the piston inside the cylinder
is omitted.

The characteristics of the primary vortex ring at t∗ = 0.333
are examined. The estimated diameter of the primary vortex ring is
Dpv = 0.444D, shown in Fig. 13. The circulation of the vortex at this
time is calculated by taking the integrals of the vorticity distribution
ωy over regions in the x–z plane passing through the center of the
vortex-ring as follows:29,27

Γ(t∗=0.333) =
1
2∬

A+

ωydxdz −
1
2∬

A−

ωydxdz =∬
A+

ωydxdz. (34)
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FIG. 10. Formation of primary vortex ring.

The regions A+ and A− are shown in Fig. 11. The circulation is cal-
culated in these regions to avoid the effect of a vortex at the cylinder
tip, while still considering the effect of the wake of the primary vor-
tex ring, and its value is Γ = 1030 mm2/s. The radius of the core of
the primary vortex ring is estimated using the formula of Swearingen
et al.,10 as follows:

FIG. 11. Configuration of the areas A+, A−, and B+ used to calculate the circulation,
vortex core center, and radius.

σ =

¿
ÁÁÁÀ∬

B+

ρ2(x, z)ωydxdz/∬
B+

ωydxdz, (35)

where ρ2(x, z) = (x − xc)2 + (z − zc)2 and (xc, zc) = (−0.222D,
1.173D), obtained using Eqs. (26) and (27), are the coordinates of
the center of the vorticity distribution within the region B+. Region
B+ belongs to region A+ and is enclosed by a vorticity contour of
ω∗y = 132, as shown in Fig. 11. The estimated radius of the vortex
core is σsimulation = 0.055D. The radius of the vortex core can also be
obtained using the experimental Saffman formula30

σ =
√

4νT, (36)

where T = 0.66 s is the stroke time of the piston moving from A to
B. The radius of the core estimated using formula (36) is σexperiment
= 0.054D and the relative error between the simulation and experi-
mental measurement is 1.85%. The calculated Reynolds number of
the vortex ring, ReΓ , is 1030.

Figure 12 shows the dynamics of the two-dimensional vortex
structure induced by the coaxial collision of a vortex ring with a
sphere. When the primary vortex ring moves toward the sphere, a
boundary layer is formed at t∗ = 0.333 and 0.418 as shown in the fig-
ure. This boundary layer separates from the surface of the sphere
at t∗ = 0.5 due to the effect of the primary vortex ring and rolls
up to form the secondary vortex ring at t∗ = 0.583, as shown in a
three-dimensional figure later. From t∗ = 0.667, the secondary vor-
tex ring interacts with the primary ring in which the motion of the
secondary ring around the primary ring is observed to be the same
as that in the case of collision of a vortex ring with a plane. The
boundary layer continues to separate from the surface of the sphere
and encloses the primary vortex ring. In the experiment, the ink
is only injected from the cylinder, and therefore, the formations of
the boundary layer and the secondary vortex ring are not observed
completely. In general, the results of the dynamics of the vortex
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FIG. 12. Time evolution of two-dimensional vortex structure induced by coaxial collision of vortex ring with sphere on the x–z plane. The simulation and experimental results
are visualized by the vorticity component ωy and ink, respectively. The positive and negative values of the vorticity component ωy are shown in red and blue, respectively.

structure obtained by the simulation agree with the experimental
results.

Figures 13 and 14 show the time evolution of the diameter
and vertical displacement, and the displacement on the x–z plane

of the vortex cores, respectively. As the primary vortex ring moves
toward the sphere, its diameter increases sharply at first from t∗ = 0
to t∗ = 0.5, then gradually on coming in contact with the sphere,
as seen in Fig. 13(a). The secondary vortex ring, which is formed
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FIG. 13. Time evolution of diameter and
vertical (z-direction) displacement of vor-
tex cores represented in figures (a) and
(b), respectively.

FIG. 14. Displacement of vortex cores on x–z plane.

from t∗ = 0.5, enlarges slightly in a short time and subsequently
reduces in size gradually. The secondary vortex ring moves around
toward the center of the primary vortex ring. This is explained as
a fact that the strength of the primary vortex ring is greater than

that of the secondary vortex ring, resulting in a nonzero value of
the total circulation of vortex pair, leading to a net rotation of the
vortex system. This system rotates around a nonstationary point
laying on an orbit which is most influenced by the primary vortex
ring. Additional explanations of the interaction of the vortex pair
are found in investigations by Meunier et al.31 and Forster et al.32

In addition, when the secondary vortex ring is formed, its loca-
tion is always higher than that of the primary ring, as shown in
Fig. 13(b). The primary vortex ring appears to slip on the surface of
the sphere, whereas the secondary ring is pushed up and dwindles in
size, as shown in Fig. 14. The diameter and displacement of the vor-
tices are calculated using the position of the centers of vortex eyes
obtained by choosing the pixels of the high resolution images cor-
responding to the centers of the vorticity contours with the smallest
shapes.

The time evolution of the three-dimensional vortex structure
induced by the coaxial collision of a vortex ring with a sphere is
shown in Fig. 15. The boundary layer is formed when the primary
vortex ring is near the surface of the sphere at t∗ = 0.417. Subse-
quently, the secondary vortex ring is formed due to the interaction
of the primary vortex ring with the boundary layer, as shown at
t∗ = 0.5 and 0.585. The strength of the vortex rings decreases with
time owing to their mutual interaction, at t∗ = 0.667. At t∗ = 0.75,
the secondary vortex ring disappears, although it is displayed on the

FIG. 15. Time evolution of three-dimensional vortex structure induced by coaxial collision of vortex ring with sphere. Isosurface of magnitude of vorticity is plotted at |ω∗| = 18.
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x–z plane in Fig. 12. This is because the magnitude of the vorticity
at |ω∗| = 18 is higher than that of the maximum vorticity of the
second vortex ring. The vorticity component ωz is very small com-
pared with the components ωx and ωy. The dynamics of the vortex
structure almost remain in two dimensions.

C. Noncoaxial collision of a vortex ring with a sphere

The simulation and experimental conditions in the noncoax-
ial collision of a vortex ring with a sphere are the same as in the
coaxial collision, except that the vertical centerlines of the sphere

FIG. 16. Time evolution of vortex structure induced by noncoaxial collision of vortex ring with sphere on the x–z plane. The simulation and experimental results are visualized
by the vorticity component ωy and ink, respectively. The positive and negative values of the vorticity component ωy are shown in red and blue, respectively.
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and cylinder differ by L = D/4, i.e., the distance between the verti-
cal centerlines of the sphere and primary vortex ring at t∗ = 0.333 is
L = D/4.

Figure 16 shows the time evolution of the two-dimensional vor-
tex structure induced by the noncoaxial collision of a vortex ring
with a sphere. A boundary layer is formed when the primary vor-
tex ring moves toward the sphere, at t∗ = 0.333 as shown in the
figure; however, there is a phase difference between the centerline
of the layer and vertical centerline of the sphere. At t∗ = 0.417, the
thickness of the layer increases significantly when the primary vor-
tex ring is close to the sphere. The primary vortex ring interacts
with the boundary layer at t∗ = 0.5, leading to a separation of the
boundary layer at t∗ = 0.583. On the left of the sphere, a weak inter-
action between the primary vortex ring (represented in red) and the
boundary layer (represented in blue) is similar to that in the coaxial
collision, as shown at t∗ ≥ 0.667. However, the location of the vortex
core does not appear to change with time. On the right of the sphere,
the primary vortex core (represented in blue) rotates around its cen-
ter and pushes the boundary layer (represented in red) far away from
the sphere at t∗ = 0.667. At this time, the boundary layer rolls up to
form the secondary vortex and continues to separate from the sur-
face of the sphere. Subsequently, the primary vortex core interacts
with the secondary vortex as well as the separated boundary layer
at t∗ = 0.75 as a result of which the primary vortex core splits into
two, as shown at t∗ = 0.833 and 0.917. The results obtained by the
simulation and the experiment agree with each other.

Figure 17 shows the time evolution of the vorticity component
ωx on the three vertical planes x/D = 0, x/D = 0.25, and x/D = 0.5. The

planes x/D = 0 and x/D = 0.25 pass through the vertical centerlines
of the sphere and cylinder, respectively, whereas the plane x/D = 0.5
is a vertical tangential plane of the sphere. The characteristics of the
interaction between the primary vortex core and boundary layer on
the planes x/D = 0 and x/D = 0.25 are similar to those in the coaxial
collision. However, the interaction on the plane x/D = 0 is so weak
that the secondary vortex core is not observed in the noncoaxial col-
lision. In addition, at t∗ = 0.583, the angle of rotation of the primary
vortex core around its center on the plane x/D = 0 is more than
that on the plane x/D = 0.25. On the plane x/D = 0.5, the primary
vortex core appears to slip on the boundary layer at t∗ = 0.583, break-
ing it and leading to the formation of the secondary vortex core at
t∗ = 0.667.

Figure 18 describes the time evolution of the three-dimensional
vortex structure induced by the noncoaxial collision of a vortex ring
with a sphere. The plots in the upper and lower rows of the figure
are the isosurface of the magnitude of the vorticity |ω| and vorticity
component ωz , respectively. The upper row depicts the deforma-
tion of the primary vortex ring when it collides with the sphere.
The circulation is unequal at the cross sections of the primary vor-
tex ring; the secondary vortex is not a ring and interacts strongly
with half of the primary vortex ring on the right of the sphere. The
lower row shows a significant development in the vorticity compo-
nent ωz when the primary vortex ring reaches the sphere. This is
completely different from the case of coaxial collision in which the
values of this component are negligible. The structure of the vortic-
ity component ωz is similar to the structure of the magnitude of the
vorticity ω.

FIG. 17. Time evolution of two-dimensional vortex structure induced by noncoaxial collision of vortex ring with sphere at three cross sections. The simulation results are
visualized by the vorticity component ωx on three planes, x/D = 0, x/D = 0.25, and x/D = 0.5, as plotted in the rows 1, 2, and 3, respectively.
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FIG. 18. Time evolution of three-dimensional vortex structure induced by noncoaxial collision of vortex ring with sphere. In the upper row, the isosurface of the magnitude of the
vorticity is plotted at |ω∗| = 18. In the lower row, the vorticity component is plotted at ω∗z = ±6 represented in red and blue, respectively, where ω∗z = ωz(D/upiston(A→B)).

Figure 19 shows the time evolution of the total kinetic energy
and enstrophy of the coaxial and noncoaxial collisions of a vortex
ring with a sphere. In general, the curves are similar to those in the
collision of a vortex ring with a solid plane. A gradual decrease in
the kinetic energy during the entire period is observed in the coaxial
as well as noncoaxial collisions and the behavior in both the cases is
similar. The total enstrophy reduces slightly from t∗ = 0 to t∗ ≈ 0.416,
before a sharp increase from t∗ ≈ 0.416 until t∗ ≈ 0.5 at which time
the secondary vortex ring is completely formed, after which it con-
tinues to decrease. In particular, the maximum total enstrophy in
the coaxial collision is higher than that in the noncoaxial collision.
This is because the effect of vortex diffusion in the noncoaxial colli-
sion is greater than that in the coaxial collision. The vortex structure
in the noncoaxial collision is in three dimensions, leading to the

FIG. 19. Time evolution of total kinetic energy and enstrophy of coaxial and non-
coaxial collisions of vortex ring with sphere: The values are calculated in the
computational domain (−1.165D, 1.156D) × (−1.165D, 1.156D) × (−D, 1.65D)
to avoid the effects of the vortex ring inside the cylinder and the shear layers at the
cylinder tip.

diffusion of three components of the vorticity, whereas that in the
coaxial collision is in two dimensions, corresponding to the diffusion
of two components, ωx and ωy. The effects of the vortex stretching, a
cause of the production of vorticity component ωz , in the noncoax-
ial collision are greater than those in the coaxial collision. However,
the difference in the effects of the penalization term in the two is
negligible.

IV. CONCLUSIONS
A VIC method was developed to simulate the deformation of

a vortex ring caused by its impingement on a rigid surface. The
numerical method was first validated by simulating the collision
of a vortex ring with a rigid planar surface. The displacement of
the primary vortex core and the distribution of the vorticity in two
dimensions agree well with the existing results. We carried out the
investigation of coaxial and noncoaxial collisions of a vortex ring
with a spherical surface by an experiment as well as by simulation.
The results of the dynamics of the vortex structure obtained by sim-
ulation agree well with the experimental results. The highlights of
the study are given below:

(1) In the coaxial collision, the secondary vortex ring is formed
when the primary vortex ring moves toward the sphere
and there is a mutual interaction between them. The sec-
ondary vortex ring moves around the primary ring and its
size reduces gradually whereas the size of the primary ring
increases and it moves slightly downward. The vortex struc-
ture almost remains in two dimensions, in which the vorticity
comprises two components, ωx and ωy.

(2) In the noncoaxial collision, the secondary vortex that is
observed is not a vortex ring, although at some cross sections
of the side view, the behavior of the vortex dynamics is similar
to that in the coaxial collision. The circulation of the primary
vortex ring is unequal at all the cross sections. In addition,
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the vortex structure is three-dimensional, and there is a sig-
nificant development of the vorticity component ωz when the
primary vortex ring reaches the sphere.

(3) The total kinetic energy in the two cases reduces gradually
over the entire time evolution due to its transformation into
thermal energy. The enstrophy reduces gradually in the early
stage due to the effect of vortex diffusion and increases con-
siderably when the primary vortex ring reaches the sphere.
The enstrophy reaches a maximum value when the secondary
vortex is completely formed before decreasing gradually. This
is because the effects of the vortex stretching and penalization
terms are lower than that of vortex diffusion. The interaction
between the primary and secondary vortices plays a main role
in this period. In this study, only a single Reynolds number
and the fixed diameter of the sphere are used to investigate
the vortex dynamics. The effects of these parameters on the
flow phenomena are of interest in future investigations.
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APPENDIX: RATE OF CHANGE OF ENSTROPHY
The total enstrophy of the flow is rewritten as

Es(t) =
1

LxLyLz ∭
Ω

0.5ω2dxdydz. (A1)

The rate of change of enstrophy is expressed as

D(Es(t))
Dt

= 1
LxLyLz ∭

Ω

D(0.5ω2)
Dt

dxdydz

= 1
LxLyLz ∭

Ω

ωDω
Dt

dxdydz. (A2)

Substituting the following momentum equation

Dω
Dt
= ∂ω

∂t
+ (u ⋅ ∇)ω= (ω ⋅ ∇)u+ ν∇2ω+∇× [λχs(us −u)] (A3)

into Eq. (A2), the result is obtained as

D(Es(t))
Dt

= 1
LxLyLz ∭

Ω

ω ⋅ [(ω ⋅ ∇)u]dxdydz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I = stretching effects

+
1

LxLyLz ∭
Ω

ω ⋅ (ν∇2ω)dxdydz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term II = diffusion effects

+
1

LxLyLz ∭
Ω

ω ⋅ [∇× (λχs(us − u))]dxdydz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term III = penalization effects

. (A4)

The first, second, and third terms on the right-hand side of Eq. (A4)
express the effects of stretching, diffusion, and penalization, respec-
tively, on the rate of change of enstrophy.
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