1 Elastic strain energy and pore-fluid pressure control of

2 aftershocks

3

4	*T	oshiko Terakawa ¹ , Mitsuhiro Matsu'ura ² , Akemi Noda ³	
5			
6	1.	Graduate School of Environmental Studies, Nagoya University, D2-2 (510) Furo-cho,	
7		Chikusa-ku, Nagoya 464-8601, Japan	
8	2.	Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562,	
9		Japan	
10	3.	National Research Institute for Earth Science and Disaster Resilience, 3-1 Tennodai,	
11		Tsukuba, Ibaraki 305-0006, Japan	
12			
13	E-mail: terakawa@seis.nagoya-u.ac.jp		
14			

16 Abstract

17 Aftershocks are well-known, however their triggering mechanisms remain unclear. The 18 Coulomb failure stress change (ΔCFS) has been widely implemented to understand the 19 spatial distribution of aftershocks. Here we propose a new metric for evaluating 20 aftershock generation based on the energetics of shear faulting in a prestressed state. 21 Unlike ΔCFS , the new metric depends not only on coseismic stress changes but also on 22 background crustal stresses. The energetics-based formulation expands the ΔCFS 23 defined on a specific plane into a generalized failure stress defined in a three-24 dimensional space. We examined the diagnostic ability of the new metric by applying 25 receiver operating characteristic analysis to 12,175 aftershocks ($M \ge 0$) that followed 26 the 1992 Landers earthquake. With a realistic background stress field inferred from 27 thousands of earthquake focal mechanisms, the new metric was able to discriminate the 28 triggering mechanisms of the aftershocks: two-thirds were direct responses to coseismic 29 stress changes and one-fifth resulted from strength decreases owing to pore-fluid 30 pressure increases.

31

32 Keywords

33 elastic strain energy, earthquake generation, background stress, pore-fluid pressure,

34 Landers earthquake, ROC analysis

35

36 1. Introduction

37

Recently, machine-leaning techniques have come to be increasingly used for forecasting 38 aftershocks (e.g., DeVries et al., 2018; Mignan and Broccardo, 2019). A deep learning neural network model (DeVries et al., 2018) trained by the coseismic stress changes and 39 40 aftershock hypocenters of more than 131,000 main shock-aftershock pairs in the 41 worldwide database, showed its power to more accurately forecast the spatial patterns of 42 aftershocks than does the classic Coulomb failure stress change (ΔCFS) (e.g., 43 Reasenberg and Simpson, 1992; Stein et al., 1992; King et al., 1994; Hardebeck et al., 44 1998; Kilb et al., 2002; Toda et al., 2011). Based on the similarity between the spatial 45 patterns of the predicted probability of aftershocks and those of various stress metrics, 46 the deep learning approach suggests that the maximum change in shear stress ($\Delta \tau_{max}$), or 47 the square root of the second invariant of a deviatoric stress change tensor, controls the 48 occurrence of aftershocks more critically than does ΔCFS . 49 In general, maximum shear stress is proportional to the square root of the second 50 invariant of a deviatoric stress tensor, which itself is proportional to the shear strain 51 energy (Jaeger, 1962). Then, $\Delta \tau_{max}$ caused by a main shock is proportional to the square 52 root of the coseismic change in shear strain energy if (and only if) the deviatoric stress 53 field before the main shock is zero everywhere; that is, the preseismic shear strain 54 energy is zero everywhere. In such a case, the coseismic change in shear strain energy is 55 positive everywhere (Matsu'ura et al., 2019). Therefore, the metric of $\Delta \tau_{max}$ suggested 56 by the deep learning approach seems to contradict the principle that earthquakes are 57 shear faulting to release elastic strain energy in the Earth's crust.

58 The most likely cause of this unreasonable suggestion is that the training data 59 used in the deep learning approach were coseismic stress changes only (Meade et al.,

60 2017; DeVries et al., 2018). In reality, absolute crustal stress plays the most essential 61 role in the occurrence of earthquakes. Therefore, we should not neglect the effects of 62 background crustal stress (Saito et al., 2018; Matsu'ura et al., 2019). Moreover, 63 aftershocks can be triggered not only by increases in shear stress but also by decreases 64 in fault strength owing to increases in pore-fluid pressure, or decreases in effective 65 normal stress (e.g., Hubbert and Rubey, 1959; Miller et al., 2004; Sibson, 2007; 66 Terakawa et al., 2010, 2012, 2013; Terakawa, 2014; Goebel et al., 2017; Ellsworth et al., 67 2019). The latter effect is usually incorporated into the ΔCFS by using Skempton's 68 coefficients (e.g., Kilb et al., 2002). This treatment amounts to replacing the friction 69 coefficient of rocks with an apparent value, however, such an approach may lead to a 70 reduction in the effect of decreasing in fault strength.

71 Herein we propose an energetics-based stress metric that can explain the spatial 72 pattern of aftershocks by considering the effects of changes in shear strain energy, 73 volumetric strain energy, and pore-fluid pressure. To evaluate the change in elastic 74 strain energy, all the six components of the background crustal stress must be known. In 75 the source region of the 1992 Landers earthquake (Mw 7.3) in California, USA, the 76 realistic background stress field has been estimated from thousands of earthquake focal 77 mechanism data using a method of Bayesian statistical inference (Akaike, 1977, 1980; 78 Yang et al., 2012; Terakawa and Hauksson, 2018). We studied aftershocks following 79 the Landers earthquake to test the usefulness of the energetics-based stress metric in 80 understanding the spatial pattern of aftershocks and their triggering mechanisms. In 81 order to assess the diagnostic ability of the new metric, we applied the method of 82 receiver operating characteristic (ROC) analysis to the dataset and demonstrated that

83 over-pressurised fluids as well as coseismic stress changes play important roles in
84 triggering aftershocks.

85

86 2. An energetics-based stress metric for earthquake generation

87 The Coulomb failure stress (CFS) is generally defined by the difference between shear 88 stress τ and fault strength τ_s for a specific receiver fault, and its change caused by a 89 seismic event, $\Delta CFS \equiv \Delta \tau - \Delta \tau_s$ with $\Delta \tau_s = \mu' \Delta \sigma_n$ (μ' : apparent friction coefficient, $\Delta \sigma$ 90 n: normal stress change), has played a primary role for understanding aftershock 91 generation (e.g., Reasenberg and Simpson, 1992; Stein et al., 1992; King et al., 1994; 92 Hardebeck et al., 1998; Kilb et al., 2002; Toda et al., 2011). However, although the 93 occurrence of earthquakes is governed by absolute crustal stress, the ΔCFS is evaluated 94 only from coseismic stress changes. Furthermore, the values of ΔCFS depend on the 95 orientation of receiver faults (Supplemental Figure 1). To resolve these problems, first, 96 we propose an energetics-based failure stress (EFS) instead of CFS, and explain that its 97 change (ΔEFS) gives a rational stress metric for evaluating aftershock generation. Next, 98 we demonstrate how the new stress metric reflects background stress fields as well as 99 coseismic stress changes.

100

101 **2.1 Definition of** ΔEFS

102 The elastic strain energy density *E* is defined as half of the product of stress tensor σ_{ij} 103 and strain tensor ε_{ij} , which can be divided into shear strain energy density E_s and 104 volumetric strain energy density E_v as follows (Jaeger, 1962; Matsu'ura et al., 2019): 105 $E \equiv \frac{1}{2}\sigma_{ij}\varepsilon_{ij} = E_s + E_v$ (1)

106 with

107
$$E_{s} = (4G)^{-1} \sigma'_{ij} \sigma'_{jj} = (2G)^{-1} J_{2}(\sigma'_{ij}), \qquad (2)$$

108
$$E_v = (18\kappa)^{-1} \sigma_{\alpha\alpha}^2 = (2\kappa)^{-1} \left[\frac{1}{3} I_1(\sigma_{ij}) \right]^2,$$
 (3)

109 where *G* and κ are rigidity and bulk modulus, and I_1 and J_2 are the first invariant of 110 stress tensor σ_{ij} and the second invariant of deviatoric stress tensor $\sigma'_{ij} = \sigma_{ij} - \frac{1}{3}\sigma_{\alpha\alpha}\delta_{ij}$, 111 respectively. We defined an energetics-based failure stress (*EFS*) as

112
$$EFS = \sqrt{2GE_{s}} - \mu \left(\sqrt{2\kappa E_{v}} - P_{f}\right), \qquad (4)$$

113 where μ and $P_{\rm f}$ are friction coefficient and pore-fluid pressure, respectively. The term 114 $\sqrt{2GE_{\rm s}}$ is the square root of the second invariant of a deviatoric stress tensor, which is a 115 scalar metric of shear stress (Appendix A). On the other hand, the term $\sqrt{2\kappa E_{\rm v}}$ is one-116 third of the first invariant of a stress tensor; that is the mean normal stress. Therefore, 117 the second term on the right-hand side corresponds to the frictional strength of a fault. 118 Positive changes in shear stress and negative changes in fault strength would promote 119 the triggering of an earthquake and vice versa.

From Eq. (4), the change in EFS due to a seismic event can be written as

121
$$\Delta EFS = \left[\sqrt{2G(\overline{E}_{s} + \Delta E_{s})} - \sqrt{2G\overline{E}_{s}} \right] - \mu \left[\left(\sqrt{2\kappa(\overline{E}_{v} + \Delta E_{v})} - \sqrt{2\kappa\overline{E}_{v}} \right) - \Delta P_{f} \right]$$
(5)

122 with

123
$$\Delta E_{\rm s} = (2G)^{-1} (\overline{\sigma}'_{ij} + \frac{1}{2} \Delta \sigma'_{ij}) \Delta \sigma'_{ij}$$
(6)

124
$$\Delta E_{\rm v} = (9\kappa)^{-1} (\bar{\sigma}_{\alpha\alpha} + \frac{1}{2} \Delta \sigma_{\alpha\alpha}) \Delta \sigma_{\alpha\alpha}, \qquad (7)$$

125	where $\bar{\sigma}_{ij}$, $\Delta \sigma_{ij}$, and $\Delta P_{\rm f}$ are a background crustal stress tensor, a coseismic stress
126	change tensor, and pore-fluid pressure change, respectively. We use the ΔEFS associated
127	with the occurrence of a main shock as a metric for evaluating the spatial pattern of
128	aftershocks. The decrease in fault strength generally results from a decrease in fault
129	normal stress and/or an increase in pore-fluid pressure. Here, we use ΔEFS^* to denote
130	ΔEFS without considering the effects of coseismic pore-fluid pressure changes.
131	The essential difference between ΔEFS from ΔCFS is that the former depends
132	on both coseismic stress changes and background stress fields (Saito et al., 2018;
133	Matsu'ura et al, 2019), whereas the latter focuses only on the effects of coseismic stress
134	changes. Furthermore, both shear stress and fault strength in EFS are described using
135	elastic strain energies, which enables us to evaluate the occurrence of aftershocks
136	without specifying the orientation of a receiver fault. In other words, ΔEFS can expand
137	ΔCFS , which is defined on a specific fault plane, into a generalized failure stress change
138	defined in a three-dimensional stress space. When the background stress field is
139	isotropic (e.g., the lithostatic stress state with no deviatoric stress) and the coseismic
140	stress change is pure shear, ΔEFS^* is reduced to $\Delta \tau_{max}$ (Appendix A).
1/1	

142 **2.2 Dependence of** Δ*EFS* **on background stress fields**

143 The background stress field immediately before the 1992 Landers earthquake is

144 characterized by a single dimensionless parameter of pore-fluid pressure ratio, C

145 (strictly speaking, 1 - C), which provides a scaling factor of the background deviatoric

146 stress field (Appendix B) (Terakawa and Hauksson, 2018). We calculated the values of

147 ΔE_s , ΔE_v , and ΔEFS^* due to coseismic stress changes for four background stress fields

148 with different deviatoric stress levels (Fig. 1). Here, we used the coseismic stress

149 changes calculated with the analytical slip response function (Fukahata and Matsu'ura, 150 2005, 2006) and a fault rupture model based on the study of Wald and Heaton (1994) 151 (Figures 4 and S3 of Terakawa and Hauksson, 2018). First and second Lame's constants 152 of 40 GPa, as well as a friction coefficient of 0.6, were used in the calculations. The first 153 three background stress fields are characterized by C = 0.0, 0.5, and 0.8, respectively.154 The fourth is the lithostatic stress field with no deviatoric stress, which is formally 155 characterized by C = 1.0. Essentially, the change in shear strain energy ΔE_s is negative 156 (positive) in regions where the coseismic change in deviatoric stress occurs in the 157 opposite (same) direction to the background deviatoric stress. However, when the 158 background deviatoric stress level is much lower than the magnitude of the coseismic 159 stress change, the second invariant term of the deviatoric stress change tensor becomes 160 dominant (Matsu'ura et al., 2019); therefore, the change in shear strain energy becomes 161 positive everywhere (Fig. 1J).

162 On the other hand, the change in the volumetric strain energy $\Delta E_{\rm v}$ depends on the 163 isotropic component of the background stress field. In the present case, where the 164 isotropic stress component is regarded as lithostatic pressure, the value of ΔE_v is not 165 controlled by parameter C (Figs 1B, E, H, and K); that is, the change in volumetric 166 strain energy is positive (negative) in regions where the stress change caused by the 167 right lateral strike-slip faulting of the Landers earthquake is compression (expansion). 168 Finally, combining the effects of ΔE_s and ΔE_v , we obtained the spatial patterns of ΔEFS^* (Figs 1C, F, I, and L). The values of ΔEFS^* tend to be negative near the main 169 170 rupture zone, where a decrease in ΔE_s is dominant because of the large shear stress release caused by the main rupture (Figs 1C, and F). In contrast, as the background 171

deviatoric stress level decreases, the second invariant term of the deviatoric stress 172 173 change tensor becomes dominant, which is positive everywhere (Figs 1I, and L). 174 As demonstrated in Fig. 1, changes in elastic strain energy due to the main shock 175 strongly depend on the background deviatoric stress level characterized by C. The most 176 realistic value of C in the source region of the Landers event has been estimated to be 177 0.0, which is consistent with the fundamental constraint that the amount of elastic strain 178 energy released by the main shock must be at least larger than the amount of seismic wave energy radiated from the source (i.e., 4.3×10^{16} Nm) (Kanamori et al., 1993; 179

- 180 Terakawa and Hauksson, 2018).
- 181

182 **3.** The diagnostic ability of ΔEFS

183 The Landers earthquake occurred on June 28, 1992 at the southern end of the eastern

184 California shear zone. It was followed by more than ten thousand aftershocks. We

185 focussed on the three-dimensional region surrounding the main rupture zone (lon:

186 115.8°W–117.6°W, lat: 33.6°N–35.0°N, depth: 2.5–12.5 km) to test the diagnostic ability

187 of ΔEFS in forecasting the spatial pattern of the aftershocks, using the ROC analysis.

188 The analysis technique is widely used to evaluate the validity of medical diagnostic189 tests.

190 First, we gridded the study region into $5 \times 5 \times 5$ km³ cells and determined the

191 values of ΔE_s , ΔE_v , and ΔEFS^* at the centroid of every cell for the case of C = 0.0 (the

192 most realistic background stress field) without considering the effects of coseismic

193 pore-fluid pressure changes (Figs 1A–C). Next, we estimated the three-dimensional

194 pore-fluid pressure fields from 2136 and 1970 focal mechanism data ($M \ge 1$) for the

195 pre-mainshock (1 January 1981 to 28 June 1992) and post-mainshock (28 June 1992 to

196 27 June 1993) periods, respectively (Figs 2A–B) (Terakawa et al., 2010, 2012). Finally,

197 considering the effects of coseismic changes in both pore-fluid pressure and stress

198 fields, we evaluated ΔEFS . We considered only coseismic changes in pore-fluid

199 pressures around the main rupture zone into account in this calculation (Fig. 2C) (e.g.,

200 Lucente et al., 2010; Savage, 2010; Terakawa et al., 2010).

201 In each grid cell, we counted the number of aftershocks for one year following the 202 main shock (Yang et al., 2012). For the dataset (number of data = $12,175, M \ge 0$, depth: 203 2.5–12.5 km), the diagnostic abilities of ΔE_s , ΔE_v , ΔEFS^* , and ΔEFS were examined 204 using ROC curves, which are graphical plots of true positive rates (sensitivity) against 205 false positive rates (1– specificity) of a binary classifier for grid cells with and without 206 aftershocks over all the possible thresholds (Fig. 3). From Fig. 3A, we can see that the 207 ROC curves for ΔE_s and ΔE_v are generally plotted above and below, respectively, the 208 straight random guess line. This indicates that ΔE_s and ΔE_v have positive and negative, 209 respectively, correlations with aftershock triggering, which is consistent with the 210 physical meaning of these quantities. The diagnostic ability of ΔEFS^* is stronger than 211 that of ΔE_s because the effects of fault strength change resulting from the change in 212 fault normal stress are incorporated into ΔEFS^* . The area under the ROC curve (AUC) for ΔEFS^* is 0.682, which is significantly larger than that for ΔE_s (0.623). 213

The diagnostic ability of ΔEFS increases further when we consider the effects of coseismic changes in pore-fluid pressures (Fig. 3A). The AUC for ΔEFS when including the effects of pore-fluid pressure change reached 0.759. The true positive rate at the point where the Youden's index (true positive rate – false positive rate) takes its maximum value increased from 0.553 to 0.629, whereas the false positive rate decreased from 0.164 to 0.159. These results indicate that incorporating the effects of

220 coseismic pore-fluid pressure change into ΔEFS enables to more effectively evaluate the 221 spatial pattern of aftershocks.

222 We also examined the diagnostic ability of ΔEFS^* for the three background stress 223 fields with lower deviatoric stress levels (C = 0.5, 0.8, and 1.0) (Fig. 3B). The true 224 positive rates at the maximum Youden's index points increased from 0.553 to 0.686 as 225 the background deviatoric stress level decreased (Table 1). However, the false positive 226 rates at the same points also increased from 0.164 to 0.342. This indicates that the stress 227 metric ΔEFS^* tends to overestimate the potential regions of aftershocks when the 228 assumed background deviatoric stress level is much lower than the actual level (Figs 1F, 229 I, and L). This overestimation is marked especially in the vicinity of the main rupture 230 zone, because large coseismic stress changes contribute more significantly to increases 231 in ΔE_s . This apparent improvement in the diagnostic ability of ΔEFS^* suggests that a 232 substantial proportion of aftershocks near the main rupture zone may have occurred in 233 response to factors other than coseismic stress changes, though it is technically difficult 234 to estimate coseismic stress changes there in high resolution. In this regard, our results 235 suggest that the coseismic change in pore-fluid pressure is a plausible explanation (Figs 236 2C and Fig. 3A).

237

4. Physical mechanisms for aftershock generation

In the case of a realistic background stress field (C = 0.0), we examined the triggering mechanisms of aftershocks (Fig. 4). For this purpose, we first counted the numbers of events in each grid cell for one year before and after the Landers event (Yang et al., 2012), and then evaluated the seismicity rate change for each grid cell (Supplemental Figure 2). Of the total 12,175 events in the original dataset, 11,375 events (93.4 %) 244 occurred in the regions (grid cells) where the seismicity rate increased following the 245 main shock. Of the 11,375 aftershocks, 7,728 events (67.9 %) occurred in regions with 246 positive ΔEFS^* , indicating that these events were essentially triggered by coseismic 247 stress changes. In more detail, 3,800 events (33.4 %) were triggered by the combined 248 effect of an increase in shear stress and a decrease in fault strength. The Big Bear 249 earthquake ($M_{\rm w}$ 6.5), which was the largest aftershock following the Landers event, is 250 consistent with triggering produced by the combined effect. On the other hand, 3,288 251 events (28.9 %) were triggered by an increase in shear stress, whereas 635 events 252 (5.6%) were triggered by a decrease in fault strength.

253 Of the remaining 3,652 aftershocks, which are not consistent with ΔEFS^* , 2,435 254 events (21.4 %) occurred in regions with positive ΔEFS , indicating that decreasing fault 255 strength due to increasing in pore-fluid pressure would have played a role in their 256 triggering. We cannot explain the triggering mechanism of the remaining 1,217 events 257 (10.7 %), even when the effects of pore-fluid pressure changes are considered. The 258 mechanism may be related to small-scale heterogeneity in the background stress field, 259 coseismic stress changes, and pore-fluid pressure changes, dynamic triggering, and/or 260 secondary static stress changes caused by aftershocks (e.g., Meier et al., 2014; Kilb et 261 al., 2002). In addition, it may be attributed to difficulty in handling on-fault aftershocks, 262 as pointed out in the section 3.

Of the total 12,175 events in the original dataset, 775 events (6.4 %) occurred in the regions where the seismicity rate decreased following the main shock. The remaining 25 events (0.2 %) occurred in the regions where the seismicity rate did not change. The occurrence of these events may be controlled by tectonic loading in southern California.

269 **5. Discussion**

270 The diagnostic abilities of many stress metrics have been previously investigated 271 without considering the effects of background stress fields and coseismic pore-fluid 272 pressure changes (Meade et al., 2017). From these investigations, the recent deep 273 learning approach suggests that the maximum change in shear stress $\Delta \tau_{max}$ (and its 274 square) may more critically control aftershock generation than does ΔCFS on the plane 275 with similar orientation to the main shock fault (DeVries et al., 2018). Our results 276 showed that the AUC value for $\Delta \tau_{\text{max}}$ (0.686) was slightly greater than that for ΔCFS 277 (0.667), whereas it was remarkably smaller than that for ΔEFS (C = 0.0) under a 278 realistic background stress field (0.759) (Fig. 3C, Table 1). It should be noted that $\Delta \tau_{\rm max}$ 279 is proportional to the square root of ΔE_s in the case of an isotropic background stress 280 field without any deviatoric stress (C = 1.0), as demonstrated by the accordance of the 281 ROC curves for these two quantities (Fig. 3D). From a physical viewpoint, $\Delta \tau_{\text{max}}$ is 282 inappropriate as a metric for explaining the spatial pattern of aftershocks because of (i) 283 the implicit unrealistic assumption of the background deviatoric stress level and (ii) 284 ignorance of the effects of fault strength changes. The coseismic change in shear strain 285 energy $\Delta E_{\rm s}$ under an isotropic background stress state is positive everywhere, with 286 peaks near the main rupture zone (Fig. 1J); therefore, $\Delta \tau_{max}$ forecasts that the occurrence 287 of aftershocks is promoted everywhere, especially near the main rupture. Actually, 288 because of this overestimation, the false positive rate for $\Delta \tau_{\text{max}}$ (0.406) was markedly 289 larger than those of $\triangle CFS$ (0.089) and $\triangle EFS$ (0.159) (Fig. 3C). The values of maximum 290 Youden's indexes for $\Delta \tau_{\text{max}}$, ΔCFS and ΔEFS (C = 0.0), which are another measures for 291 the diagnostic abilities of metrics, were 0.302, 0.397, and 0.470, respectively (Table. 1).

292 This also indicates that the new metric ΔEFS proposed in this study can evaluate the 293 spatial pattern of aftershocks most correctly.

294 The sum of the absolute values of the six independent components of the 295 coseismic stress change tensor (ABCS) has also been suggested as a stress metric that 296 explains the spatial pattern of aftershocks more effectively than ΔCFS (DeVries et al., 297 2018). This quantity depends on the choice of coordinate system. In general, the 298 occurrence of earthquakes must be controlled by certain invariants because rock failure 299 does not depend on the coordinate system. From such a physical viewpoint, ABCS does 300 not appear to be a good metric. To understand the physical meaning of ABCS, we 301 compared its ROC curve with that of the square norm of the coseismic stress change 302 tensor (SNCS), which is a coordinate-independent metric (Fig. 3D), and found that the 303 curves almost overlapped. Coseismic changes in shear strain energy and volumetric 304 strain energy are incorporated into SNCS as positive factors for triggering aftershocks 305 (Appendix A) because both the deviatoric and isotropic components of background 306 stress are implicitly assumed to be zero. Since the coseismic change in volumetric strain 307 energy is positive everywhere under the zero-background isotropic stress field, SNCS 308 overestimates effects of the coseismic change in volumetric strain energy as well as 309 those of shear strain energy to aftershock generation. Because of the double mistakes 310 attributed from the unrealistic assumptions on deviatoric and isotropic stress fields, 311 SNCS is more inappropriate as a stress metric for explaining the spatial pattern of 312 aftershocks than $\Delta \tau_{\text{max}}$, which was demonstrated in Fig. 3D. The false positive rate at 313 the maximum Youden's index point for SNCS (0.441) was larger than that for $\Delta \tau_{\text{max}}$ 314 (0.406), though these values are much larger than that for ΔEFS in every case. The

value of maximum Youden's index for *SNCS* (0.264) is the smallest (worst) of all
metrics (Table. 1), as theoretically expected.

317 We tried to reevaluate ΔE_s , ΔE_v , ΔEFS^* , and ΔEFS after taking coseismic stress 318 changes due to the Big Bear earthquake, which occurred about three hours after the 319 main shock, as well as the Landers earthquake, under the realistic background stress 320 field with C = 0.0 (Supplemental Figure 3). In this calculation, we modelled the source 321 of the Big Bear event by a vertical fault with the strike of N50°, length of 18 km, width 322 of 12 km, and top depth of 4 km (e.g., King et al., 1994). We assumed a uniform left-323 lateral strike slip of 1 m tapered to the fault edges. Since the Big Bear event released 324 shear strain energy near the source region, the total values of ΔE_s , ΔEFS^* and ΔEFS 325 became smaller than those without the effects of the Big Bear event. Then, these three 326 diagnostic abilities slightly decreased (Supplemental Figure 4). For further discussion, 327 we need to take a more realistic source model and the effects of pore-fluid pressure 328 changes into consideration.

329 Aftershocks beyond the southern edge of the main rupture zone of the Landers 330 event may have been influenced by the 23 April 1992 Joshua Tree earthquake (M_w 6.1). 331 The seismicity in the Joshua Tree region (longitude: 116.5 °W –116.3 °W, latitude: 33.9 332 °N –34.1 °N) during the period from 1 April 1992 to 27 June 1993 indicates that the 333 cumulative number of events had almost reached a ceiling by the occurrence of the 334 Landers event (Supplemental Figure 5). After the Landers event, the cumulative number of events remarkably increased in the regions with $\Delta EFS^* > 0$, but slightly increased in 335 regions with $\Delta EFS^* < 0$. In fact, the seismicity rate decreased after the Landers event in 336 the east side of the Joshua Tree region, where ΔEFS^* is negative, while it increased in 337

338	the west side, where ΔEFS^* is positive (Figure 4). This indicates that events in the
339	Joshua Tree region were controlled by not the Joshua Tree event but the Landers event.
340	Friction coefficients of intraplate/interplate faults are still the subject matter at
341	issue. We place importance on the facts that intrinsic friction coefficients μ of rocks
342	obtained in laboratory experiments and in situ stress measurements are mostly constant
343	within the range of 0.6–0.8 under fault-normal stresses \geq 200 MPa (e.g., Byerlee, 1978;
344	Zoback and Townend, 2001). With this premise, we can understand apparent friction
345	coefficients lower than the standard value to be due to high pore fluid pressure.
346	Nevertheless, if we used a much lower value of μ than 0.6 in the evaluation of ΔEFS ,
347	we would underestimate the effects of ΔE_v , and the ROC curves with the lower friction
348	coefficients would be drawn between those for ΔEFS with $\mu = 0.6$ and ΔEs in Figure 3a.
349	So, the assumption of $\mu = 0.6$ would not seriously affect our conclusion.
350	In this study, we used the number of aftershocks in each region to evaluate the
351	diagnostic ability of ΔEFS with the method of ROC analysis. For this purpose, we can
352	use the seismicity rate change, when the spatial distribution of aftershocks is dense
353	enough to adequately represent the seismicity rate change as in the case of the Landers
354	earthquake (Supplemental Figure 2). Through the classification of aftershocks based on
355	ΔEFS and the seismicity rate change in the section 4, we confirmed that our findings

obtained through the ROC analysis will not be so modified if we use the seismicity ratechange instead of the number of aftershocks.

6. Conclusions

360 We proposed an energetics-based failure stress (EFS) instead of the Coulomb failure 361 stress (CFS), and explained that its change (ΔEFS) gives a rational stress metric for 362 evaluating aftershock generation. Unlike the classic ΔCFS , the ΔEFS reflects the 363 background crustal stress as well as the coseismic stress change. With a realistic 364 background crustal stress field, we demonstrated that ΔEFS robustly evaluated the 365 spatial pattern of aftershocks that followed the Landers earthquake. Our analysis shows 366 that along with coseismic stress changes, drastic changes in pore-fluid pressure are 367 important in the triggering of aftershocks. 368 A series of ROC analyses with the ΔEFS showed that the potential regions of

aftershock generation tend to be overestimated if the assumed background deviatoric stress level is much lower than the actual level. This means that the unrealistic assumption of the background deviatoric stress level concealed the fact that overpressurised fluids triggered 21 % of the aftershocks in the dataset. Knowledge of the absolute level of the background crustal stress field is essentially important for understanding earthquake generation.

375

376 Appendices

377 A. Metrics based on elastic strain energy

The first term of *EFS* in Eq. (4) of the main text, $\sqrt{2GE_s}$, is equal to $\sqrt{3/2}$ times the shear stress acting on the octahedral planes (Jaeger, 1962). It is also equal to

380 $\sqrt{4(R^2-R+1)/3}$ times the maximum shear stress τ_{max} , where $R = (\sigma_1 - \sigma_2)/(\sigma_1 - \sigma_3)$

381 is the ratio of the maximum, intermediate, and minimum compressive principal stresses

382 $(\sigma_1 \ge \sigma_2 \ge \sigma_3)$. When the stress field is in the state of pure shear (R = 0.5), the first and

second terms of *EFS* in Eq. (4) are equal to the shear stress and frictional strength of the
maximum shear stress plane.

In a general case ($R \neq 0.5$), we can rewrite *EFS* in Eq. (4) using the shear stress

386 τ_{max} and normal stress σ_{n} on the maximum shear stress plane, as follows:

387
$$EFS = \sqrt{4(R^2 - R + 1)/3} \tau_{max} - \mu(\sigma_n - P_f)$$
 (A.1)

388 with

389
$$\sigma_n = \sigma + \frac{1}{3} (2R - 1) \tau_{max},$$
 (A.2)

390 where $\sigma = \frac{1}{3}I_1$ is the mean normal stress.

391 When the background stress field is isotropic, ΔEFS^* (ΔEFS without the effects of 392 pore-fluid pressure changes) is represented with stress invariants of the coseismic stress 393 change tensor, as follows:

394
$$\Delta EFS^* = \sqrt{\Delta J_2} \ \tau_{\max} - \mu \left(\frac{1}{3}\Delta I_1\right), \tag{A.3}$$

395 where ΔI_1 and ΔJ_2 are the first invariant of a stress change tensor and the second 396 invariant of a deviatoric stress change tensor, respectively. When the coseismic stress 397 change tensor is in the state of pure shear (R = 0.5), ΔEFS^* is reduced to the maximum 398 change in shear stress.

399 The *SNCS* is a scalar metric defined by

400
$$SNCS = \sum_{i=1}^{3} \sum_{j=1}^{3} \Delta \sigma_{ij}^{2} = \left\| \Delta \sigma_{ij}^{\prime} \right\|_{2}^{2} + \left\| \frac{1}{3} \Delta \sigma_{\alpha \alpha} \delta_{ij} \right\|_{2}^{2} = 2\Delta J_{2} + \frac{1}{3} (\Delta I_{1})^{2} , \qquad (A.4)$$

401 where $\| \|_2$ denotes the Frobenius norm of a second order tensor. When both the 402 deviatoric and isotropic components of background stress are zero, the first term $2\Delta J_2$ 403 and the second term $\frac{1}{3}(\Delta I_1)^2$ of Eq. (A.4) are equivalent to $4G\Delta E_s$ and $6\kappa\Delta E_v$, 404 respectively. From Eq. (A.4), we can see that the effects of both changes in deviatoric

405	stress and isotropic stress are incorporated into the SNCS as positive factors for
406	triggering aftershocks independently of the background stress fields.

408 **B. Estimating the absolute stress field**

409 Through analysis techniques of stress inversion (Terakawa and Matsu'ura, 2008),

410 earthquake focal mechanism solutions are inverted to determine the stress pattern, or the

411 deviatoric stress tensor normalized by the maximum shear stress. For the isotropic

412 component of a stress tensor, we can rationally assume that the vertical stress at a given

413 depth is equivalent to the weight of the overburden. For the last degree of freedom, we

414 determine the maximum shear stress based on the fact that shear stress is equal to the

415 frictional strength of the fault at the time of an earthquake (Terakawa and Hauksson,

416 2018). Assuming an intrinsic standard friction coefficient of 0.6, we characterize the

417 Coulomb failure criterion by the reference pore-fluid pressure P_r at the optimally

418 oriented faults of the stress pattern. The dimensionless parameter C for the reference

- 419 pore-fluid pressure is used as the single parameter:
- 420

$$C = (P_r - P_h) / (P_l - P_h),$$
(B.1)

421 where P_h and P_l are hydrostatic and lithostatic pressures. As the value of *C* becomes 422 greater, the maximum shear stress becomes smaller. For a dataset of focal mechanism 423 solutions, we calculate the absolute stress tensors at their hypocenters immediately 424 before the main shock assuming the value of *C*. Applying each dataset of the absolute 425 stress tensors to an inversion scheme based on Bayesian statistical inference and 426 Akaike's Bayesian information criterion (Akaike, 1977, 1980), we can obtain an 427 absolute stress field parameterized with *C*.

428	In the source region of the 1992 Landers earthquake three absolute stress fields
429	immediately before and after the main shock were modelled with three reference pore-
430	fluid pressure ratios (C) of 0.0, 0.5, and 0.8 (Wald and Heaton, 1994; Fukahata and
431	Matsu'ura, 2005, 2006; Yang et al., 2012; Terakawa and Hauksson, 2018). We directly
432	examined the dependence of temporal changes in the elastic strain energy as well as the
433	coseismic stress rotation on parameter C. Comparing them with observed temporal
434	changes in physical quantities (Kanamori et al., 1993), we determined the absolute
435	stress field and found the most plausible reference pore pressure to be hydrostatic ($C =$
436	0.0).
437	
438	Data availability
439	The data that support the findings of this study are available at
440	https://service.scedc.caltech.edu/eq-catalogs/FMsearch.php.
441	
442	Acknowledgements We are very grateful to Dr. Debi Kilb and the anonymous reviewer
443	for their thoughtful suggestions. We would like to thank the Editor Miaki Ishii. I would
444	like to thank Egill Hauksson and the Southern California Earthquake Data Center for
445	providing focal mechanism solutions in the Southern California Seismic Network
446	catalogue. This work was supported by a Grant-in Aid for Scientific Research C
447	(18K03801) and the Observation and Research Program for Prediction of Earthquakes
448	and Volcanic Eruptions (MEXT).
449	
450	Author contributions TT proposed the original idea of the EFS, conceived the study,

451	analyzed seismic data, and prepared for an initial draft of the manuscript. MM helped to
452	revise the EFS and pointed out the importance of the relations between the EFS and
453	classic stress metrics. TT, MM and AN discussed detail of this research and finalized the
454	draft.
455	
456	References
457	Akaike, H., 1977. On entropy maximization principle, in: Krishnaiah, P.R. (Ed.),
458	Application of Statistics. North-Holland, Amsterdam, pp. 27-41.
459	
460	Akaike, H., 1980. Likelihood and Bayes procedure, in: Bernardo, J.M., DeGroot, M.H.,
461	Lindley, D.V., Smith, A.F.M. (Eds.), Bayesian Statistics. University Press, Valencia,
462	pp. 143-166.
463	
464	Byerlee, J., 1978. Friction of rocks. Pure and Applied Geophysics 116, 615-626.
465	DeVries, P.M.R., Viegas, F., Wattenberg, M., Meade, B.J., 2018. Deep learning of
466	aftershock patterns following large earthquakes. Nature 560, 632-634.
467	
468	Ellsworth, W. L., D. Giardini, J. Townend, S. M. Ge, and T. Shimamoto (2019),
469	Triggering of the Pohang, Korea, earthquake (Mw 5.5) by enhanced geothermal system
470	stimulation, Seismological Research Letters 90(5), 1844-1858.
471	
472	Fukahata, Y., Matsu'ura, M., 2005. General expressions for internal deformation fields
473	due to a dislocation source in a multilayered elastic half-space. Geophysical Journal
474	International 161, 507-521.

476	Fukahata, Y., Matsu'ura, M., 2006. Quasi-static internal deformation due to a
477	dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence
478	theorem. Geophysical Journal International 166, 418-434.
479	
480	Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., Brodsky, E.E., 2017. The 2016
481	Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering
482	at > 40 km from fluid disposal wells. Earth and Planetary Science Letters 472, 50-61.
483	
484	Hardebeck, J.L., Nazareth, J.J., Hauksson, E., 1998. The static stress change triggering
485	model: Constraints from two southern California aftershock sequences. Journal of
486	Geophysical Research-Solid Earth 103, 24427-24437.
487	
488	Hubbert, M.K., Rubey, W.W., 1959. Role of fluid pressure in mechanics of overthrust
489	faulting. 1. Mechanics of fluid-filled porous solids and its application to overthrust
490	faulting. Geological Society of America Bulletin 70, 115-166.
491	
492	Jaeger, J.C., 1962. Elasticity, Fracture and Flow with Engineering and Geological
493	Applications. Chapman and Hall, London.
494	
495	Jennings, C.W. 1994. Fault activity map of California and adjacent areas, with locations
496	and ages of recent volcanic eruptions, Calif. Div. Mines and Geology, Geologic Data
497	Map No. 6, map scale 1:750,000.
498	
	22

499	Kanamori, H., Mori, J., Hauksson, E., Heaton, T.H., Hutton, L.K., Jones, L.M., 1993.
500	Determination of earthquake energy-release and m(l) using terrascope. Bulletin of the
501	Seismological Society of America 83, 330-346.
502	
503	Kilb, D., Gomberg, J., Bodin, P., 2002. Aftershock triggering by complete Coulomb
504	stress changes. Journal of Geophysical Research-Solid Earth 107.
505	
506	King, G.C.P., Stein, R.S., Lin, J., 1994. Static stress changes and the triggering of
507	earthquakeS. Bulletin of the Seismological Society of America 84, 935-953.
508	
509	Lucente, F.P., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C.,
510	Agostinetti, N.P., 2010. Temporal variation of seismic velocity and anisotropy before
511	the 2009 M-W 6.3 L'Aquila earthquake, Italy. Geology 38, 1015-1018.
512	
513	Matsu'ura, M., Noda, A., Terakawa, T., 2019. Physical interpretation of moment tensor
514	and the energetics of shear faulting. Tectonophysics 771,
515	doi:10.1016/j.tecto.2019.228228.
516	
517	Meade, B.J., DeVries, P.M.R., Faller, J., Viegas, F., Wattenberg, M., 2017. What Is
518	Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering
519	Mechanisms from 10(5) Mainshock-Aftershock Pairs. Geophysical Research Letters 44,
520	11409-11416.
521	

522	Meier, M.A., Werner, M.J., Woessner, J., Wiemer, S., 2014. A search for evidence of
523	secondary static stress triggering during the 1992 M(w)7.3 Landers, California,
524	earthquake sequence. Journal of Geophysical Research-Solid Earth 119, 3354-3370.
525	
526	Mignan, A., Broccardo, M., 2019. One neuron versus deep learning in aftershock
527	prediction. Nature 574, E1-E3. doi:10.1038/s41586-019-1582-8
528	
529	Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004.
530	Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724-727.
531	
532	Reasenberg, P.A., Simpson, R.W., 1992. Response of regional seismicity to the static
533	stress change produced by the Loma-Prieta earthquake. Science 255, 1687-1690.
534	
535	Saito, T., Noda, A., Yoshida, K., Tanaka, S., 2018. Shear Strain Energy Change Caused
536	by the Interplate Coupling Along the Nankai Trough: An Integration Analysis Using
537	Stress Tensor Inversion and Slip-Deficit Inversion. Journal of Geophysical Research-
538	Solid Earth 123, 5975-5986.
539	
540	Savage, M., 2010. The role of fluids in earthquake generation in the 2009 M_W 6.3
541	L'Aquila, Italy, earthquake, and its foreshocks, Geology 38, 1055-1056.
542	
543	Sibson, R.H., 2007. An episode of fault-valve behaviour during compressional
544	inversion? The 2004 M(J)6.8 Mid-Niigata Prefecture, Japan, earthquake sequence.
545	Earth and Planetary Science Letters 257, 188-199.

547	Stein, R.S., King, G.C.P., Lin, J., 1992. Change in failure stress on the southern San
548	Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake, Science
549	258, 1328-1332.
550	
551	Terakawa, T., 2014. Evolution of pore fluid pressures in a stimulated geothermal
552	reservoir inferred from earthquake focal mechanisms. Geophysical Research Letters 41,
553	7468-7476.
554	
555	Terakawa, T., Hashimoto, C., Matsu'ura, M., 2013. Changes in seismic activity
556	following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure. Earth and
557	Planetary Science Letters 365, 17-24.
558	
559	Terakawa, T., Hauksson, E., 2018. Absolute Stress Fields in the Source Region of the
560	1992 Landers Earthquake. Journal of Geophysical Research-Solid Earth 123, 8874-
561	8890.
562	
563	Terakawa, T., Matsu'ura, M., 2008. CMT data inversion using a Bayesian information
564	criterion to estimate seismogenic stress fields. Geophysical Journal International 172,
565	674-685.
566	
567	Terakawa, T., Miller, S.A., Deichmann, N., 2012. High fluid pressure and triggered
568	earthquakes in the enhanced geothermal system in Basel, Switzerland. Journal of
569	Geophysical Research-Solid Earth 117.

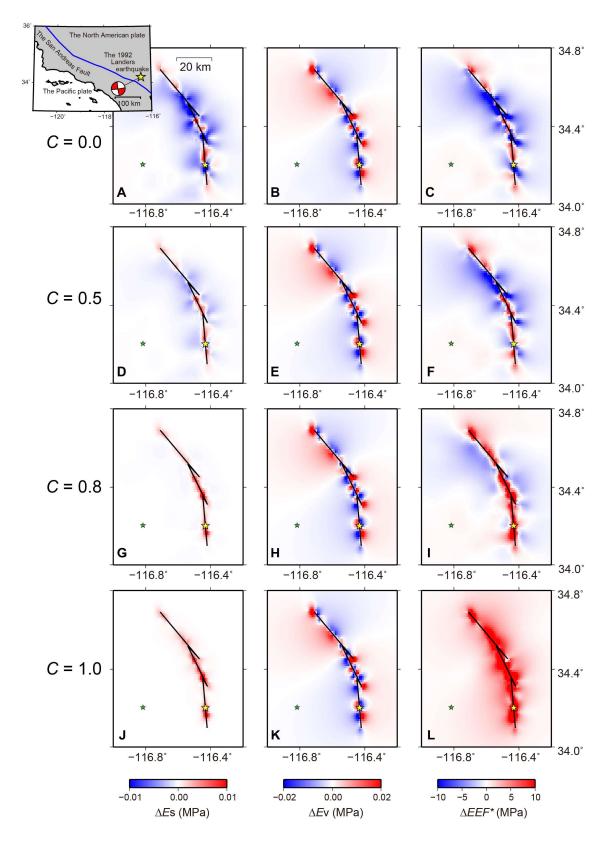

571	Terakawa, T., Zoporowski, A., Galvan, B., Miller, S.A., 2010. High-pressure fluid at
572	hypocentral depths in the L'Aquila region inferred from earthquake focal mechanisms.
573	Geology 38, 995-998.
574	
575	Toda, S., Stein, R.S., Lin, J., 2011. Widespread seismicity excitation throughout central
576	Japan following the 2011 M 9.0 Tohoku earthquake and its interpretation by Coulomb
577	stress transfer. Geophysical Research Letters 38, L00G03.
578	
579	Wald, D.J., Heaton, T.H., 1994. Spatial and temporal distribution of slip for the 1992
580	Landers, California, earthquake. Bulletin of the Seismological Society of America 84,
581	668-691.
582	
583	Yang, W.Z., Hauksson, E., Shearer, P.M., 2012. Computing a Large Refined Catalog of
584	Focal Mechanisms for Southern California (1981-2010): Temporal Stability of the Style
585	of Faulting. Bulletin of the Seismological Society of America 102, 1179-1194.
586	
587	Zoback, M.D., Townend, J., 2001. Implications of hydrostatic pore pressures and high
588	crustal strength for the deformation of intraplate lithosphere. Tectonophysics 336, 19-
589	30.
590	
591	

Table 1 Diagnostic abilities of various stress metrics. ΔE_s , ΔEFS^* , and ΔEFS are evaluated under four background stresses. In each case, the AUC value (green), the true positive rate (red) and false positive rate (blue) at the maximum Youden's index point, and the maximum Youden's index (pink) are shown in a sequential order.

596

	C = 0.0	C = 0.5	C = 0.8	C = 1.0
	0.623	0.641	0.693	0.678
$\Delta E_{ m s}$	0.486	0.499	0.572	0.666
	0.124	0.118	0.139	0.378
	0.362	0.381	0.433	0.288
	0.682	0.686	0.711	0.706
ΔEFS^*	0.553	0.582	0.590	0.686
	0.164	0.193	0.191	0.342
	0.389	0.389	0.399	0.344
	0.759	0.760	0.766	0.700
ΔEFS	0.629	0.673	0.654	0.678
	0.159	0.212	0.197	0.342
	0.470	0.461	0.457	0.336
$\Delta au_{ m max}$		0.686 / 0.708	/ 0.406 / 0.302	
ΔCFS	0.667 / 0.484 / 0.087 / 0.397			
ABCS		0.673 / 0.634	/ 0.365 / 0.269	
SNCS		0.674 / 0.705	/ 0.441 / 0.264	

597

- 601 Figure 1 Dependence of ΔE_s , ΔE_v , and ΔEFS^* on background stress. The uppermost
- 602 row (A, B, and C), second row (D, E, and F), third row (G, H, and I), and lowermost row
- 603 (**J**, **K**, and **L**) show ΔE_s , ΔE_v , and ΔEFS^* at C = 0.0, 0.5, 0.8, and 1.0, respectively. The
- 604 yellow star and green star indicate the epicenters of the 1992 Landers and 1992 Big Bear
- 605 earthquakes. The thick black lines denote the fault segments of main rupture of the
- 606 Landers event. The focal mechanism solution (Yang et al., 2012) for the main shock is
- 607 shown in the inset.

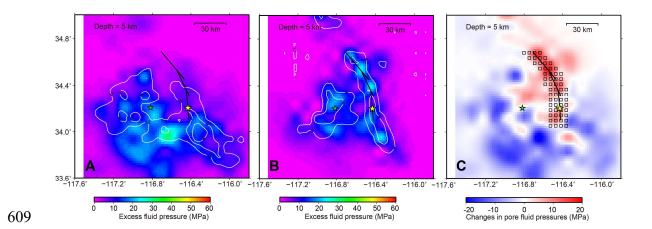


Figure 2 Pore-fluid pressure fields in and around the source region of the 1992 Landers earthquake. (A) Pre-mainshock pore-fluid pressure distribution. (B) Postmainshock pore-fluid pressure distribution. (C) Coseismic changes in pore-fluid pressure. We used coseismic pore-fluid pressure changes in the regions with open squares in (C) in the analysis of ΔEFS . The yellow star, green star, and thick black lines are the same as those in Figure 1.

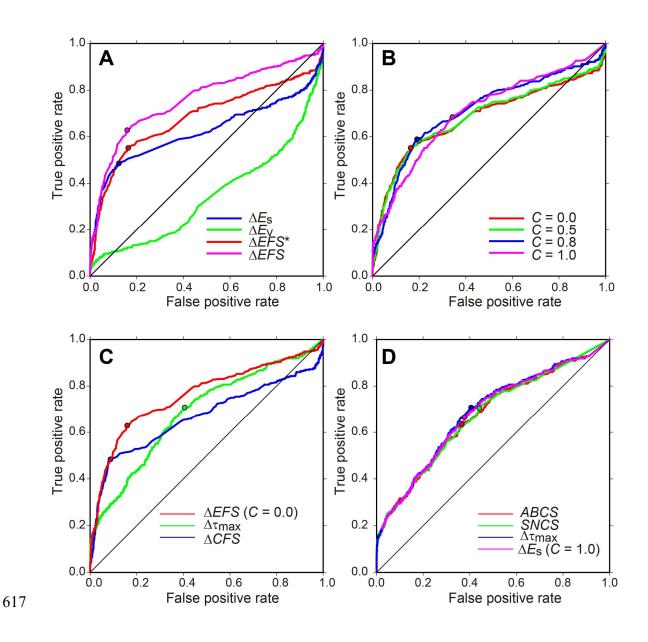


Figure 3 ROC curves for stress metrics. The ROC curves of (A) ΔE_s , ΔE_v , ΔEFS^* and ΔEFS for the realistic background stress field (C = 0.0), (**B**) ΔEFS^* for four background stress fields with different deviatoric stress levels, (**C**) ΔEFS (C = 0.0), $\Delta \tau_{max}$, and ΔCFS , and (**D**) *ABCS*, *SNCS*, $\Delta \tau_{max}$, and ΔE_s (C = 1.0). The black lines denote the assessment for random guessing. The coloured circles in (**A**)–(**D**) show true and false

- 623 positive rates at the maximum Youden's index points. The values of ΔCFS in (c) were
- 624 resolved on the plane with similar orientation to the main shock fault.

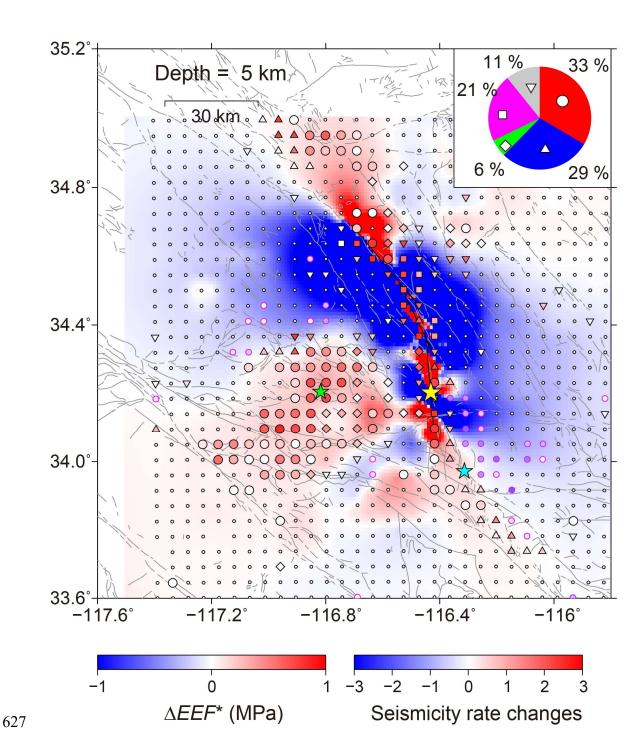


Figure 4 Aftershock triggering mechanisms (depth: 2.5–7.5 km). The shapes of the
symbols except the tiny circles, which are plotted in the regions where seismicity has
been low throughout the pre- and post-mainshock periods, represent aftershock triggering

631 mechanisms; circle: increase in shear stress (SS) and decrease in fault normal stress (NS), 632 triangle; SS only, squares; NS only, diamond; increase in pore-fluid pressure, inverted 633 triangle; unclear. The pink border circles are plotted in the region where the seismicity 634 rate decreased. The colour scales of these symbols represent the increase (red) or decrease 635 (blue) in seismicity rate (the base 10 logarithm of the number of aftershocks to that of the 636 pre-mainshock period) after the Landers earthquake. The background colour scales indicate the distribution of ΔEFS^* (C = 0.0). The pie chart shows the ratios of the whole 637 638 events across the five classifications. The grey lines denote major Quaternary active faults 639 (Jennings, 1994). The yellow, light green, and light blue starts denote the hypocenters of 640 the 1992 Landers, the 1992 Big Bear, and the 1992 Joshua Tree earthquakes, respectively.