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Abstract

Shells and spatial structures are adopted for construction of large span struc-
tures in which a large space is realized without columns as the structural compo-
nents.  In those cases, the structures are expected to resist against various design
loads mainly through their extremely strong capability which can be acquired through
in-plane or membrane stress resultants and this is just the reason by which they them-
selves stand for external loads without columns as their structural components in the
large span structures.

Up to this time, shells and spatial structures have been frequently adopted as a
structure which can realize large span constructions, where, however, purely geo-
metrical shapes like spheres, cylinders and their parts have been adopted as their
structural forms.  It can be said relatively easy to handle purely geometrical shapes
from the view-point of both structural analysis and construction design, where, how-
ever, we have to handle bending stress resultants which are inevitably accompanied
with especially in the vicinity of their supporting boundaries.  From the view point
as mentioned above about the mechanical characteristics of shell and spatial struc-
ture, it would be consistent if we could have those bending stresses rationally treated
not through cheap tricks like addition of shell thickness but some essential treat-
ments which are originated from the investigation of the forms themselves of the
structures.

In the present work, direct treatment method of stress distribution in shells and
spatial structures are shown, which enables us to obtain approximately bending free
structural forms.  Numerical calculation has been carried out for both axisymmetric
shells and spatial structures, where effectiveness of this method has been clearly
shown and mechanical characteristics of the obtained surface of both shells and spa-
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tial structures are discussed as well.  Finally, some feasibility studies adopting RC
shells as an example are also shown.

Keywords: shape optimization, sensitivity analysis, shell, space structure, space
frame, bending moment, nonlinear programing, sequential program-
ing method
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1 Introduction

Shells and spatial structures are adopted for construction of large span structures in which a
large space is realized without columns as the structural components.  In those cases, the structures
are expected to resist against various design loads mainly through their extremely strong capability
which can be acquired through in-plane or membrane stress resultants and this is just the reason by
which they themselves stand for external loads without columns as their structural components in
the large span structures.  It is the reason why some researchers call the mechanical system of such
structures “shape resistant structure”1).  Up to this time, shells and spatial structures have been
frequently adopted as a structure which can realize large span constructions, where, however, purely
geometrical shapes like spheres, cylinders and their parts have been adopted as their structural
forms2).  It can be said relatively easy to handle purely geometrical shapes from the view-point of
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both structural analysis and construction design, where, however, we have to handle bending stress
resultants which are inevitably accompanied with especially in the vicinity of their supporting
boundaries.  From the view point as mentioned above about the mechanical characteristics of shell
and spatial structure, it would be consistent if we could have those bending stresses rationally treated
not through cheap tricks like addition of shell thickness but some essential treatments which are
originated from the investigation of the forms themselves of the structures3,1).  The  previous work4)

has shown how to obtain the hanging forms which enables us to directly get bending-free struc-
tural forms under dead load due to arbitrary boundary conditions for shells and spatial structures,
where variational principle has been applied to the hanging membrane with some subsidiary con-
ditions as restraints with respect to the total surface area of the objective surface.  In the present
work, direct treatment method of stress distribution in shells and spatial structures are shown, which
enables us to obtain approximately bending free structural forms.  Numerical calculation has been
carried out for both axisymmetric shells and spatial structures, where effectiveness of this method
has been clearly shown and mechanical characteristics of the obtained surface of both shells and
spatial structures are discussed as well.  Finally, some feasibility studies adopting RC shells as an
example are also shown.

2 Theory

2.1 Objective Function

The objective function of the present problem can be shown by utilizing the least square
method as follows;

where Mi represents the component of the bending moment in the i-th direction and finite element
method is assumed to be used.  The integral should be taken through one element and the summa-
tion for all elements of the surface.  Minimization has to be carried out with respect to position
vector r of nodes of finite elements.  Furthermore, bending moment components in  Eq. 1 are
functions of nodal displacements d.  Consequently, the objective function J of the present problem
can be expressed as follows;

2.2 Finite Element Formulation for Axisymmetric Shells

Finite element for axisymmetric shell used in the present paper is the ordinary one as shown
in Fig. 1, where, as in the usual treatment, the first order algebraic functions are adopted for ex-
pression of the in-plane displacements and, on the other hand, the third order one is used for that of
the out-plane displacement.  In the present analysis, only symmetric components of displacements
with respect to θ = 0 are considered and homogeneously isotropic materials are assumed for the
shell.  Consequently, the objective function can be expressed as follows;

J = J ( r , d ( r)) (2)

J = dn
TΓn dnΣ

n
Σ
e

(3)

J = Mi
2 ds ( i = 1, 2, 3)

S
Σ
e

→ Min. (1)
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where

Fig. 1: Axisymmetric Finite Element (Conical Element)

and, Bn and D represent the strain-displacement matrix and the elastic matrix, respectively.  As, we
can see from the expression of Eq. 3, the present problem has been reduced to the minimization
problem of objective function J with respect to the position vector r which expresses the nodal
coordinates of shell elements.

2.3 Finite Element Formulation for Spatial Structures

Finite element for spatial structures used in the present paper is the ordinary three dimen-
sional beam element as shown in Fig. 2, where, as in the previous section for the axisymmetric
shell element, the first order algebraic functions are adopted for expression of the in-plane dis-
placements and, on the other hand, the third order one is used for that of the out-plane displace-
ment.  Assuming homogeneously isotropic materials, the objective function of the present problem
can be obtained as follows;

where

and, B and D represent the strain-displacement matrix and the elastic matrix, respectively.  Conse-
quently, as in the same manner in the previous section for the axisymmetric shells, the minimiza-

J = d TΓΣ
e

d (5)

Γ = BTDTDB dξ
0

1

(6)

Γ n = π Bn
TDT DBnr (ξ) dξ

0

1

(4)



5Shape Optimization of Shell and Spatial Structure for Specified Stress Distribution

tion problem with respect to position vector r of the nodes of finite elements has been obtained.

2.4 Introduction of Constraint Conditions

It has been experienced through our previous researches5,6,7) that introduction of some con-
straint conditions into the nonlinear programming problem efficie tly works because it can make
narrow the searching space of the problem.  For the present problem, following restraint condi-
tions are introduced for each problem, respectively.

Fig. 2: Beam Finite Element

Eq. 7 is set for axisymmetric shells  and Eq. 8 for spatial structures, where S0 and L0 represent
specified values for total surface area of the shell and total length of the structural element of the
spatial structure, respectively.

3 Numerical Analysis of Shape Optimization of Shells

Numerical examples of shape optimization for axisymmetric shells are presented in this sec-
tion, where dome shells subjected to both snow and wind loads, respectively, besides dead load are
dealt with as design loads.

J = Σ
e

Mi
2ds

S
→ Min. (7)

Subject to S = S0

J = Σ
e

Mi
2dL

L
→ Min. (8)

Subject to L = L0
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3.1 Dome under Dead Load

As the first numerical example for shape optimization of shells, results for a dome shell sub-
jected to its dead load are shown in this section.  Fundamental data used in numerical analysis are
as shown in Table 1.  As the initial shape, a spherical shell is adopted, of which diameter is 30 m
and surface area 800 m2, where the initial value of surface area of the sphere is used as the restraint
condition for nonlinear programming problem.  As boundary conditions, three types are consid-
ered, that is, an inclined roller, a fixed and a pinned supporting condition, respectively.

Figs. 3a through 3d show the results for the inclined roller supporting condition, Figs. 4a
through 4d for the fixed one and Figs. 5a through 5d for the pinned supporting condition, where
the restraint conditions of the surface area given from the initial spherical shell are imposed.  In
each figure of Figs. 3a through 5d, Figs. a, b, c and d show the shape of shell section along the
longitudinal line, the membrane stress distribution, the bending stress distribution and the displace-
ment in the out-plane direction in the vicinity of the boundary, respectively, comparing the results
of the initial shape with those of the finally obtained shape.  Occurrence of the bending stress is
clearly shown to be suppressed in the case of the dome with the inclined roller supporting condi-
tion.  Comparison of the displacement modes between those of the initial shape and of the finally
obtained shape tells us the mechanism of reduction of the bending moment in the vicinity of the
boundary, where we can find final shape for each case of boundary condition.  On the other hand,
it can be observed that the bending moment stresses initially occurred in the vicinity of the bound-
aries are averagely suppressed and, although the amount is not so large, there can be seen the pres-
ence of the bending stresses in some parts where no bending stress existed initially, as if the excess
amount of the bending stress were re-distributed.  This should be explained as the result of the
usage of the least square method as an minimization technique.

3.2 Dome under Several Design Loads

3.2.1 Snow Load

In present section, the results of shape analysis of axisymmetric shell subjected to snow load
besides self weight are shown.  The snow load is assumed to be as shown in Fig. 6, where two
loading cases are considered, that is, homogeneously full loading (Case A) and eccentrically par-
tial one (Case B), respectively.  The fundamental data used in numerical analysis are as shown in
Table 2.  The initial data for the nonlinear analysis are taken from those of the spherical shell as
same as those of the previous section.  Fixed boundary condition is adopted.  Numerical results for
the present analysis are shown in Figs. 7 through 9, where Figs. a, b and c show the shape of the
shell section along longitudinal line, the stress distribution for the loading case A and that for the
case B, respectively.  Because there is not so big difference between the load of dead and snow
loading fully acted,  Fig. 8 shows the similar results as those shown in Fig. 4b through Fig. 4c.  On
the other hand, a relatively large change in bending moment can be seen in Fig. 9 for partial load-

Table 1: Parameters adopted for Dome Analysis subjected to Dead Load

Number of Node 41 Young’s Modulus  2.1 × 106 tf/m2

Number of Element 40 Poisson’s Ratio 0.17

Degree of Freedome 40 (z-free) Weight Density 2.4 t/m3

Span 30 m Shell Thickness  0.1 m
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Fig. 3: Results of Shape Analysis (Dead Load, Inclined Roller Support)

ing case and, nevertheless, the bending stress distribution seen in the vicinity around the edge of
the loading area in the shell of the initial shape can be understood to be suppressed up to a certain
amount in the final shape.

3.2.2 Wind Load

This section represents the numerical results where wind loadings are subjected to
axisymmetric shells besides dead load as the external loadings.  Fundamental data used for nu-
merical analysis are as shown in Table 3 and the initial shape is taken from the spherical shell as up
to the previous analyses, that is, 30 m for diameter and 800 m2 for constraint value of surface area
of the shell.  Wind load adopted in the present analysis is as described as follows;

where

w = c q (9)

c = –1.4 + ( 0.9 + 0.6 cos θ + 0.9 cos 2θ ) cos ϕ (10)
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and,  w,  q and c represent a wind pressure, a wind velocity and a coefficient of wind load, respec-
tively.  Fig. 10 shows spatial distribution of the wind load.  Numerical results of the present analy-
sis are shown in Figs. 11 through 14, where each figure shows the shape of the shell section along
the longitudinal line, the bending moment in the longitudinal direction, the bending moment in the
meridional direction and the twisting moment, respectively, together with comparison of those re-
sults between initial and final shapes.  At this point, we have to pay attention to the fact that the
present analysis is performed by taking only 0-th order of Fourier expansion in the circumstance
direction for expression of the shell shape itself while the response analysis is carried out by taking
up to the specified number of Fourier expansion in the circumstance direction as well as 0-th order
of Fourier expansion component.  As it can be seen from the expression of Eq. 9, external loads are
subjected to the shell being expanded in such manner that it includes anti-axisymmetric compo-
nents having wave numbers in the circumstance direction more than 0 as well as axisymmetric
one.  As a result, although it is natural that various responses, that is, stresses and displacements
respond anti-axisymmetrically, the shape search itself is nevertheless done within the limited space
where only axisymmetric change is allowed.  In another word, it can be said that the present shape
analysis of the asymmetric shell is carried out under the restraint condition by which only 0-th
order component is allowed to occur and the occurrence of the other components are suppressed in
expression of the shape of the shell.  Taking into account that the direction to the shell of the wind

Fig. 4: Results of Shape Analysis (Dead Load, Fixed Support)
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load is indefinite, it is rather natural to assume the change of the shell to be in such a way that
expression of the shape of the shell includes only 0-th order of Fourier expansion component.  Figs.
11 through 14b show the numerical results where the wind load including the anti-axisymmetric
components is subjected to the axisymmetric shell besides the dead load.  It can be clearly said

Fig. 5: Results of Shape Analysis (Dead Load, Pinned Support)

Fig. 6: Snow Load
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Fig. 7: Sectional Shape along the Longitudinal Line (Snw Load + Dead Load, Fixed Support)

Fig. 8: Stress Distributions for Loading Case A

Table 2: Parameters adopted for Dome Analysis subjected to Snow Load

Number of Node 41 Young’s Modulus  2.1 × 106 tf/m2

Number of Element 40 Poisson’s Ratio 0.17

Degree of Freedome 40 (z-free) Weight Density 2.4 t/m3

Span 30 m Snow Load  40 kg/m2

Shell Thickness 0.1 m
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Fig. 9: Stress Distributions for Loading Case B

Fig. 10: Wind Load

Table 3: Parameters adopted for Dome Analysis subjected to Wind Load

Number of Node 41 Young’s Modulus  2.1 × 106 tf/m2

Number of Element 40 Poisson’s Ratio 0.17

Degree of Freedome 40 (z-free) Weight Density 2.4 t/m3

Span 30 m Velocity Pressure  56.3 kg/m2

Shell Thickness 0.1 m
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Fig. 11: Sectional Shape along the Longitudinal Line (Wind Load + Dead Load, Fixed Support)

Fig. 12: Bending Moment Distribution in the Longitudinal Direction (Wind Load + Dead Load, Fixed Sup-
port)

Fig. 13: Bending Moment Distribution in the Meridional Direction (Wind Load + Dead Load, Fixed Support)
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that the bending moment occurred at the initial shape is apparently vanished in the final shape of
the shell.

4 Numerical Analysis of Shape Optimization of Spatial Structures

In this section, numerical examples for spatial structures are presented, where both a grid shell
having rectangular plan and a lattice shell having circular plan are dealt with under action of self-
weight as design loads.

4.1 Grid Shell

Fig. 15 shows the plan of the grid shell which is dealt with as the first numerical example of
the shape optimization of space frames, where the initial shape z = f (x,y) of the structure is given
by the following equation.

Fig. 14: Twisting Moment Distribution (Wind Load + Dead Load, Fixed Support)

Numerical analysis is performed for a quarter part of the structure considering the symmetricity
of the plan itself, which is subjected to dead load.  For the boundary condition of the grid shell,
both pinned and fixed conditions are dealt with.  Detailed parameters which are used in the nu-
merical analysis are as shown in Table 4 and the total length (221.01 m) of the structural elements
of the initial structure is used as a constraint condition for the nonlinear programming analysis.

Figs. 16 through 18 show the numerical results of the grid shell which has the fixed boundary,
where the shape of the shell, the axial force and the bending moment distributions are depicted,
respectively.  Figs. 19 through 21 show the same results for the shell supported by pinned end.
From Fig. 16 for fixed end and Fig. 19 for pinned one, we can observe that the comparatively large
changing in their shapes can be seen especially in the vicinity of the boundaries accompanied with
change of curvature of the curved surface of the grid shell.  As the results,  the bending moment
distribution observed around the same region of the shell in the initial stage can be seen to be
largely reduced in the final shape.  Additionally, it has to be emphasized that geometrical changes
between the initial and the final shells can be seen not only in their shape of the curved surface but

z = h (x 2 – a2 ) ( y 2 – b2) (11)
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also in their grid arrangements themselves and it can be dominantly observed especially in the
case of the shell supported by pin ends compared to that of fixed ends.

4.2 Lattice Dome

As the second numerical example of spatial frames, lattice dome subjected to its self-weight
is adopted in this subsection, of which plan is as shown in Fig. 22.  Numerical data used in the
present analysis is as shown in Table 5.  A spherical lattice dome with a diameter of 15 m is adopted
as the initial shape and numerical analyses are carried out for the half part of the dome as shown in
Fig. 22 by gray area.  Fixed boundary condition is adopted and the total length of elements in the
initial stage, 298.55 m, is used as the restraint condition for numerical analysis.

Fig. 23 through 25 show the shape change, the axial force distribution and the bending mo-
ment map, respectively, where the initial data is depicted by “a” while the final ones are shown by
“b”.  Fig. 23 shows that the initial shape of the dome changes into the final one with a larger rise
compared to that of the original shape and, additionally, the arrangement of the grid itself changes
largely as well, where grid pattern used in the initial stage just for convenience in the finite ele-
ment meshing has changed into the pattern in which several plane arch frames are regularly ar-

Fig. 15: Plan of Grid Shell

Table  4: Parameters adopted for Grid Shell Analysis

Number of Node 49 Young’s Modulus  2.1 × 107 tf/m2

Number of Element 84 Sectional Area of Beam 0.01 m2

Degree of Freedome 96 (xyz-free) Moment of Inertia of Beam 0.00005 m4

Span 30 m Poisson’s Ratio  0.3

Total of Element Length 221.01 m Weight Density 7.85 t/m3
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Fig. 16: Shape of Grid Shell (Fixed Support)
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ranged with an arranging angle of 60 degrees in their plan.  Consequently, the bending moment
distribution which can be observed to occur in almost area is shown to be apparently reduced with
the change in the shape of the structure.  From the present results, it is shown that the change in the
grid arrangement pattern itself can largely affect the bending moment distribution besides the shape
of the structure itself as observed in the previous example of the grid shell.  This fact for the spatial
structure should be emphasized for the characteristics which can not be observed in the shell which
is a continuous elastic body.

Fig. 17: Axial Force (Fixed Support)

Fig. 18: Bending Moment (Fixed Support)
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Fig. 19: Shape of Grid Shell (Pinned Support)
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Fig. 20: Axial Force (Pinned Support)

Fig. 21: Bending Moment (Pinned Support)

Table  5: Parameters adopted for Lattice Shell Analysis

Number of Node 51 Young’s Modulus  2.1 × 107 tf/m2

Number of Element 125 Sectional Area of Beam 0.01 m2

Degree of Freedome 96 (xyz-free) Moment of Inertia of Beam 0.00005 m4

Span 30 m Poisson’s Ratio  0.3

Total of Element Length 298.55 m Weight Density 7.85 t/m3
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4.3 Investigations of Numerical Results

The possibilities of reducing the bending moments in large span structures are clearly shown
through the numerical analyses by finite element analysis for axisymmetric shell and spatial struc-
tures by controlling their  shapes themselves, where the least square technique is utilized as the
minimization method.  From the results derived for the axisymmetric shell which is supported by
the inclined roller end, most of bending moment can be observed to be suppressed to appear by
controlling the shape of the shell.  It can be referred as an origin when we consider the mechanism
of occurrence of bending moment in shells or shell-like structures, while the supporting condition
is not realistic.  Additionally, it is shown that bending moment can be suppressed up to a certain
amount even in the other boundary conditions, that is, pinned and fixed boundaries, where it should
be pointed out that the bending moment observed around the boundaries in the initial shape can be
suppressed up to a certain amount in compensation for the fact that small amount of bending mo-
ment can be seen in the part of shell which was “membrane area”, that is, almost no bending mo-
ment was observed at their initial situation as if they were scattered over whole surface of the shell.
Moreover, it is also important to indicate that suppressing the bending moment can be done even
in the case in which the bending moment distribution changes largely because of the discontinuous
change of the external load as has been shown in Fig. 9 where snow load is partially subjected on
the shell.  The same investigation can be shown for the results of the spatial structures as for the
shells.  However, it should be pointed out especially for the spatial structures that they can recon-
struct their resistance form against external design load not only by changing their shapes them-
selves but also by changing the grid pattern which the spatial structures are composed of.   This
can be said to be characteristics of spatial structures which are essentially composed of only bar
elements and, at the same time, this is the point which shows the difference between continuous

Fig. 22: Plan of Lattice Dome
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Fig. 23: Shape of Lattice Dome



21Shape Optimization of Shell and Spatial Structure for Specified Stress Distribution

shells and discontinuous spatial structures.

Fig. 24: Axial Force of Lattice Dome

Fig. 25: Bending Moment of Lattice Dome
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5 Effects of Other Parameters

5.1 Shell Thickness

Through the present numerical analyses, we experienced some difficulties in finding the solu-
tion which corresponds to the case in which thickness of shells are extremely small, where the
bending moment distribution can be seen especially in the region very near the boundaries and
their amount is naturally very small.  As the results, the sensitivity of the change of bending mo-
ment to the nodal displacement which originates the change of the form of the shell comes to be
very small and this is the reason why numerical analysis for this case does not work well.  Fig. 26
shows the sensitivity values numerically for the case of the shells of which thickness are 10 cm
and 5 cm, respectively.  Fig. 27 shows the comparison between the final shapes of the shells for the
thicknesses of 10 cm  and 30 cm, respectively, where no definite difference can be observed.  As
we can figure out from these results, it can be confirmed that the present shape analysis for the
shell with thin shell-thickness can be replaced by that of the shell with larger shell-thickness in the
sense of pursuing the moment-free shape.  Although the effect of shell-thickness is ignored in the
present analysis, it should be taken into account for the more realistic shape analysis.

5.2 Sensitivity with respect to Nodal Coordinates

Sensitivity analysis of bending moment with respect to the nodal coordinate which originates
the shape of the axisymmetric shells is carried out to confirm the results obtained in the previous
discussions, where relatively large changes in the bending moment distribution are observed in
stead of small changes in shape of the shells.  Sensitivity of the bending stress resultants can be
expressed as follows either for the case where the node of interest belongs to the element of which
bending moment is under consideration or for the case where the element does not have the node

Fig. 26: Comparison of Sensitivity of Different Shell-Thickness
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as that of itself;
for the case where the node is one of those of the element:

Fig. 27: Effect of Shell-Thickness to Final Shape

for the case where the node is not one of those of the element:

Fig. 29 shows the sensitivity of the bending moment in the longitudinal direction with respect
to the nodal displacement in the vertical direction for the spherical shell which was used as the
initial shape in section 4.  The value of the sensitivity in the figure is that in the middle point of
each element, where each node is arranged with an equal distance each other, the nodes are num-
bered in ascendant order from the central axis of revolution and the sensitivities are shown for the
number 1, 10, 20, 30 and 40, respectively.  From this figure, we can observe that large sensitivities
are seen in the elements adjacent to the node of interest and the sensitivity with a different sign can
be observed in the elements next to those.  Additionally, almost no sensitivity can be observed in
those elements which are far from the node under observation.  The value of the sensitivity is about
1.0 tf · m/m2, which means the change in the bending moment will be about 0.001 tf · m/m  for 1
mm  of displacement of the node in the vertical direction.  Fig. 30 shows the result of stress analy-
sis of the spherical shell in which the node of number 10 is actually displaced by 1 mm  in the
vertical direction.  Fig. 31 shows the sensitivity for the shell with the shape obtained as the final
one through the shape analysis in the same way as the previous one for the spherical shell, where

∂σ
∂r

= D (∂B
∂r

d + B ∂d
∂r

) (12)

∂σ
∂r

= DB ∂d
∂r

(13)
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each figure corresponds to the result for fixed, pinned and inclined roller supporting condition,
respectively.  As seen in the previous result for the spherical shell, almost the same sensitivity as
the spherical shell can be observed for each shell.  Consequently, we can conclude from the sensi-
tivity analysis in the present section that the sensitivity of the nodal displacement to the bending
moment is relatively large, which is, however, restricted in the adjacent elements to the node, and
the curved surface of shells should be made curved correctly and smoothly so that  shells act against
the external loads in the way expected to them, in another word, as “shape resistant structure”.

Fig. 28: Model for Sensitivity Analysis

Fig. 29: Sensitivity of Mæ  with respect to Specified Nodal Displacement
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6 Feasibility Study for Original Surface of Design

Stress analysis of RC shells under dead load are carried out so that we can confirm the effi-
ciency of the shape analysis as has been shown up to here in the actual shell design.  The numeri-
cal results are shown for the RC shell of which shell-thickness are 5 cm with single layer rein-
forcements and 12 cm with double layer ones, respectively.  Naturally, shells are highly indetermi-
nate structures and, as the results, the shapes resulted from those with different shell-thickness can
be different.  The differences between them, however, can be expected to be not so large ones as
already shown by the observations in the previous section.  The shapes of RC shells adopted in the
present section as examples are both the spherical shell and that obtained through the previous
shape analysis, both of which are supported by fixed end, and the shells with three different values
of surface area are dealt with, that is, model-A of 750 m2, model-B of 800 m2 and model-C of 850
m2, respectively.  Additionally, comparison to confirm the effect of the scale is done for the shells
with different maximum span, that is, 30 m, 60 m, 90 m and 120 m, respectively, while the shell-
thickness are fixed as both 5 cm  and 12 cm  for all shells investigated in this section.  The shapes
of the shells adopted here are shown in Fig. 32 in their elevations, where the initial shapes are
depicted together with the final shape of the numerical results for each model.

6.1 Fiber Stresses

Tables 6 through 11 show the stress values, where tables are composed of in such a way that
the column corresponds to whether the place investigated is near the apex or the boundary with a
discrimination of the membrane stress and the bending fiber stress and the row shows whether the
shell is the initial spherical one or the final shape one with the different values of the span of four
kinds.  In the table,  for the stresses near the apex, those of the element which is the second one

Fig. 30: Effect of Enforced Nodal Displacement on Mæ
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Fig. 31: Sensitivities of Mæ  in Bending-Free Shells with respect to Specified Nodal
Displacement for Each Boundary Conditions
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from the central axis of revolution are shown and, for those of near the boundary, the values in the
middle point of the element which is adjacent to the boundary are depicted.  As the material con-
stants, 2.1 × 106 tf/m2 for Young’s Modulus, 0.17 for Poisson’s ratio and 2.4 t/m3 for density are
adopted for the numerical analysis.  For the shells with larger rise/span ratio, less bending distribu-
tion near the boundary can be observed and, for those with less ratio of rise/span, that is, shallower
shells, large distribution of bending moments occur near the boundary while they can be observed
to mostly vanish for the corresponding shells with final shapes.  Consequently, no tension stress
occurs in the shells with the final shapes of the numerical results as long as they are subjected to
their own weight loading and tendency of this phenomenon is more likely in the shell with larger
thickness.  It is, however, natural that all kinds of the other design loads should be considered
besides the dead load and then some regards should be taken care of on to the occurrence of ten-
sion stress in the actual design stage.  Consequently, the shapes shown in the present results for the
shell with no tension stress resultants under dead load are those which should be considered as the
shells with an original surface of design around which the actual surfaces of the shells are brain-
stormed.

6.2 Displacements

It is important to check the amount of the displacement of the structures discussed here in
order to make sure that the shape analysis for the structures with bending free condition has a
certain meaning from the view point of actual design.  In Fig. 33, numerical results of displace-
ments of the axisymmetric RC shells subjected to the dead load under fixed end supporting condi-
tion are depicted, where those with both the initial shape and the final one are separately shown.

Fig. 32: Elevations of Shells adopted for Feasibility Study
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Table  6: Stresses in RC Shell of Model-A (5 cm thickness)

Model-A (t = 5 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –3.867 –0.022 –3.978 3.437

60.0 –7.736 –0.041 –8.036 6.081

90.0 –11.607 –0.084 –12.103 8.383

120.0 –15.478 –0.157 –16.175 10.442

Final Shape 30.0 –5.210 –0.145 –3.723 0.268

60.0 –10.421 –0.216 –7.448 0.337

90.0 –15.631 –0.332 –11.173 0.430

120.0 –20.842 –0.490 –14.898 0.541

Table  7: Stresses in RC Shell of Model-B (5 cm thickness)

Model-B (t = 5 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –2.808 –0.021 –3.141 1.233

60.0 –5.618 –0.044 –6.302 1.995

90.0 –8.429 –0.096 –9.465 2.608

120.0 –11.239 –0.182 –12.629 3.123

Final Shape 30.0 –3.511 –0.079 –3.012 0.107

60.0 –7.023 –0.140 –6.024 0.115

90.0 –10.535 –0.261 –9.036 0.125

120.0 –14.047 –0.410 –12.049 0.135

Table  8: Stresses in RC Shell of Model-C (5 cm thickness)

Model-C (t = 5 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –2.407 –0.022 –2.884 0.185

60.0 –4.816 –0.047 –5.770 0.143

90.0 –7.225 –0.103 –8.654 0.090

120.0 –9.634 –0.193 –11.539 0.038

Final Shape 30.0 –2.804 –0.059 –2.830 0.064

60.0 –5.607 –0.128 –5.660 0.066

90.0 –8.412 –0.236 –8.490 0.068

120.0 –11.217 –0.378 –11.321 0.069
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Table  10: Stresses in RC Shell of Model-B (12 cm thickness)

Model-B (t = 12 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –2.807 –0.040 –3.117 1.583

60.0 –5.615 –0.047 –6.274 2.599

90.0 –8.425 –0.060 –9.434 3.463

120.0 –11.235 –0.082 –12.595 4.229

Final Shape 30.0 –3.510 –0.142 –3.011 0.249

60.0 –7.022 –0.172 –6.024 0.254

90.0 –10.534 –0.222 –9.036 0.261

120.0 –14.046 –0.290 –12.048 0.269

Table  11: Stresses in RC Shell of Model-C (12 cm thickness)

Model-C (t = 12 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –2.406 –0.040 –2.880 0.425

60.0 –4.814 –0.047 –5.767 0.450

90.0 –7.222 –0.061 –8.653 0.426

120.0 –9.631 –0.085 –11.539 0.383

Final Shape 30.0 –2.803 –0.095 –2.830 0.152

60.0 –5.607 –0.125 –5.660 0.154

90.0 –8.411 –0.174 –8.490 0.155

120.0 –11.215 –0.241 –11.320 0.157

Table  9: Stresses in RC Shell of Model-A (12 cm thickness)

Model-A (t = 12 cm) Vicinity of Apex Boundary

Membrane Stress Bending Stress Membrane Stress Bending Stress
span (m) kgf/cm2 kgf/cm2 kgf/cm2 kgf/cm2

Sphere 30.0 –3.866 –0.041 –3.898 3.942

60.0 –7.733 –0.048 –7.930 7.080

90.0 –11.601 –0.059 –11.979 9.935

120.0 –15.471 –0.077 –16.036 12.589

Final Shape 30.0 –5.205 –0.300 –3.719 0.583

60.0 –10.419 –0.330 –7.445 0.625

90.0 –15.630 –0.380 –11.170 0.678

120.0 –20.841 –0.449 –14.895 0.745
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The amount of the displacements for both shells can be seen to be very small and, as the conse-
quence, difference in the scale between the initial shape  and the final one of the shell is shown
much larger than the amount of the displacements of those shells, which imply the final shape is
another one as the shape of the shell and can be adopted independently as the shape of the actual
shells.  Additionally, larger displacements can be observed and smaller changing ratio in the curva-
ture can be seen in the shell with the final shape than that with the initial spherical shell.  On the
latter matter of the curvature, the shells with the final shape is shown to resist against dead load
without large change of the curvature in the vicinity of boundary and it is the reason why those
shells with the final shape can resist without bending moment.

7 Conclusion

Theoretical method for pursuing bending-free curved surface which can be used for construct-
ing shells and spatial structures is proposed and numerical results through finite element method
are shown to demonstrate the efficiency of the theory, where both axisymmetric shells and spatial
structures are adopted as numerical examples.  Additionally, some investigations concerned with
sensitivity of the change of the nodal displacement for the bending moment distribution and feasi-
bility study toward realization of the bending-free curved surface of RC shells are carried out.
Following points can be summarized as a conclusion from the present paper.

1. Shape analysis based upon sensitivity analysis is effective enough to obtain the bending-
free curved surface which can be adopted as an original curved surface for shells and spa-
tial structures,

2. bending moments of shells and spatial structures which are originated from definite static
external loads as dead load or carrying loads can be effectively suppressed by very small
but effective changes of the shape of the structures,

Fig. 33: Displacements under Dead Load
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3. even for the partial loading with eccentricity, ability of the minimization technique for the
bending moment is still potent, where only small change of the shape of the structures can
realize the bending-free curved surface,

4. in the discrete structures like spatial structures which are composed of linear bars, spatial
arrangement of the frames largely contributes to the bending moment distribution as well
as the shape itself of the structure.

Additionally, we have shown high sensitiveness of the nodal displacement on the bending
moment distribution and this numerical result implies that it is very important to accurately con-
struct the shape of shells or spatial structures in order to realize the stress field as is expected in the
design stage preceding the actual construction.  All of the shapes of shells and spatial structures
discussed in this paper are clearly some special ones and, however, the theoretical scheme pre-
sented herein can be a general one which has ability to be adopted for the general shape of the
structures without any difficulties.  Moreover, possibilities for obtaining continuous curved surface
by which shells or spatial structures can resist against design loads within specified level of speci-
fied stress resultants will be able to shown in the same way presented in this paper.  These re-
searches are those which should be done in the future work.
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