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Abstract

The aim of this work is to describe the influence of nonuniform flow on
laminar flames. A simple steady flow analysis is presented in which gas density and
molecular transport coefficients are assumed constant and a global reaction rate
expression is employed in the high activation energy asymptotic limit. Considerable
further simplification is achieved by a priori specification of a function related to the
mass flow rate normal to the flame. The analysis allows the influence of flame
curvature and strain on the mass burning rate to be clearly identified. It is shown
that, except in the weak stretch limit, the relationship between mass burning rate
and flame stretch is dependent on flame geometry. Conversely the mass burning rate
is uniquely related to the temperature gradient at the reaction surface irrespective of
flame geometry.
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1. Introduction

The propagation of laminar flames in nonuniform flows has been studied for many years both
because of the intrinsic importance of the subject and in view of applications to laminar flamelet
models of turbulent combustion (Peters 1986, Bray and Peters 1994). Reviews of the extensive
literature on laminar flames may be found in Buckmaster and Ludford (1982), Williams (1985),
Clavin (1985), Law (1988) and Linan and Williams (1993).
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Activation energy asymptotic analysis (AEA: Buckmaster and Ludford 1982, Williams 1985,
Calvin 1985, Linan and Williams 1993, Matalon and Matkowsky 1982) is based on the observa-
tion that the activation energy of a global combustion reaction is typically large in comparison
with thermal energy. It has proved to be both a powerful analytical tool and an aid to understand-
ing of the interactions between flame propagation and nonuniform flow. In AEA the flame consists
of a relatively thick preheat zone, in which convective and diffusive processes are in balance,
followed by a thin layer where heat release occurs, and where a diffusive – reactive balance exists.
To match the solutions for these two zones for adiabatic flames, the rate of heat release in the thin
reaction layer is equated to the rate at which heat is lost by conduction to the preheat zone.
Consequently the heat release rate is uniquely related to the temperature gradient at the hot side of
the preheat zone. This perspective remains valid when time-dependent curvature and strain are
considered (Joulin 1994).

A more detailed analysis of the structure of a methane-air flame (Peters and Williams 1987)
makes use of a three-step reduced reaction mechanism. The thin reaction layer of AEA is replaced
by a fuel consumption layer followed by an oxidation layer, but both layers are thin in comparison
with the preheat zone. As before the temperature gradient at the edge of the preheat zone is related
to the heat release rate due to combustion.

Application of AEA to weakly disturbed flow fields with large characteristic length scales in
comparison with the thickness of the preheat zone (Sivashinsky 1977, Clavin and Williams 1982,
Clavin and Joulin 1983, Clavin 1985), forms the basis of many studies of flame dynamics. An
important result of these perturbation analyses is to predict a linear relationship between the
laminar flame speed Sd and the flame stretch

1
τ s

= 1
∆A

d ∆A
dt

= (∇ t • v)x * – Sd / R*

(Chung and Law 1984, Candel and Poinsot 1990) where ∆A is the area of an element of flame
surface, ∇ t is the component of the ∇  operator which is tangential to the flame and 1/R* = ∇ t •  n is
the flame curvature at x = x*, where x* is the position of the thin reaction zone, n being a unit
vector directed towards reaction products. This linear relationship between Sd and the burning
velocity Su of the unstretched flame is predicted to be

Sd

Su
= 1 – µK

where K = δ
Su

1
∆A

d
dt

∆A is a dimensionless flame stretch factor and δ is the flame thickness. The

Markstein number µ is a measure of flame sensitivity to stretch and can be expressed as a function
of Lewis number and other properties (Clavin 1985). According to this small perturbation analysis
K is the single parameter, which describes the influence of both strain and curvature on flame
propagation in a given mixture so long as K << 1. If the flame is stationary, as is assumed here, the
velocity vector v can be decomposed into a normal component Sdn and a tangential component vt.
The curvature term in the equation defining the flame stretch then cancels with

∇ t • (Sd n)

and the stretch relationship reduces (Poinsot et al. 1992) to

1
τ s

= 1
∆A

d ∆A
dt

= (∇ t • v)x * – Sd / R* = (∇ t • vt)x *

where Sd is the local burning velocity at x = x*, and R* is the curvature of the reaction sheet.
Analysis by AEA of nonlinear problems in which K is not small is usually confined to



3A Simple Analysis of the Influence of Strain and Curvature on Laminar Premixed Flames

particular flame geometries such as a counterflow flame (Libby and Williams 1982, 1983, 1984,
1988, Libby et al. 1983b) or a tubular or cylindrical flame (Takeno et al. 1986a, 1986b, Libby et
al. 1989). Sudden extinction is predicted in some situations but not in others so the K can no
longer be regarded as the single parameter to describe the influence of flow nonuniformity. These
solutions depend on geometry as well as stretch as do predictions from the integral analysis of
Chung and Law (1988, 1989). Similar behavior may be found in numerical solutions (see for
example Peters and Rogg 1993, Bradley et al. 1996).

For turbulent combustion Poinsot et al (1991) identify an extended range of flamelet burning
conditions under which the turbulence intensity is insufficient to cause local extinction. However,
in part of this range, small turbulent eddies can influence the preheat zone structure and experi-
ments (Chen et al. 1996, Buschmann et al. 1996, O’Young and Bilger, 1997) indicate a thickening
of the preheat zone. A laminar flamelet model of turbulent combustion must describe the effects of
the local flow field on the local mass burning rate of the flamelet, and must do so in terms of
predictable quantities. Direct numerical simulations of turbulent combustion (Poinsot et al. 1995)
show that this mass burning rate cannot be well correlated with tangential strain, curvature or
stretch.

The present paper describes a simple theoretical model of a laminar flame in a nonuniform
flow field. Its aim is to derive algebraic expressions for the flame structure and mass burning rate
in a sufficiently simple form so that the influence of strain and curvature can be identified and
understood. In pursuit of these aims the following drastic simplifying assumptions are introduced.
The flow is taken to be two-dimensional and steady and the problem is reduced to one dimension
by a priori specification of the variation with distance x normal to the flame of a mass flow
function M(x). Density and molecular diffusivities are assumed constant. A global chemical
reaction is specified and a conventional AEA analysis is performed on the assumption that
conditions leading to extinction are avoided. The resulting model is considered to be appropriate
for a qualitative description of the effects of nonuniform flow on the flame.

The development of the model is described in Section 2. Simple algebraic expressions are
derived for the temperature and composition distributions as well as the mass burning rate which is
shown to be uniquely related to the temperature gradient at the hot edge of the preheat zone. In
Section 3 the analysis is applied to flows in which the mass flow function M(x) is specified to be
constant allowing the effects of flame curvature to be studied in the absence of strain. Examples of
flows in which M(x) is not constant are analyzed in Section 4 and qualitative differences between
the behavior of planar and cylindrical strained flames are identified and explained. Finally in
Section 5 these results are expressed in terms of the stretch parameter K. It is clearly demonstrated
that conventional measure of flame strength depend not only on K and the Lewis number but also
on the flow geometry as expressed in the mass flow function M(x). However, established results
are recovered in the limit of weak stretch where K and the Lewis number do describe all effects of
strain and curvature.

We conclude that in general the effects of strain and curvature are dependent on geometry. On
the other hand the relationship between the mass burning rate and the temperature gradient at the
hot side of the preheat zone is robust and independent of flame geometry.

2. Analytical Model

The analysis is based on the assumption that the flame consists of a thick diffusion layer, or
preheat zone, and a thin reaction zone in which the reaction goes to completion. The flame and the
flow are steady and the gas density is assumed to be constant and unaffected by the combustion
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reaction. We assume that the flame can be described in terms of similarity solutions, and that the
flame is one-dimensional, either plane ( j = 0) or cylindrical ( j = 1), while the flow is two-
dimensional (Takeno et al. 1986a, 1986b, 1993, Nishioka et al. 1988, 1991, 1994). Then the flame
structure can be described in terms of a single space coordinate x normal to the flame. The
temperature, T, the mass fraction Yi of species i and the velocity component, u, normal to the flame
depend only on x, so T = T(x), Yi = Yi(x), u = u(x). The pressure is assumed to be constant. In the
present analysis we are concerned only with possible nonuniformities of the mass flux normal to
the flame. The flow field is a function of x and y, the coordinate normal to x, and we do not solve
the momentum equation. Instead, we assume that the mass flux m normal to the flame is given as a
function of x. In some cases a hypothetical mass source or sink must be placed at x = xmin to
produce the given flow field. The velocity component v parallel to the flame is determined so as to
satisfy mass conservation. The Soret and Dufort effects, as well as pressure diffusion, are ne-
glected. The specific heat cp and thermal conductivity λ of the mixture are constant. The diffusion
velocity vector Vi is given by the simple Fick’s law expression.

YiVi = –D∇ Yi (1)

where the diffusion coefficient D is assumed to have the same constant value for all species i. The
mixture undergoes an overall one-step reaction described by

vF F + voxO + vII = vPP + vII (2)

where F, OX and I refer to fuel, oxygen and inert, respectively. The reaction order is unity with
respect to both fuel and oxygen.

The governing equations are the species conservation equations and the energy equation. In
general form, they are

∇ • [ρYi(v + Vi)] = wi (3)

∇ • [ρΣ
i

h i Y i (v + Vi) – λ ∇ T ] = 0 (4)

where ρ, v, wi and hi are the density, velocity vector, mass production rate and specific enthalpy of
species i, respectively. Now, the mass flux fraction for species i is introduced by

εi = ρYi(u + Vi) / m , (5)

where m = ρu, and Vi is the diffusion velocity of species i in the x direction. In order to study
effects of curvature, we also introduce a quantity M related to the total mass flow and defined as

M = x mj = x ρj u . (6)

Note that εi , m and M are all assumed to be functions of x alone, and that m and M are positive or
negative, depending on whether the flow is in the positive or negative x direction. In view of the
above assumptions, Equation (3) reduces to

1
x j

d
dx (Mεi) + ρYi

∂v
∂y

= wi (7)

Summation over all i gives the continuity relation
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ρ ∂v
∂y

= – 1
x j

dM
dx (8)

and use of this in Equation (7) gives the species conservation equations in the following form

d(Mεi) – YidM = wix
jdx (9)

Similar manipulation reduces the energy Equation (4) to

d[M{cp(T – T o) – Le
ρDx j

M
d
dx (cpT)}] – cp(T – T o)dM = –Σ

i
h i

owix
jdx (10)

where T o is a standard reference temperature, and the Lewis number Le is given by

Le = λ (ρcp D)λ (ρcp D) = σDσD ,  where σ is the thermal diffusivity. In the derivation use has been made of the

following ideal gas relation

h =Σ
i

Yi h i =Σ
i

Yi h i
o + cp(T = T o) (11)

where hi
o is the standard heat of formation of species i. Now, Equations (9) and (10) are the

fundamental equations of the present analysis.

Nondimensional System
A non-dimensional space coordinate ξ is defined as

ξ =
minx

x M

ρDx j dx =
minx

x m
ρD dx (12)

Boundary conditions will be specified at x = xmin where ξ = 0. The mass flux fraction for species i
is

ε i = Yi ±
dYi

d ξ
(M <> 0) (13)

In the species conservation Equation (9) we take i = F for fuel. The mass production rate is given
by

wF = – BYFYOX exp ( –En / θ) (14)

where the nondimensional temperature is defined by θ = T/T o, and the frequency factor,
nondimensional activation energy and heat release are given by

B =
vF BT α 1ρ2

Wox
, En = E

RoT o , q =
vFWFh F

o + voxWox h ox
o – vpWp h p

o

vFWF cp T o (15)

where B and α1 are constants and Ro and Wi are the universal gas constant and the molecular
weight of species i. The fundamental Equations (9) and (10) can be given in terms of these
quantities as

MdY F ± d (M
dYF

dξ
) = – B YF Y ox exp ( – E n θE n θ)x j dx (M <> 0) (16)
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Md θ ± L e d (M dθ
dξ

) = – qB YF Y ox exp ( – E n θE n θ)x j dx (M <> 0) (17)

where it is convenient to express the right hand sides in terms of x rather than ξ .
The mass flow function M(x) has an important role in this formulation. In the present work it

is assumed that M(x) can be specified a priori where the corresponding velocity field is a solution
of the Navier Stokes equation. Problems for which M = constant are analyzed in Section 3 and
cases where M is allowed to vary are treated in Section 4.

If M = constant the flow is uniform, one-dimensional and normal to the flame so v = 0. With j
= 0 the flame is planar. It is stabilized by a line sink of combustion products if M < 0, or by a line
source of reactants if M > 0. When j = 1 the flame is cylindrical. If M < 0 reactants flow radially
inwards into this flame and combustion products are removed at a sink which is placed at the
center of the flame. On the other hand, with M > 0, unburned reactants are supplied from a central
source and flow radially outwards into the flame.

The analysis of flames for which M = constant can readily be extended to cases where the
density ρ is allowed to vary due to heat release. The most important conclusion to emerge is that
our description of the qualitative relationship between flame temperature, the reaction rate and
processes in the preheat zone is unaffected by changes in density.

Flames stabilized in nonuniform flows (M ≠ constant) are of particular interest since they
are subject to flame stretch effects due to velocity gradients in the plane of the flame sheet. In
these geometries the mass flux of unburned mixture must decrease as the flame is approached
from the unburned gas side, otherwise the flame will flash back and we cannot have steady flow.
In Section 4 we will study these flames separately for cases where M < 0 and M > 0. Simple
functional forms are chosen for the variation of M with location in the flame and analytical
solutions are obtained.

If M < 0 the assumption is made that the mass flux m varies linearly with x. Then the case
with j = 0 corresponds to the familiar twin flame problem (Libby and Williams 1984) in which the
flame is planar and the strained flow of combustion products approaches a stagnation point at x =
0. With j = 1 the geometry is that of a cylindrical or tubular flame (Buckmaster 1979, Libby et al.
1989, Takeno et al. 1994). Reactants flow radially inwards through the flame and combustion
products flow out along the axis of the flame cylinder. Situations where M > 0 are illustrated for
cases where M is assumed to be inversely proportional to x. For j = 0 the solution describes a
planar flame in a strained flow whereas with j = 1 it represents an axisymmetric tubular flame
(Takeno et al. 1994, Zhu et al. 1995a, 1995b) in which the unburned mixture is injected outwards
from a line source on the axis.

Asymptotic Analysis
The analysis will be carried out for the case of a lean mixture, in circumstances where 1 – φ =

O(1) > 0, where φ is the equivalence ratio defined by

φ=
vox Wox YF,o

vF WF Yox,o
(18)

Here subscript o indicates the value in an unburned gas mixture. The extension of the analysis to a
rich and stoichiometric mixtures is self-evident. The approach follows that of a previous study
(Takeno et al. 1986b). It is assumed that Le is not necessarily unity but is an order of unity
quantity. The Zeldovich number defined by β = En /θ *2 is large enough to justify the assumption
of a thin reaction zone which is referred to as the reaction surface or reaction sheet. Superscript *
indicates a value at this reaction sheet so θ * is the temperature at the reaction sheet, which will
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also be referred to as the flame temperature. Solutions are sought (Takeno et al. 1986b) by
expanding dependent variables in powers of 1/β.

Outer Solutions
In the present analysis only zero’th order outer solutions are required. They determine the

structure of the preheat zone and can be obtained (Takeno et al. 1986b) by solving the fundamental
equations with no reactive terms. The resulting equations are linear and can be solved to give
general solutions in an integral form. In the following we present these solutions separately for
cases when M < 0 and M > 0.

Solutions for M < 0
Figure 1 shows schematically the temperature and fuel concentration distributions in this case

in which the unburned gas, with the dimensionless temperature θo and fuel mass fraction YF,o,
flows from right to left and the reaction sheet is located at ξ = ξ*. The solutions for the burned gas
are trivial and are simply given by

0 < ξ < ξ* : YF = 0, θ = θ*. (19)

The boundary conditions for the preheat zone are

ξ = ξ* : YF = 0, θ = θ*, ξ = ∞ : YF = YF ,o , θ = θ o . (20)

and the solutions satisfying these conditions are

YF = YF,o

ξ*

ξ

e– ξ

M dξ /
ξ*

∞
e– ξ

M dξ (21)

θ* – θ = (θ* – θo)
ξ*

ξ

e– ξ / Le

M dξ /
ξ*

∞
e– ξ / Le

M dξ (22)

Then the concentration and temperature gradients at the reaction sheet are given by

dYF

dξ
*

= YF,o e– ξ * / M*
ξ *

∞
e– ξ

M dξ > 0 (23)

dθ
dξ

*
= – (θ* – θo) e– ξ / Le / M*

ξ *

∞
e– ξ / Le

M dξ < 0 (24)

Solutions for M > 0
The temperature and concentration distributions for this case are shown schematically in

Figure 2. Here the flow is from left to right. Combustible mixture is supplied at ξ = 0 with
dimensionless temperature θo and fuel concentration YF,o and the reaction sheet is again located at
ξ*. The solutions for the burned gas are

ξ > ξ* : YF = 0, θ = θ*. (25)
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and the boundary conditions for the preheat zone are given by

ξ = 0 : YF = YF,o, θ = θo, ξ = ξ* : YF = 0, θ = θ*. (26)

The solutions that satisfy these conditions are

YF = YF,o

ξ

ξ ∗

eξ

M dξ /
0

ξ ∗

eξ

M dξ (27)

θ* – θ = (θ* – θo)
ξ

ξ *

eξ / Le

M dξ /
0

ξ *

eξ / Le

M dξ (28)

Then the concentration and temperature gradients at the reaction sheet are given by

Fig. 1 Schematic representation of temperature and fuel concentration
distributions for M < 0. The flow is from right to left.

Fig. 2 Schematic representation of temperature and fuel concentration
distributions for M > 0. The flow is from left to right.
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dYF

dξ

*

= –Y F,o eξ * / M*
0

ξ *

eξ

M dξ < 0 (29)

dθ
dξ

*
= (θ* – θo) eξ / Le / M*

0

ξ*

eξ / Le

M dξ > 0 (30)

Inner Solutions
To investigate the structure of the thin reaction zone, or reaction sheet, we introduce an

extended space coordinate defined by η = β(ξ – ξ*) and expand YF and θ as

YF (η) = 1
β Y1(η) + O 1

β2 θ(η) = θ* – 1
β θ1(η) + O 1

β2 (31)

Because the reaction zone is thin a factor on the right hand sides of Equations (16) and (17) can be
rewritten as

Bx jdx
M*

=
BρD
βm*2

dη (32)

where m* is the local mass flux at the reaction sheet. Substitution of these relations into Equations
(16) and (17), and neglect of higher order terms of O (1/β), leads to a balance between diffusion
and reaction in the form

d
dY1

dη = Λ*Y1e–θ1 dη (33)

d
dY1

dη =
q
Le

Λ*Y1e–θ1 dη (34)

where Λ* is given by

Λ* =
B λYox , o (1 – φ)

Le cp β
2e E n / θ*m*2

(35)

When the equations are solved under the appropriate boundary conditions, we have the following
solutions.

Y1 =
Le
q θ1 (36)

dθ1

dη
2

= 2Λ* [1 – e–θ1 (1 + θ1)] (37)

The solutions for the temperature gradient at upstream (M > 0) or downstream (M < 0) infinity are

d θ1

dη η →±∞

= ± 2Λ* (M >< 0) (38)

This implies that the temperature gradient at the reaction sheet of the outer solutions must be set
equal to
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dθ
dξ

*

= ± 2Λ* (M <> 0) (39)

allowing the inner and outer solutions to be matched. The above expression can be rewritten in the
following form

dθ
dξ

*

= ± m o r

m*

(θ a – θ o)
L e

(M <> 0) (40)

where mo and r are defined by

mo =
2LeλvFρ2 BT α 1Yox,o(1 – φ)θa

4

cpWox En
2(θa – θo)

2eEn / θa

1/2

(41)

r = θ*

θa

2

exp
En

2
1
θa

– 1
θ* (42)

where θa is the adiabatic flame temperature defined by θa = θo + qYF,o. As will be shown later, mo

represents the mass burning velocity of the normal adiabatic flame, while r represents the effect on
the fuel consumption rate of a deviation of the flame temperature from the adiabatic flame
temperature.

 Matching Conditions
The first matching condition at the reaction sheet is provided by the conservation of enthalpy

through it. This condition can be obtained by integrating Equations (16) and (17) through the
reaction sheet as

dθ
d ξ –

+

= –
q
Le

dYF

d ξ –

+

(43)

Substitution of the outer solutions (23), (24), (29) and (30), into Equation (43) yields equations to
relate the flame temperature θ* to the reaction sheet position ξ*. The results are

s =
θ* – θo

θa – θo
=

e–ξ *

ξ*

∞

e–ξ * / Le

M dξ

Lee
–ξ * / Le

ξ *

∞
e–ξ

M dξ
(44)

for M < 0 and

s =
θ* – θo

θa – θo
=

eξ*

0

ξ*

eξ / Le

M dξ

Lee
ξ* / Le

0

ξ *

eξ

M dξ
(45)



11A Simple Analysis of the Influence of Strain and Curvature on Laminar Premixed Flames

for M > 0. In these equations, s represents the relative deviation of the flame temperature θ* from
the adiabatic flame temperature θa. These equations reveal that the dependence of θ* on ξ * is
independent of j and is the same for the plane and cylindrical flames provided that M is identical
when expressed as a function of ξ. They also show that deviation of the flame temperature from
adiabatic occurs only when Le ≠ 1, that is when there is an imbalance between heat and mass
transport. On the contrary, the flame temperature is always equal to the adiabatic flame tempera-
ture for unity Lewis number.

The second matching condition is obtained by substituting (dθ*/dξ)* from the outer solu-
tions (24) and (30) into Equation (40). The results may be written

mo

m*
=

sLee
– ξ * / Le

rM*
ξ *

∞
e– ξ * / Le

M dξ
=

Le

R
e– ξ * / Le

M*
ξ *

∞
e– ξ / Le

M dξ (46)

for M < 0 and

mo

m*
=

sLee
ξ * / Le

rM*
0

ξ *

eξ * / Le

M dξ

=
Le

R
eξ * / Le

M*
0

ξ *

e– ξ / Le

M dξ
(47)

for M > 0.
The function R, on the right hand side of these equations, is defined in Equation (42) and can

be expressed in terms of the flame temperature deviation s as

R ≡ r
s = 1

s
αs + 1
α + 1

2

exp εα
2

s – 1
αs + 1 (48)

where nondimensional heat release α and activation energy ε are given by

α ≡ θ a – θo

θo

, ε ≡ En

θa
= E

Ro Ta

(49)

Equations (46) and (47) show that the ratio of the reference mass burning velocity mo to the local
mass flux |m*| at the reaction sheet is the product of two terms. The first, 1/R, depends only on the
temperature of the reaction sheet while the second term is a function of the reaction sheet location
ξ* as well as Le and M(ξ ).

Measures of Flame Strength
Fuel mass consumption rate per unit flame surface area is an important quantity to character-

ize the burning rate of the flame. Integration of Equation (16) through the reaction sheet yields

–

+

(–wF)dx = m*
dYF

dξ –

+

(50)

As will be shown later, the right hand term becomes moYF,o for the normal adiabatic flame, which
is not subject to strain. Then the mass consumption rate divided by that of the normal adiabatic
flame is given by
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–

+

(–wF)dx

–

+

(–wF)dx
normal

=
m*
mo

1
YF,o

dYF

dξ
*

(51)

where |dYF /dξ |* represents magnitude of the gradients at the reaction sheet as given by Equations
(23) and (29). This rate ratio corresponds to the consumption speed ratio used by several authors
(Bray and Peters 1994, Poinsot et al. 1996). When use is made of Equations (40), (35), (46) and
(47), Equation (51) becomes

–

+

(–wF)dx

–

+

(–wF)dx
normal

= r (52)

showing that the consumption rate ratio is equal to the function r defined in Equation (42). It
should be noticed that the consumption rate ratio depends only on the flame temperature and is
equal to unity at the adiabatic flame temperature, so that the mass burning rate is then equal to the
burning rate of the normal flame. This is a natural consequence of the present analysis, in which
all reactants are assumed to be consumed at the reaction sheet. From Equations (44) and (45) the
consumption rate ratio is always equal to unity when Le = 1. We shall see later that the consump-
tion rate ratio is also closely related to the temperature gradient at the reaction sheet.

Another measure of flame strength is the local mass flux ratio |m*|/mo, which corresponds to
the displacement speed ratio used by some authors (Bray and Peters 1994, Bradley et al. 1996). It
may be evaluated in terms of M (ξ ) from Equation (46) or (47). However, unlike the consumption
speed ratio, the displacement speed ratio does not automatically reach a value of unity at the
adiabatic flame temperature.

Gradients at Reaction Surface (Sheet)
The matching conditions (40) and (43) reveal the significance of the temperature and concen-

tration gradients at the reaction sheet. Using the definitions of θa and s, the first matching
condition, Equation (43) can be written in the form

s =

–1
LeYF,o

dYF

dξ
*

1
(θ* – θo)

dθ
dξ

* (53)

where the minus sign arises because the (dYF /dξ)* and (dθ/dξ)* always have opposite signs.
Equation (53) shows that the deviation, s, of the flame temperature from the adiabatic flame
temperature is determined by the supply rate of fuel to the reaction sheet divided by the heat loss
rate to the unburned mixture. If Le = 1, then these two rates are equal, so s = 1 and θ* = θa . The
heat released in the narrow reaction zone produces the temperature gradient in the preheat zone at
the reaction sheet. This gradient causes the heat flow which is used to heat the unburned mixture to
the flame temperature. In general, if Le ≠ 1, the flame temperature can be different from the
adiabatic value and depends on the mass flow distribution in the preheat zone as can be seen from
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Equations (44) and (45). Equation (43) also shows that the heat release rate is controlled through
the supply rate of fuel to the reaction sheet by molecular diffusion. At the same time the heat
release rate is proportional to the reaction rate in the reaction zone. The second matching condi-
tion, Equation (40), leads to the conclusion that the reaction rate is uniquely related to reaction
zone temperature as shown by Equation (52). In this way, we see that on the one hand the
temperature gradient at the reaction sheet represents the heat release rate while, on the other hand,
it also represents the heat required to heat the unburned mixture, as can be seen from the following
explanation.

When the energy equation of the outer solution, Equation (17) with no reactive term, is
integrated from the unburned mixture to the reaction sheet, we have

Le M dθ
dξ

*
=
θo

θ*

M dθ (54)

for M < 0, and

Le M dθ
dξ

*
– Le M dθ

dξ o

=
θo

θ*

M dθ (55)

for M > 0. These equations suggest that the heat released at the reaction sheet minus any heat lost
to the boundary at ξ = 0 (there are no heat losses at infinity) is used to heat the mixture to the
flame temperature. When |M|= Mc (> 0) is constant, this is just equal to Mc (θ* – θo) and is
proportional to the constant mass flow rate. When M ≠ constant, however, it depends on the
change in the mass flow rate in the preheat zone. Therefore, we see that in general the energy
required to heat up the unburned mixture is not proportional to the local mass flow, but contains all
effects of changes in the mass flow in the preheat zone all the way from the unburned mixture to
the sheet.

We introduce the temperature gradient, p* = (dθ/dx)*, in the original physical plane at the
reaction sheet. This is

p* = M
ρDx j

* dθ
dξ

*
(56)

where use has been made of Equation (12). When use is made of Equation (40), the gradient is
reduced to

p* = ± r
θa – θo

δ
(M <> 0) (57)

where the preheat zone thickness of a normal adiabatic flame is δ = ρσ/mo = σ /Su and Su is the
laminar burning velocity of the normal adiabatic flame relative to unburned reactants. Noting that
r = 1 for such a flame we see that its temperature gradient is po = θa – θo)/δ so Equation (57) can
finally be written

p* = ± rpo (M <> 0) (58)

This expression shows that p* is a function of θ* alone; it becomes equal to po whenever θ*
becomes equal to the adiabatic flame temperature θa. It also allows the consumption speed ratio to
be calculated from r = |p*|/po . For these reasons the evaluation of p* is emphasized in the
following examples.
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3. Conserved Mass Flow

If the mass flow rate function M (ξ ) is specified together with appropriate parameters of the
mixture properties, the equations presented above can in principle be solved by numerical or
analytical means to determine the flame position ξ*, its temperature θ* and the mass consumption
rate ratio r. In the following the above results will be applied to some simple flow fields, so as to
study the relation between these flame properties, the flow and the properties of unburned gas
mixture. The simplest case is when the total mass flow rate function is conserved along the space
coordinate, that is M = Mc = constant.

Flames for which Mc < 0
Here the detailed geometry of the product sink at ξ  = 0 is unimportant and we may set xmin =

0 in Equation (12). For this case Equation (44) gives simply s = 1 or θ* = θa. There is no heat loss
to a boundary and the flame temperature is always the adiabatic flame temperature independently
of j and Le. Then the mass consumption rate ratio r = 1 and p* = –po from Equation (58). Also
Equation (46) reveals that magnitude of the mass flux |m*| becomes equal to mo, independently of
j and Le, and of the flame position. This corresponds to the case of the normal adiabatic flame, and
mo is the mass burning velocity of the normal adiabatic plane flame as derived in classical flame
theory (Williams 1985). It is uniquely determined by the kinetic, thermodynamic and transport
properties of the unburned mixture. Note that the burning velocity is common to the plane and
cylindrical flames, and is therefore unaffected by convex flame curvature. In the cylindrical flame,
however, it is not m but |Mc| which is kept constant. Then, from Equation (6) with j = 1, the flame
location is

x* = Mc / mo (59)

showing that the flame position is determined by the value of |Mc|.

Flames for which Mc > 0
Here we must place an injector at ξ = 0 to supply the reactant mass flow

mc = Mc / x min
j

where xmin is the linear position of the injector ( j = 0) or the injector radius ( j = 1). In either case
the ξ = 0 boundary condition is imposed at x = xmin. The planar flame case j = 0 is considered
first.

Equation (45) gives

s = 1 – e–ξ * / Le

1 – e–ξ *
(60)

A deviation of flame temperature occurs when Le ≠ 1, positive for Le < 1 and negative for Le > 1,
even though there is no strain in the flow. The deviation depends on the flame position. This is
because the heat release rate at the reaction sheet is controlled by the diffusion rate of fuel to the
sheet on one hand, while the flame temperature depends on the heat loss rate to the injector surface
on the other. Both of these rates depend on the flame sheet position, and cancel out when Le = 1.
The maximum deviation is s = 1/Le for ξ* → 0, and it becomes zero as ξ* → ∞, suggesting that
the deviation is produced when the thickness of the preheat zone is limited. The preheat zone
solution Equations (30) and (56) can be manipulated to give the required result
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p* =
s(θa – θo)Mc

(1 – e– ξ * / Le)ρσ (61)

where Mc is constant, showing that the gradient depends upon the flame location ξ*. On the other
hand, Equations (58) provides an alternative expression for p* in terms of the properties of the thin
reaction zone. Equating these expressions we find

Mc
mo

= R 1 – exp –
ξ*
Le

(62)

Equation (62) may be solved, together with Equations (48) and (60), to determine the flame
position ξ*. This procedure may be illustrated by considering the special case Le = 1 for which s =
R = 1. Then Equation (62) gives

ξ* = ln 1
1 – Mc / mo

(63)

Using δ = ρσ /mo this may be written

x*
δ =

mo

Mc
ln 1

1 – Mc / mo
(64)

which shows that, even in this simple planar flame case, the upstream boundary condition influ-
ences the flame position for given mass flux Mc.

The cylindrical flame (Mc > 0, j = 1) is most easily described in physical space but the
dimensionless variable may be recovered from

ξ =
Mc Le

δmo
ln x

xmin
(65)

Equation (45) with M = constant leads to Equation (60) as before and Equation (65) then enables s
to be expressed in terms of x*. The result is

s =
1 – (xmin / x*)c

1– (xmin / x*)cLe (66)

where c ≡ Mc / (moδ). The preheat zone solution leads to

p* =
Mc s(θa – θo)

moδx* 1 – (xmin / x*)c
(67)

which again depends on the flame position. If this is equated to Equation (58), which is the thin
reaction zone expression for p*, the result is an equation for the flame position x*. This equation
together with Equation (66) can be used to calculate x* and p*, and other flame properties then
follow.

A special case arises if the radius xmin of the mass source at the origin is small so that
xmin / x* << 1. Then Equation (66) shows that s → 1 and heat loss to the source is negligible.
Equation (67) becomes



16 T. Takeno and K. Bray

p*
po

=
Mc

mo x* (68)

but Equation (58) shows that with s = 1 and hence r = 1 we must have p* = po. Hence x* is
determined from

x*
δ =

Mc

δmo
=

Mc
ρσ (69)

This result which is equivalent to Equation (59) shows that the sign of the curvature and the
direction of the flow are not important provided there is no heat loss.

The following section is concerned with flames in nonuniform flows in circumstances where
the constant density assumption significantly simplifies the analysis.

4. Nonuniform Flow

Flames for which M < 0
The simplest situation is that where the mass flux decreases linearly towards the origin of the

space coordinate, as shown schematically in Figure 3. The mass flow function and mass flux are
given by

M = –ρax (j + 1), m = –ρax j (70)

where a is the velocity gradient. The nondimensional coordinate defined in Equation (12) with xmin

= 0 is

ξ = ax2 / 2D (71)

and the mass flow rate can be expressed in terms of ξ as

M = –ρ 2aDξ ( j = 0), M = –2ρDξ ( j = 1) (72)

Fig. 3 Schematic representation of mass flux, temperature and fuel concentration
distributions for M < 0. The flow is from right to left.
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The solutions for plane and cylindrical flames will be presented together. Substitution of
Equation (72) into Equation (44) yields

s = 1
Le

Fj (ξ*)
Fj (ξ* / Le)

(73)

where Fo(ξ*) and F1(ξ*) are given by

Fo (ξ*) = e–ξ*

πerfc ξ*
, F1 (ξ*) = e–ξ*

ξ* E (ξ*)
(74)

which are defined in terms of standard functions

erfc (z) = 2
π e– t 2

z

∞

dt, E(z) = e– t

t dt
z

∞

(75)

The function F1(ξ*) is identical with a function F (ξ*) introduced in a previous study (Takeno et
al. 1986b); Fo(ξ*) and F1(ξ*) are shown in Figure 4. It may be seen that Fo is a monotonic function
of ξ * while F1 has a minimum value of Fc = 1.49144 at ξ c = 0.258951. When the temperature
gradient at the reaction sheet is evaluated, we find

p* = – 2a
σLe

(θa – θo) Fj (ξ*)  (76)

It may be seen that for a given value of the velocity gradient, the gradient p* is proportional to
Fj (ξ *). Figure 4 shows that, in the plane flame, the gradient increases monotonically with the
flame location. This is because the mass flow M increases with distance from the origin and, as the

Fig. 4 The functions Fo(ξ*) and F1(ξ*) .
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flame moves upstream, the amount of heat required to heat the unburned mixture is increased. On
the other hand, the gradient becomes smaller as the flame moves downstream and takes a mini-
mum value at zero. At this flame position we still need a finite amount of heat to heat the mixture.
In the cylindrical flame, on the other hand, the gradient is always larger than that of the plane
flame. It increases as the flame moves upstream in the same way as in the plane flame. What
makes a difference is the behavior in the vicinity of the origin. As the flame moves downstream
below ξ c the gradient starts to increase. This is due to the heat divergence effect of the cylindrical
flame. In order to supply a finite amount of heat to the mixture, the gradient has to increase
without limit as the flame approaches the origin and the flame surface area approaches zero.

The flame temperature depends on the flame position when Le ≠ 1, and the dependence of the
deviation s on ξ*, calculated from Equation (73) is shown in Figure 5 for representative values of
Le = 2, 1, 1/2. When Equation (72) is substituted into Equation (46) we have

m*
mo

=
r ξ* / Le

sFj (ξ* / Le)
= R

ξ* / Le

Fj (ξ* / Le)
(77)

Now Equation (77), combined with Equation (73), will determine the flame temperature and
position for a given set of values of velocity gradient and unburned gas properties. Equation (77)
can be rewritten in the following form.

moR
ρ 2aσ = Fj (ξ* / Le) (78)

Equation (78) and Figure 4 reveal how the flame position changes with the velocity gradient. As
the velocity gradient is increased the left hand side of Equation (78) decreases, and the plane flame
approaches the origin without limit reaching the origin at a certain finite value of a. Further
increase in a causes extinction at the origin. On the contrary, although the cylindrical flame
initially approaches the origin with increasing velocity gradient, at a critical value the flame
reaches the critical position below which there are no combustion solutions. Then extinction
occurs while the flame is located at a finite distance from the origin. As is explained above, this is
due to the combined effect of the decreased mass flux towards the origin and heat divergence in
the cylindrical flame.

Fig. 5 Influence of Lewis number on flame temperature function s(ξ*) when M < 0.
For planar flames s = so and for cylindrical flames s = s1.
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Flames for which M > 0
Here the upstream boundary conditions are given at ξ = 0, and this can produce some

difficulty in choosing the flow field. We shall study only a relatively simple case where the mass
flow function is given by

M = ρb/x (79)

where b is a constant to characterize the flow field. A hypothetical reactant mass source is placed
at x = 0. In the following we present the solutions separately for plane and cylindrical flames, as
functions of the original space coordinate x.

Plane Flame (j = 0)
The mass flux m = M, and the solutions for b > 0, that satisfy the appropriate boundary

conditions, are given as

YF = YF,o 1 – x
x*

b
D

+ 1
, θ = θo + (θ* – θo)

x
x*

b
σ + 1

(80)

These solutions show that the concentration and temperature gradients must vanish at x = 0, where
the mass flux becomes infinitely large. The temperature gradient at the reaction sheet is given by

p* = 1
L e

+ b
σ

(θa – θo)
x*

(81)

which shows that the gradient decreases monotonically as the flame moves down stream. The first
matching condition, given by Equation (43), may be written in terms of the space coordinate x, and
substitution of these solutions into it gives the flame temperature deviation as

s =
1/L e + b /σ

1 + b /σ
(82)

Note that the deviation s is independent of the flame position and is a function of Le and b/σ alone.
Substitution of Equation (79) into Equation (40), written in terms of the space coordinate x, gives

Fig. 7 Temperature and fuel concentration distributions
for planar flame with M > 0 in the limit b → 0.

Fig. 6 Flame location x*/δ and mass flux m*/mo

vs b/σ  for planar flames with M > 0.
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the nondimensional flame position and mass flux as

x*
δ = R 1 + b

σ , m*
mo

= R
1 + σ/b

(83)

Since R = R(s) they are determined as functions of Le and b/σ alone and their dependence are
shown in Figure 6. As b/σ is increased, the flame position moves downstream and the normalized
mass flux increases gradually to reach unity at an infinitely large value of b/σ. On the contrary, the
limit b → 0 corresponds to a case with no convective flow. In this limit the gradients become
independent of position, and we have a flame supported by molecular diffusion alone; its structure
is shown schematically in Figure 7. The flame temperature deviation becomes equal to 1/Le.

Cylindrical Flame ( j = 1)
The flow field is similar to that studied in an axisymmetric tubular flame, in which the

unburned mixture is injected outward from the line source on the axis (Takeno et al. 1994, Zhu et
al. 1995a, 1995b). The mass flux becomes

m = ρb/x2 (84)

There are no solutions for b = 0 that satisfy the boundary conditions, and we are concerned only
with the case where b > 0. The solutions are given by

YF = YF,o – YF,o
E(t)
E(t*) , θ = θo + (θ* – θo)

E(t/Le)
E(t*/Le)

(85)

where t = b/Dx. We notice, here again, that the gradients become zero at x = 0. The temperature
gradient at the flame surface is given by

p* = D
bLe

(θa – θo)
t*e– t*

E(t*)
(86)

The gradient again decreases monotonically as the flame moves downstream. Now substitution of
the solutions into the matching conditions gives the flame temperature derivation and the normal-
ized mass flux as

s = 1
Le

et* / Le E(t* / Le)
et*E(t*)

(87)

Fig. 8 Cylindrical flame with M > 0: mass flux ratio |m*|/mo.
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m*
mo

= R t*
Le

et* / Le E(t* / Le) (88)

which determine the flame position for a given set of values of b and mixture properties. The term
on the right hand side of Equation (88) is plotted schematically against t*/Le in Figure 8. As is
seen in the figure, the local mass flux increases as t*/Le increases, or as the flame moves upstream
towards the axial line source.

5. Effects of Flames Stretch

In nonuniform or unsteady flows the flame is subjected to stretch (Chung and Law 1988,
Candel and Poinsot 1990) due to tangential strain in the plane of the flame together with propaga-
tion in the presence of flame curvature. In the present analysis the flame stretch 1/τs is given as

1
τ s

≡ 1
∆A

d∆A
dt = ∂v

∂y
x*

= – 1
ρx j

dM
dx

x*

(89)

where ∆A is the area of an element of flame surface and d/dt is a Lagrangian derivative following
the flame element. The final equality follows from Equation (8). It should be noticed that the mass
flow rate must not increase as the flame is approached from the unburned gas side so the stretch is
always positive or zero in this work. The stretch is zero for all the conserved mass flow cases
considered here both with and without curvature.

We define a local flame stretch 1/τs* at the flame position x = x*. Then for the nonuniform
mass flow cases considered above we have

1
τ s*

= ( j + 1)a (M < 0); 1
τ s*

= b
(x*)( j+ 2) (M > 0)  (90)

Note in Equation (90) τs* depends only on the velocity gradient a when M < 0, whereas when M >
0 and more generally τs* is influenced both by the velocity gradient and also by the flame location
x*. The reason is as follows. With the sign convention adopted here flames for which M < 0 have
preheat zones which are not constrained by flow boundaries and which are therefore free to
respond to the velocity gradient a. On the other hand when M > 0 the preheat zone structure will
also be influenced by the boundary condition imposed at x = 0 unless x* >> δ. The dimensionless
stretch K is defined in terms of the characteristic laminar flame time δ/Su where δ = σ/Su. Then

K = δ
Suτ s*

=
σρ

mo
2(x*) j

dM
dx

*
(91)

In the four nonuniform mass flow cases the dimensionless flame stretch can be expressed as

K =
σρ2

mo
2 a =

( j + 1)
2

Le

ξ*
m*
mo

2

(M < 0, j = 0,1) (92)

K = σ
b

m*
mo

2

(M > 0, j = 0) (93)

K =
Le

t *
m*
mo

2

(M > 0, j = 1) (94)

Equations (46) and (47) show that |m*|/mo is the product of the function 1/R, which depends only
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on reaction sheet temperature s, and an expression depending on L e and the reaction sheet
location. It follows that K is 1/R2(s) times a function of L e and the reaction sheet location ξ*. This
analysis of flames in nonuniform flows identifies a convenient and natural independent variable in
each of cases studied. In terms of primitive variables, normalized by the local stretch 1/τs* and
thermal diffuisivity σ  these independent variables are

ξ =
Le x2

2( j + 1)τ sσ
(M < 0, j = 0,1) (95)

b
σ = x2

τ sσ (M > 0, j = 0); t =
Le x2

τ sσ (M > 0, j = 1) (96)

In principle, it is now possible to use Equations (92) – (94) together with the solutions derived
above in order to express the two measures of flame strength, namely r (see Equation 52) and
|m*|/mo (See Equations 46 and 47), in terms of K and Le. Use of Equations (77), (83) and (88) to
eliminate the mass flux ratio |m*|/mo from Equations (92) – (94) shows that K depends on the
flame location, ξ*, as well as on the flow parameters, in a complicated way. Some simplification
can be achieved (Libby et al. 1983) in the limit Le – 1 << 1 but explicit analytical solutions are still
not obtained. Fortunately it is not necessary to perform any algebra in order to see that the
resulting expressions for r(K, Le) and |m*(K, Le)|/mo will not be all the same. That is, these flame
strength parameters depend not only on the local flame stretch K and Lewis number Le but also on
the flow geometry as expressed in the mass flux function M(ξ ) for the preheat zone. This behavior
should be contrasted with the temperature gradient at the reaction surface p* = (dθ/dx)* which
takes these geometry effects into account and uniquely determines the consumption speed ratio as
r = |p*|/po. It follows from this result that r is a unique function of the instantaneous scalar
dissipation χθ = 2σp2 evaluated at the reaction surface. Note that the scalar dissipation χθ plays an
important role in theories of turbulent combustion (Bray 1996).

We now explore the question of whether or not r (K, Le) and |m*(K, Le)|/mo continue to be
dependent on geometry in the limit of weak stretch.

Dependence on Weak Stretch
As we have seen the dependence of flame properties on the flame stretch K is generally

nonlinear and algebraically complicated. In the following we study the limit where K << 1.
Initially, flames for which M < 0 are considered. The Equations (44) and (91) show that s = 1

when M = constant and K = 0, so it is appropriate to consider small departures from unity of the
flame temperature parameter s. The quantity R is a function of s and from Equation (48)

dR
ds = 1

(α + 1)2 α 2 – 1
s2 + εα(α + 1)

2s exp εα
2

s – 1
αs + 1

(97)

where the constants α and ε are defined in Equation (49). Then

dR
ds s = 1

= 2α + εα – 2
2(α + 1) ≡ γ (98)

where γ is a constant of order unity. It follows that

R(s) ≈ 1 + γ(s – 1) + O (s – 1)2

(99)

We must now determine how s varies with K. Equation (92) indicates that K → 0 as ξ* → ∞.
A small quantity k is defined as
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k =
( j + 1)Le

2ξ* (M < 0, j = 0,1) (100)

When ξ* → ∞ the functions erfc( ξ* ) and E(ξ*) may be expanded as power series in 1/ξ*. The
functions Fo(ξ*) and F1(ξ*) which are defined in Equation (74) may then be written

Fo(ξ*) = ξ* 1 + 1
2ξ* + O 1

ξ*2
; F1(ξ*) = ξ* 1 + 1

ξ* + O 1
ξ*2

(101)

Substitution in Equation (73) and use of Equation (100) leads to

s = 1 +
(1 – Le)

Le
k + O(k2) ( j = 0,1) (102)

Further substitution into Equation (99) yields

R = 1 + γ (1 – Le)
Le

k + O(k2) ( j = 0,1) (103)

r = 1 +
(1 + γ) (1 – Le)

Le
k + O(k2) ( j = 0,1) (104)

while Equation (77)may be written

m*
mo

= 1 +
γ (1 – Le)

Le
– 1 k + O(k2) ( j = 0,1) (105)

Finally, the small parameter k must be related to the stretch K. Substituting Equation (105)
into Equation (92) we find

K = k m*
mo

2

= k 1 + 2
γ (1 – Le)

Le
k + O(k2) ( j = 0,1) (106)

To evaluate Equations (104) and (105) to first order we require only K = k + O(k2). Then with the
usual sign convention

r = 1 – µrK + O(K 2) ( j = 0,1) (107)

m*
mo

= 1 – µmK + O(K 2) ( j = 0,1) (108)

where µr and µm are Markstein numbers in terms of unburned gas properties which are given by

µr = –
(γ+ 1)(1 – Le)

Le
= – α(4 + ε)

2(α + 1)
(1 – Le)

Le
(109)

µm = 1 –
γ (1 – Le)

Le
= 1 – (2α + εα – 2)

2(α + 1)
(1 – Le)

Le
(110)

Clearly, these two expressions are not the same. We have µr > 0 for Le > 1 so the consumption
speed ratio is decreased by positive stretch if Le > 1 and increased if Le < 1. On the other hand µm

> 0 when
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Le > L ≡ 2 + ε – 2 /α
4 + ε (111)

where L < 1 for realistic values of ε and α . Consequently, if Le is in the range L < Le <1, positive
stretch decreases the displacement speed ratio |m*|/mo but increases the consumption speed ratio r.

The analysis presented in this paper shows that both µr and µm include effects of flame stretch
on the temperature of the reaction sheet. Since dr/ds = (1 + γ), Eq.(104) shows that µr describes
this effect alone. On the other hand, µm is also influenced by the location x* of the reaction sheet
which varies with stretch through the dependence of |m*| on x*. A consequence is that, if Le = 1,
µr = 0, confirming the earlier result that the consumption speed is then independent of stretch. In
contrast, µm (Le = 1) = 1 because stretch still influences x*.

In view of the many simplifications introduced into the present analysis quantitatively accu-
rate predictions of Markstein numbers should not be expected. The Markstein numbers originates
in the temperature dependence of the chemical reaction rate and in real flames is strongly
influenced by details of the complex reaction mechanism. However, if we assume ε >> 1 in
Equation (110), the Markstein number expression obtained in the constant density analysis of
Sivashinsky (1977) is recovered. Numerical analysis (Bradley et al. 1996) confirms our prediction
µr ≠ µm. However, for the cases computed (Bradley et al. 1996), the relative magnitudes of µr and
µm are not well described by Equations (109) and (110).

Now consider flames for which M > 0. For these cases, we define the small parameter k,
analogous to Equation (100), to be

k = σ/b ( j = 0); k = Le /t* ( j = 1) (112)

Equations (82) and (87) show that s → 1 as k → 0 in both of these cases so Equations (97) and (99)
are applicable. Analysis similar to that for M < 0 then proves that Equations (107) – (110) are valid
for all four cases. We conclude that these expressions are independent of both the configuration of
the flow and the curvature of the flame. Note that the stretch K is defined at the flame surface,
whose location is initially unknown, while stretch is a function of position in the case where M >
0, j = 0,1 (see Equation 90). The flame location in physical space can be found from

δ
x* = K

( j + 1) 1 + µmK + O(K 2) (M < 0; j = 0,1) (113)

δ
x* = K 1 + µmK + O(K 2) (M > 0; j = 0,1) (114)

showing that the distance x*, between the flame and the origin, divided by the unstretched flame
preheat zone thickness, δ, varies like 1/K.

Conclusions

1. A simple analysis is presented of steady, planar and cylindrical laminar flames assuming a
large activation energy, constant density and constant transport coefficients. Matched inner
and outer solutions predict flame properties in terms of an arbitrary distribution through the
preheat zone of the mass flux function M describing the nonuniformity of the flow approach-
ing the reaction zone. Different functions M(x) correspond to different flame and flow
geometries. Because the analysis is applicable to any function M(x) it provides a convenient
framework for a simple description of laminar flame propagation in nonuniform flows.
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2. The analysis is illustrated with simple examples involving both uniform and nonuniform
flows approaching the reaction zone. The solutions are shown to depend upon the flame
geometry (plane or cylindrical) as well as on the sign and character of M(x). In the nonuni-
form cases with M < 0 important differences are identified between the solutions for planar
and cylindrical flames. The planar flame reaches the origin at a finite value of the flame
stretch. On the contrary, increasing stretch causes the cylindrical flame to approach a finite
critical distance from the origin. At this critical radius the flame is extinguished due to the
combined effects of decreased mass flux towards the origin and heat divergence in the preheat
zone.

3. The dimensionless stretch parameter K is evaluated for the nonuniform flow cases. The re-
sults clearly show that the measures of flame strength, the consumption speed ratio, r, and
displacement speed ratio |m*|/mo, are not unique functions of K; they depend also on flame
and flow geometries. Because K is a local property, evaluated at the reaction surface, it cannot
take account of variations in the mass flux function M(x) throughout the preheat zone. In the
limit of weak stretch, K << 1, it is shown that all four nonuniform flow cases reduce to the
same linear relationships for r(K) and |m*(K)|/mo. Separate Markstein numbers, µr and µm,
respectively, are evaluated from these relationships as functions of the Lewis number and
other parameters. They are independent of curvature.

4. Irrespective of geometry, the temperature at the reaction surface is shown to result from a
balance between heat release due to reaction and heat loss by conduction to the preheat zone.
This conduction heat loss is influenced by the flame and flow geometries through M(x). The
temperature gradient at the reaction surface, p* = (dθ/dx)*, takes these geometry effects into
account and uniquely determines the consumption speed ratio as r = |p* |/po. No such simple
general relationship has been found for the displacement speed ratio which is influenced by
the reaction sheet location. It is concluded that p* rather than K should be adopted as the
appropriate parameter for predicting and correlating the propagation of laminar flames in
nonuniform flow fields.
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