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Coarse-graining of microscopic dynamics into a mesoscopic transient potential model
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We show that a mesoscopic coarse-grained dynamics model which incorporates the transient potential can
be formally derived from an underlying microscopic dynamics model. As a microscopic dynamics model, we
employ the overdamped Langevin equation. By utilizing the path probability and the Onsager-Machlup type
action, we calculate the path probability for the coarse-grained mesoscopic degrees of freedom. The action for
the mesoscopic degrees of freedom can be simplified by incorporating the transient potential. Then the dynamic
equation for the mesoscopic degrees of freedom can be simply described by the Langevin equation with the
transient potential (LETP). As a simple and analytically tractable approximation, we introduce additional degrees
of freedom which express the state of the transient potential. Then we approximately express the dynamics of
the system as the the combination of the LETP and the dynamics model for the transient potential. The resulting
dynamics model has the same dynamical structure as the responsive particle dynamics type models [W. J.
Briels, Soft Matter 5, 4401 (2009)] and the multichain slip-spring type models [T. Uneyama and Y. Masubuchi,
J. Chem. Phys. 137, 154902 (2012)]. As a demonstration, we apply our coarse-graining method with the LETP
to a single particle dynamics in a supercooled liquid, and compare the results of the LETP with the molecular
dynamics simulations and other coarse-graining models.
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I. INTRODUCTION

Soft matters such as polymers form various mesoscopic
structures and exhibit various interesting dynamics. Coarse-
grained models are useful to study the mesoscopic dynamics
of such complex systems by simulations, especially at the
long time scale. The coarse-graining reduces the degrees of
freedom of the system, and changes the characteristic time and
length scales. As a result, the computational costs required for
simulations drastically reduce. For some soft matter systems
such as polymer melts, due to their long relaxation times,
we cannot study their long time relaxation behavior without
coarse-grained models [1,2]. Although the coarse-grained
models are useful for simulations, the validity of simulation
results is not always guaranteed. This is because the coarse-
graining processes usually involve some approximations, and
the validity of coarse-grained models strongly depends on the
properties of the employed approximations. Unfortunately,
the properties of approximations are not clear in some cases.
Some coarse-grained models, such as the reptation model
for entangled polymers [3], are rather phenomenologically
proposed, and not theoretically derived from the underlying
microscopic models. For such cases, the relation between the
microscopic models and mesoscopic coarse-grained models is
not clear in general.

To study the properties of the coarse-grained models, the-
oretical methods based on statistical mechanics are useful.
If the target system is not largely deviated from the equilib-
rium state, we can utilize the linear nonequilibrium statis-
tical mechanics. The dynamic equations for coarse-grained
degrees of freedom can be expressed, for example, as the

Langevin equation [4] or the generalized Langevin equation
(GLE) [5]. The transport coefficients can be related to the
correlation functions of underlying microscopic dynamics, by
the fluctuation-dissipation relation [6]. The general equation
for nonequilibrium reversible-irreversible coupling formalism
[7–9] gives a general form of the effective dynamic equations.
The theoretical analyses of the coarse-grained models from
such viewpoints are important in order to understand them in
detail. For example, the dissipative particle dynamics, which
was originally introduced phenomenologically, has been the-
oretically justified by using some statistical mechanical meth-
ods [10–12].

For entangled polymer melts which exhibit characteristic
slow relaxation behavior, various mesoscale phenomenologi-
cal models have been proposed and utilized [3]. Among them,
some recently proposed models have interesting theoretical
structures, from the viewpoint of statistical mechanics. Kindt
and Briels [13] and Briels [14,15] proposed the responsive
particle dynamics (RaPiD) model, in which a single polymer
chain is expressed as a single coarse-grained particle. In the
RaPiD model, the number of entanglements between differ-
ent polymer chains is employed as a fluctuating dynamical
variable. The system is expressed by the particle positions
and the numbers of entanglements between particles. Then
the dynamics is described by the dynamic equations for the
particles and the numbers of entanglements. Chappa et al. [16]
and Uneyama and Masubuchi [17] proposed the multichain
slip-spring (MCSS) model. In the MCSS model, polymer
chains are modeled as Rouse chains, and chains are connected
by so-called slip springs. The slip springs move along the
chains, and are dynamically reconstructed at chain ends. In
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the MCSS model, the system is expressed by the positions of
beads which construct polymer chains, and the states of slip-
springs. The dynamics is described by the dynamic equation
for beads and some stochastic transition rules for slip-springs.

The RaPiD and MCSS models have similar theoretical
structures, and in fact they can be unified [18]. The important
point is that both the RaPiD and MCSS models employ some
extra degrees of freedom (the numbers of entanglements or
the slip-spring states), in addition to the usual coarse-grained
degrees of freedom (the positions of centers of mass or beads).
If the system obeys the GLE, the state of the target system
is fully described by the coarse-grained degrees of freedom.
We may interpret that the thermodynamic state is uniquely
determined by the coarse-grained degrees of freedom. In this
sense, we may call the coarse-grained degrees of freedom as
the thermodynamic degrees of freedom. (The memory kernel
does not affect the thermodynamic state and thus is qualita-
tively different from the thermodynamic degrees of freedom.)
In the RaPiD and MCSS models, in contrast, the thermody-
namic potential explicitly depends on both the coarse-grained
and extra degrees of freedom. In this paper, we may call
such extra degrees of freedom as the “pseudothermodynamic
degrees of freedom.” The pseudothermodynamic degrees of
freedom dynamically modulate the effective potentials for
the normal degrees of freedom. This dynamic modulation
is realized through interaction potentials which are called
the “transient potentials” [14,15]. The success of the RaPiD
and MCSS models leads us to an idea to generalize these
models. If we can construct a general method which employs
the transient potential and pseudothermodynamic degrees of
freedom, it will provide various mesoscopic coarse-grained
dynamic equations for soft matter systems.

In this paper, we show that we can actually construct a
mesoscopic coarse-grained model with the transient potential,
starting from the underlying microscopic dynamics model.
In general, we cannot obtain the dynamic equation for the
transient potential in an explicit form. We propose a simple
dynamics model for the transient potential by using the pseu-
dothermodynamic degrees of freedom. We also propose some
formal expressions for the dynamics of the transient potential.
We show that, under some assumptions, we can derive the dy-
namic equation models which are consistent with the RaPiD
and MCSS models. To study properties of our theoretical
method in detail, we compare our method with the GLE and
the Langevin equation with the fluctuating diffusivity. Also,
we apply our model and the GLE to the dynamics of a single
tagged particle in a supercooled liquid, and consider whether
these coarse-graining methods can reasonably describe the
dynamics or not.

II. THEORY

A. Microscopic model

When we consider the coarse-graining, the Hamilton
canonical equations are employed as microscopic models in
most cases [5,19]. However, for soft matters such as polymers,
the overdamped Langevin equations are reasonably utilized
as the microscopic molecular models [3]. In addition, by
applying the standard coarse-graining procedure, one can

obtain a Langevin equation from the Hamilton canonical
equations. Therefore, in this paper, we employ an overdamped
Langevin equation as the microscopic model. We consider the
microscopic model which consists of N particles in a three
dimensional space, and we describe the position of the ith
particle as ri. We employ the following Langevin equation as
the microscopic dynamic equation for the ith particle:

dri(t )

dt
= −

∑
j

Li j · ∂U ({ri(t )})

∂ri(t )
+

∑
j

√
2kBT Bi j · w j (t ),

(1)

where Li j is the mobility tensor, U ({ri}) is the interaction
potential energy, Bi j is the noise coefficient tensor which
satisfies Li j = ∑

k Bik · BT
jk (the superscript “T” represents the

transpose), kB is the Boltzmann constant, T is the temperature,
and wi(t ) is the Gaussian white noise. From the Onsager
reciprocal theorem, Li j is a symmetric tensor. The noise wi(t )
should satisfy the following fluctuation-dissipation relation:

〈wi(t )〉 = 0, 〈wi(t )w j (t
′)〉 = 1δi jδ(t − t ′), (2)

where 〈. . . 〉 is the statistical average and 1 is the unit tensor.
Since Eq. (1) is a stochastic differential equation, we should
specify the interpretation of the stochastic term [20]. We em-
ploy the Ito interpretation in this paper. (One can employ the
Stratonovich interpretation instead. In that case, we convert
the Stratonovich type equation to the Ito type equation [20].
The result is the same in the current case.)

For the sake of simplicity, we introduce a short-hand
notation for the positions as R ≡ [r1x, r1y, r1z, r2x, . . . , rNz]T.
The vector R can be interpreted as a 3N-dimensional vector.
We describe the mobility tensor, the noise coefficient tensor,
and the Gaussian white noise in a similar way. For the sake
of simplicity, we also employ the short-hand notation for the
noise coefficient tensor, B = L1/2. [Here, L1/2 represents the
matrix square root which satisfies L1/2 · (L1/2)T = L.] Then,
Eq. (1) can be rewritten as

dR(t )

dt
= −L · ∂U [R(t )]

∂R(t )
+

√
2kBT L1/2 · w(t ), (3)

and Eq. (2) can be rewritten as

〈w(t )〉 = 0, 〈w(t )w(t ′)〉 = 1δ(t − t ′). (4)

In what follows, we use Eq. (3) as the microscopic dynamic
equation. The equilibrium probability distribution for the po-
sition R is simply given as the Boltzmann distribution:

Peq(R) = 1

Z exp[−U (R)/kBT ], (5)

where Z is the partition function:

Z ≡
∫

dR exp[−U (R)/kBT ]. (6)

For simplicity, we have assumed that all the particles in the
system are distinguishable and ignored the Gibbs factor.

The probability (of the realization) for the Gaussian white
noise which satisfies Eq. (4) is given as [21]

P[w] = N (w) exp

[
−1

2

∫
dt w2(t )

]
, (7)
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where N (w) is the normalization factor. Equation (7) can be
interpreted as the probability of a specific path, and thus
we may call it as the path probability. The normalization
factor should be determined so that the functional integral
(path integral) over w becomes unity:

∫
DwP[w] = 1. (In

this paper, however, the normalization factor itself does not
become important and thus we do not consider it in detail.)
By combining Eqs. (3) and (7), the path probability for R(t )
is given as

P[R] = N (R) exp {−S[R]}, (8)

S[R] ≡ 1

2kBT

∫
dt G

(
dR(t )

dt
+ L · ∂U [R(t )]

∂R(t )
; L

)
, (9)

G(x,C) ≡ 1

2
xT · C−1 · x, (10)

where N (R) is the normalization factor (and is generally
different from N (w), due to the Jacobian for the variable
transform) and S[R] is the action which gives the statisti-
cal weight for a specific path (the Onsager-Machlup action)
[22,23]. In what follows, we express normalization factors for
the path probabilities by N (··· ) in a similar way. Equation (10)
represents the Gaussian weight for a vector x and a covariance
tensor C. The covariance tensor C is a second rank symmetric
positive definite tensor and C−1 is its inverse: C · C−1 = 1. All
the information on the microscopic dynamics is given by the
path probability (8).

Before we consider the coarse-graining of the microscopic
dynamic equation, here we briefly comment about the mo-
bility model. In Eq. (3), the mobility tensor L is assumed to
be independent of the position vector R(t ). Such a situation
is realized, for example, if we consider the situation where
all particles feel the friction independently. The noise term is
statistically independent of R(t ) (the additive noise), and the
analyses can be simplified. However, in general, the mobility
tensor can depend on R(t ), such as the case of the systems
with the hydrodynamic interaction. If the mobility tensor
depends on R(t ), then the noise coefficient tensor L1/2 also
depends on R(t ). In such a case, the noise term becomes
the multiplicative noise. The extension of our theory to the
multiplicative noise is possible but complicated. (We show
the extension in Appendix A.) Thus here we limit ourselves
to the case of the additive noise.

B. Coarse-graining

What we want to obtain here is the effective dynamic
equation for some mesoscopic degrees of freedom. We limit
ourselves to the mesoscopic degrees of freedom which can be
given as the linear combinations of the microscopic position,
R(t ). (The nonlinear variable transform can be employed
but the calculation becomes complicated. We show the ex-
tension of the theory to the nonlinear variable transform in
Appendix A.) For example, the centers of mass of molecules
and the end-to-end vectors of polymers can be expressed
as the linear combinations. We describe the ith mesoscopic
degrees of freedom as Qi, and assume that there are M
mesoscopic variables. (The number of mesoscopic variables
M is generally much smaller than the number of microscopic

degrees of freedom, 3N .) Then, without loss of generality, we
can transform the microscopic degrees of freedom R as

X ≡
[

Q

θ

]
= V · R, (11)

where Q = [Q1, Q2, . . . , QM]T (an M-dimensional vector), θ

is a (3N − M )-dimensional vector, and V is a transformation
matrix (the dimension of which is 3N × 3N). We can take θ

so that the transformation matrix is invertible. Then we can
express R as follows, by inverting Eq. (11):

R = V −1 ·
[

Q

θ

]
= V −1X . (12)

From Eqs. (11), a function of R such as the potential energy
U can be interpreted as a function of X (or, equivalently, a
function of Q and θ).

We rewrite Eqs. (8) and (9) as functionals of Q and θ:

P[Q, θ] = N (Q,θ) exp {−S[Q, θ]}, (13)

S[Q, θ] = 1

2kBT

∫
dt G

(
dX (t )

dt
+ L′ · ∂U [X (t )]

∂X (t )
; L′

)
,

(14)

where L′ ≡ V · L · V −1 is the mobility tensor for X . The path
probability for the mesoscopic degrees of freedom can be
obtained by eliminating the variable θ:

P[Q] =
∫

DθP[Q, θ]. (15)

Unfortunately, Q and θ are coupled in a complicated way. In
general, we cannot evaluate Eq. (15) analytically. We need to
introduce some approximations to proceed the calculation.

Here, we recall that the vector θ can be arbitrarily chosen as
long as V is invertible. Because we are interested only in the
mesoscopic variable Q, the choice of θ is still rather arbitrary
at this stage. We choose θ so that the action becomes a
simple form. We employ θ, which gives the following mobility
tensor:

L′ =
[
� 0

0 M

]
, (16)

where � and M are the mobility tensors for Q and θ, respec-
tively. [The dimensions of � and M are M × M and (3N −
M ) × (3N − M ), respectively.] In other words, we employ θ,
which is L′-orthogonal to Q:

[
QT 0

] · L′ ·
[

0

θ

]
= 0. (17)

With this specific choice of θ, we can further rewrite Eq. (14)
as

S[Q, θ] = S (Q)[Q|θ] + S (θ)[θ|Q], (18)

S (Q)[Q|θ]

≡ 1

2kBT

∫
dt

[
G

(
dQ(t )

dt
+ � · ∂U (Q(t ), θ(t ))

∂Q(t )
; �

)]
,

(19)
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S (θ)[θ|Q]

≡ 1

2kBT

∫
dt

[
G

(
dθ

dt
+ M · ∂U (Q(t ), θ(t ))

∂θ(t )
; M

)]
.

(20)

In Eq. (18), the Gaussian weight factor is split into two
contributions [Eqs. (19) and (20)], unlike that in Eq. (14).
However, it should be noticed that two split weight factors
are coupled through the interaction potential U (Q, θ). Thus
we cannot simply eliminate the degrees of freedom θ by
performing the functional integral over θ.

The Onsager-Machlup action (18) gives the statistical
weight for a certain path [24]. This is in analogy to the free
energy functional in the field theory [25]; the free energy
functional gives the statistical weight for a certain field. In
the field theory, we often introduce some auxiliary fields to
obtain the approximate expression for the free energy. We
expect that the action can be approximated in a similar way.
We introduce a transient potential as an auxiliary variable. We
interpret the potential at time t, U (Q(t ), θ(t )), as a transient
potential �(Q(t ), t ). This transient potential � is a function
of Q and t , and is independent of θ. Following the standard
procedure in the field theory [26,27], we use the following
identity for the delta functional:

1 =
∫

D�δ[�(q̃, t ) − U (q̃, θ(t ))]. (21)

Here, q̃ represents the dummy variable which has the same
dimension as Q. By inserting Eq. (21) into Eq. (15), we have

P[Q] =
∫

DθD�δ[�(q̃, t ) − U (q̃, θ(t ))]

× N (Q,θ) exp {−S[Q, θ]}

=
∫

D�N (Q,�) exp{−S̃ (Q)[Q|�]}P̃ (�)[�|Q], (22)

S̃ (Q)[Q|�] ≡ 1

2kBT

∫
dt G

(
dQ(t )

dt
+ � · ∂�(Q(t ), t )

∂Q(t )
; �

)
,

(23)

P̃ (�)[�|Q] ≡
∫

Dθ δ[�(q̃, t ) − U (q̃, θ(t ))]

× exp

[
− 1

2kBT

∫
dt G

(
dθ

dt

+ M · ∂U (Q(t ), θ(t ))

∂θ(t )
; M

)]
. (24)

S̃ (Q)[Q|�] [Eq. (23)] can be interpreted as the action for Q
under a given �. Similarly, P̃ (�)[�|Q] [Eq. (24)] can be
interpreted as the path probability for � under a given Q.
For convenience, we introduce the action for � and rewrite
Eq. (22) as

P[Q] =
∫

D�N (Q,�) exp{−S̃ (Q)[Q|�] − S̃ (�)[�|Q]},
(25)

S̃ (�)[�|Q] ≡ − ln P̃ (�)[�|Q]. (26)

So far, we have not introduced any approximations for the
Onsager-Machlup action. Thus Eq. (25) is exactly equivalent
to Eq. (15). Of course, Eq. (25) is just a formal expression
and we have no simple analytic expression for the action
S̃ (�). Nonetheless Eq. (25) is useful for the coarse-graining.
Equation (25) implies that, the transient potential � can be
employed as additional degrees of freedom of the mesoscopic
system. Instead of the path probability for Q [as Eq. (15)],
here we consider the path probability for Q and �:

P[Q,�] ≡ N (Q,�) exp{−S̃ (Q)[Q|�] − S̃ (�)[�|Q]}. (27)

Clearly, we have
∫
D�P[Q,�] = P[Q]. Thus, if we elimi-

nate the transient potential from Eq. (27), we recover the path
probability for Q. Now we have two actions in Eq. (27). The
action for Q, S̃ (Q) [Eq. (23)], is simple and we need no further
manipulation for it (as long as � is given). The Langevin
equation which corresponds to the action (23) is

dQ(t )

dt
= −� · ∂�(Q(t ), t )

∂Q(t )
+

√
2kBT �1/2 · W (t ), (28)

where W (t ) is the M-dimensional Gaussian white noise vec-
tor. The noise W satisfies

〈W (t )〉 = 0, 〈W (t )W (t ′)〉 = 1δ(t − t ′). (29)

On the other hand, the action for �, which is given by
Eqs. (24) and (26), is not simple. From Eq. (26), the transient
potential � obeys a stochastic time evolution equation (such
as the Langevin equation), and this equation depends on Q.
We need to approximate it by a simple and tractable form, in
order to obtain a dynamic equation model which is suitable
for numerical simulations and theoretical analyses. Once we
have the (approximate) dynamic equation for the transient
potential, we can combine it with Eq. (28) to describe the
dynamics of the mesoscopic degrees of freedom. Therefore,
we find that the dynamics for the mesoscopic degrees of free-
dom is described by the Langevin equation with the transient
potential (LETP). Equations (27) and (28) formally justify
the dynamics models with transient potentials, which were
originally proposed as phenomenological models.

We can derive a similar Langevin equation for the cases
where the noise is multiplicative and/or the variable transform
is nonlinear. In general, the mobility tensor � becomes a time-
dependent and fluctuating quantity, just like the transient po-
tential �. The detailed calculations are shown in Appendix A.
In what follows, for the sake of simplicity, we consider only
the case of the additive noise and the linear variable transform.

C. Dynamics model for the transient potential

We should notice that our procedure in Sec. II B does
not give the information on the dynamics of the transient
potential. The derivation above is formal and one may criti-
cize that it does not fully justify the LETP and thus cannot
be accepted as a concrete derivation. Such a criticism is
partly true. However, generally we cannot obtain the “exact”
dynamic equations for coarse-grained systems. We need to
employ some approximations for the full dynamics model to
obtain a coarse-grained model, but approximations may not be
fully justified and are rather empirical. In this subsection, we
consider some methods to determine the effective dynamics
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model for the transient potential. We cannot determine the
dynamics model uniquely, but we show that we can construct
physically reasonable models under given approximations.

We start from a rather formal expression. The dynamics
of the transient potential can be formally determined by the
action S̃ (�)[�|Q]. From Eq. (27), we have

S̃ (�)[�|Q] = − lnP[Q,�] − S̃ (Q)[Q|�] + (const). (30)

The explicit form of the action S̃ (Q)[Q|�] is given by Eq. (23).
Also, the path probability P[Q,�] can be obtained as the
ensemble average as

P[Q,�]=〈δ{Q(t )−Q[R̂(t )]} δ(�(q̃, t )−U {q̃, θ[R̂(t )]})〉(R̂).

(31)
Here, R̂ represents a trajectory (or a path) directly generated
by the Langevin equation (3), and the statistical average
〈. . . 〉(R̂) is taken for realizations of R̂. Therefore, in principle,
we can construct the action S̃ (�)[�|Q] from the path prob-
ability calculated by the direct microscopic simulations. Of
course, the calculation of the path probability by Eq. (31) is
practically impossible since the path probability is the joint
distribution functional for the path and potential function in
very high dimensions.

We construct a dynamics model which can be used for
practical simulations and analyses, by introducing some ap-
proximations. Even if the resulting dynamics model for the
transient potential is not exact, the model which mimics the
exact dynamics and gives physically reasonable results would
be still useful. We assume that the transient potential can be
approximately expressed as a function of a Z-dimensional
auxiliary variable A(t ):

�(q̃, t ) ≈ �̌(q̃, A(t )). (32)

The auxiliary variable A(t ) should be chosen so that it gives
a reasonable approximation for the dynamics of the transient
potential. The dimension Z should be sufficiently smaller than
the dimension of θ, Z � (3N − M ). A(t ) does not need to
have the expression in terms of θ(t ). From Eq. (32), A(t )
can be interpreted as a sort of state of the transient potential.
Then we expect that it behaves in a similar way to the coarse-
grained variable Q(t ). We further assume that, in equilibrium,
the joint probability of Q and A should be expressed as

Peq(Q, A) = 1

Ž
exp[−�̌(Q, A)/kBT ], (33)

where Ž is the effective partition function:

Ž =
∫

dQdA exp[−�̌(Q, A)/kBT ]. (34)

Equation (33) is the same form as the usual partition function.
Thus our assumption for A is that it behaves as usual degrees
of freedom. The thermodynamic state of the coarse-grained
model is usually determined by the coarse-grained variable
Q. (As we stated, we may call such coarse-grained variables
as the thermodynamic degrees of freedom, in this paper.)
In a similar way, we assume that the thermodynamic state
can be now determined by Q and A. Therefore we may call
the auxiliary variable A as pseudothermodynamic degrees of
freedom.

Since the pseudothermodynamic degrees of freedom were
introduced to approximately describe the dynamics for the
transient potential, they should never affect the equilibrium
statistics of the mesoscopic degrees of freedom. Thus we
require

Peq(Q) =
∫

dA Peq(Q, A), (35)

or, equivalently,

exp[−F (Q)/kBT ] =
∫

dA exp[−�̌(Q, A)/kBT ], (36)

where F (Q) is the free energy for the mesoscopic degrees of
freedom Q:

F (Q) ≡ −kBT ln
∫

dθ exp[−U (Q, θ)/kBT ]. (37)

From Eq. (36), we can relate the forces by the transient
potential and the free energy as

∂F (Q)

∂Q
=

∫
dA

∂�̌(Q, A)

∂Q
Peq(Q, A). (38)

The physical meaning of Eq. (38) is clear. If we average
the thermodynamic force by the transient potential over the
pseudothermodynamic degrees of freedom, we just have the
thermodynamic force by the free energy F . Therefore, if
the pseudothermodynamic degrees of freedom relax rapidly
compared with the mesoscopic degrees of freedom, we just
have a usual Langevin equation.

We want the dynamics model for A(t ) to be simple and
free from the memory kernel. We assume that A(t ) obeys
a Markovian stochastic process. We express the probability
distribution of Q and A at time t as P(Q, A; t ). For a Marko-
vian process, the time evolution of P(Q, A, t ) can be formally
expressed as follows:

∂P(Q, A; t )

∂t
= [L(Q) + L(A)]P(Q, A; t ), (39)

L(Q)P(Q, A)

= ∂

∂Q
· � ·

[
∂�̌(Q, A)

∂Q
P(Q, A) + kBT

∂P(Q, A)

∂Q

]
, (40)

L(A)P(Q, A) =
∫

dA′ [�̌(A|A′, Q)P(Q, A′)

− �̌(A′|A, Q)P(Q, A)]. (41)

Equation (40) is derived from the Langevin equation (28)
with the approximate transient potential (32). �̌(A′|A, Q) is
the transition rate from A to A′, and it should satisfy the
detailed-balance condition:

�̌(A′|A, Q)Peq(Q, A) = �̌(A|A′, Q)Peq(Q, A′). (42)

The dynamics of the coarse-grained system can be fully de-
scribed by two hypothetically introduced functions �̌ and �̌.
These functions can be interpreted as the trial functions [28].
The optimal forms of these functions should be determined so
that they minimize the differences between the approximate
and exact dynamics. Therefore we can apply the variational
method [28] to determine the functional forms of �̌ and �̌.
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The Kullback-Leibler divergence [29] would be suitable to
measure how different two models are [30,31]:

K[�̌, �̌] ≡
∫

DQ P̌[Q|�̌, �̌] ln
P̌[Q|�̌, �̌]

P[Q]
, (43)

where P̌[Q|�̌, �̌] and P[Q] are the path probabilities for
Q by the approximate and microscopic models. (The path
probability by the approximate dynamics model can be in-
terpreted as the functional of Q, �̌, and �̌.) The Kullback-
Leibler divergence satisfies K[�̌, �̌] � 0 and it becomes zero
(K[�̌, �̌] = 0) if two path probabilities are the same. There-
fore, by minimizing the Kullback-Leibler divergence with
respect to trial functions, we have the most reasonable forms
for �̌ and �̌. The most reasonable functional forms, �̌∗ and
�̌∗, satisfy the following conditions:

δK[�̌, �̌]

δ�̌

∣∣∣∣
�̌∗,�̌∗

= 0,
δK[�̌, �̌]

δ�̌

∣∣∣∣
�̌∗,�̌∗

= 0. (44)

Unfortunately, the calculation of the path probabilities
P̌[Q|�̌, �̌] and P[Q] and the minimization with respect to
�̌ and �̌ are still not practical. We will need further approx-
imations and simplifications for the trial functions and the
path probabilities. For example, we may assume the functional
form and perform the minimization with respect to several
parameters. We may approximate the path probabilities by
the path probability for a single particle, or we may employ
the hypothetical path probability forms based on dynamical
quantities such as the mean-square displacement (MSD).

There are several possible simple yet nontrivial models for
the dynamics of A. Among them, the simplest model would
be the following Langevin equation for A:

dA(t )

dt
= −� · ∂�̌(Q(t ), A(t ))

∂A(t )
+

√
2kBT �1/2 · ω(t ). (45)

Here, � is the mobility tensor and ω is the Z-dimensional
Gaussian white noise. As before, we have simply assumed
that the mobility tensor � is independent of Q and A. The
fluctuation-dissipation relation should be satisfied for the
noise ω:

〈ω(t )〉 = 0, 〈ω(t )ω(t ′)〉 = 1δ(t − t ′). (46)

Equations (28) and (45) give the dynamics which is consistent
with Eqs. (41) and (42). This type of coupled Langevin equa-
tions corresponds to the RaPiD model for entangled polymers
[13–15]. We can employ other dynamics models, as well. For
example, if the transient potential instantaneously changes,
the simple transition dynamics models would be suitable.
We may employ a specific transition rate model such as the
Glauber dynamics. Then the transition rate will be explicitly
given in terms of the difference of the transient potential
before and after the transition. This type of coupling of the
Langevin equation and transition dynamics corresponds to
the MCSS model [17] and the transient bond model [18] for
entangled polymers, and the alternating diffusive state model
for supercooled liquids [32].

III. DISCUSSIONS

A. Generalized Langevin equation

We have proposed the LETP model by introducing the
transient potential to approximately describe the mesoscopic
dynamics. Also, we have proposed some possible approxi-
mate dynamics models for the transient potential by intro-
ducing the pseudothermodynamic degrees of freedom. This
is not a unique way to describe the complex mesoscopic
dynamics. We may employ other methods to describe the
mesoscopic dynamics. The most popular and established way
is to use the projection operator [5,19]. The projection oper-
ator method gives the GLE as the effective dynamic equation
for the mesoscopic degrees of freedom. The GLE involves the
memory kernel which directly expresses the memory effect
for the mesoscopic degrees of freedom. In this subsection, we
compare the LETP model with the dynamic equation which
incorporates the memory kernel.

We start from the same microscopic dynamics model as
Sec. II, and consider the effective dynamic equation for the
degrees of freedom Q. By eliminating the fast degrees of
freedom, we have the GLE as the dynamic equation for the
mesoscopic degrees of freedom:

dQ(t )

dt
= −

∫ t

−∞
dt ′ K(t − t ′) · ∂F[Q(t ′)]

∂Q(t ′)
+ ξ(t ), (47)

where K(t ) is the memory kernel and ξ(t ) is the colored
noise. The fluctuation-dissipation relation requires the noise
to satisfy

〈ξ(t )〉 = 0, 〈ξ(t )ξ(t ′)〉 = kBT K(|t − t ′|). (48)

The projection operator method gives Eqs. (47) and (48), but it
does not tell us the detailed statistical properties of the colored
noise ξ(t ). In most practical cases, the colored noise ξ(t ) is
simply assumed to be Gaussian. (This assumption seems to
be often employed implicitly.) Then the dynamic equation for
the mesoscopic degrees of freedom can be fully specified.
This Gaussian assumption cannot be justified a priori, and
we should interpret it as an approximation. In this paper,
we explicitly distinguish the GLE with the Gaussian noise
(GLEG) from the GLE with a general non-Gaussian noise. It
would be reasonable to consider that both the GLEG and the
LETP can be obtained from the same microscopic dynamics
model with different approximations. We expect that the
difference between the GLEG and the LETP originates from
the properties of the employed approximations.

To consider the difference between the GLEG and the
LETP in detail, it would be better for us to derive the GLEG
by utilizing the path probability and the Onsager-Machlup
action. Therefore here we go back to Eqs. (13) and (18). As
we mentioned, two actions in Eq. (18) are coupled via the
interaction potential U (Q, θ). In the derivation of the LETP,
we introduced the transient potential to rewrite the action for
Q in a simple form. Here we introduce a different quantity to
simplify the action for Q. We consider an average of the force
term for Q:

v̄[Q, t] = −
〈
� · ∂U (Q(t ), θ(t ))

∂Q(t )

〉(θ)

, (49)
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where 〈. . . 〉(θ) represents the statistical average over θ. The
thus defined v̄ can be interpreted as the average “velocity” for
the mesoscopic degrees of freedom Q. From the causality, v̄

at time t is a functional of Q(t ′) for t ′ � t . If the system is
fluctuating around the equilibrium, v̄ should be expressed as
a linear function of the thermodynamic force. Thus we expect
the following form for v̄:

v̄[Q, t] = −
∫ t

−∞
dt ′ K(t − t ′) · ∂F[Q(t ′)]

∂Q(t ′)
. (50)

We may employ Eq. (50) as the definition of v̄, instead of
Eq. (49). Anyway, v̄ is an average and the force term is
fluctuating around it. We introduce the deviation of the force

term from v̄ as �v(t ):

�v(t ) = −� · ∂U (Q(t ), θ(t ))

∂Q(t )
− v̄[Q, t]. (51)

This �v(t ) can be interpreted as the fluctuation around the
reference path. As before, we utilize the functional identity to
introduce �v as additional degrees of freedom:

1 =
∫

D�v δ

[
�v(t ) − � · ∂U (Q(t ), θ(t ))

∂Q(t )
− v̄[Q, t]

]
.

(52)

We insert Eq. (52) into Eq. (13). Then we can rewrite the path
probability for Q as

P[Q] =
∫

DθD�v δ

[
�v(t ) − � · ∂U (Q(t ), θ(t ))

∂Q(t )
− v̄[Q, t]

]
N (Q,θ) exp {−S[Q, θ]}

=
∫

D�vN (Q,�v) exp{−S̄ (Q)[Q|�v] − S̄ (�v)[�v|Q]}, (53)

with

S̄ (Q)[Q|�v] ≡ 1

2kBT

∫
dt G

(
dQ(t )

dt
− v̄[Q, t] − �v(t ); �

)
, (54)

S̄ (�v)[�v|Q] ≡ − ln
∫

Dθ δ

[
�v(t ) − � · ∂U (Q(t ), θ(t ))

∂Q(t )
− v̄[Q, t]

]

× exp

[
− 1

2kBT

∫
dt G

(
dθ(t )

dt
+ M · ∂U (Q(t ), θ(t ))

∂θ(t )
; M

)]
, (55)

where N (Q,�v) is the normalization factor. Equations (53)–(55) have similar forms to Eqs. (22)–(26). As the case of Eqs. (22)–
(26), Eqs. (53)–(55) are derived without approximations and thus they are formally exact.

To obtain the GLEG, we approximate the action for �v [Eq. (55)] by a simple Gaussian form:

S̄ (�v)[�v|Q] ≈ − 1

2kBT

∫
dtdt ′ �vT(t ) · C̄−1(t − t ′) · �v(t ′), (56)

where C̄(t ) is a tensor which represents the covariance of �v. (The explicit form of this tensor is not required here.) Under
this approximation, the path probability for Q can be explicitly calculated. The Gaussian weight for Q in Eq. (54) can be also
interpreted as a Gaussian weight for �v. Thus the path probability for Q can be calculated by integrating the path probability
over �v. From Eqs. (53), (54), and (56), we have

P[Q] ≈
∫

D�vN (Q,�v) exp

{
− 1

2kBT

∫
dtdt ′

[
�vT(t ) · C̄−1(t − t ′) · �v(t ′)

+
(

�v(t ) − dQ(t )

dt
+ v̄[Q, t]

)T

· 2�δ(t − t ′) ·
(

�v(t ′) − dQ(t ′)
dt ′ + v̄[Q, t ′]

)]}

= N (Q) exp

[
− 1

2kBT

∫
dtdt ′

(
dQ(t )

dt
− v̄[Q, t]

)T

· K̄−1(t − t ′) ·
(

dQ(t ′)
dt ′ − v̄[Q, t ′]

)]
, (57)

where N (Q) is the normalization factor and K̄(t ) is the kernel
function defined as

K̄(t ) = C̄(t ) + 2�δ(t ). (58)

Equation (57) is equivalent to the GLEG if the kernel K̄(t )
is given as K̄(t ) = K(|t |). This condition is equivalent to
the fluctuation-dissipation relation (48), and thus it should
be satisfied to reproduce the correct equilibrium distribution.

Thus we find that the GLEG can be obtained from Eqs. (13)
and (18), if we approximate the fluctuation of the force term
�v by a simple Gaussian form [Eq. (56)].

By comparing the derivations of the GLEG and the LETP,
we find some differences between them. The first difference
is that the LETP employs additional degrees of freedom, the
transient potential, to express the force term in the action (18).
The GLEG employs the average v̄, which is a functional of Q,
instead. This average v̄ incorporates the memory kernel. The
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second difference is that the additional degree of freedom is
not eliminated in the LETP. In other words, we explicitly have
the dynamic equation for the additional degrees of freedom
(the transient potential �), in addition to that for the meso-
scopic degrees of freedom Q. This is in contrast to the case of
the GLEG. To derive the GLEG, we eliminated the fluctuation
around the average, �v, by integrating the path probability
over it. The LETP does not require the memory kernel but
requires additional degrees of freedom, whereas the GLEG
does not require additional degrees of freedom but requires
the memory kernel.

B. Example: Supercooled liquid

Because the GLEG and the LETP are based on different
approximations, some statistical properties of them can be
qualitatively different, although the target system is the same.
As a simple example, here we consider the effective dynamic
equation model for a single tagged particle (or the center of
mass of a tagged molecule) in a supercooled liquid in a three
dimensional space.

The dynamics of supercooled liquids have been widely
studied by binary Lennard-Jones mixture simulations
[33–39]. To study the diffusion behavior, the MSD data
are useful. If the temperature is sufficiently high, we just
observe normal diffusion behavior: 〈[r(t ) − r(0)]2〉 ∝ t . If the
temperature is sufficiently low, we observe the slowing-down
of the dynamics. As a result, the MSD of the particle typically
shows three regions [40,41]. At the short time region, it
exhibits a normal diffusion. At the intermediate time region,
the MSD becomes almost independent of time, and exhibits a
plateau. At the long time region, it again exhibits a normal dif-
fusion. Therefore, the MSD of a particle would be as follows:

〈[r(t ) − r(0)]2〉 ∝

⎧⎪⎨
⎪⎩

t1 (t � τ ′),

t0 (τ ′ � t � τ ′′),

t1 (τ ′′ � t ),

(59)

where τ ′ and τ ′′ are characteristic time scales. (Strictly speak-
ing, at sufficiently short time scales, we observe the ballistic
diffusion behavior. In this paper we consider overdamped
dynamics and thus we do not consider the ballistic region.)
The MSD data are not sufficient to characterize the dynamics
of a particle. The distribution of the displacement is generally
not Gaussian, and the non-Gaussianity cannot be detected
via the MSD. The non-Gaussianity parameter (NGP) [39,42],
which characterizes the deviation of the diffusion behavior
from the ideal Gaussian behavior, is useful to study the
non-Gaussianity. For a three dimensional system, the NGP is
defined as α(t ) ≡ 3〈|r(t ) − r(0)|4〉/5〈[r(t ) − r(0)]2〉2 − 1.

We show the MSD and NGP of a particle in a model
binary Lennard-Jones mixture with different temperatures
in Fig. 1. Here, the dimensionless units are employed (the
characteristic length, mass, and energy are set to be unity)
and the temperature is changed from kBT = 0.4 to 1. The
details of the simulation model and the simulation setup are
shown in Appendix B. We show some trajectories of particles
in a supercooled liquid at kBT = 0.6 in Fig. 2. We clearly
observe that the trajectories are qualitatively different from
those of normal Brownian motions. This can be interpreted as
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FIG. 1. The MSD and NGP data of binary Lennard-Jones fluids.
The temperatures are set as kBT = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0. For relatively low-temperature systems, the MSD exhibits three
characteristic regions, and the NGP becomes large. See Appendix B
for the details of the simulations.

the fluctuation of the mobility, which is called the dynamic
heterogeneity.

We consider whether such behavior can be successfully
modeled by the GLEG and the LETP. We express the position
of the tagged particle as r(t ), and use this as the mesoscopic
degrees of freedom. We construct the effective dynamic equa-
tions for r, and then analyze the MSD and NGP.

From the translational symmetry, the free energy is zero:
F (r) = 0. Therefore, if we employ the GLEG to describe the
dynamics, we have the dynamic equation as

dr(t )

dt
= ξ(t ), (60)

where ξ(t ) is the Gaussian colored noise. The first and second
moments of the noise ξ(t ) are

〈ξ(t )〉 = 0, 〈ξ(t )ξ(t ′)〉 = kBT K (|t − t ′|)1. (61)

Here K (t ) is the (scalar) memory kernel. We have assumed
that the system is isotropic and the memory kernel tensor is
given as an isotropic tensor. The MSD is simply calculated to
be

〈[r(t ) − r(0)]2〉 =
∫ t

0
dt ′

∫ t

0
dt ′′ 〈ξ(t ′) · ξ(t ′′)〉

= 6kBT
∫ t

0
dt ′ (t − t ′)K (t ′). (62)
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FIG. 2. Trajectories of some particles in a supercooled fluid at kBT = 0.6. Points represent the positions of particles at each unit time scale.
(The size of points is much smaller than the particle size.) The thick black bars are the scale bars of which length is the unit length scale σ .
See Appendix B for the details of the simulations.

Thus we find that the memory kernel can be determined if
the MSD of the tagged particle is given. From the Gaussian
nature of the noise ξ(t ), the NGP is exactly zero: α(t ) = 0.
This means that the GLEG can reproduce the MSD observed
in supercooled liquids successfully (by tuning the memory
kernel), but it cannot reproduce the non-Gaussian behavior.

If we employ the LETP, the dynamic equation becomes

dr(t )

dt
= −


∂�̌(r(t ), A(t ))

∂r(t )
+

√
2kBT 
W (t ), (63)

where 
 is the (scalar) mobility and W (t ) is the Gaussian
white noise. The force term by the transient potential in
Eq. (63) is not zero. Unlike the case of the GLEG, we should
specify the dynamics model of the transient potential or the
pseudothermodynamic degrees of freedom. As a simple yet
nontrivial model, we employ a simple harmonic type potential
as the transient potential:

�̌(r, A) = 1
2κ (r − A)2, (64)

where κ is the spring constant and A corresponds to the center
position of the potential. (The dimension of A is assumed to
be the same as that of r.) The dynamic equation can be then

simplified as

dr(t )

dt
= −
κ[r(t ) − A(t )] +

√
2kBT 
W (t ). (65)

We need to specify the dynamics model for the pseudother-
modynamic degrees of freedom. If we employ the Langevin
equation for A(t ), the full stochastic process becomes a
Gaussian process, and thus the results will be very similar
to those of the GLEG. Namely, the MSD will be reproduced
but the NGP is always zero. Here we employ the stochastic
transition dynamics with the following transition rate, instead:

�̌(A′|A, r) = 1

τ

(
κ

2πkBT

)3/2

exp

[
−κ (A′ − r)2

2kBT

]
, (66)

where τ is the characteristic time of the transition. This
transition rate model corresponds to the simple resampling
of the new potential center position from the equilibrium
probability distribution. Now the dynamics of the system can
be fully specified by Eqs. (65) and (66). (This model would
be interpreted as a special case of the alternating diffusive
state model [32], where the fraction of the free diffusive
state is very small.) Although the model looks simple, the
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FIG. 3. (a) The MSD and (b) the NGP of a particle in a super-
cooled liquid by the LETP model, with various average waiting times
τ . The time t is normalized by the characteristic time scale of the
motion in the transient potential, 1/
κ . Also, the MSD is normalized
by the characteristic length of the transient potential.

calculations of the MSD and NGP become rather complicated.
We show the detailed calculations in Appendix C, and here
we only show the results. The MSD and NGP of our model
become

〈[r(t ) − r(0)]2〉 = 6kBT

κ

η

1 + η

[
t

τ
+ η

1 + η
[1 − e−t (1+η)/τ ]

]
,

(67)

α(t ) =
[

t

τ
+ η[1 − e−t (1+η)/τ ]

1 + η

]−2[
2η2

(1 + η)(1 + 2η)

t

τ

+ 4η

1 + η

t

τ
e−t (1+η)/τ + 4[1 − e−t (1+η)/τ ]

(1 + η)2

− 4(1 + η)2[1 − e−t (1+2η)/τ ]

(1 + 2η)2
+ η2[1 − e−2t (1+η)/τ ]

(1 + η)2

]
,

(68)

where η ≡ 
κτ . We show the MSD and NGP data by the
LETP, with various average waiting times, in Fig. 3. If
the waiting time is sufficiently short, the transient potential
does not affect the diffusion dynamics. Thus, in the case of

κτ � 1, we recover the simple diffusion behavior where the
MSD is proportional to t and the NGP is almost zero. On the

other hand, if the waiting time is sufficiently long, the particle
will be trapped in the transient potential and exhibits the
plateau at the intermediate region. The MSD data by the LETP
are qualitatively consistent with the data by the molecular
dynamics simulation, Fig. 1(a). For example, Eq. (67) clearly
exhibits three regions shown in Eq. (59). In addition, the LETP
gives nonzero NGP. Although the t dependence of the NGP
by the LETP does not quantitatively coincide with that by
the molecular dynamics simulation, the trend is qualitatively
reproduced by the LETP. In both Figs. 1(b) and 3(b), the NGP
exhibits a peak where the MSD shows the crossover from the
plateau to the diffusion behavior. The peak value of the NGP
increases as the plateau region in the MSD develops.

By comparing the results of the GLEG and the LETP, we
find that the MSD can be well described both by the GLEG
and the LETP. The GLEG can easily reproduce any MSD by
tuning the memory kernel. However, the diffusion dynamics
given by the GLEG is essentially a Gaussian process and
non-Gaussian behavior can never be reproduced. On the other
hand, the LETP can reasonably reproduce the non-Gaussian
behavior. But both the MSD and NGP depend on the dynamics
model and the tuning of the forms of a transient potential and
a dynamics model such as a transition rate is difficult.

The simple structure of the LETP would be especially
useful when we perform numerical simulations. According to
the results shown above, the LETP model can successfully
reproduce some dynamical properties of supercooled liquids.
If we integrate such a dynamics model into more complex sys-
tems, we will be able to simulate a complex relaxation process
with a relatively simple and numerically efficient model. For
example, if we combine the single chain polymer model (such
as the Rouse model) with the LETP in this subsection, we
may be able to simulate the dynamics of supercooled polymer
melts by a simple single chain model.

C. Fluctuating diffusivity

In Secs. III A and III B, we have showed that the LETP is
qualitatively different from the GLEG. Recently, another type
of mesoscopic coarse-grained model which is called the fluc-
tuating diffusivity (or diffusing diffusivity) model has been
investigated. In this model, the diffusion coefficient tensor (or
the mobility tensor) is considered as a stochastically fluctu-
ating physical quantity. The dynamic equation is expressed
as the Langevin equation with fluctuating diffusivity (LEFD)
[43–47]. The LEFD for the mesoscopic degrees of freedom Q
can be expressed as

dQ(t )

dt
= − 1

kBT
D(t ) · ∂F[Q(t )]

∂Q(t )
+

√
2D1/2(t ) · W (t ), (69)

where D(t ) is the time-dependent fluctuating diffusion coef-
ficient tensor. The diffusion coefficient D(t ) is assumed to
obey another stochastic process which is independent of Q.
Although Eq. (69) is not the same as Eq. (28), they are similar
in some aspects. Both of them employ additional degrees of
freedom to describe the mesoscopic dynamics. In addition,
the LEFD model can reproduce the non-Gaussian behavior
successfully [43].

It would be informative to discuss how the LETP and the
LEFD can be related and whether these models can be unified
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or not. If we employ the LEFD to describe the diffusion of
a single particle in a supercooled liquid (the same system as
considered in Sec. III B), we have

dr(t )

dt
=

√
2D(t )W (t ), (70)

where D(t ) is a scalar fluctuating diffusion coefficient. We
assume that D(t ) obeys an equilibrium stochastic process and
the statistical average of D(t ) is independent of time. Then the
MSD becomes

〈[r(t ) − r(0)]2〉 = 6〈D〉t . (71)

Equation (71) means that the MSD of the LEFD is simply
proportional to t for any t . Therefore, unlike the GLEG and
the LETP [Eqs. (62) and (67)], the LEFD cannot describe
the MSD of a supercooled liquid. However, the fluctuation
of the diffusion coefficient strongly affects the higher order
correlation functions, unlike the GLEG. Thus physical quan-
tities which incorporate the higher order correlation functions,
such as the NGP, exhibit nontrivial behavior. The NGP can be
related to the correlation function of the fluctuating diffusivity
as [43]

α(t ) = 2

t2

∫ t

0
dt ′

∫ t ′

0
dt ′′

[ 〈D(t ′)D(t ′′)〉
〈D〉2

− 1

]

= 2

t2

∫ t

0
dt ′ (t − t ′)

[ 〈D(t ′)D(0)〉
〈D〉2

− 1

]
. (72)

From Eq. (72), in general, the LETP gives a nonzero NGP,
and therefore the heterogeneity of the diffusion behavior
can be successfully reproduced. At the short time scale,
Eq. (72) approximately becomes independent of time: α(t ) ≈
〈D2〉/〈D〉2 − 1. Generally, the NGP by Eq. (72) becomes a
monotonically decreasing function of time t . Such behavior is
qualitatively different from that of the LETP. Therefore, we
conclude that both the LETP and the LEFD can reproduce
non-Gaussian dynamics, but they are not equivalent.

We may interpret the LEFD as an approximation for the
LETP in the long region. If the time scale is larger than
the average relaxation time of the transient potential, we
will observe simple diffusion behavior where the MSD is
approximately proportional to time. Also, the NGP can be
interpreted as a monotonically decreasing function of time.
These properties are qualitatively consistent with those of the
LEFD. Therefore, in such a case, the effect of the transient
potential on the dynamic equation may be further coarse-
grained. Then the thermodynamic force will be simply deter-
mined by the free energy, and the LETP can be coarse-grained
into the LEFD model. It should be noted here that the GLEG
cannot be employed for a system which exhibits non-Gaussian
behavior. As Fox showed [48], the memory kernel is uniquely
determined if the MSD is given. At the long time scale, the
memory kernel approximately becomes the delta function and
thus we just have a simple Langevin equation without memory
effects and the fluctuation of diffusivity.

D. Transient potential as thermostat

One may consider that the structure of the LETP is
somewhat similar to some thermostat models in molecular

dynamics simulations. The Nosé-Hoover thermostat utilizes
the extended Hamiltonian where the extra degrees of free-
dom for the thermostat are incorporated [6,49]. Leimkuhler,
Noorizadeh, and Theil [50] proposed a modified version of
the Nosé-Hoover thermostat which employs the Langevin
equation for the dynamics of the thermostat. We expect that
the transient potential with the pseudothermodynamic degrees
of freedom may work as a thermostat. In this subsection, we
consider a possible application of the transient potential as a
thermostat.

From Eqs. (39)–(41), the approximate dynamics model
for the coarse-grained system is detailed-balanced. Therefore,
if we simply omit the noise term in the Langevin equation
for Q, the resulting dynamics becomes physically incorrect,
since the detailed-balance condition is no longer satisfied.
Therefore, we consider the Hamiltonian-like dynamics for
Q. We hypothetically introduce the momentum P and mass
m, and assume that the system obeys the following dynamic
equations:

dP(t )

dt
= −∂�̌(Q, A)

∂Q
,

dQ(t )

dt
= 1

m
P. (73)

Equation (73) corresponds to the Hamilton canonical
equations for the hypothetical Hamiltonian H = P2/2m +
�̌(Q, A). We further assume that the transient potential is
given as the sum of the effective interaction potential Ū (Q)
and the harmonic potential as

�̌(Q, A) = Ū (Q) + κ

2
(Q − A)2, (74)

where κ is a constant. The variables Q and P are coupled to
the stochastic variable A via the harmonic potential, and thus
we expect that the equilibrium state will be realized.

To demonstrate the transient potential actually works as
a thermostat, we consider the case where A obeys the over-
damped Langevin equation (45). If we assume that the mobil-
ity is given as � = 1/ζ with ζ being the friction coefficient,
the dynamic equation becomes

dA(t )

dt
= −κ

ζ
(A − Q) +

√
2kBT

ζ
ω(t ). (75)

From Eqs. (73) and (75), we have

A(t ) = Q(t ) − 1

κ

∫ t

−∞
dt ′ K (t − t ′)

1

m
P(t ′) + ξ(t ) (76)

with K (t − t ′) = κe−tκ/ζ and ξ(t ) ≡ √
2kBT/ζ

∫ t
−∞ dt ′K (t −

t ′)ω(t ′). By substituting Eq. (76) into Eq. (73), the dynamic
equation for Q(t ) can be simply expressed as

m
d2Q(t )

dt2
= −∂Ū [Q(t )]

∂Q(t )
−

∫ t

−∞
dt ′ K (t − t ′)

dQ(t ′)
dt ′ + ξ(t ).

(77)

The noise ξ(t ) is a linear combination of the Gaussian white
noise ω(t ) and becomes a Gaussian colored noise. The first
and second moments of ξ(t ) are calculated to be

〈ξ(t )〉 = 0, 〈ξ(t )ξ(t ′)〉 = kBT K (|t − t ′|)1. (78)

Equation (78) can be interpreted as the fluctuation-dissipation
relation. Therefore we find that Q(t ) obeys the GLEG with the
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memory kernel K (t ), and thus the transient potential works
as a thermostat. Although we have not explicitly introduced
the memory kernel in Eqs. (73)–(75), the resulting dynamics
reproduces the memory effect. If we employ a nonharmonic
transient potential model and/or a transition dynamics model,
we will be able to reproduce a non-Gaussian thermostat as
well.

IV. CONCLUSIONS

We showed that we can formally derive the transient poten-
tial model starting from the microscopic Langevin equation
model. We showed that we can formally justify the use of the
transient potential, based on the path probability formalism
which utilizes the Onsager-Machlup action. However, the
dynamics for the transient potential is generally not given
in a simple and tractable form. Instead of the exact dy-
namics for the transient potential, we proposed to introduce
the pseudothermodynamic degrees of freedom and employ
a simple approximate dynamics model. The obtained LETP
consists of two dynamics models; one is the simple Langevin
equation for the mesoscopic degrees of freedom, and another
is the Markovian stochastic dynamics model for the additional
degrees of freedom (the pseudothermodynamic degrees of
freedom). The LETP can reproduce non-Gaussian dynamics
which the GLEG cannot reproduce. As a simple example, we
considered the dynamics of a tagged particle in a supercooled
liquid. We found that the LETP can qualitatively reproduce
the characteristic diffusion behavior.

We expect that the LETP can be utilized as a general
coarse-grained equation for mesoscopic dynamics of soft mat-
ters. The result of this paper justifies the mesoscopic dynamics
model such as the RaPiD and MCSS models which were
originally introduced as purely phenomenological models.
However, at least currently, the derivation of the LETP is
limited to rather simple systems. The underlying microscopic
dynamics model is assumed to be the overdamped Langevin
equation with the constant mobility tensor. The mesoscopic
degrees of freedom are limited to the linear combinations
of microscopic degrees of freedom. More general derivations
and detailed analyses will be required to further elaborate the
coarse-grained dynamics models. For example, the derivation
of the LETP from the microscopic Hamiltonian dynamics is
an interesting future work. In addition, the development of
accurate and practical approximation models for the transient
potential is also required. Although we simply assumed the
Markovian process for the pseudothermodynamic degrees
of freedom in this paper, other dynamics models would be
employed instead.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid (KAKENHI) for
Scientific Research Grant C No. JP16K05513 from Ministry
of Education, Culture, Sports, Science, and Technology; by
Grant-in-Aid (KAKENHI) for Scientific Research Grant B
No. JP19H01861 from Ministry of Education, Culture, Sports,
Science, and Technology; and by JST, PRESTO Grant No.
JPMJPR1992.

APPENDIX A: MULTIPLICATIVE NOISE AND THE
NONLINEAR VARIABLE TRANSFORM

In this Appendix, we consider the coarse-graining for
a system described by the overdamped Langevin equation
with multiplicative noise. We employ the following Langevin
equation with position-dependent mobility as the microscopic
dynamic equation, instead of Eq. (3):

dR(t )

dt
= −L(R) · ∂U (R)

∂R
+ kBT

∂

∂R
· L(R)

+
√

2kBT L1/2(R) · w(t ), (A1)

where L(R) is the position-dependent mobility. The noise
term in Eq. (A1) is multiplicative and we interpret it according
to the Ito manner.

In the same way as in the main text, we introduce the
variable transform from R to X ≡ [QT θT]T [Q is an M-
dimensional vector and θ is a (3N − M )-dimensional vector].
This transform can be nonlinear, but the inverse transform
should exist. X can be interpreted as a function of R, as
X (R). The inverse transform exists if the following condition
is satisfied:

det
∂X
∂R

�= 0, (A2)

where ∂X/∂R corresponds to the Jacobian matrix for the
variable transform. Then, R can be interpreted as the function
of X , as R(X ). The effective interaction potential for X
becomes [51]

U ′(X ) = U [R(X )] + kBT ln det
∂X
∂R

. (A3)

The second term in the right hand side of Eq. (A3) arises
from the metric of the nonlinear variable transform. If the
variable transform is linear and X is linear in R (as the case
we considered in the main text), it reduces to a constant and is
negligible. The mobility tensor becomes [52]

L′(X ) =
[

L′(Q)
i j (X ) L′(Qθ)

iβ (X )

L′(θQ)
α j (X ) L′(θ)

αβ (X )

]
, (A4)

with

L′(Q)
i j (X ) = ∂Qi(r)

∂r
· L(R) · ∂Qj (R)

∂R
, (A5)

L′(Qθ)
iβ (X ) = L′(θQ)

α j (X ) = ∂Qi(R)

∂R
· L(R) · ∂θα (R)

∂R
, (A6)

L′(θ)
αβ (X ) = ∂θα (R)

∂R
· L(r) · ∂θβ (R)

∂R
. (A7)

So far, any θ can be employed as long as the variable
transform is invertible. Here we employ θ which is not ki-
netically coupled to Q. That is, we employ θ which satisfies
the following condition:

∂Qi(R)

∂R
· L(R) · ∂θα (R)

∂R
= 0. (A8)

Then the mobility tensor (A4) becomes block-diagonal:

L′(X ) =
[

L′(Q)
i j (X ) 0

0 L′(θ)
αβ (X )

]
. (A9)
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The problem is whether such θ actually exists or not. Fortu-
nately, we can show that we can construct θ which satisfies
Eq. (A8) for any Q. Equation (A8) can be rewritten as

ui(R) · ∂θα (R)

∂R
= 0, (A10)

with ui(R) ≡ [∂Qi(R)/∂R] · L(R) (i = 1, 2, . . . , M). Here
ui(R) is a 3N-dimensional vector. This ui(R) can be ex-
panded into the position-dependent orthogonal basis e‖

i (R)
(i = 1, 2, . . . , M), as

ui(R) =
∑

j

[
ui(R) · e‖

j (R)
]
e‖

j (R). (A11)

The position vector R is a 3N-dimensional vector, thus we
can construct (3N − M ) orthogonal basis vectors which are
orthogonal to e‖

i (R). If we describe this basis as e⊥
α (R) (α =

M + 1, M + 2, . . . , 3N), we simply have e‖
i (R) · e⊥

α (R) = 0.
This means that the condition (A10) can be satisfied if we take
θ which satisfies the following condition:

∂θα (R)

∂R
= ραe⊥

α (R), (A12)

where ρα is constant. [Notice that we do not take the summa-
tion over α in the right hand side of (A12).] We may further
rewrite Eq. (A12) as

∂2θα (R)

∂R2 = ρα

∂

∂R
· e⊥

α (R). (A13)

Equation (A13) is a Poisson equation in the 3N-dimensional
space. The solution is

θα (R) = θ̄α + ρα ē⊥
α · R

+ ρα

∫
dR′ G(R − R′)

∂

∂R′ · [e⊥
α (R′) − ē⊥

α ], (A14)

where θ̄α is a constant, ē⊥
α is the spatial average of e⊥

α (R), and
G(R) is the Green function for the Poisson equation:

−∂G(R)

∂R2 = δ(R). (A15)

In the three dimensional space, the Green function becomes
a simple Coulomb type kernel. [In a 3N-dimensional space
(3N � 3), the Green function G(R) decays as |R|2−3N for
large |R|.] θ(R) given by (A14) satisfies Eq. (A8), and the mo-
bility tensor can be block-diagonal. We should notice that the
basis vector e⊥

α (R) depends on Q and thus is not constant. To
satisfy Eq. (A8) for any t , we should modulate θ(t ) during the
time evolution. This can be done by introducing the Lagrange
multiplier into the Langevin equation for θ(t ). [Intuitively,
the Lagrange multiplier can be understood as the external
force which drives θ(t ) to satisfy the condition (A10).]

The Onsager-Machlup action and the path probability
become

exp[−S[R]]DR = exp{−S[Q, θ]}Det
δX
δR

DQDθ, (A16)

where Det · · · represents the functional determinant, and the
action S[Q, θ] is given as follows:

S[Q, θ] = S (Q)[Q|θ] + S (θ)[θ|Q], (A17)

S (Q)[Q|θ] = 1

2kBT

∫
dt G

(
dQ
dt

+ L′(Q) · ∂U ′

∂Q
− kBT

∂

∂Q
· L′(Q); L′(Q)

)
, (A18)

S (θ)[θ|Q] = 1

2kBT

∫
dt G

(
dθ

dt
− ϒ + L′(θ) · ∂U ′

∂θ
− kBT

∂

∂θ
· L′(θ); L′(θ)

)
. (A19)

Here, ϒ(t ) is the time-dependent Lagrange multiplier for the condition (A8). Now the situation is similar to that in the main
text. We introduce the transient potential �(q̃, t ) by the functional identity (21). Also, we introduce the time-dependent and
fluctuating mobility (diffusivity) [43–47] by utilizing another functional identity:

1 =
∫

D� δ[�(q̃, t ) − L′(Q)(q̃, θ(t ))]. (A20)

By utilizing Eqs. (21) and (A20), we can rewrite the path probability as

P[Q] =
∫

DθD�D�
N (Q,θ,�,�)√

DetL′(Q) DetL′(θ)
exp{−S (Q)[Q|θ] − S (θ)[θ|Q]}

× Det
δX
δR

δ[�(q̃, t ) − U ′(q̃, θ(t ))]δ[�(q̃, t ) − L′(Q)(q̃, θ(t ))]

=
∫

D�D�
N (Q,�,�)

√
Det�

exp{−S (Q)[Q|�,�] − S (�,�)[�,�|Q]}, (A21)

with

S̃ (Q)[Q|�,�] = 1

2kBT

∫
dt G

(
dQ
dt

+ � · ∂�

∂Q
− kBT

∂

∂Q
· �; �

)
, (A22)

S̃ (�,�)[�,�|Q] = − ln
∫

Dθ
exp{−S (θ)[θ|Q]}√

DetL′(θ)
Det

δX
δR

δ[�(q̃, t ) − U ′(q̃, θ(t ))]δ[�(q̃, t ) − L′(Q)(q̃, θ(t ))]. (A23)
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Finally we have the following Langevin equation for Q(t ):

dQ(t )

dt
= −�(Q, t ) · ∂�(Q, t )

∂Q
+ kBT

∂

∂Q
· �(Q, t ) +

√
2kBT �1/2(Q, t ) · W (t ), (A24)

where W (t ) is the Gaussian white noise which satisfies Eq. (29). Equation (A24) has the same form as the LETP (28). However,
in addition to the transient potential �(Q, t ), the fluctuating mobility �(Q, t ) is also incorporated in Eq. (A24). Therefore, for
the systems with multiplicative noises and/or coarse-grained variables by nonlinear transforms, we have the Langevin equation
with two transient and fluctuating quantities: the transient potential and the fluctuating mobility (diffusivity). If the mobility
tensor for R is constant and the variable transform from R to X is linear, then �(Q, t ) reduces to a constant and the LETP is
recovered.

APPENDIX B: MOLECULAR DYNAMICS SIMULATION FOR SUPERCOOLED LIQUID

In this Appendix, we show the details of the molecular dynamics simulation model for a supercooled liquid used in the main
text. We employ a binary Lennard-Jones mixture type model [33–39]. In this model, we consider two particle species, A and
B. To prevent the crystallization, the A and B particles have different sizes σA and σB. The ratios of sizes and masses are set
as σB/σA = 1.2 and as mB/mA = 2, respectively, and the number fraction of the A particles is 1/2. The interaction potential
between particle species K and K ′ is given as the Lennard-Jones type potential:

uKK ′ (r) =
{

4ε[(σKK ′/|r|)12 − (σKK ′/|r|)6 + 1/4] (|r| < 21/6σKK ′ ),

0 (|r| � 21/6σKK ′ ),
(B1)

where σKK ′ ≡ (σK + σK ′ )/2 and ε is the Lennard-Jones potential parameter. In Eq. (B1) We have truncated the Lennard-Jones
potential so that the potential becomes purely repulsive.

We consider a three dimensional system which consists of N particles. We use a cubic simulation box the volume of which is
L3, and use the periodic boundary condition. We express the position of the ith particle in the system as ri. The particle species
is A for i = 1, 2, . . . , N/2 and B for i = N/2 + 1, N/2 + 2, . . . , N . The total potential energy of the system simply becomes

U ({ri}) =
N/2∑
i=1

i∑
j=1

uAA(ri − r j ) +
N∑

i=N/2+1

i∑
j=1

uBB(ri − r j ) +
N/2∑
i=N

N∑
j=N/2+1

uAB(ri − r j ). (B2)

For the dynamic equation, we employ the underdamped Langevin equation:

mi
dri(t )

dt
= −∂U ({ri(t )})

∂ri(t )
− ζ

dri(t )

dt
+

√
2kBT ζwi(t ), (B3)

where mi is the mass of the ith particle, ζ is the friction coefficient, and wi(t ) is the Gaussian white noise which satisfies the
fluctuation-dissipation relation.

To perform simulations, we employ the usual Lennard-Jones dimensionless units by setting σ = σA = 1, m = mA = 1, and
ε = 1. In this paper, we set N = 4000 and L = 17.1 (this gives the average number density as ρ = N/L3 = 0.800). The friction
coefficient is set as ζ = 10. The characteristic momentum relaxation time is estimated to be τm = m/ζ = 0.1. Initially, the
particles are randomly placed in the box and then relaxed before the simulation starts. Simulations are performed for different
temperatures ranging from kBT = 0.4 to 1. The time step size is �t = 2.0 × 10−3 and simulations are performed for t = 105

for each temperature. To remove the artificial diffusion behavior due to the center of mass motion of the system, the momentum
of the system is set to zero at each time step. All the simulations are performed with LAMMPS (22 August 2018) [53,54]. The
particle trajectories are recorded and then the MSD and NGP are calculated. To improve the statistical accuracy, several runs
with the same parameter set and the different initial structures and random seeds are performed, and then the averages are taken
over different runs.

APPENDIX C: DETAILED CALCULATIONS FOR THE MSD AND NGP

The LETP model for a tagged particle in a supercooled liquid in the main text consists of two stochastic processes [which
are characterized by Eqs. (65) and (66)]; one is the Langevin equation for the particle and another is the resampling process for
the potential center. The Langevin equation describes the continuum process whereas the resampling process is discrete in time.
We utilize the renewal theory [55] which is suitable for the analyses of the resampling type process. The analyses shown in this
Appendix are based on those in Ref. [32].

We consider the statistics of the resampling events from time zero. We describe the ith resampling event occurring at time ti.
For convenience, we set t0 = 0. We call the interval between two successive resamplings as the waiting time. During the time
between successive resamplings, the potential center position does not change. We express the potential center for ti < t < ti+1

as Ai. Also, we express ri = r(ti ). Without loss of generality, we can set the initial position of the particle as r(0) = r0 = 0. Since
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the resampling events are statistically independent, the interval between two successive resamplings (the waiting time) is given
as the exponential distribution:

�(ti+1 − ti ) = 1

τ
e−(ti+1−ti )/τ . (C1)

Here, τ is the characteristic time of the transition in Eq. (66), and can be interpreted as the average waiting time. The statistical
properties of the displacement can be calculated by using the probability distribution of the particle position at time t, P(r; t ).

For ti < t ′ < t < ti+1, no resampling occurs and the Langevin equation for r reduces to the Ornstein-Uhlenbeck process [56].
Thus the propagator can be easily calculated:

Q(r, t |r′, Ai, t ′) =
[

κ

2π (1 − e−2
κ (t−t ′ ) )kBT

]3/2

exp

[
−κ[(r − r′) − (1 − e−
κ (t−t ′ ) )(r′ − Ai )]2

2(1 − e−2
κ (t−t ′ ) )kBT

]
, (C2)

where r′ represents the position at time t ′. At time ti, the potential center is resampled from the equilibrium distribution:

� ′(Ai, ri ) =
(

κ

2πkBT

)3/2

exp

[
−κ (ri − Ai )2

2kBT

]
. (C3)

We describe the number of total resampling events from time zero to time t as n, and calculate the probability distribution of
the particle position at time t for a given n, Pn(r; t ), by using Eqs. (C1)–(C3). The probability can be calculated as the product
of propagators of the successive events. The resampling times should satisfy 0 = t0 � t1 � t2 � . . . tn � t . Thus we have

Pn(r; t ) =
∫ ∞

t
dt ′

∫ t

0
dtn

∫ tn

0
dtn−1· · ·

∫ t2

0
dt1

∫
dAndAn−1 . . . dA0

×
∫

drndrn−1 . . . dr1 Q(r, t |rn, An, tn)�(t ′ − tn)� ′(An, rn)

×
[

n∏
i=1

Q(ri, ti|ri−1, Ai−1, ti−1)�(ti − ti−1)� ′(Ai−1, ri−1)

]
. (C4)

The integral over t ′ in Eq. (C4) can be easily calculated:
∫ ∞

t dt ′ �(t ′ − tn) = τ�(t − tn). Also, the integral over Ai in Eq. (C4)
can be calculated straightforwardly:∫

dAi−1 Q(ri, ti|ri−1, Ai−1, ti−1)�(ti − ti−1)� ′(Ai−1, ri−1)

=
[

κ2

(1 − e−2
κ (ti−1−ti ) )(2πkBT )2

]3/2 ∫
dAi−1 exp

[
− κ (ri−1 − Ai−1)2

2kBT

− κ[(ri − ri−1) − (1 − e−
κ (ti−1−ti ) )(ri−1 − Ai−1)]2

2(1 − e−2
κ (ti−1−ti ) )kBT

]
�(ti − ti−1)

= 1

τ

[
κ

4π (1 − e−2
κ (ti−1−ti ) )kBT

]3/2

exp

[
− κ (ri − ri−1)2

4(1 − e−
κ (ti−1−ti ) )kBT
− ti+1 − ti

τ

]

≡ �̄(ri − ri−1, ti − ti−1). (C5)

Thus the probability (C4) can be rewritten as follows:

Pn(r; t ) = τ

∫ t

0
dtn

∫ tn

0
dtn−1· · ·

∫ t2

0
dt1

∫
drndrn−1 . . . dr1�̄(r − rn, t − tn)

n∏
i=1

�̄(ri − ri−1, ti − ti−1). (C6)

Because Eq. (C6) contains multiple convolutions over positions and times, the Fourier-Laplace transform is convenient. The
Fourier-Laplace transform of Eq. (C6) can be straightforwardly calculated as

P̂n(k; s) ≡
∫ ∞

0
dt

∫
dr e−st−ik·rPn(r; t ) = τ�̂n+1(k, s), (C7)

where

�̂(k, s) ≡
∫ ∞

0
dt

∫
dr e−st−ik·r�̄(r, t ) =

∫ ∞

0
dt

1

τ
exp

[
−(s + 1/τ )t − (1 − e−
κt )kBT k2

κ

]
. (C8)

For small k2, we can expand Eq. (C8) into the power series of ε ≡ −k2 as

�̂(k, s) = �̂0(u) + �̂1(u)ε + �̂2(u)ε2 + O(ε3), (C9)

032106-15



TAKASHI UNEYAMA PHYSICAL REVIEW E 101, 032106 (2020)

where we have defined u ≡ τ s, and the explicit forms of the expansion coefficients become as follows, with η ≡ 
κτ :

�̂0(u) = 1

u + 1
, (C10)

�̂1(u) = kBT

κ

(
1

u + 1
− 1

u + 1 + η

)
, (C11)

�̂2(s) = (kBT )2

2κ2

(
1

u + 1
− 2

u + 1 + η
+ 1

u + 1 + 2η

)
. (C12)

The probability of the position r at time t is given as the sum of Pn(r; t ) for n = 0, 1, 2, . . . :

P(r; t ) =
∞∑

n=0

Pn(r; t ), (C13)

and its Fourier-Laplace transform becomes

P̂(k; s) ≡
∫ ∞

0
dt

∫
dr e−ik·r−st P(r; t ) = τ

∞∑
n=0

�̂n+1(k; s) = τ�̂(k; s)

1 − �̂(k; s)
. (C14)

By substituting Eq. (C9) into Eq. (C14), the power series expansion of Eq. (C14) becomes

P̂(k; s) = τ

u
+ τ�̂1(u)

[1 − �̂0(u)]2
ε +

[
τ�̂2(u)

[1 − �̂0(u)]2
+ τ�̂2

1 (u)

[1 − �̂0(u)]3

]
ε2 + O(ε3). (C15)

The Laplace transforms of the MSD and the mean-quartic displacement (MQD) are obtained by using the expansion coefficients
of ε and ε2, respectively. From the symmetry, we can rewrite P(r; t ) as P(r; t ) = P(r; t )/4πr2 with r = |r|. Also, without loss
of generality, we can set the wave number vector k parallel to the z direction. Then we can calculate the Fourier transform in
Eq. (C14) in the spherical coordinates:

P̂(k; s) =
∫ ∞

0
dt

∫ ∞

0
dr

∫ 2π

0
dθ

∫ π

0
dφ r2 sin φ e−ikr cos φ−st P(r; t )

4πr2

= 1

2

∫ ∞

0
dt e−st

∫ ∞

0
dr

∫ π

0
dφ sin φ

[
1 + ε

2
r2 cos2 φ + ε4

24
r4 cos4 φ

]
P(r; t ) + O(ε3)

= 1

s
+

∫ ∞

0
dt e−st

[
ε

6
〈r2(t )〉 + ε2

120
〈|r(t )|4〉

]
+ O(ε3). (C16)

By comparing Eqs. (C15) and (C16), we can determine the MSD and the MQD.
The coefficient of ε in Eq. (C15) can be calculated as

τ�̂1(u)

[1 − �̂0(u)]2
= kBT τ

κ

η(u + 1)

u2(u + 1 + η)
= kBT τ

κ

[
η

(1 + η)u2
+ η2

(1 + η)2

(
1

u
− 1

u + 1 + η

)]
. (C17)

By performing the inverse Laplace transform for Eq. (C17), we have the following expression for the MSD:

〈r2(t )〉 = 6kBT

κ

η

1 + η

[
t

τ
+ η

1 + η
[1 − e−t (1+η)/τ ]

]
. (C18)

The coefficient of ε2 in Eq. (C15) can be calculated in a similar way, although the calculation becomes lengthy:

τ�̂2(u)

[1 − �̂0(u)]2
+ τ�̂2

1 (u)

[1 − �̂0(u)]3
= (kBT )2τ

κ2

η2(u + 1)(u2 + 2u + ηu + 1 + 2η)

u3(u + 1 + η)2(u + 1 + 2η)

= (kBT )2τ

κ2

[
η2

(1 + η)2u3
+ η3(1 + 3η)

(1 + η)3(1 + 2η)u2
+ η3

(1 + η)3(u + 1 + η)2

+ η2(2 + η2)

(1 + η)4

(
1

u
− 1

u + 1 + η

)
− 2η2

(1 + 2η)2

(
1

u
− 1

u + 1 + 2η

)]
. (C19)

The MQD is calculated by performing the inverse Laplace transform of Eq. (C19):

〈|r(t )|4〉 = 60(kBT )2

κ2

[
η2

(1 + η)2

t2

τ 2
+ 2η3(1 + 3η)

(1 + η)3(1 + 2η)

t

τ
+ η3

(1 + η)3

2t

τ
e−t (1+η)/τ

+ 2η2(2 + η2)

(1 + η)4
[1 − e−t (1+η)/τ ] − 4η2

(1 + 2η)2
[1 − e−t (1+2η)/τ ]

]
. (C20)
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Then we can calculate the NGP. From Eq. (C18), the square of the MSD becomes

〈r2(t )〉2 = 36(kBT )2

κ2

[
η2

(1 + η)2

t2

τ 2
+ 2η3

(1 + η)3

t

τ
[1 − e−t (1+η)/τ ] + η4

(1 + η)4
[1 − 2e−t (1+η)/τ + e−2t (1+η)/τ ]

]
. (C21)

By combining Eqs. (C20) and (C21), we have

3

5
〈|r(t )|4〉 − 〈r2(t )〉2 = 36(kBT )2

κ2

[
2η4

(1 + η)3(1 + 2η)

t

τ
+ 4η3

(1 + η)3

t

τ
e−t (1+η)/τ + 4η2

(1 + η)4
[1 − e−t (1+η)/τ ]

− 4η2

(1 + 2η)2
[1 − e−t (1+2η)/τ ] + η4

(1 + η)4
[1 − e−2t (1+η)/τ ]

]
. (C22)

Finally we have the following explicit expression for the NGP:

α(t ) =
[

t

τ
+ η

1 + η
[1 − e−t (1+η)/τ ]

]−2[ 2η2

(1 + η)(1 + 2η)

t

τ
+ 4η

1 + η

t

τ
e−t (1+η)/τ + 4

(1 + η)2
[1 − e−t (1+η)/τ ]

− 4(1 + η)2

(1 + 2η)2
[1 − e−t (1+2η)/τ ] + η2

(1 + η)2
[1 − e−2t (1+η)/τ ]

]
. (C23)

Equations (C18) and (C23) give Eqs. (67) and (68) in the main text.
If the parameter η is sufficiently large, two characteristic time scales (1/
κ and τ ) are well separated, and both the MSD and

the NGP exhibit several characteristic regions with different t dependence. For the MSD, from Eq. (C18), we have

〈r2(t )〉 ≈ 6kBT

κ

[
t

τ
+ 1 − e−
κt

]
, (C24)

and thus we find that the MSD exhibits three regions:

〈r2(t )〉
6kBT/κ

≈

⎧⎪⎨
⎪⎩


κt (t � 1/
κ ),

1 (1/
κ � t � τ ),

t/τ (τ � t ).

(C25)

Equation (C24) is the same form as Eq. (59). For the NGP, from Eq. (C23), we simply have α(t ) ≈ τ/t as the approximate form
for τ � t . For 1/
κ � t � τ , we have

α(t ) ≈ (1 + η)2

η2

[
2η2

(1 + η)(1 + 2η)

t

τ
+ 4

(1 + η)2
− 4(1 + η)2

(1 + 2η)2
+ η2

(1 + η)2

]
≈ t

τ
. (C26)

For t � 1/
κ , we expand Eq. (C23) with respect to t and have

α(t ) ≈ 1

(1 + η)2(t/τ )2

[
η2(1 + η)2

30
(t/τ )5

]
= η2t3

30τ 3
. (C27)

Therefore, we find that the NGP exhibits three regions with different t dependence:

α(t ) ≈
⎧⎨
⎩


2κ2t3/30τ (t � 1/
κ ),
τ/t (1/
κ � t � τ ),
t/τ (τ � t ).

(C28)

Equations (C25) and (C28) are consistent with the data in Fig. 3.
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