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ABSTRACT

Approximated forms of the third and fourth moments of a velocity distribution function are derived by using a perturbed velocity distribution
function around a characteristic spatial scale on the gyroradius derived by Thompson [Rep. Prog. Phys. 24, 363–424 (1961)]. Then, they are
evaluated by using a two-dimensional full kinetic Vlasov simulation result of the transverse Kelvin–Helmholtz instability. It is shown that the
derived form of the fourth moment is in agreement with the one calculated from the distribution function data of the Vlasov simulation. On the
other hand, the derived form of the third moment is quite different from the one (i.e., heat flux tensor) calculated from the distribution function
data of the Vlasov simulation. The results suggest that the perturbed velocity distribution function of Thompson needs an improvement.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139442

I. INTRODUCTION

Non-magneto-hydro-dynamic (MHD) effects on various plasma
processes are fundamental issues in plasma physics. Recent studies of
magneto-hydro-dynamic (MHD) instabilities at boundary layers by
using fully kinetic simulations indicated the importance of higher
moments for reproducing (approximating) full kinetic simulation
results by fluid simulations.1–3 In the MHD equation, the following
scalar energy (or pressure) equation is conventionally solved, in which
the scalar pressure P is defined as the trace of the pressure tensor P:

@

@t
miNjU j2 þ

2
c� 1

P
� �
¼ �r � ðmiNjU j2UÞ �

2c
c� 1

r � ðPUÞ þ 2E � J: (1)

Here, the off-diagonal pressure (i.e., stress) terms are neglected in the
energy/pressure equation. The heat capacity ratio c is given by
c ¼ ðDþ 2Þ=D, where D is the number of velocity dimensions. Note
that the density N, the fluid bulk velocity vector U, and the pressure
tensor P are given by taking the zeroth, first, and second moments of a
velocity distribution function f as follows:

N ¼
ð ð ð

f d3v; (2)

U ¼ 1
N

ð ð ð
vf d3v; (3)

P ¼ m
ð ð ð
ðv� UÞðv� UÞf d3v; (4)

where vv represents a dyadic product.
The pressure equation, including the pressure tensor P and the

heat flux vector Q, is written as follows:

@P
@t
¼ �r � ðPUÞ � ðc� 1ÞðPrÞ � U � c� 1

2
r � Q

¼ �r � ðPUÞ � ðc� 1ÞPr � U

� ðc� 1ÞðPrÞ � U � c� 1
2
r � Q; (5)

where P ¼ PIþP, with I and P being the unit tensor and the stress
tensor, respectively. The heat flux vector is defined as

Q ¼ m
ð ð ð

jv� U j2ðv� UÞf d3v: (6)

Note that Pr and Pr are matrix products.
Let us consider a four-dimensional phase space with two spatial

and two velocity dimensions (x; y; vx; vy), in which the ambient mag-
netic field is taken only in the z direction (Bz). Then, the out-of-plane
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current density Jz component does not play any role on the MHD scale
in the present coordinate system, because the current density Jz com-
ponent (which is exactly parallel to the ambient magnetic field) is
responsive to the ordinary light-mode waves only.

According to Thompson,4 the pressure tensor for the species s in
the present coordinate system (c¼ 2) is approximated as follows:

Pxxs � Ps �
Ps
2xcs

@Uys

@x
þ @Uxs

@y

� �
; (7)

Pyys � Ps þ
Ps
2xcs

@Uys

@x
þ @Uxs

@y

� �
; (8)

Pxys ¼ Pyxs �
Ps
2xcs

@Uxs

@x
�
@Uys

@y

� �
; (9)

where P � ðPxx þ PyyÞ=2 represents the scalar pressure and xcs

� qsBz=ms represents the gyrofrequency with a sign included to con-
sider the direction of the ambient magnetic field Bz. Then, the stress
tensor P is approximated as follows:

Pxxs ¼ �Pyys ¼ �
Ps
2xcs

@Uys

@x
þ @Uxs

@y

� �
; (10)

Pxys ¼ Pyxs ¼
Ps
2xcs

@Uxs

@x
� @Uys

@y

� �
: (11)

It is easy to find that ðPxx � PyyÞ=2 ¼ Pxx ¼ �Pyy . The approxi-
mated stress tensor is known as the stress viscosity and is later known
as the Finite Larmor Radius (FLR) term5 or the gyroviscosity as well.
A recent analysis has (re)confirmed that the stress viscosity in Eqs.
(10) and (11) was a good approximation of the stress tensor in the
Kelvin–Helmholtz instability (KHI).1

The KHI is focused on in the present study because of its impact on
observational, theoretical, and numerical plasma physics. The KHI, which
grows in a velocity shear layer, is one of fundamental processes for the
exchange of mass, momentum, and energy in collisionless plasma.6–11 In
situ spacecraft observations have shown an evidence of rolled-up vortices
around the Earth’s low-latitude magnetospheric boundary where there
exists the velocity shear between the solar wind flowing plasma and the
magnetospheric plasma at rest, which indicates the development of the
KHI.12–17 Secondary velocity/density shear layers formed in KH vortices
are able to become a free energy source for various secondary instabilities,
such as Rayleigh-Taylor instability,18–20 magneto-rotational instability,21

current sheet kink instability,22 and lower-hybrid drift instability.23

Magnetic reconnection or tearing instability is also generated when the
in-plane components of the ambient magnetic field [i.e., (Bx, By)] exist ini-
tially,24–30 which is, however, out of scope of the present study because
the present two-dimensional coordinate system without in-plane mag-
netic fields is not able to treat the development of the out-of-plane com-
ponent of current density (Jz) and electric field (Ez).

Recent fully kinetic simulations of fluid instabilities at MHD-
scale boundary layers showed that there is asymmetry in the develop-
ment of the scalar pressure depending on the orientation of the inner
product between the vorticity of the primary velocity shear layer,
X ¼ r� U , and the magnetic field vector B (e.g., Refs. 1 and 2). This
phenomenon in the KHI has been studied in terms of the dawn–dusk
asymmetry at Earth’s magnetosphere, where X � B is positive at the
dusk-side low-latitude magnetospheric boundary but is negative at the
dawn-side low-latitude magnetospheric boundary.31–39

If the stress tensor is well approximated by the gyroviscosity in
Eqs. (10) and (11), then the term ðPrÞ � U in Eq. (5) is zero. It is indi-
cated that the asymmetric development of the scalar pressure depend-
ing on the polarity of X � B is due to the heat flux term r � Q. Hence,
the purpose of this study is twofold. One is to derive the approximated
form of the third moment (i.e., heat flux tensor) Q and the fourth
moment R based on the procedure of Thompson.4 The other is to
evaluate the derived approximated form of the third and fourth
moments by using two-dimensional full kinetic simulation data of the
transverse KHI. It should be noted that it has now become possible to
make direct comparison between past theories and full Vlasov simula-
tions owing to the development of both supercomputer technologies
and multi-dimensional Vlasov simulation techniques.

II. THEORETICAL FORMULATION

We start from Eq. (4.50) in Ref. 4, which is given in the following
equation in the present coordinate system:

f1 �
1
xc

cy
@f
@x
� 2

@f
@c2?

dUx

dt

� �
� cx

@f
@y
� 2

@f
@c2?

dUy

dt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

8>><
>>:

��cxcy
@f
@c2?

@Ux

@x
� @Uy

@y

� �
�
c2y � c2x

2
@f
@c2?

@Ux

@y
þ @Uy

@x

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðbÞ

9>>=
>>;
:

(12)

Here, the velocity coordinate perpendicular to the magnetic field,
(cx, cy), is defined as the cylindrical coordinate centered at the fluid bulk
velocity (Ux, Uy), i.e., ðcx; cyÞ � ðvx � Ux; vy � UyÞ ¼ c?ðcos h; sin hÞ.
Equation (12) was derived by Thompson4 from the Taylor expansion
of the Vlasov equation around a characteristic spatial scale on the
gyroradius, in which the velocity distribution function f was separated
into a gyrotropic part f0 (i.e., @f0=@h ¼ 0) and a non-gyrotropic and
perturbed part (in the h direction) f1,

4 i.e., f � f0 þ f1. One can easily
find that Eqs. (7), (8), and (9) are obtained by

Ð Ð
c2xf d

2v,
Ð Ð

c2yf d
2v,

and
Ð Ð

cxcyf d
2v, respectively, by using Eq. (12).

The third moment (i.e., heat flux tensor) Q and the fourth
moment R are defined (e.g., Refs. 40 and 41) as follows:

Q ¼ m
ð ð ð
ðv� UÞðv� UÞðv� UÞf d3v; (13)

R ¼ m
ð ð ð
ðv� UÞðv� UÞðv� UÞðv� UÞf d3v: (14)

By using Eq. (12), the approximated form of the heat flux tensor Q is
calculated by taking the third moment of the velocity distribution
function as follows:

Qxxx � m
ð ð

c3xf d
2v

� � m
xc

ð ð
c4? cos

4h
@f
@y
� c3? cos

4h
@f
@c?

dUy

dt

� �
c?dc?dh

¼ � 3pm
4xc

ð
c5?
@f
@y
þ 4c3?f

dUy

dt

� �
dc? ¼ �

3
2xc

@R
@y
� 3P

xc

dUy

dt
;

(15)
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Qxxy �m
ð ð

c2xcyf d
2v

� m
xc

ð ð
c4? cos

2h sin2h
@f
@x
� c3? cos

2h sin2h
@f
@c?

dUx

dt

� �
c?dc?dh

¼ pm
4xc

ð
c5?
@f
@x
þ 4c3?f

dUx

dt

� �
dc? ¼

1
2xc

@R
@x
þ P

xc

dUx

dt
¼Qyyy

3
;

(16)

Qxyy�m
ðð

cxc
2
yf d

2v

��m
xc

ðð
c4? cos

2hsin2h
@f
@y
�c3? cos

2hsin2h
@f
@c?

dUy

dt

� �
c?dc?dh

¼� pm
4xc

ð
c5?
@f
@y
þ4c3?f

dUy

dt

� �
dc?

¼� 1
2xc

@R
@y
� P

xc

dUy

dt
¼Qxxx

3
; (17)

Qyyy � m
ð ð

c3yf d
2v

� m
xc

ð ð
c4? sin

4h
@f
@x
� c3? sin

4h
@f
@c?

dUx

dt

� �
c?dc?dh

¼ 3pm
4xc

ð
c5?
@f
@x
þ 4c3?f

dUx

dt

� �
dc? ¼

3
2xc

@R
@x
þ 3P

xc

dUx

dt
; (18)

where

d2v ¼ c?dc?dh;ð
cnþ1?

@f
@c2?

dc? ¼
1
2

ð
cn?

@f
@c?

dc? ¼ �
n
2

ð
cn�1? f dc?;

P � m
2

ð
2pc3?f dc?;

and

R � m
4

ð
2pc5?f dc? ¼

m
4

ð
2pc?ðc2x þ c2yÞ

2f dc?: (19)

Here, the subscript s is omitted for simplicity. It is shown that the
approximated form of the heat flux tensor requires the scalar values of
the pressure P and the fourth moment R. It is also noted that the heat
flux vector in Eq. (5) is given as Q � ðQxxx þ Qxyy;Qxxy þ QyyyÞ.

It is known that the fluid equation of motion is described as
follows:

dUx

dt
¼ q

m
Ex þ UyBzð Þ �

1
mN

@Pxx
@x
þ
@Pxy
@y

� �
; (20)

dUy

dt
¼ q

m
Ey � UxBzð Þ �

1
mN

@Pxy
@x
þ @Pyy

@y

� �
: (21)

The approximated form of the first moment of a velocity distribution
function by using Eq. (12) was derived by Thompson4 asð ð

cxf d
2v � � 1

xc

ð ð
c3?
@f
@y
� c2?

@f
@c?

dUy

dt

� �
cos 2hdc?dh

¼ � 1
2mxc

@P
@y
þmN

dUy

dt

� �
; (22)

ð ð
cyf d

2v � 1
xc

ð ð
c3?
@f
@x
� c2?

@f
@c?

dUx

dt

� �
sin 2hdc?dh

¼ 1
2mxc

@P
@x
þmN

dUx

dt

� �
: (23)

However, it is obvious that the above approximated form does
not become zero with the fluid equation of motion (20) and (21).
Hence, we use mNdUx=dt � �@P=@x and mNdUy=dt � �@P=@y,
instead of Eqs. (20) and (21), for the approximation of the third
moment.

By using the same procedure, we also calculate the approximated
form of the fourth moment tensor R as

Rxxxx � m
ð ð

c4xf d
2v

�m
ð ð

c4?f cos
4h� c5?

4xc
cos4h sin2h� cos6hð Þ

�

� @f
@c?

@Ux

@y
þ
@Uy

@x

� ��
c?dc?dh

¼ 2pm
3
8
þ 6
4

1
16
� 5
16

� �
1
xc

@Ux

@y
þ @Uy

@x

� �( )

�
ð
c5?f dc? ¼

3R
2
� 3R
2xc

@Ux

@y
þ @Uy

@x

� �
; (24)

Rxxxy � m
ð ð

c3xcyf d
2v

� �m 1
2xc

ð ð
c5? cos

4h sin2h
@f
@c?

@Ux

@x
� @Uy

@y

� �� �
c?dc?dh

¼ 3pm
8xc

@Ux

@x
� @Uy

@y

� �ð
c5?f dc? ¼

3R
4xc

@Ux

@x
� @Uy

@y

� �
;

(25)

Rxxyy � m
ð ð

c2xc
2
yf d

2v

�m
ð ð

fc4? cos
2h sin2h� c5?

4xc
cos4h sin2h� cos2h sin4hð Þ

�

� @f
@c?

@Ux

@y
þ @Uy

@x

� ��
c?dc?dh

¼ pm
4

ð
c5?f dc? ¼

R
2
; (26)

Rxyyy � m
ð ð

cxc
3
yf d

2v

� �m 1
2xc

ð ð
c5? cos

2h sin4h
@f
@c?

@Ux

@x
� @Uy

@y

� �� �
c?dc?dh

¼ 3pm
8xc

@Ux

@x
� @Uy

@y

� �ð
c5?f dc? ¼

3R
4xc

@Ux

@x
� @Uy

@y

� �
;

(27)
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Ryyyy � m
ð ð

c4yf d
2v

�m
ð ð

fc4? sin
4h� c5?

4xc
sin6h� cos2h sin4hð Þ

�

� @f
@c?

@Ux

@y
þ @Uy

@x

� ��
c?dc?dh

¼ 2pm
3
8
þ 6
4

5
16
� 1
16

� �
1
xc

@Ux

@y
þ @Uy

@x

� �( )ð
c5?f dc?

¼ 3R
2
þ 3R
2xc

@Ux

@y
þ @Uy

@x

� �
: (28)

The scalar value of the fourth moment in Eq. (19) is also rewritten as

R ¼
Rxxxx þ 2Rxxyy þ Ryyyy

4
: (29)

In the previous studies,4,5 the stress tensor P ¼ P� PI, which is
the deviation from the scalar pressure, is defined for describing the sec-
ond moment. For the direct comparison between these approximated
forms and the moments of the velocity distribution function calculated
by using the full Vlasov simulation data, we denote the approximated
forms of the third and fourth moments as H andW, respectively,

Hxxx ¼ 3Hxyy ¼ �
3

2xc

@R
@y
þ 3P
mxcN

@P
@y
; (30)

Hyyy ¼ 3Hxxy ¼
3

2xc

@R
@x
� 3P
mxcN

@P
@x
; (31)

Wxxxx ¼ �Wyyyy ¼ �
3R
2xc

@Ux

@y
þ @Uy

@x

� �
� Rxxxx � Ryyyy

2
; (32)

Wxxxy ¼ Wxyyy ¼
3R
4xc

@Ux

@x
� @Uy

@y

� �
: (33)

III. VLASOV SIMULATION

The purpose of the present study is to evaluate the approximated
forms of the third and fourth moments by using full kinetic simulation
data. In the present study, we re-performed Vlasov simulation runs
with almost the same setup as the previous two-dimensional full elec-
tromagnetic Vlasov simulation study36 to calculate the third and
fourth moments of the velocity distribution function. See Ref. 36 for
the detailed simulation setup and results. Here, we briefly describe the
simulation setup.

The code has two spatial and two velocity dimensions42 and is
based on a non-oscillatory and conservative semi-Lagrangian
scheme43,44 with several improvements.45–47 Detailed descriptions of
the simulation code are given in the references.

The transverse KHI is driven by primary velocity and density
shears given by hyperbolic tangent,

UyiðyÞ ¼
DU
2

1� tanh
y
L

� �� �
(34)

and

NiðyÞ ¼
Nlow � Nhigh

2
tanh

y
L

� �
þ
Nlow þ Nhigh

2
; (35)

where L represents the half thickness of the shear layer. There is a low-
density plasma flowing in the þx direction in the lower-part of the
simulation domain (y< 0) and a high-density plasma at rest in the
upper-part of the simulation domain (y> 0). In the two-dimensional
coordinate system without an initial in-plane ambient magnetic field,
the ordinary light-mode waves, which are responsive to the plasma
motion in the out-of-plane direction, do not develop on the MHD
scale. Hence, we neglect the third velocity dimension vz in the present
transverse KHI,10,36 which substantially reduces the computational
cost of Vlasov simulations.

Two simulation runs with X � B > 0 and X � B < 0 were per-
formed to see the effect of the ion gyromotion. Since the vorticity of
the initial primary velocity shear is set to be positive in the present
simulation runs, the polarity of X � B is controlled by the direction of
the out-of-plane magnetic field Bz.

The velocity difference and the density ratio is given as
DU ¼ VA ¼ 4vti and Nlow=Nhigh ¼ 0:1, respectively, where VA

¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0miNhigh

p
is the Alfv�en velocity in the high-density region.

The initial half thickness of the shear layer is set as L ¼ di ¼ 4ri,
where di � c=xpi and ri � vti=xci represent the ion inertial length
and the ion thermal gyroradius, respectively. Then, the wavelength
of the most linearly unstable KH mode with these parameters
corresponds to kKH � 12L, which is much longer than both ion iner-
tial length and ion gyroradius (kKH � 9:3di � 112:4ri at y¼ 0).
Therefore, the primary KHI is in the MHD regime. The KHI is initi-
ated by a seed perturbation in the bulk velocity Uy component at the
wavelength of kKH ¼ 12L in the x direction, with a amplitude of
dUy ¼ 0:01DU , which is a tenth of that in the previous study.36 The
ion cyclotron frequency ratio is jxcij=xpi ¼ 0:05, and the speed of
light is c=vti ¼ 80:0, where xpi and vti are the ion plasma frequency
and thermal velocity in the high-density region. The plasma beta (the
ratio of the thermal energy density to the magnetic energy density)
is bi ¼ be ¼ 0:125. A small ion-to-electron mass ratio mi=me ¼ 25
is used for the computational cost. The grid spacing is set as
D ¼ 2:0vti;e=xpi;e ¼ 0:5re ¼ 0:125le ¼ 0:1ri ¼ 0:025li.

The initial density, bulk velocity, and temperature of ions and
electrons are determined based on a two-fluid equilibrium. It should
be noted that since the initial velocity distributions of the ions and
electrons are isotropic Maxwellian, the initial condition is not a Vlasov
equilibrium.

It should be noted that the deviation of the initial condition from
the Vlasov–Maxwell equilibrium due to the fluid equilibrium results in
an oscillation at mode 0 in the x direction with an amplitude of
�0:1DU .33,35 The thickness of the initial velocity shear layer increases
by 6% for the simulation run with X � B > 0 and by 20% for the simu-
lation run with X � B < 0. We adopt the two-fluid equilibrium to sat-
isfy the frozen-in condition E ¼ �U s � B, Gauss’s law r � E ¼ q=�0,
and Ampère’s lawr� B ¼ l0J simultaneously. Since the spatial pro-
files of the charge and current densities based on the Vlasov equilib-
rium with the homogeneous ambient magnetic field48,49 have
deviations from the analytic form obtained from Eqs. (34) and (35), it
is quite difficult to satisfy the three constraints, i.e., the frozen-in con-
dition, Gauss’s law, and Ampère’s law.

IV. RESULTS

Figures 1 and 2 show the third moment of ions around the
saturation stage of the transverse KHI for the simulation run with
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X � B > 0 at xcit ¼ 80 and X � B < 0 at xcit ¼ 110, respectively.
The panels (a)–(d) show Hxxx, Hyyy, Hxxx=3ð¼ HxyyÞ, and Hyyy=3
ð¼ HxxyÞ, respectively, which are calculated by using the moment data
in the Vlasov simulation based on Eqs. (30) and (31). The panels
(e)–(h) show the heat flux Qxxx, Qyyy, Qxyy, and Qxxy, respectively,
which are calculated directly from the ion velocity distribution in the
Vlasov simulation. The magnitude is normalized by meNeV3

te. The
dashed lines show the contour lines of the ion density as a reference to
the primary KH vortex.

The spatial profile of Hxxx in Figs. 1 and 2 is similar to that of
Qxxx in both runs. By contrast, the spatial profile of Hyyy is quite differ-
ent from that of Qyyy in the run with X � B > 0. Although the spatial

profile of Hyyy is similar to that of Qyyy in the run with X � B < 0, on
the other hand, the magnitude is about half. The spatial profile of
Hxyyð¼ Hxxx=3Þ is quite different from that of Qxyy in the run with
X � B > 0. On the other hand, the spatial profile of Hxyy is similar to
that of Qxyy in the run with X � B < 0, except their magnitude. The
spatial profile of Hxxyð¼ Hyyy=3Þ is similar to that of Qxxy in both
runs. Figures 1 and 2 clearly show Qxyy 6¼ Qxxx=3 and Qxxy 6¼ Qyyy=3
as well. These results suggest that Eqs. (15)–(18) based on the proce-
dure of Thompson4 are not good approximations of the third moment
(i.e., heat flux tensor). It is noted that the difference between H and Q
becomes larger with Eqs. (20) and (21) than with mNdUx=dt
� �@P=@x andmNdUy=dt � �@P=@y.

FIG. 1. Spatial profiles of Hxxx, Hyyy, Hxxx=3ð¼ HxyyÞ; Hyyy=3ð¼ HxxyÞ, Qxxx, Qyyy, Qxyy, and Qxxy for the run with X � B > 0 at xci t ¼ 80.

FIG. 2. Same format as Fig. 1 for the run with X � B < 0 at xci t ¼ 110.
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Figures 3 and 4 show the fourth moment of ions around the satu-
ration stage for the simulation run with X � B > 0 at xcit ¼ 80 and
X � B < 0 at xcit ¼ 110, respectively. The panels (a) and (b) show
Wxxxxð¼ �WyyyyÞ and Wxxxyð¼ WxyyyÞ, respectively, which are calcu-
lated by using the moment data in the Vlasov simulation based on
Eqs. (32) and (33). The panels (e) and (f) show the fourth moment
ðRxxxx � RyyyyÞ=2 and Rxxxy, respectively, which are calculated directly
from the ion velocity distribution in the Vlasov simulation. The panels
(c), (d), and (g) show the differences 2Rxxyy � R; Rxxxy � Rxyyy , and

ðRxxxx þ RyyyyÞ=3� R, respectively. The magnitude is normalized by
meNeV4

te. The dashed lines show the contour lines of the ion density.
In contrast to the third moment in Figs. 1 and 2, the spatial

profile of Wxxxx and Wxxxy in Figs. 3 and 4 are similar to that of
ðRxxxx � RyyyyÞ=2 and Rxxxy, respectively, in both runs. There is a
difference of about 30% in the magnitude between them. Although
Eq. (26) gives 2Rxxyy ¼ R, Figs. 3 and 4 show that there is a difference,
of about 7% in the magnitude, between 2Rxxyy and R. Also, although
Eq. (24) plus Eq. (28) gives ðRxxxx þ RyyyyÞ=3 ¼ R, there is a difference,

FIG. 3. Spatial profiles of Wxxxx; Wxxxy; 2Rxxyy � R; Rxxxy � Rxyyy , ðRxxxx � RyyyyÞ=2, Rxxxy, and ðRxxxx þ RyyyyÞ=3� R for the run with X � B > 0 at xci t ¼ 80.

FIG. 4. Same format as Fig. 3 for the run with X � B < 0 at xci t ¼ 110.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 032112 (2020); doi: 10.1063/1.5139442 27, 032112-6

Published under license by AIP Publishing

https://scitation.org/journal/php


of about 4% in the magnitude, between ðRxxxx þ RyyyyÞ=3 and R. Note
that the difference between Rxxxx (or Ryyyy) and 3R=26Wxxxx is also
small (about 4% in the magnitude). In addition, although Eqs. (25) and
(27) give Rxxxy¼Rxyyy, there is a difference, of about 30% in the magni-
tude, between Rxxxy and Rxyyy. These results suggest that Eqs. (24)–(28)
based on the procedure of Thompson4 are good (but not excellent)
approximations of the fourth moment.

The previous study1 showed that the approximated form of the
second moment derived by Thompson4 was in agreement (but not
excellent) with the pressure/stress tensor calculated directly from the
ion distribution function of the Vlasov simulation. The terms (a) in
Eq. (12) vanish in even-number-order moments, while the terms (b)
vanish in odd-number-order moments due to the integration over the
gyrophase h. The present and previous1 results indicate that the terms
(b) in Eq. (12) well approximate the first-order perturbation of a veloc-
ity distribution function around a characteristic spatial scale on the
gyroradius, while the terms (a) do not.

V. CONCLUSION

In the present study, the gyro-averaging approximation of the
third and fourth moments of a velocity distribution function is derived
by using a procedure of the past study.4 Then, the derived approxi-
mated forms are directly compared with the two-dimensional full
Vlasov simulation results of the transverse KHI.

It is shown that the approximated form of the third moment is
quite different from the third moment (i.e., heat flux tensor) calcu-
lated directly from the distribution function data of the Vlasov simu-
lation. By contrast, the approximated form of the fourth moment is
in agreement with the fourth moment calculated directly from the
distribution function data of the Vlasov simulation. The latter result
is similar to the previous study,1 which showed that the gyro-
averaging form of the second moment derived by Thompson4 is a
good approximation of the second moment (i.e., pressure/stress ten-
sor) calculated directly from the distribution function data of the
Vlasov simulation.

The present result suggests that the first-order approximation
of a perturbed velocity distribution function around a characteris-
tic spatial scale on gyroradius in Eq. (12) needs an improvement.
In particular, the terms (a) in Eq. (12), which are related to odd-
number-order moments, need re-examination. It is also unclear
whether the present result is universal or specific for the KHI only,
because @P=@y; @R=@y, and @Ux=@y are dominant in the present
simulation setup. The evaluation of the third and fourth moments
with different fluid instabilities at boundary layers is left as future
studies.
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