Synthetic Studies on Bilobalide

Akihiro Shioga
Tatsuya Toma
Satoshi Yokoshima*
Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
* indicates the main/corresponding author.
yokosima@ps.nagoya-u.ac.jp

Click here to insert a dedication.

Received: Accepted:
 Accepted: Published online
 DOI:

Abstract We disclose our synthetic studies on bilobalide, which features a Diels-Alder reaction of a cyclic anhydride to from two contiguous quaternary carbons, desymmetrization of a symmetric diol, and construction of a cyclic acetal under acidic conditions with inversion of configuration at an allylic position.

Key words desymmetrization, Diels-Alder reaction, Mukaiyama hydration, quaternary carbon, tertiary alcohol

Bilobalide is a sesquiterpene, whose isolation from leaves of the ginkgo tree was first reported in 1967 and then in $1969 .{ }^{1}$ Structural elucidation by Nakanishi and coworkers in 1971 showed that bilobalide has a tetracyclic skeleton composed of three lactone rings and a cyclopentane ring, on which two hydroxy groups and a tert-butyl group are substituted (Figure 1). ${ }^{2}$ The substituents and the complicated connection of the rings form six contiguous stereogenic centers, which contain two quaternary carbons and a tertiary alcohol moiety. These intriguing structural features, as well as its biological activities such as neuroprotective activity, ${ }^{3}$ antagonism against GABA receptor, ${ }^{4}$ and others, have attracted much attention in chemistry, and the total syntheses of bilobalide have been reported by three research groups. ${ }^{5}$ Herein we disclose our synthetic studies on bilobalide.

Figure 1 Structure of Bilobalide

Our retrosynthetic analysis is shown in Scheme 1. We paid attention to the symmetrical component in the structure of bilobalide (1). Thus, removal of the hydroxy groups and the tert-butyl group, as well as cleavage of the lactone rings would generate symmetrical compound 2. Connection of the two carbonyl groups in ester moieties would form cyclohexene 3, which could be constructed via a Diels-Alder reaction of cyclic anhydride 4. The Diels-Alder reaction is a reliable tool that constructs contiguous quaternary carbons, ${ }^{6}$ and therefore we commenced our synthesis with preparation of the requisite cyclic anhydride.

Scheme 1 Retrosynthesis of Bilobalide.

21b: minor isomer
22b: 65\% from 21b
Scheme 2 Synthetic Studies toward Bilobalide.

A reaction of cyclopentadiene (5) with singlet oxygen in the presence of thiourea afforded a diol, ${ }^{7}$ which was protected with TBS groups (Scheme 2). Ozonolysis of the resulting cyclopentene 6 produced dialdehyde 7, which was subjected to the Corey-Fuchs alkyne synthesis with a 2 -step conversion, 8 giving diyne 8. A palladium-mediated reductive cyclization converted the diyne into diene 9,9 which was immediately reacted with singlet oxygen. Reduction of the resulting endoperoxide with zinc and acetic acid afforded diol 10. AZADO oxidation of the diol furnished dicarboxylic acid, ${ }^{10,11}$ which was converted into cyclic anhydride 11 by heating in acetic anhydride.
The Diels-Alder reaction of the cyclic anhydride with butadiene proceeded smoothly at room temperature. The reaction occurred stereoselectively from the less substituted face, giving a tricyclic compound having two quaternary carbons. Reduction of the anhydride moiety in $\mathbf{1 2}$ via formation of a diester was followed by protection of the resulting diol 13 with benzyl groups. Deprotection with TBAF afforded diol 14.
Desymmetrization of the molecule could be achieved at this stage. PCC oxidation afforded β-hydroxyketone 15 in good yield. A slightly excess amount of PCC did not affect the results. This
indicates that the reactivity of the remaining hydroxy group in 15 was significantly reduced by the electron withdrawing nature of the ketone moiety. Elimination of the hydroxy group via formation of a mesylate produced enone 16. Addition of tertbutyllithium to the enone moiety occurred smoothly at $-78^{\circ} \mathrm{C}$ to give alcohol $\mathbf{1 7}$ as a sole isomer, although the stereochemsitry could not be determined. 1,3-Isomerization of the tertiary alcohol moiety in $\mathbf{1 7}$ was mediated by 2,3,4,5tetrafluorophenylboronic acid to give a 2:1 inseparable mixture of 18a and 18b. ${ }^{12,13}$ Selective ozonolysis of the less hindered C-C double bond on the cyclohexene ring furnished a mixture of aldehydes including 19 and 20. Upon treatment with sulfuric acid in methanol, inversion of configuration at the allylic position in $\mathbf{2 0}$ occurred, and both $\mathbf{1 9}$ and $\mathbf{2 0}$ could be converted into acetal 21a and 21b. ${ }^{14,15,16}$ After separation of the diastereomer, removal of the benzyl groups of both isomers 21a and 21b could be carried out under usual conditions in the presence of the trisubstituted C-C double bond, giving diol 22a and $\mathbf{2 2 b}$, the latter of which was identical to the intermediate in the Corey's synthesis. ${ }^{5 \mathrm{a}, 17,18}$
On the other hand, we tried to form the tertiary alcohol moiety of bilobalide, starting from 21b. ${ }^{19}$ Mukaiyama hydration with

Shenvi's modification could convert 21b into tertiary alcohol 23 in 67% yield. ${ }^{20,21}$ Although the stereochemistry of the reaction could not be confirmed at this stage, we conducted further transformation of tertiary alcohol 23. Thus, Birch reduction removed the benzyl groups to give triol 24, which was subjected to Swern oxidation. In the latter transformation we attempted to simultaneously oxidize the two primary alcohol moieties to obtain the corresponding dialdehyde. The reaction of 24, however, afforded tetracyclic compound 25 in 97% yield. ${ }^{22}$ The bulky tert-butyl group might hamper the Swern oxidation of the adjacent primary alcohol moiety, and the resulting monoaldehyde underwent formation of cyclic acetals via an unusual transposition of a methoxy group in the dimethyl acetal, leading to 25 . The structure of compound 25 was confirmed by using 2D NMR techniques, including H-H COSY, HMQC, HMBC and NOESY, which revealed that the Mukaiyama hydration afforded the product with the stereochemistry opposite to that of bilobalide.

Scheme 3 Formation of the Tertiary Alcohol Moiety via Mukaiyama Hydration.

In conclusion, through our synthetic studies on bilobalide, we achieved construction of the two contiguous quaternary carbons and introduction of the tert-butyl group, resulting in establishing another synthetic route toward the Corey's intermediate.

Funding Information

This work was financially supported by JSPS KAKENHI (Grant Numbers JP17H01523) and by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research; BINDS) from the Japan Agency for Medical Research and Development (AMED) under Grant Number JP19am0101099.

Acknowledgment

We would like to thank Prof. Toshiaki Teruya (University of Ryukyus) for helpful discussions.

Supporting Information

YES

Primary Data

NO

References and Notes

(1) (a) Major, R. T. Science 1967, 157, 1270. (b) Weinges, K.; Bähr, W. Justus Liebigs Ann. Chem. 1969, 724, 214.
(2) Nakanishi, K.; Habaguchi, K.; Nakadaira, Y.; Woods, M. C.; Maruyama, M.; Major, R. T.; Alauddin, M.; Patel, A. R.; Weinges, K.; Baehr, W. J. Am. Chem. Soc. 1971, 93, 3544.
(3) (a) Ahlemeyer, B.; Krieglstein, J. Cellular and Molecular Life Sciences CMLS 2003, 60, 1779. (b) Schwarzkopf, T. M.; Hagl, S.; Eckert, G. P.; Klein, J. Die Pharmazie - An International Journal of Pharmaceutical Sciences 2013, 68, 584. (c) Lang, D.; Kiewert, C.; Mdzinarishvili, A.; Schwarzkopf, T. M.; Sumbria, R.; Hartmann, J.; Klein, J. Brain Res. 2011, 1425, 155. (d) Huang, M.; Qian, Y.; Guan, T.; Huang, L.; Tang, X.; Li, Y. Eur. J. Pharmacol. 2012, 677, 71.
(4) (a) Huang, S. H.; Duke, R. K.; Chebib, M.; Sasaki, K.; Wada, K.; Johnston, G. a. R. Eur. J. Pharmacol. 2003, 464, 1. (b) Sasaki, K.; Hatta, S.; Haga, M.; Ohshika, H. Eur. J. Pharmacol. 1999, 367, 165. (c) Huang, S. H.; Duke, R. K.; Chebib, M.; Sasaki, K.; Wada, K.; Johnston, G. a. R. Neuroscience 2006, 137, 607.
(5) (a) Corey, E. J.; Su, W. G. J. Am. Chem. Soc. 1987, 109, 7534. (b) Corey, E. J.; Su, W.-G. Tetrahedron Lett. 1988, 29, 3423. (c) Crimmins, M. T.; Jung, D. K.; Gray, J. L. J. Am. Chem. Soc. 1992, 114, 5445. (d) Crimmins, M. T.; Jung, D. K.; Gray, J. L. J. Am. Chem. Soc. 1993, 115, 3146. (e) Baker, M. A.; Demoret, R. M.; Ohtawa, M.; Shenvi, R. A. Nature 2019, 575, 643.
(6) (a) Stork, G.; Tamelen, E. E. V.; Friedman, L. J.; Burgstahler, A. W. J. Am. Chem. Soc. 1953, 75, 384. (b) Engbert, T.; Kirmse, W. Liebigs Ann. Chem. 1980, 1980, 1689. (c) Zutterman, F.; Krief, A. J. Org. Chem. 1983, 48, 1135. (d) Camps, P.; Castañé, J.; Feliz, M.; Figueredo, M. Tetrahedron 1984, 40, 5235. (e) Ihara, M.; Kawaguchi, A.; Chihiro, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc. Chem. Commun. 1986, 671. (f) De Lucchi, O.; Piccolrovazzi, N.; Modena, G. Tetrahedron Lett. 1986, 27, 4347. (g) Fujiwara, T.; Ohsaka, T.; Inoue, T.; Takeda, T. Tetrahedron Lett. 1988, 29, 6283. (h) O'shea, K. E.; Foote, C. S. Tetrahedron Lett. 1990, 31, 841. (i) Chapuis, C. Tetrahedron Lett. 1991, 32, 355. (j) Woo, S.; Legoupy, S.; Parra, S.; Fallis, A. G. Org. Lett. 1999, 1, 1013. (k) Butler, D. N.; Margetic, D.; O'neill, P. J. C.; Warrener, R. N. Synlett 2000, 2000, 98. (1) Jung, M. E.; Ho, D.; Chu, H. V. Org. Lett. 2005, 7, 1649. (m) Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai, H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I. W. P.; Chen, C.-H.; Luh, T.-Y. Chem. Eur. J. 2006, 12, 324. (n) Amancha, P. K.; Lai, Y.-C.; Chen, I. C.; Liu, H.-J.; Zhu, J.-L. Tetrahedron 2010, 66, 871. (o) Jung, M. E.; Guzaev, M. Org. Lett. 2012, 14, 5169.
(7) Kaneko, C.; Sugimoto, A.; Tanaka, S. Synthesis 1974, 1974, 876.
(8) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
(9) Trost, B. M.; Lee, D. C. J. Am. Chem. Soc. 1988, 110, 7255.
(10) (a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412. (b) Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61, 1197.
(11) Oxidation of 1,4 -diols mediated by N-oxoammonium salts usually produces γ-lactones via formation of cyclic hemiacetals. Inokuchi, T.; Matsumoto, S.; Nishiyama, T.; Torii, S. J. Org. Chem. 1990, 55, 462. During the oxidation of 10 , however, the ring strain of the corresponding hemiacetal might inhibit formation of the lactone.
(12) Zheng, H.; Lejkowski, M.; Hall, D. G. Chem. Sci. 2011, 2, 1305.
(13) 3a,7a-bis((benzyloxy)methyl)-3-(tert-butyl)-3a,4,7,7a-tetrahydro- $\mathbf{1 H}$-inden-1-ol (18a and 18b) To a solution of enone $16(23 \mathrm{mg}, 0.061 \mathrm{mmol})$ in THF $(1.0 \mathrm{ml})$ was added tertbutyllithium (1.53 M solution in hexane, $0.048 \mathrm{ml}, 0.073 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . The reaction was then quenched with water, and the resulting mixture was extracted three times with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residual oil containing 17 was used for the next step without further purification. To a stirred solution of the above crude material in toluene (1.0 ml) was added 2,3,4,5-tetrafluorophenylboronic acid
($2 \mathrm{mg}, 0.01 \mathrm{mmol}$) at room temperature. The mixture was heated at $50^{\circ} \mathrm{C}$ with stirring for 2 h . After cooling to room temperature, the reaction mixture was concentrated in vacuo and the residue was purified by preparative TLC (EtOAc-hexane $=1: 3$) to give a 2:1 mixture of $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ ($18 \mathrm{mg}, 0.042 \mathrm{mmol}, 68 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 10 \mathrm{H}), 5.75$ $(\mathrm{d}, J=2.8 \mathrm{~Hz},(1 / 3) 1 \mathrm{H}), 5.73(\mathrm{~m},(2 / 3) 1 \mathrm{H}), 5.68-5.60(\mathrm{~m}$, $(1 / 3) 2 \mathrm{H}+(2 / 3) 1 \mathrm{H}), 5.57(\mathrm{~d}, J=1.6 \mathrm{~Hz},(2 / 3) 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.6$ $\mathrm{Hz},(2 / 3) 1 \mathrm{H}), 4.52-4.28(\mathrm{~m},(1 / 3) 4 \mathrm{H}+(2 / 3) 44 \mathrm{H}), 4.03(\mathrm{~d}, J=11.2$ $\mathrm{Hz},(1 / 3) 1 \mathrm{H}), 3.81-3.75(\mathrm{~m},(1 / 3) 1 \mathrm{H}+(2 / 3) 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}$, $(1 / 3) 2 \mathrm{H}+(2 / 3) 1 \mathrm{H}), 2.48-2.14(\mathrm{~m},(1 / 3) 2 \mathrm{H}+(2 / 3) 4 \mathrm{H}), 2.03(\mathrm{~d}, J=$ $18.0 \mathrm{~Hz},(1 / 3) 1 \mathrm{H}), 1.76(\mathrm{~d}, J=18.8 \mathrm{~Hz},(1 / 3) 1 \mathrm{H}), 1.10(\mathrm{~s}$, $(1 / 3) 9 \mathrm{H}), 1.09$ (s, (2/3)9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$, 156.7 (C), 139.0, 138.5 (C), 138.4, 136.8 (C), 128.5 (CH), 128.4 (CH), 128.2 (CH), 128.2 (CH), 128.2 (CH), 128.0 (CH), 127.6, (CH), $127.4(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 126.3,125.7(\mathrm{CH}), 124.7$, $123.5(\mathrm{CH}), 81.0,80.3(\mathrm{CH}), 74.1\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right)$, $73.3\left(\mathrm{CH}_{2}\right), 73.0\left(\mathrm{CH}_{2}\right), 72.8\left(\mathrm{CH}_{2}\right), 72.7\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right), 54.6$, 53.9 (C), 52.3, $48.4(\mathrm{C}), 34.5,34.3(\mathrm{C}), 34.1\left(\mathrm{CH}_{2}\right), 30.8,30.8\left(\mathrm{CH}_{3}\right)$, $29.4\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI+) 455.2549 (calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NaO}_{3}: 455.2562$).
(14) 3a,4-bis((benzyloxy)methyl)-5-(tert-butyl)-4-(2,2-dimethoxyethyl)-2-methoxy-3,3a,4,6a-tetrahydro-2Hcyclopenta[b]furan (21a and 21b) To a stirred solution of allyl alcohol 18a and 18b (mixture of diastereomers, $4 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in dichloromethane (1.0 ml) was added a solution of ozone in dichloromethane at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with triphenylphosphine ($6 \mathrm{mg}, 0.02 \mathrm{mmol}$) and removal of the solvent under reduced pressure gave a crude material containing 19 and 20, which was used in the next step without further purification. To a solution of the crude material in $\mathrm{MeOH}(1.0 \mathrm{ml})$ was added concentrated sulfuric acid ($0.004 \mathrm{ml}, 0.08 \mathrm{mmol}$) at room temparature. After stirring for 30 min , the reaction was then quenched with solid NaHCO_{3} and the mixture was concentrated in vacuo. To the residue was added water, and the mixture was extracted three times with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by preparative TLC (EtOAc-hexane, 1:6) to give a $3: 2$ mixture of 21a and 21b $(3 \mathrm{mg}, 0.006 \mathrm{mmol}, 57 \%)$ as a colorless oil. 21a (major isomer): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.0,1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}$, 3 H), $3.14(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (dd, $J=14.8,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5$ (C), 138.7 (C), 138.3 (C), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.2 (CH), $126.6(\mathrm{CH}), 105.5(\mathrm{CH}), 103.4(\mathrm{CH}), 90.1(\mathrm{CH}), 73.4\left(\mathrm{CH}_{2}\right)$, $72.0\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 71.6\left(\mathrm{CH}_{2}\right), 59.3(\mathrm{C}), 58.6(\mathrm{C}), 54.7\left(\mathrm{CH}_{3}\right)$, $53.6\left(\mathrm{CH}_{3}\right), 52.4\left(\mathrm{CH}_{3}\right), 39.0\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{C}), 31.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) 547.3021 (calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NaO}_{6} 547.3036$). 21b (minor isomer): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.22(\mathrm{~m}, 10 \mathrm{H})$, $5.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}$, $3 \mathrm{H}), 2.39(\mathrm{dd}, J=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (dd, $J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00 (dd, $J=13.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1$ (C), 138.7 (C), 138.2 (C), 128.7 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 127.5 $(\mathrm{CH}), 127.2(\mathrm{CH}), 106.5(\mathrm{CH}), 103.1(\mathrm{CH}), 89.9(\mathrm{CH}), 73.4\left(\mathrm{CH}_{2}\right)$, $72.7\left(\mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2}\right), 59.8(\mathrm{C}), 58.5(\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right)$, $53.4\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 39.2\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 34.5(\mathrm{C}), 31.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) 547.3038 (calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NaO}_{6} 547.3036$).
(15) Oxidative rearrangement of $\mathbf{1 7}$ with PCC, followed by reduction of the resulting enone $\mathbf{2 6}$ with DIBAL, afforded one of the isomers of
alcohol 18b, ozonolysis of which furnished 20. Acetal formation from 20 under the same conditions afforded 21a and 21b in 60\% yield. For details, see ref 16.

(16) 3a,7a-bis((benzyloxy)methyl)-3-(tert-butyl)-3a,4,7,7a-tetrahydro-1H-inden-1-ol (18b) Enone 16 ($30 \mathrm{mg}, 0.081 \mathrm{mmol}$) was converted into 17 according to the procedure provided in ref 13. The crude was $\mathbf{1 7}$ was dissolved in dichloromethane (5.0 ml), and to the resulting solution were added Celite (64 mg) and pyridinium chlorochromate ($33 \mathrm{mg}, 0.16 \mathrm{mmol}$) at room temperature. After stirring for 30 minutes, the solution was filtered through a pad of silica gel and the filtrate was concentrated in vacuo. The residue was purified by preparative TLC (EtOAc-hexane, 1:3) to give enone 26 ($30 \mathrm{mg}, 0.069 \mathrm{mmol}$, 86%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.21(\mathrm{~m}$, $10 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.80-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.6 \mathrm{~Hz} 1 \mathrm{H}), 3.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 210.0$ (C), 189.5 (C), 138.3 (C), 138.0 (C), 131.2 (CH), 128.2 (CH), $127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 125.4(\mathrm{C}), 73.3\left(\mathrm{CH}_{2}\right), 73.1$ $\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right), 72.3\left(\mathrm{CH}_{2}\right), 57.2(\mathrm{C}), 56.8(\mathrm{C}), 36.8(\mathrm{C}), 31.1$ $\left(\mathrm{CH}_{3}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right)$. Three CH peaks of phenyl groups were not observed perhaps due to overlapping. To a solution of enone 26 ($30 \mathrm{mg}, 0.069 \mathrm{mmol}$) in dichloromethane (1.2 ml) was added diisobutylaluminiun hydride $(1.0 \mathrm{M}$ solution in hexane, $0.14 \mathrm{ml}, 0.14 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min. The reaction was then quenched with saturated aqueous potassium sodium tartrate. The mixture was extracted three times with dichloromethane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified preparative TLC (EtOAc-hexane, 1:3) to give 18b (29 $\mathrm{mg}, 0.067 \mathrm{mmol}, 97 \%)$ as a single diastereomer and as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 5.76(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67-5.57(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=18.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.03(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$ (C), 139.0 (C), 136.8 (C), 138.0 (C), 128.4 (CH), 128.2 (CH), 128.2 (CH), $128.0(\mathrm{CH}), 127.5(\mathrm{CH})$, 127.2 (CH), 126.3 (CH), 123.5 (CH), 80.3 (CH), $73.3\left(\mathrm{CH}_{2}\right), 73.0$ $\left(\mathrm{CH}_{2}\right), 72.8\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right), 54.0(\mathrm{C}), 48,4(\mathrm{C}), 34.5(\mathrm{C}), 34.1$ $\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right)$; One CH peak of a phenyl group was not observed perhaps due to overlapping; HRMS (ESI+) 455.2560 (calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NaO}_{3} 455.2562$).
(17) NMR data for one of the epimers are available in the literature of the Corey's synthesis.
(18) 5-(tert-butyl)-4-(2,2-dimethoxyethyl)-2-methoxy-3,3a,4,6a-tetrahydro- 2 H -cyclopenta[b]furan-3a,4-diyl)dimethanol
(22b) A mixture of 21b ($3 \mathrm{mg}, 0.005 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(56$ $\mathrm{mg}, 0.053 \mathrm{mmol}$) in THF (0.5 ml) was stirred for 6 h at room temperature under $\mathrm{H}_{2}(1 \mathrm{~atm})$, before the mixture was filtered though a pad of Celite. The filtrate was concentrated to afford a crude material, which was purified by preparative TLC (EtOAc) to give 22b ($1 \mathrm{mg}, 0.003 \mathrm{mmol}, 65 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, 11.6, 7.2 $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 9 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H})$, $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.19 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.5$ (CH), 105.9 (CH), $102.4(\mathrm{CH}), 86.9(\mathrm{CH}), 65.6\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 61.9(\mathrm{C}), 60.1(\mathrm{C})$,
$55.3\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right), 40.4\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{C})$, $31.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) 367.2101 (calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{6}$: 367.2097).
(19) The isomers 21a and 21b showed different reactivity in the Mukaiyama hydration. The reaction of the major isomer 21a proceeded sluggishly under the same conditions to produce the corresponding tertiary alcohol in 16% yield even after 5 h .
(20) (a) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 1071. (b) Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962.
(21) 3a,4-bis((benzyloxy)methyl)-5-(tert-butyl)-4-(2,2-dimethoxyethyl)-2-methoxyhexahydro-2H-
cyclopenta[b]furan-5-ol (23) A solution of 21b ($6 \mathrm{mg}, 0.01$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{dpm})_{3}(7 \mathrm{mg}, 0.01 \mathrm{mmol})$ and triphenylphosphine (4 $\mathrm{mg}, 0.02 \mathrm{mmol})$ in cyclohexane (0.5 ml) was prepared in a test tube, which was charged with O_{2}. To this mixture was added monoisopropoxy(phenyl)silane ($6 \mu \mathrm{l}, 0.03 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature for 20 min before it was concentrated in vacuo. The residue was purified by preparative TLC (EtOAc-hexane, 1:3) to give 23 ($4 \mathrm{mg}, 0.008$ $\mathrm{mmol}, 67 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ 7.18 (m, 10H), 5.13 (dd, $J=6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}), 4.28(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.8,1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, 3.37 (s, 2H), $3.22(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=15.2,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (dd, $J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4$ (C), 137.8 (C), 128.3 (CH), 128.3 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.5 (CH), 107.9 (CH), 103.7 (CH), 88.9 (C), $88.2(\mathrm{CH}), 74.5\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 72.3\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 59.5(\mathrm{C})$, $58.4(\mathrm{C}), 55.1\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 43.6\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right)$,
39.8 (C), 35,7 (CH_{2}), $28.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) 565.3158 (calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NaO}_{7} 565.3141$).
(22) 3a-(tert-butyl)-2,6,8-trimethoxyoctahydro-1H-
cyclopenta[1,2-b:4,3-b':2,3-c']trifuran (25) To a stirred solution of dimethyl sulfoxide (19 $\mu \mathrm{l}, 0.27 \mathrm{mmol})$ in dichloromethane (0.5 ml) was added dropwise oxalyl chloride $(16 \mu \mathrm{l}, 0.18 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 10 min at $-78{ }^{\circ} \mathrm{C}$, to the mixture was added dropwise a solution of triol $24(1 \mathrm{mg}$, 0.003 mmol) in dichloromethane (0.5 ml), and the resulting mixture was stirred for another 40 min at $-78^{\circ} \mathrm{C}$. To the mixture was added triethylamine ($62 \mu \mathrm{l}, 0.45 \mathrm{mmol}$) before it was allowed to warm to room temperature. After stirring for another 20 min at room temperature, the mixture was quenched with water, and extracted three times with dichloromethane. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by preparative TLC (EtOAc-hexane = 1:3) to give 25 ($1 \mathrm{mg}, 0.003 \mathrm{mmol}, 97 \%$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{dd}, J=6.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{dd}, J=7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd $J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, $J=14.8,7.2,1 \mathrm{H}$), 2.16 (dd, $J=$ $14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94(\mathrm{dd}, J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=14.4$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.8(\mathrm{CH})$, $107.3(\mathrm{CH}), 103.6(\mathrm{CH}), 100.8(\mathrm{C}), 87.4(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2}\right), 68.8(\mathrm{C})$, $63.2(\mathrm{C}), 56.2\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{3}\right), 43.1\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right)$, $37.8(\mathrm{C}), 35.8\left(\mathrm{CH}_{2}\right) 27.2\left(\mathrm{CH}_{3}\right.$; detected as a cross peak in the HMQC spectrum); HRMS (ESI+) 365.1940 (calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{6}$ 365.1940).

