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Abstract 
Chatter is one of the most critical problems that causes poor surface quality and restriction of machining 

efficiency. Spindle speed variation (SSV) is a well-known technique for suppression of regenerative chatter. However, 
in the authors’ understanding, the chatter suppression effect diminishes when the spindle speed difference between the 
present and previous cutting moments is small. Furthermore, the stability changes largely according to the spindle 
speed variation profile which changes with the set condition of SSV parameters, e.g., nominal spindle speed, variation 
period and variation amplitude. Therefore, SSV parameters should be adequately set to avoid this limitation and to 
exert its effect throughout the entire duration of cutting. However, there is no clear methodology to determine the 
optimal condition. This paper presents the characteristics of chatter growth during SSV focusing on the change of 
chatter frequency, which lead to novel indices to evaluate the chatter stability when cutting with SSV. To verify the 
validity of the indices, time-domain simulations and the cutting experiments with triangular spindle speed variation 
(TSSV) are carried out. The influence of SSV parameters on the chatter stability is investigated from the simulation 
and experimental results. The limitations of widely utilized SSV profiles are discussed. 
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1 Introduction 
During the machining processes, the instability from the interaction between the metal cutting 

process and response of machine tool structure results in chatter. The chatter causes poor surface finish, 
excessive tool wear, and damage of the machine tool. The chatter usually occurs in conditions above a 
certain limit of cutting width or structural flexibility. In general, it can be avoided by lowering the cutting 
conditions, e.g., cutting width, but it leads to low machining efficiency. Extensive studies have been 
performed in order to clarify the mechanism of chatter, and it has been revealed that the self-excited 
vibration caused by the regenerative effect, i.e., regenerative chatter, is the most dominant machine tool 
chatter phenomenon [1]. The regenerative effect is caused by the previous vibration which is left on the 
workpiece as a wavy surface. The regenerative chatter grows up with a certain phase shift between the 
present and previous vibrations which causes dynamic chip load.  

To suppress the regenerative chatter and to increase the stability and machining efficiency, various 
studies have been carried out, e.g., the selection of stable cutting conditions such as spindle speed and depth 
of cut [2], the optimization of tool path/posture [3], the usage of specially designed milling tools with 
variable pitch/helix angles [4, 5], and the optimization and the design methodology of those special tools 
[6, 7]. As another effective method for the suppression of the regenerative chatter without sacrificing the 
machining efficiency, the spindle speed variation (SSV) has been studied, where the speed is varied around 
the nominal spindle speed. Takemura et al. [8] analyzed its stability in the turning process by means of 
energy balance and validated it through experiments. After that, numerous types of analytical methods have 
been proposed such as the angle domain method [9], the semidiscretization method [10], the method using 
the SSV frequency harmonics of chatter vibration [11], etc.  

Several profiles have been proposed to vary the spindle speed such as sinusoidal, triangular, 
rectangular, and random profiles. It is well known that the sinusoidal spindle speed variation (SSSV) can 
be easily applied by the spindle speed control system with low load compared to the other profiles, hence 
it is the most popular technique [12]. The triangular spindle speed variation (TSSV) has also been developed 



to suppress the regenerative chatter (e.g., OKUMA Corp. Machining Navi L-g), and it is usefully utilized 
in production sites.  

Meanwhile, since the stability of SSV varies greatly depending on the SSV parameters, i.e., 
variation amplitude, variation period, and nominal spindle speed, it is quite a complicated problem to 
determine the parameters properly [13, 14]. For example, in the case of the same variation amplitude, SSV 
yields higher stability at lower nominal speed [13, 14]. Furthermore, the temporal growth of chatter occurs 
even if SSV is applied [13-15]. For this problem, despite the fact that SSV is an effective technique, the 
industrial application has been limited because there is no simple and logical methodology to determine the 
parameters properly for the suppression of chatter and the improvement of the machining efficiency. 
Therefore, there is a need for a general index to evaluate the stability of SSV. 

In this research, characteristics of the chatter growth in SSV are clarified and the chatter stability 
indices are newly proposed based on them. Time-domain simulations and cutting experiments are carried 
out, and the validity of the proposed indices and the effect of the SSV parameters on the stability are 
discussed.  

The dynamic cutting model and the basic principle of the chatter stability prediction with constant 
spindle speed (CSS) is described in Section 2.1. In Section 2.2, the characteristics of the chatter growth in 
SSV are explained. The novel chatter stability indices for SSV and the analytical investigations with a time-
domain simulation model are presented in Section 3. In Section 4, the experimental results and their 
discussions are described. Conclusions of the paper follow in Section 5. 

2 Characteristics of chatter growth in SSV 

2.1 Dynamic model of orthogonal cutting process 

A dynamic model of a pipe-end plunging process, which can be considered as a semi-orthogonal 
cutting process, is shown in Fig. 1. It is assumed that the tool shank is flexible in the cutting (𝑦) and feed 
(𝑧) directions. In this process, the vibration in the z direction causes the fluctuation of the principal (𝑦) and 
thrust (𝑧) cutting forces.  

Not only the present vibration but also the previous vibration left on the cut surface affect the 
present cutting; the latter one is called the regenerative effect. Those vibrations cause the uncut chip 
thickness fluctuation, and it results in the dynamic cutting force. Since the cutting force is proportional to 
the instantaneous uncut chip thickness ℎ(𝑡)	[m], which can be expressed as Eq. (1), the dynamic cutting 
forces in the principal direction 𝑓)	[N] and the thrust direction 𝑓*	[N] can be formulated as Eq. (2). Note 
that the formulation is in the Laplace domain after Eq. (1). 
ℎ(𝑡) = ℎ, + 𝜇𝑧(𝑡 − 𝜏) − 𝑧(𝑡)	 (1) 
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Here, ℎ,	[m] is the static depth of cut, i.e., feed rate of the cutting tool, 𝜇 is the overlapping factor 
(𝜇 = 1 in pipe-end plunging), 𝜏	[s] is the spindle period, 𝑎	[m] is the cutting width, 𝐾)	[Pa] and 𝐾*	[Pa] are 
the specific cutting forces in the principal and thrust directions, respectively, and 𝑦	[m] and 𝑧	[m] are the 
dynamic displacements in the principal and thrust directions, respectively. Note that the static depth of cut 
ℎ, has no effect on the dynamic cutting forces, hence it does not exist in Eq. (2). 

The dynamic cutting forces excite the tool shank, and they cause the vibration displacements 
through the dynamic compliances as follows.  
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Here, 𝐺))	[m/N] and 𝐺**	[m/N] are the direct dynamic compliances in the principal and thrust 
directions, respectively, and 𝐺)* [m/N] and 𝐺*)	[m/N] are the cross dynamic compliances between the 
principal and thrust directions. 



Since the vibration in the principal (𝑦) direction does not cause the dynamic uncut chip thickness, 
the closed-loop system with the cutting process and the equivalent dynamic compliance [16] can be 
represented as the block diagram shown in Fig. 2. Combining Eqs. (2) and (3), the following equation can 
be derived under critical stability at the angular chatter frequency 𝜔A [rad/s]. 
𝑧(𝑖𝜔A) = 𝑎CDE𝐾*F𝑒5DGH7 − 1I𝐺*(𝑖𝜔A)𝑧(𝑖𝜔A). (4) 

Here, 𝐺*	 [m/N] is the equivalent dynamic compliance, i.e., 𝐺* = 𝐺** + 𝐾)/𝐾* × 𝐺*) , where 
𝐾)/𝐾* is the cutting force ratio. The stability limit analysis is performed by solving Eq. (4), i.e., the critical 
cutting width or stability limit 𝑎CDE	[m] and the corresponding spindle period 𝜏	[s] are calculated. As a result, 
𝑎CDE is given as follows [17]. 

𝑎CDE = −
1

2𝐾*Λre
 (5) 

Here, 𝛬QR is the real part of the equivalent dynamic compliance. 
 

 
Fig. 1. Dynamic model of pipe-end plunging process. 

 

 
Fig. 2. Block diagram of pipe-end plunging process with regenerative effect. 



2.2 Chatter growth / suppression in SSV 

Due to the nature of the cutting process, the chatter is transferred to the workpiece as a wavy surface. 
After one revolution, the difference between the wavy surface and the present vibratory locus of the cutting 
edge causes the cutting force fluctuation. The regenerative chatter leaves a number of waves on the cut 
surface per unit angle, i.e., spatial chatter frequency 𝑓6A  [1/rad]. It can be expressed as Eq. (6), and its 
schematic illustration is shown in Fig. 3. Note that to visually imagine the concept, the figure is drawn as a 
plunge-turning process where the vibration waves can be seen easily, but it is the same in other cutting 
processes. 

𝑓6A =
60𝑓A(𝑡)
2𝜋𝑛(𝑡)

=
30𝑓A(𝑡)
𝜋𝑛(𝑡)

	 (6) 

Here, 𝑛(𝑡) [min-1] and 𝑓A(𝑡)	[Hz] are the spindle speed and the chatter frequency on the time 𝑡, respectively. 
From Eq. (6), the chatter frequency 𝑓A(𝑡) can be described as follows. 

𝑓A(𝑡) =
2𝜋𝑛(𝑡)𝑓6A

60
	 (7) 

In the case of CSS, 𝑓A(𝑡) is constant since 𝑛(𝑡) is constant during the machining. Even when SSV is applied, 
the regenerative chatter can grow with a considerably flexible structure. It is found in this study that the 
regenerative chatter generally grows at a constant spatial frequency in SSV (the first chatter growth 
characteristic), i.e., the time chatter frequency changes with varying spindle speed, unlike the assumption 
of constant time chatter frequency in previous studies [8-14, 18]. The varied time chatter frequency can be 
expressed as follows. 

𝑓A(𝑡) =
𝑛(𝑡)

𝑛F𝑡 − 𝜏(𝑡)I
𝑓A(𝑡 − 𝜏(𝑡))	 (8) 

Here, 𝜏(𝑡)	[s] is the spindle period which varies depending on the spindle speed profile, 𝑛F𝑡 − 𝜏(𝑡)I and 
𝑓A(𝑡 − 𝜏(𝑡)) are the spindle speed and the chatter frequency at one revolution before, respectively. 

As a result, the time chatter frequency changes proportionally to the rate of spindle speeds in two 
consecutive revolutions at the same angular position, i.e., acceleration rate 𝑟X	[%], and it can be expressed 
as follows [15].  

𝑟X(𝑡) = Y
𝑛(𝑡)

𝑛F𝑡 − 𝜏(𝑡)I
− 1Z × 100	 (9) 

Here, since the chatter tends to occur near the resonance, the changes of the chatter frequency in SSV causes 
a large change of the amplitude of the present vibration 𝑧(𝑡)	[m] due to the change of the magnitude of the 
dynamic compliance of the vibratory structure 𝐺*F𝑖𝜔A(𝑡)I [m/N], and it can be expressed as follows. 

𝐺*F𝑖𝜔A(𝑡)I = 𝐺* [𝑖 \Y1 +
𝑟X(𝑡)
100

Z × 𝜔AF𝑡 − τ(𝑡)I^_ (10) 

𝑧(𝑡) = 𝐺*F𝑖𝜔A(𝑡)I𝑓*(𝑡) = 𝐺* [𝑖 \Y1 +
𝑟X(𝑡)
100

Z × 𝜔AF𝑡 − τ(𝑡)I^_𝑓 (𝑡) (11) 

Note that the larger 𝑟X, the larger the change of chatter frequency and the change of magnitude of dynamic 
compliance, and the cutting becomes more stable [15]. Therefore, it can be estimated that the chatter is 
likely to grow if there is a period where 𝑟X is small in SSV (the second chatter growth characteristic). 

Next, in case of considering plural revolutions, e.g., more than two revolutions, the chatter 
frequency after 𝑚-revolutions at a certain angular position 𝑓E	[Hz] can be expressed as Eq. (12). 
𝑓E =

𝑛E
𝑛E5b

𝑛E5b
𝑛E5c

⋯
𝑛b
𝑛,
× 𝑓, =

𝑛E
𝑛,

× 𝑓,	 (12) 

Here, 𝑛,	[min-1] and 𝑓,	[Hz] are the initial spindle speed and the initial chatter frequency, respectively. As 
the ratio of 𝑛E  to 𝑛, increases, the change of chatter frequency becomes larger and it results in larger 



dynamic compliance reduction, and the system becomes more stable. However, it should be noted that 
chatter can grow when the reduction of the dynamic compliance in each revolution is insufficient to 
suppress chatter. Also, the peakiness of the dynamic compliance, which increases with a decrease of the 
damping coefficient, as well as the cross dynamic compliance, also affect the change rate of the magnitude 
of the dynamic compliance, hence it can affect the degree of the chatter suppression.  

 
Fig. 3. Schematic illustration of plunge-turning process with regenerative chatter. 

3 Analytical investigation of chatter stability in SSV 
3.1 Time-domain simulation model 

To verify the validity of the revealed chatter growth characteristics in SSV and to investigate the 
relation between the acceleration rate 𝑟X and the stability in TSSV and SSSV, time-domain simulations are 
carried out. A single degree of freedom (SDOF) vibratory system with orthogonal cutting shown in Fig. 1 
is assumed. Here, the cutting tool is flexible and the regeneration occurs in the thrust direction (𝑧). The 
uncut chip thickness ℎ(𝑡)	[mm] and the cutting force in the thrust direction 𝑓*(𝑡)	[N] fluctuates when 
chatter occurs, and each of them can be expressed as follows. 
ℎ(𝑡) = ℎ, + 𝜇𝑧(𝑡 − 𝜏(𝑡)) − 𝑧(𝑡)  (13) 
𝑓*(𝑡) = 𝐾*𝑎ℎ(𝑡)  (14) 

The response of the cutting tool to the cutting force in the SDOF system can be described as follows. 
𝑚𝑧̈(𝑡) + 𝑐𝑧̇(𝑡) + 𝑘𝑧(𝑡) = 𝐾*𝑎(ℎ, + 𝜇𝑧(𝑡 − 𝜏(𝑡)) − 𝑧(𝑡)) (15) 

Here, 𝑚 [kg] is the modal mass, 𝑐 [N/(m∙s)] is the modal damping coefficient, 𝑘 [N/m] is the modal stiffness, 
and 𝜇 =1 in pipe-end plunging. Note that in the case of cutting with SSV, the spindle period 𝜏(𝑡) varies 
with time due to the time-varying spindle speed 𝑛(𝑡)	[min-1], and it can be searched to satisfy the following 
equation. 

k
𝑛(𝑡)
60

𝑑𝑡
m

m57(m)
= 1  (16) 



In the time-domain simulation, 𝑧(𝑡) is calculated by solving Eq. (15) directly, and the solution is 
approximated by the 4th order Runge-Kutta method. Here, the accumulated rotation angle 𝜃(𝑡) [rad], which 
can be expressed as Eq. (17), 𝑧(𝑡) and 𝑛(𝑡) are memorized at each calculation step, i.e., resolution of time-
domain simulation, and they are utilized when searching the previous displacement 𝑧(𝜃(𝑡) − 2𝜋) and the 
previous spindle speed 𝑛(𝜃(𝑡) − 2𝜋). 

𝜃(𝑡) = 2𝜋k
𝑛(𝑡)
60

𝑑𝑡
m

,
  (17) 

The tool jumping out of the workpiece, i.e., ℎ(𝑡) = 0, due to the vibration is considered in the 
simulation. At the beginning of simulation, the cutting starts with gradually increasing static depth of cut.  

3.2 Formulation of SSV profiles and introduction of stability indices  

Since the triangular and the sinusoidal spindle speed variation, i.e., TSSV and SSSV, profiles are 
considered in most literatures [9-14, 18], they are investigated in the current study. The schematics for the 
explanation of the spindle speed and acceleration rate profiles in TSSV and SSSV are shown in Fig. 4 (a) 
and Fig. 4 (b), respectively. Here, 𝑛, [min-1] is the nominal spindle speed, 𝑇 [s] is the variation period, and 
𝑛p	[min-1] is the variation amplitude, respectively. The variation function of TSSV 𝑛mQD(𝑡) [min-1] can be 
described as follows.  

𝑛mQD(𝑡) = q
𝑛, + 𝑛p −

4𝑛p
𝑇
mod(𝑡, 𝑇)																																	if				0 ≤ mod(𝑡, 𝑇) < 𝑇 2⁄

𝑛, − 3𝑛p +
4𝑛p
𝑇 mod(𝑡, 𝑇)																															if			 𝑇 2⁄ ≤ mod(𝑡, 𝑇) < 𝑇

   (18) 

Here, mod(𝑡, 𝑇) denotes the modulo function. 
The variation function of SSSV 𝑛6D|(𝑡) [min-1] can be described as follows.  

𝑛6D|(𝑡) = 𝑛, + 𝑛p sin �
2𝜋
𝑇
𝑡 +

𝜋
2�

 (19) 

As observed in Figure 4, the acceleration rate 𝑟X always fluctuates with the speed variation. The 𝑟X 
has a positive value in the acceleration section and has a negative value in the deceleration section. At the 
sections where the acceleration direction is switched, i.e., switching from acceleration to deceleration or 
from deceleration to acceleration, the speed difference in two consecutive revolutions is nearly zero, and 
the value of 𝑟X is close to zero. Since the length of these sections should be one revolution, i.e., 2𝜋 rad, the 
time lengths 𝑡b, 𝑡c should satisfy the following equations. 

k
𝑛(𝑡)
60

𝑑𝑡
�
c�m�

�
c

= 1 (20) 

k
𝑛(𝑡)
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��m�

�
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Since 𝑟X fluctuates in SSV, the average of absolute acceleration rate in one period of SSV |𝑟X|����� [%] 
is utilized as the stability index for evaluating the stability in SSV, and it can be expressed as follows. 

|𝑟X|����� =
1
𝑇
k |𝑟X(𝑡)|	𝑑𝑡
�

,
=
100
𝑇
k �Y

𝑛(𝑡)
𝑛F𝑡 − 𝜏(𝑡)I

− 1Z� 	𝑑𝑡
�

,
 (22) 

Meanwhile, when considering the plural revolutions in a unidirectional acceleration section, the 
more revolutions show the larger change of the dynamic compliance since the chatter frequency also 
changes largely in one way, i.e., increase or decrease, as shown in Eq. (12). From this observation, the 
number of revolutions in a unidirectional acceleration section 𝑁 is utilized as the second stability index for 
evaluating the stability in SSV, and it can be calculated from SSV parameters as follows. 

𝑁 =
𝑛,
60
𝑇
2
=
𝑛,𝑇
120

 (23) 



 
Fig. 4. Profiles of spindle speed and acceleration rate in (a) TSSV and (b) SSSV. 

3.3 Simulation conditions and profile examples 

The utilized parameters in the time-domain simulation are shown in Table 1. To investigate the 
validity of the proposed stability indices, i.e., |𝑟X|����� and 𝑁, the SSV parameters are determined so that TSSV 
and SSSV have the same stability indices. Note that the variation amplitude ratio 𝑅𝑉𝐴, which is defined as 
the ratio of the speed variation amplitude to the nominal spindle speed 𝑛p/𝑛,,  should be set lower than 1 
so that the spindle speed is always higher than 0. Thus, the range of 𝑅𝑉𝐴 is set from 0.05 to 0.80. The 
cutting width is gradually increased with increments of 0.1 mm, and the stability limit is found. In this 
simulation, the growing vibration in each period of SSV is considered as chatter. 

 
Table 1. Parameters used in time-domain simulation. 

Workpiece properties   
Diameter 𝐷 [mm] 70 
Specific cutting force in principal direction 𝐾) [MPa] 1284 
Specific cutting force in thrust direction 𝐾* [MPa] 711 
Modal parameters   
Mass 𝑚 [kg] 0.2266 
Damping coefficient 𝑐 [N/(m∙s)] 44.19 
Stiffness 𝑘 [N/m] 1.118×107 

SSV parameters   
Nominal spindle speed 𝑛, [min-1] 600 - 7200 
Variation period 𝑇 [s] 0.5, 1.0, 2,0 
Variation amplitude ratio 𝑅𝑉𝐴  0.05 - 0.80 
Cutting conditions   
Feed rate (static depth of cut) ℎ, [mm/rev] 0.05 
Increment of cutting width [mm] 0.1 
 
Figures 5(a) and 5(b) show examples of unstable results in TSSV and SSSV, respectively. In both 

profiles, the growth of chatter is observed in the transitions from the acceleration to the deceleration. On 
the other hand, the chatter does not grow in the transitions from the deceleration to acceleration. This can 
be explained as follows: the acceleration rate in the lower speed is larger than that in the higher speed, and 
hence the chatter suppression effect is greater in the lower speed. As a result, there is a chatter growth 



characteristic that it grows in the transitions from the acceleration to the deceleration where the acceleration 
rate |𝑟X| is small. 

The change of the chatter frequency can be observed in the short-time Fourier transform result of 
vibration displacement in each graph, i.e., as the spindle speed decreases, the chatter frequency decreases 
in a similar way. In order to clarify the chatter growth characteristics quantitatively, the spatial frequency 
𝑓6A during chatter is investigated. Comparisons of the points A, B and C, D in Figure 5 are carried out. The 
spindle speeds at points of A, B and C, D are 1120 min-1, 1070 min-1 and 1155 min-1, 1110 min-1, respectively. 
The chatter frequencies at points of A, B and C, D are 1195 Hz, 1145 Hz and 1170 Hz, 1115 Hz, respectively. 
Finally, the spatial frequencies at points A, B and C, D are calculated by utilizing the Eq. (6), and their 
values are 10.19, 10.22 and 9.67, 9.59, respectively. From the results, it can be confirmed that the spatial 
frequencies at the points A,	B and C, D are nearly the same. Therefore, it can be concluded that the chatter 
frequency generally changes in proportion to the spindle speed, i.e., the chatter grows up at a constant 
spatial frequency in SSV. 

 

 
Fig. 5. Profile examples of spindle speed and acceleration rate, and corresponding vibration 

displacement and its short-time Fourier transform result of unstable condition at cutting width=2.9 mm, 
𝑛,=1000 min-1, 𝑇=1.0 sec, and 𝑅𝑉𝐴=0.2 in (a) TSSV and (b) SSSV. 

3.4 Simulation results and discussions 

The relations between the stability limit and the proposed stability indices, i.e., |𝑟X|����� and 𝑁, in TSSV 
and SSSV are investigated by utilizing the time-domain simulation model. Figure 6 shows the simulation 
results under various conditions: (a) TSSV, 𝑇=0.5 sec (b) SSSV, 𝑇=0.5 sec, (c) TSSV, 𝑇=1.0 sec, (d) SSSV, 
𝑇=1.0 sec, (e) TSSV, 𝑇=2.0 sec and (f) SSSV, 𝑇=2.0 sec. Since each graph represents the results obtained 
at a constant 𝑇, 𝑛, takes the proportional value with 𝑁 from Eq. (23). The dotted lines indicate the contours 
where 𝑅𝑉𝐴 is 0.2, 0.4, 0.6, and 0.8, respectively. Note that even if 𝑇 and 𝑅𝑉𝐴 are equal, the value of |𝑟X|����� 
decreases with an increase of 𝑛, or 𝑁. Finally, the magnitude of the stability limit is represented by gray 
scale. Figures 7(a) and 7(b) show the profile examples of spindle speed and acceleration rate which 
correspond to A to F marked on Figs. 6(c) and 6(d), respectively. The solid (A/D), dashed (B/E), and dotted 
(C/F) lines represent the profiles under the conditions of 𝑇=1.0 sec, |𝑟X|�����=10 %, and 𝑁=5, 15, 25, 
respectively, in TSSV/SSSV. The spindle speed profiles show that the nominal spindle speed increases and 
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𝑅𝑉𝐴 also increases with an increase of 𝑁. The former tendency can be confirmed in Eq. (23), and the latter 
one is needed to keep |𝑟X|����� constant. From Figs. 6 and 7, the following five remarks are found. 

First, it can be confirmed from Fig. 6 that when 𝑁 is equal, the stability limit increases with an 
increase of |𝑟X|����� regardless of 𝑇 and the type of SSV. Hence, |𝑟X|����� is an effective index for evaluating the 
stability of SSV.  

Second, when |𝑟X|����� is equal, the stability is the largest at a certain 𝑁, e.g., 20 in the case of |𝑟X|����� =
10 in Fig. 6(a). The reasons for this can be considered as follows. With an increase of 𝑁, the chatter 
frequency changes largely as expressed in Eq. (12), and thus the stability increases because the dynamic 
compliance is greatly reduced. On the other hand, it can be observed from the profiles of 𝑟X in Fig. 7 that 
with an increase of 𝑁 the fluctuation amplitude of 𝑟X becomes large. Consequently, |𝑟X| becomes smaller 
and that section becomes longer near the transitions from acceleration to deceleration. Therefore, a 
sufficient compliance reduction cannot be obtained in that section, and hence stabilization cannot be 
achieved at excessively large 𝑁. From these reasons, an optimal value of 𝑁 exists.  

Third, in the case where the values of |𝑟X|����� and 𝑁 are equal in the same type of SSV, the stability 
limits are almost identical among different 𝑇’s (Figs. 6(a)-(c) or (d)-(f)). Therefore, the stability limit can 
be estimated in each type of SSV by utilizing the two proposed stability indices regardless of the 
combination of SSV parameters.  

Fourth, comparing the results in TSSV and SSSV, it can be confirmed that the stability limit in 
SSSV is always smaller than TSSV when |𝑟X|����� and 𝑁 are equal. The reason for this is considered as follows. 
The shape of 𝑟X profile is different and |𝑟X| becomes smaller in SSSV than in TSSV near the transition from 
acceleration to deceleration as shown in Fig. 7. This can be observed more clearly in Fig. 4. Because of this 
period of smaller |𝑟X|, the stability in SSSV is always smaller than TSSV. When lower 𝑅𝑉𝐴 is desirable, 
e.g., tool wear may progress rapidly at high speeds for difficult-to-cut materials, SSSV (Figs. 6(d)-(f)) can 
have relatively higher |𝑟X|�����  and 𝑁  compared to TSSV (Figs. 6(a)-(c)) under equal 𝑅𝑉𝐴 . However, the 
stability in TSSV is larger than that in SSSV under equal 𝑅𝑉𝐴 even though |𝑟X|����� and 𝑁 are lower. For 
example, stability limits under 𝑅𝑉𝐴 = 0.6,  𝑇 = 2.0 sec, and equal |𝑟X|����� or 𝑁 (G-K/G’-K’ shown in Figs. 
6(c)/6(f)) are estimated in TSSV/SSSV by linear interpolation between neighboring stability limits. The 
estimated values are (3.56 mm, 3.90 mm, 4.29 mm, 4.49 mm, 4.80 mm)/(3.39 mm, 3.59 mm, 3.72 mm, 
4.31 mm, 4.45 mm), and it is confirmed that the stability in TSSV is always higher than that in SSSV under 
equal 𝑅𝑉𝐴.  

Fifth, when 𝑅𝑉𝐴 and 𝑇 are equal, all the graphs represent that the smaller the 𝑁, i.e., the smaller 
the 𝑛,, the higher the stability because |𝑟X|����� increases as 𝑛, decreases under equal 𝑅𝑉𝐴. In other words, the 
chatter suppression effect of TSSV and SSSV decreases in high-speed region, and thus it is unfortunately 
difficult to realize remarkable improvement of machining efficiency. 

 



 
Fig. 6. Stability limits against the stability indices |𝑟X|����� and 𝑁 under variable condition of 𝑇 in TSSV and 

SSSV. 



 
Fig. 7. Profile examples of spindle speed and acceleration rate under conditions of 𝑇=1.0 sec, |𝑟X|�����=10 %, 

and 𝑁=5, 15, 25 in (a) TSSV and (b) SSSV. 

4 Experimental verification 

4.1 Experimental setup 

A series of experiments are carried out to verify the validity of the revealed chatter growth 
characteristics in SSV and to confirm the effectiveness of the proposed stability indices, i.e., |𝑟X|����� and 𝑁. 
Figure 8 shows a photograph of the experimental setup for the pipe-end plunging. The experiments are 
conducted on a turning center (Okuma Corp., SPACETURN LB3000EX), and a pipe-shaped workpiece 
(brass, ISO CuZn35) is cut by a tool insert (Mitsubishi Material Corp., TCMW16T308 HTi10) mounted on 
a tool shank (steel, ISO C45) with a rectangular cross-section. The rake and clearance angles are 0 and 7 
deg, respectively. 



 

Fig. 8. Experimental setup for pipe-end plunging. 

4.2 Measurement of dynamic compliance of tool 

Measurement of the dynamic compliance of the tool is carried out with an impact hammer (PCB 
Electronics Inc., 084A14), an accelerometer (PCB Electronics Inc., 356A01), and a dummy tool insert with 
flat perpendicular faces for accurate force input. In order to increase the reliability of the measurement, the 
number of impacts for each direction is set to 10, and the average of the results is utilized in the time-
domain simulations for comparison with the cutting experiments with TSSV.  

The workpiece is rigid in the depth of cut (𝑧) direction, and the projection of the tool shank is set 
as long as 90 mm, and thus the chatter occurs mainly due to the flexibility of the tool in the z direction. The 
measured dynamic compliances are shown in Fig. 9 where (a) shows the cross dynamic compliance and (b) 
shows the direct dynamic compliance. In order to use these compliances in the time-domain simulations, 
the modal parameters of the dynamic compliances, including the cross dynamic compliance whose phase 
changes complexly, are identified in the following manner. The equation of motion of the tool can be 
represented as follows. 

[𝑀] 1𝑦̈
(𝑡)
𝑧̈(𝑡)2 + [𝐶] 1

𝑦̇(𝑡)
𝑧̇(𝑡)2 + [𝐾] 1

𝑦(𝑡)
𝑧(𝑡)2 = 1

𝑓)(𝑡)
𝑓*(𝑡)

2 (24) 

Here, [𝑀], [𝐶], and [𝐾] are the modal mass, damping coefficient, and stiffness matrices, and they are 
expressed as follows. 

[𝑀] = �
𝑚)) 𝑚)*
𝑚*) 𝑚**

� , [𝐶] = �
𝑐)) 𝑐)*
𝑐*) 𝑐**� , [𝐾] = 9

𝑘)) 𝑘)*
𝑘*) 𝑘**

< (25) 

Equation (24) can be represented in the s domain by taking the Laplace transform as follows. 

([𝑀]𝑠c + [𝐶]𝑠 + [𝐾]) 1𝑦
(𝑠)
𝑧(𝑠)2 = 1

𝑓)(𝑠)
𝑓*(𝑠)

2 (26) 

The dynamic displacements in the principal and thrust directions can be expressed as follows: 

1𝑦
(𝑠)
𝑧(𝑠)2 =

([𝑀]𝑠c + [𝐶]𝑠 + [𝐾])5b 1
𝑓)(𝑠)
𝑓*(𝑠)

2 ≡ 9
𝐺)) 𝐺)*
𝐺*) 𝐺**

< 1
𝑓)(𝑠)
𝑓*(𝑠)

2 (27) 

where the elements of the dynamic compliances can be expressed as follows. 

𝐺)) =
𝑚**𝑠c + 𝑐**𝑠 + 𝑘**

(𝑚))𝑠c + 𝑐))𝑠 + 𝑘)))(𝑚**𝑠c + 𝑐**𝑠 + 𝑘**) − (𝑚)*𝑠c + 𝑐)*𝑠 + 𝑘)*)(𝑚*)𝑠c + 𝑐*)𝑠 + 𝑘*))
	 (28) 



𝐺)* = −
𝑚)*𝑠c + 𝑐)*𝑠 + 𝑘)*

(𝑚))𝑠c + 𝑐))𝑠 + 𝑘)))(𝑚**𝑠c + 𝑐**𝑠 + 𝑘**) − (𝑚)*𝑠c + 𝑐)*𝑠 + 𝑘)*)(𝑚*)𝑠c + 𝑐*)𝑠 + 𝑘*))
	 

𝐺*) = −
𝑚*)𝑠c + 𝑐*)𝑠 + 𝑘*)

(𝑚))𝑠c + 𝑐))𝑠 + 𝑘)))(𝑚**𝑠c + 𝑐**𝑠 + 𝑘**) − (𝑚)*𝑠c + 𝑐)*𝑠 + 𝑘)*)(𝑚*)𝑠c + 𝑐*)𝑠 + 𝑘*))
 

𝐺** =
𝑚))𝑠c + 𝑐))𝑠 + 𝑘))

(𝑚))𝑠c + 𝑐))𝑠 + 𝑘)))(𝑚**𝑠c + 𝑐**𝑠 + 𝑘**) − (𝑚)*𝑠c + 𝑐)*𝑠 + 𝑘)*)(𝑚*)𝑠c + 𝑐*)𝑠 + 𝑘*))
 

Therefore, the equivalent dynamic compliance in the thrust direction, i.e., 𝐺*(𝑠), can be calculated as 
follows. 
𝐺*(𝑠) = �𝐺*)	𝐺**� 1

𝐾)/𝐾*
1

2 = 𝐾)/𝐾* × 𝐺*) + 𝐺** (29) 

The modal parameters are numerically identified by utilizing the least squares method between the 
measured compliances and the fitted compliances which use those parameters. The identified modal 
parameters are shown in Table 2, and the fitted compliances are shown in Fig. 9. Figure 10 shows the 
measured and fitted equivalent dynamic compliances, and the dotted gray lines and solid black lines in Figs. 
9 and 10 represent the measured and fitted compliances, respectively. 
 

Table 2. Numerically identified modal parameters. 
Modal mass   
𝑚)) [kg] 0.0748 
𝑚)* [kg] -0.0125 
𝑚*) [kg] -0.0124 

𝑚** [kg] 0.1247 
Modal damping coefficient   
𝑐)) [N/(m∙s)] 7.779 
𝑐)* [N/(m∙s)] 35.19 
𝑐*) [N/(m∙s)] -12.60 
𝑐** [N/(m∙s)] 45.97 
Modal stiffness   
𝑘)) [N/m] 3.912×106 
𝑘)* [N/m] -4.678×101 
𝑘*) [N/m] -6.700×105 
𝑘** [N/m] 1.063×107 

 



 
Fig. 9. Measured and fitted dynamic compliances: (a) cross dynamic compliance and (b) direct dynamic 

compliance. 

 
Fig. 10. Measured and fitted equivalent dynamic compliances. 

4.3 Cutting experiments with CSS 

Cutting experiments with CSS are conducted to confirm that the analytical stability limits agree 
well with the experimental results. The stability limits in CSS are also compared with those in SSV for 



investigating the degree of the stability improvement by utilizing SSV. 
The spindle speed signal is obtained directly from the spindle motor encoder. An accelerometer is 

used to measure the tool vibration during cutting. The frequency components of vibration displacement are 
obtained by short-time Fourier transform, and the maximum component 𝑎EX� in each result is investigated. 
The cutting conditions of CSS are shown in Table 3. Note that the measurement of the specific cutting 
forces in the principal (𝑦) and thrust (𝑧) directions are carried out in advance. Since SSV will be adopted 
in a wide range of the spindle speed, the specific cutting force in each direction is determined in multiple 
spindle speeds. At each spindle speed, the feed rate, i.e., static depth of cut, is varied, and the inclination of 
cutting force versus feed rate is identified as the specific cutting force, i.e., the edge force is excluded. The 
specific cutting forces in the principal and thrust directions at all spindle speeds are averaged, and the 
averaged values, 1284 MPa and 711 MPa respectively as shown in Table 3, are utilized in the stability limit 
analysis. Note that the variations of specific cutting forces are as small as 2.5 % and 1.0 % in the principal 
and thrust directions, respectively, in a speed range from 1000 min-1 to 3000 min-1. 

The feed rate or static depth of cut is fixed to 0.05 mm. The cutting width, i.e., the thickness of the 
pipe, is changed by means of pre-cutting, and the spindle speed is set variable.  

 
Table 3. Experimental conditions for cutting with CSS. 

Workpiece properties 
Material  Brass CuZn35 
Diameter 𝐷 [mm] 70 
Specific cutting force in principal direction 𝐾) [MPa] 1284 
Specific cutting force in thrust direction 𝐾* [MPa] 711 
Tool properties 
Width (feed dir.) × Height (cutting dir.) [mm] 25×15 
Projection length [mm] 90 
Cutting condition 
Feed rate (static depth of cut) ℎ, [mm/rev] 0.05 
Cutting width 𝑎 [mm] 0.4, 0.6, 0.8 
Spindle speed 𝑛 [min-1] 1000 - 3000 

 
The stability limit analysis in CSS is conducted with the measured equivalent dynamic compliance, 

and the stability limits are calculated by solving Eq. (4) [17]. The analytical and experimental results are 
shown in Fig. 11. Here, the dotted lines represent the results from the stability limit analysis, ○ represents 
the cutting result without chatter (𝑎EX� <	1.5 µm,5�), and × represents the cutting result with chatter (1.5 
µm,5� ≤ 𝑎EX�). As can be observed in Fig. 11, the predicted stability limit and chatter frequency in each 
spindle speed agree well with the experimental results; e.g., in the case of a cutting width of 0.6 mm or 
more, chatter occurs under all spindle speed conditions. Therefore, it is confirmed that the measured 
equivalent dynamic compliance and specific cutting forces utilized in the stability limit analysis are valid.  

 



 
Fig. 11. Predicted stability limit and experimental results of CSS. 

4.4 Cutting experiments with TSSV and comparison with time-domain simulations 

Cutting experiments with TSSV are carried out by utilizing a commercially available function 
(Okuma Corp., Machining Navi L-g). Experimental conditions are shown in Table 4. Note that the values 
of the SSV parameters specified in Table 4 represent the set values, and the actual values are directly 
measured from the spindle speed signal. The value of 𝑟X expressed in Eq. (9) is calculated by finding the 
moment of one revolution before from the integrated rotation angle and then calculating the proportion of 
the previous spindle speed to the present spindle speed. The value of the stability indices, i.e., |𝑟X|����� and 𝑁, 
are also calculated from the actual spindle speed. The cutting width is varied from 2.0 mm to 3.0 mm, which 
is about from 4 to 6 times the stability limit in CSS. The results of the cutting experiments are compared 
with the results of the time-domain simulations. In the simulation, the actual spindle speed signal and modal 
parameters shown in Table 2 are utilized. Workpiece properties and cutting conditions in the simulation are 
the same with the experimental ones as shown in Tables 3 and 4. 

 
Table 4. Experimental conditions for cutting with TSSV. 

SSV parameters 
Nominal spindle speed 𝑛, [min-1] 1000, 1500, 2000 
Variation period 𝑇 [sec] 0.5 - 3.5 
Variation amplitude ratio 𝑅𝑉𝐴  0.1 - 0.5 
Cutting conditions 
Feed rate (static depth of cut) ℎ, [mm/rev] 0.05 
Cutting width 𝑎 [mm] 2.0 - 3.0 
 



The results of the cutting experiments and the time-domain simulations are shown in Fig. 12. 
Figures 12(a)-12(d) show the results in different cutting widths: (a) 2.0 mm, (b) 2.25 mm, (c) 2.5 mm, and 
(d) 3.0 mm. The horizontal and vertical axes represent |𝑟X|����� and 𝑁, respectively. Here, ○ represents the 
cutting result without chatter (𝑎EX�  <  1.5 µm,5� ), △  represents the cutting result with chatter (1.5 
µm,5� ≤ 𝑎EX� < 6 µm,5�), and × represents the cutting result with severe chatter (6 µm,5� ≤ 𝑎EX�). In 
the simulation, the growing vibration in each period of SSV is considered as chatter. □ represents the 
simulation result without chatter, and ＋ represents the simulation result with chatter. The results of the 
experiments and the simulations show good correlation. From Fig. 12, the following characteristics 
concerned with the experiments are found.  

First, when 𝑁 is almost equal, the larger the |𝑟X|�����, the larger the stability. Furthermore, when |𝑟X|����� is 
higher than about 8 %, the chatter can be suppressed even when the cutting width is set to 3.0 mm, i.e., 
about 6 times higher than the stability limit of CSS. Thus, it can be said that the stability increases with an 
increase of |𝑟X|����� regardless of the combination of SSV parameters shown in Table 4. Therefore, |𝑟X|����� is an 
effective index for evaluating the stability of SSV, and hence the SSV parameters are desirable to be set so 
as to obtain a larger |𝑟X|����� for realizing a higher suppression effect of the chatter vibration throughout the 
cutting. 

Second, when |𝑟X|����� is almost equal, the stability does not always increase as 𝑁 increases in the 
experiment, e.g., A and B in Fig. 12(c). In addition, when |𝑟X|����� is smaller than 2 %, the chatter cannot be 
suppressed regardless of the value of 𝑁 even at the smallest cutting width of 2.0 mm as shown in Fig. 12(a). 
From this, it can be considered that the influence of |𝑟X|����� on the chatter stability is more dominant than 𝑁, 
and these results are consistent with the simulation results shown in Fig. 6.  

Note that some results disagree between the experiments and the simulations, e.g., A in Fig. 12(c). 
One reason for these disagreements can be thought to occur due to the criteria of chatter occurrence in the 
experiments which is judged from the magnitude of the dynamic displacement. More specifically, the 
smaller the 𝑁, the smaller the length of the unstable section. Hence, the chatter growth is also smaller, and 
this should result in a relatively smaller maximum amplitude of dynamic displacement. Therefore, when 
the stability of the cutting experiment is judged by the same criteria of 𝑎EX� regardless of 𝑁, the results 
with a small 𝑁 are likely to be more stable than the results with a large 𝑁. 

Figure 13 shows an example of the experimental signals when chatter occurs which corresponds to 
C marked on Fig. 12(c). The cutting width is 2.5 mm, the nominal spindle speed 𝑛, is 1500 min-1, the 
variation period 𝑇  is 3.0 sec, and the variation amplitude ratio 𝑅𝑉𝐴  is 0.5. The signal from the 
accelerometer is short-time Fourier transformed to confirm the chatter frequency and the displacement 
amplitude at each moment. During the cutting, the growth of chatter is observed in the transitions from the 
acceleration to the deceleration (|𝑟X| is close to 0 %), and the chatter frequency changes in synchronization 
with the speed variation. More specifically, the chatter frequency decreases because of the negative 
acceleration rate. The chatter diminishes as	|𝑟X| increases, and the chatter does not grow in the transitions 
from deceleration to acceleration because |𝑟X| is large in the low speed. In order to verify the constant spatial 
frequency 𝑓6A  during chatter, the comparisons of  𝑓6A  at times 𝑡X , 𝑡� , and 𝑡A  marked on Fig. 13 are 
investigated by utilizing Eq. (6). The spindle speeds at times 𝑡X, 𝑡�, and 𝑡A are 2195 min-1, 2071 min-1, and 
1972 min-1, respectively, and the chatter frequencies at times 𝑡X, 𝑡�, and 𝑡A are 1540 Hz, 1465 Hz, and 1400 
Hz, respectively. The calculated spatial frequencies at times 𝑡X , 𝑡� , and 𝑡A  are 6.70, 6.76, and 6.78, 
respectively. From these results, it can be confirmed that the spatial frequencies at times 𝑡X, 𝑡�, and 𝑡A are 
nearly the same. Therefore, the phenomena of the chatter frequency fluctuation in proportion to the spindle 
speed, i.e., the chatter grows up at a constant spatial frequency in SSV, is also validated experimentally.  

 



 
Fig. 12. Results of cutting experiments and time-domain simulations in TSSV against stability indices |𝑟X|����� 

and 𝑁 under various cutting widths: (a) 2.0 mm, (b) 2.25 mm, (c) 2.5 mm, and (d) 3.0 mm. 



 
Fig. 13. Example of experimental signals of spindle speed and acceleration rate, corresponding 

vibration acceleration obtained from accelerometer, and short-time Fourier transform result of the 
vibration acceleration at unstable condition (C in Fig. 12) at 𝑎=2.5 mm, 𝑛,=1500 min-1, 𝑇=3.0 sec, and 

𝑅𝑉𝐴=0.5 in TSSV. 

5 Conclusion 
The chatter growth characteristics in SSV were revealed, and the suppression effect of SSV was 

newly explained focusing on the fluctuation of the time chatter frequency. Even when SSV is applied, the 
regenerative chatter can grow with a considerably flexible structure. It was found in this study that the 
regenerative chatter generally grows at a constant spatial frequency in SSV (the first chatter growth 
characteristic). Therefore, when chatter occurs, the time chatter frequency changes at the same ratio in 
which the spindle speed changes, meaning that the spatial frequency is kept constant, and it brings out 
change of the magnitude of the dynamic compliance. Due to the change of the magnitude, the chatter can 
be suppressed since the dynamic compliance usually reduces as the chatter frequency changes. It was found 
that the chatter is likely to grow during a period where 𝑟X  is small in SSV (the second chatter growth 
characteristic). 



Based on the reduction of the compliance, the average of the absolute acceleration rate in one period 
of SSV |𝑟X|����� and the number of revolutions in a unidirectional acceleration section 𝑁 were proposed as novel 
indices to evaluate the chatter stability in SSV, i.e. larger |𝑟X|����� and 𝑁 result in a larger compliance reduction.  

Through the analytical investigations with the time-domain simulation, it was proved that the 
revealed chatter growth characteristics are valid from the following facts: 
1) The time chatter frequency changes in proportion to speed variation, and the spatial frequency is kept 

constant.  
2) The chatter growth is confirmed during the period where 𝑟X is small. 

In addition, the relations between the stability and the proposed stability indices have been 
investigated, and the results are summarized as follows: 
1) When 𝑁 is equal, the higher the |𝑟X|�����, the higher the stability regardless of the variation period 𝑇 and the 
type of SSV. This denotes that |𝑟X|����� is an effective index for evaluating the stability in SSV. 
2) When |𝑟X|����� is equal, the stability is the largest at a certain 𝑁, i.e., an optimal value of 𝑁 exists. This is 
because a larger 𝑁 causes a larger dynamic compliance reduction, but on the other hand it makes sections 
with small |𝑟X| longer so that chatter grows there. 
3) When the values of |𝑟X|����� and 𝑁  are equal, the stability limits are almost identical regardless of the 
combination of SSV parameters, i.e., nominal spindle speed, variation period, and variation amplitude ratio. 
Hence, the stability limit can be estimated by utilizing the two proposed stability indices.  
4) As a comparison of SSSV and TSSV, it was confirmed that the stability limit in SSSV is always smaller 
than TSSV when |𝑟X|�����  and 𝑁  are equal. This is because |𝑟X|  near the transitions from acceleration to 
deceleration becomes smaller in SSSV. Furthermore, a greater stability is always achieved in TSSV than 
SSSV under equal variation amplitude ratio 𝑅𝑉𝐴 even though |𝑟X|����� and 𝑁 in TSSV are lower than those in 
SSSV.  
5) When 𝑅𝑉𝐴 and 𝑇 are equal, a greater stability can be achieved under lower nominal spindle speed since 
|𝑟X|����� increases. This indicates that the chatter suppression effect of TSSV and SSSV decreases in high-speed 
region, and thus remarkable improvement of machining efficiency cannot be realized unfortunately. 

A series of experiments were carried out to verify the validity of the revealed chatter growth 
characteristics in SSV and to confirm the effectiveness of the proposed stability indices. The results of the 
cutting experiments with TSSV were compared with the time-domain simulations. The experimental results 
showed that when 𝑁 is almost equal, the larger the |𝑟X|�����, the larger the stability. Furthermore, when |𝑟X|����� is 
higher than about 8 %, the chatter can be suppressed in all the conditions of 𝑁 even when the cutting width 
was set to 3.0 mm, i.e., about 6 times higher than the stability limit in CSS. These results indicate that |𝑟X|����� 
was experimentally verified as a valid stability index as it was verified in the analytical investigations, and 
it is important to set appropriate SSV parameters so that |𝑟X|����� is larger than the critical value which is 
required for the suppression of chatter throughout the cutting. On the other hand, when the values of |𝑟X|����� 
are almost equal, the stability does not always increase as 𝑁 increases. In addition, when |𝑟X|����� was smaller 
than about 2%, the chatter was not suppressed regardless of 𝑁 even at the smallest cutting width. From 
these results, it was observed that the influence of |𝑟X|�����  on the chatter stability is more dominant in 
comparison with 𝑁, and these results are consistent with the simulation results. The phenomena where the 
time chatter frequency changes at the same ratio in which the spindle speed changes, i.e., constant spatial 
frequency, was confirmed from the experimental signals. Finally, it was confirmed that the chatter grows 
during the periods where 𝑟X is small. Hence, these denote that the revealed chatter growth characteristics 
are true. 
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