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A second-order shape optimization algorithm for solving
the exterior Bernoulli free boundary problem using a new
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Abstract The exterior Bernoulli problem is rephrased into a shape optimization
problem using a new type of objective function called the Dirichlet-data-gap cost
function which measures the L2-distance between the Dirichlet data of two state func-
tions. The first-order shape derivative of the cost function is explicitly determined via
the chain rule approach. Using the same technique, the second-order shape derivative
of the cost function at the solution of the free boundary problem is also computed.
The gradient and Hessian informations are then used to formulate an efficient second-
order gradient-based descent algorithm to numerically solve the minimization prob-
lem. The feasibility of the proposed method is illustrated through various numerical
examples.

Keywords Bernoulli problem · Domain perturbation · Free boundary · Shape
optimization · Shape derivative.

1 Introduction

In this note, we are interested in the so-called Bernoulli’s free boundary problem
(FBP). The problem, which is considered as the prototype of a stationary FBP and
is called in some literature as the Alt-Caffarelli problem (see [1]), find their origin in
the description of free surfaces for ideal fluids [37]. There are, however, numerous
other applications leading to similar formulations, for instance, in the context of op-
timal design, electro chemistry and electro statics (see [36] and also [35] for further
industrial applications).
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Bernoulli problem can be classified into two cases, namely, the exterior Bernoulli
FBP and the interior Bernoulli FBP. Here, we focus our attention on the former case.
In the exterior problem, a bounded and connected domain A ⊂ R2 with a fixed bound-
ary Γ := ∂A and a constant λ < 0 are known or given. The task is to find a bounded
connected domain B ⊂ R2 with a free boundary Σ := ∂B, B contains the closure of A,
and an associated state function u := u(Ω), where Ω = B \ Ā, such that the following
overdetermined system of partial differential equations (PDEs) is satisfied:

−∆u = 0 in Ω, u = 1 on Γ, u = 0 and ∂nu = λ on Σ. (1)

Here, ∂nu := ∇u ·n denotes the normal derivative of u and n represents the outward
unit normal vector to Σ.

The presence of two boundary conditions imposed on the exterior boundary Σ
makes the problem difficult to solve. Nevertheless, it is known that (1) admits a clas-
sical solution for simply connected bounded domain Ω, for any given constant λ < 0.
In addition, the shape solution Ω∗ is unique for bounded convex domains A [36] and
the free boundary Σ∗ is C2,α regular (see [47, Theorem 1.1]).

Our main intent in this work is to numerically solve (1) by performing a novel
iterative second-order gradient-based optimization procedure. Our approach relies on
the method known as shape optimization (see, e.g., [22,46,71]) which is already an
established tool to solve such a free boundary problem. The main idea of the said
technique is to reformulate the original problem into an optimization problem of the
form

min
Ω

J0(Ω,u(Ω)) subject to e(u(Ω)) = 0, (2)

where J0 denotes a suitable objective functional that depends on a domain Ω as well
as on a function u(Ω), which is the solution of a partial differential equation e(u) = 0
posed on Ω.

There are different ways to write (1) in the form of (2). A typical approach is to
choose one of the boundary conditions on the free boundary to obtain a well-posed
state equation, and then track the remaining boundary data in a least-squares sense.
Such formulation has been carried-out in several previous investigations; see, for in-
stance, [31,32,41,44,50,65,66]. Alternatively, one can consider an energy-gap type
cost function which consists of two auxiliary states; one that is a solution of pure
Dirichlet problem and one that satisfies a mixed Dirichlet-Neumann problem (see,
e.g., [9,10,11,12,33]). The objective function used in such formulation is sometimes
called the Kohn-Vogelius cost functional since Kohn and Vogelius [53] were among
the first who used such a functional in the context of inverse problems. Mathemati-
cally, these aforementioned formulations are given as follows:

Dirichlet-data-tracking approach

min
Ω

J1(Σ) ≡min
Ω

1
2

∫
Σ

u2
N dσ

where the state function uN := uN(Ω) is the solution to the mixed Dirichlet-
Neumann problem

−∆uN = 0 in Ω, uN = 1 on Γ, ∂nuN = λ on Σ; (3)
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Neumann-data-tracking approach

min
Ω

J2(Σ) ≡min
Ω

1
2

∫
Σ

(
∂uD
∂n
− λ

) 2
dσ

where the state function uD := uD(Ω) is the solution to the pure Dirichlet problem

−∆uD = 0 in Ω, uD = 1 on Γ, uD = 0 on Σ; (4)

Energy-gap type cost functional approach

min
Ω

J3(Ω) ≡min
Ω

1
2

∫
Ω

|∇ (uN−uD) |2 dx

where the state functions uN and uD satisfy systems (3) and (4), respectively.

In this study, one of our main objectives is to introduce yet another shape op-
timization reformulation of (1) which, to the best of our knowledge, has not been
studied in any previous investigation. Similar to the cost functional J3, we make use
of a cost function consisting of two auxiliary states uN and uR:

min
Ω

J (Σ) ≡min
Ω

1
2

∫
Σ

|uN−uR |
2 dσ, (5)

where the state function uN is the solution of (3) and uR := uR(Ω) satisfies, for a
given strictly positive (constant) β, the following equivalent form of (1) with a Robin
boundary condition:

−∆uR = 0 in Ω, uR = 1 on Γ, ∂nuR+ βuR = λ on Σ. (6)

Clearly, if (u,Ω) is a solution of (1), then uN = uR = u; therefore, J (Σ) = 0. Conversely,
if J (Σ) = 0, then uN = uR on Σ. Hence, the equation ∂n(uN−uR) = βuR = 0 on Σ and
the assumption β > 0 implies that uR = uN = 0 on Σ. Consequently, u = uN = uR is a
solution of problem (1). We remark that, in the limiting case as β goes on infinity, the
PDE system (6) transforms into the pure Dirichlet problem (4) (this means that uR = 0
on Σ), leading us to recover from (5) the classical Dirichlet-data-tracking formulation
of the FBP (1).

We stress that the formulations presented above can also be applied to Poisson
problems with overdetermined non-homogenous (sufficiently smooth) boundary con-
ditions. Here, however, we only inspect the free boundary problem (1) in order to
simplify the discussion.

Motivation Our reason for considering the new cost functional J (Σ) stems from
several previous related works. In the study carried out in [67], we have considered
the cost functional J2 with a different state constraint problem. More precisely, we
replaced the state variable uD with uR which is the solution of the mixed Dirichlet-
Robin problem (6). We found that such modification of the problem setup actually
yields more regularity in the solution of the associated adjoint state problem. In
fact, the adjoint state associated to the shape optimization problem “minΩ 1

2 ‖∂nuR −

λ‖2
L2 (Σ)

subject to (6)” enjoys the same degree of regularity (depending of course on
the regularity of Ω) with that of uR. Also, we observed, through various numerical
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examples, that this new state constraint yields faster and more stable convergence
of the approximate solution to the exact solution (both in case of the exterior and
interior Bernoulli FBP) than the classical setting “minΩ 1

2 ‖∂nuD − λ‖
2
L2 (Σ)

subject
to (4).” On the other hand, in [68], we proposed a modification of the energy-gap
cost functional approach for the exterior Bernoulli FBP (1). The optimization prob-
lem we put forward in (1) utilizes a similar functional to J3, but, instead of (4), we
took uR as one of the state constraints. More precisely, we considered the problem
“minΩ J4(Ω) ≡minΩ 1

2 |uR−uN |
2
H1 (Ω)

, subject to (3) and (6)” (where | · |H1 (Ω) denotes

the H1(Ω)-seminorm; that is, | · |H1 (Ω) := ‖∇(·)‖L2 (Ω)) as a shape optimization refor-
mulation of (1). We emphasize that under this formulation, and assuming appropriate
conditions on the Robin coefficient β as well as on the exterior boundary Σ, we
were able to express the first-order shape derivative of J4 at Ω along a given defor-
mation field in terms of just the state constraint uN. This in turn allowed us to also
reduce the number of PDE constraints to be solved when applying a second-order
method to numerically resolve the free boundary problem (1) (see Proposition 1 and
Corollary 2 in [68]). We stress that such reduction in the number of constraints in
the optimization setup is certainly advantageous in terms of numerical aspects. In-
deed, the numerical results presented in [68] show that the proposed modification
requires less computing time per iteration to numerically solve (1) than the classi-
cal formulation “minΩ 1

2 |uD −uN |
2
H1 (Ω)

subject to (3) and (4)” (as expected). Mean-
while, in a related problem, Laurain and Privat [55] examined a shape optimization
formulation of a Bernoulli-type problem with geometric constraints. In their work,
the domain Ω, which is simply connected, is constrained to lie in the half space de-
termined by x1 > 0. The boundary of the solution domain is also forced to contain
a segment of the hyperplane {x1 = 0} where a non-homogeneous Dirichlet condi-
tion is imposed. Then, the authors seek to find the solution of a partial differential
equation satisfying a Dirichlet and a Neumann boundary condition simultaneously
on the free boundary. The cost function examined by the authors in [55] has the
form J5(Ω) := ‖u2,ε −u1‖

2
L2 (Ω)

, where u2,ε satisfies a mixed Dirichlet-Robin bound-
ary problem while u1 is a solution of a pure Dirichlet problem. Here, u2,ε has the
property that “u2,ε→ u2 as ε→ 0,” where u2 is the unique (weak) solution of a mixed
Dirichlet-Neumann problem. We point out here that, as opposed to the formulation
minimizing J4 whose first-order shape derivative only depends on uN (under appro-
priate conditions on β and the exterior boundary Σ), the cost function J5 actually has
a first-order shape derivative that depends on the solutions of four PDEs (two state
problems and two adjoint state problems).

Besides the above statements, we mention that minimizing J4(Ω) over the set of
admissible domains Oad (see Section 4) of Ω is, to some extent, equivalent to finding
the optimal shape solution to the optimization problem “minΩ J (Σ) subject to (3)
and (6),” and we explained it as follows. Firstly, for convenience, let us introduce
the notation “.”. This means that if P . Q, then we can find some constant c > 0
such that P 6 cQ (obviously, Q & P is defined as P . Q). Then, for an open bounded
domain Ω ⊂ R2 with Lipschitz boundary (in this study, we shall in fact assume that
Ω is C2,1 regular), the inequality ‖v‖L2 (∂Ω) . ‖v‖H1 (Ω) holds, for all v ∈ H1(Ω). We
note that this bound clearly exhibits the compact embedding of H1(Ω) in L2(∂Ω)
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(see [56, p. 159]) and it actually follows from the well-known trace theorem (see,
e.g., [57, Theorem 3.3.7, p. 102], [59, Theorem 5.5, p. 95]) coupled with the compact
embedding of H1/2(∂Ω) in L2(∂Ω) (cf. [69, Theorem, 2.5.5, p. 61]). Moreover, it is
not hard to see from this result that we also have the relation ‖v‖L2 (Γ) . ‖v‖H1 (Ω) .

This inequality shows that the set H1
Γ,0(Ω) = {v ∈ H1(Ω) : v = 0 on Γ} is strongly

closed in H1(Ω) and, in addition, a convex set. From [19, p. 54], for instance, we
know that strongly closed convex sets are also weakly closed (see also [17, Lemma
3.1.15, p. 119]). Hence, the weak convergence vnk ⇀ v implies that v is in fact in
the same set H1

Γ,0(Ω). Furthermore, we note that we may actually prove (following
the proof of [43, Lemma 2.19, p. 62]) that |v |H1 (Ω) = ‖∇v‖L2 (Ω) & ‖v‖H1 (Ω), for all
v ∈ H1

Γ,0(Ω). We note that this bound in fact shows that the H1(Ω)-seminorm | · |H1 (Ω)

is actually equivalent to the H1(Ω)-norm on H1
Γ,0(Ω). Lastly, we mention that we can

also verify, possibly by way of contradiction, that the norm

‖ · ‖H1
Γ,0 (Ω) :=

(
| · |2

H1 (Ω) + ‖ · ‖
2
L2 (Σ)

) 1/2
,

on the other hand, is equivalent to the usual Sobolev H1(Ω)-norm. Thus, by these
results, taking v = uN−uR ∈ H1

Γ,0(Ω), we can deduce the sequence of inequalities

‖uN−uR‖
2
L2 (Σ) . |uN−uR |

2
H1 (Ω) + ‖uN−uR‖

2
L2 (Ω) . |uN−uR |

2
H1 (Ω) .

It should also be recognized that the above relation is a mere consequence of the
inequality ‖uN − uR‖

2
L2 (Σ)

. ‖uN − uR‖
2
H1/2+ε (Ω)

which holds true for any ε > 0 due
to the trace theorem. This observation further gives us the motivation to consider
minimizing J (Σ), subject to (3) and (6), over the set of admissible domains for Ω to
numerically solve the free boundary problem (1).

The minimization problem (5) can be carried out numerically using different com-
putational strategies [67]. Standard algorithms to minimize J utilizes some gradient
information when using a first-order method and also uses the Hessian when applying
second-order methods. So, in order for us to accomplish our main objective, we first
need to carry out the sensitivity analysis of the cost functional J (Ω) with respect to a
local perturbation of the domain Ω. Accordingly, we derive the first- and the second-
order shape derivative of J through chain rule approach. This method requires, be-
forehand, the expressions for the shape derivatives of the states uN and uR. Of course,
there are other ways to obtain the shape derivative of J such as through a technique
used in [33]. However, the method employed in [33] by the authors, which was in-
spired by [25,26], restricts the results to starlike domains. Another method could be
to use only the Eulerian derivatives [22] of the states and follow [12], or apply the
so-called rearrangement method, first used in [51], to obtain the shape derivative of
J. We emphasize that the former approach applies not only to starlike domains but
also to more general Ck,α domains. On the other hand, the rearrangement method
provides a rigorous computation of the shape derivatives of cost functionals using
only the Hölder continuity of the state variables, bypassing the computation of the
material and shape derivatives of states (see, e.g., [10,44,50]). Further, this method
requires less regularity of the domain than in the case when applying the classical
chain rule approach. Here, we opted to apply the chain rule approach since the shape
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derivatives of uN and uR are already available in the literature (see, e.g., [11] and
[72], respectively). In addition to these previously mentioned techniques, we remark
that the shape gradient of J can also be computed using the well-known minimax
formulation developed in [20]. Similar to the rearrangement method, this strategy in
computing shape derivatives of cost functionals does not require the knowledge of
the shape derivative of the states as it naturally introduces the use of adjoint states to
derive the expression for the shape derivative of the cost; see, for instance, [65,66].

The plan of the paper is as follows. In Section 2, we describe the weak formula-
tions of the state equations and briefly discuss the existence, uniqueness and regular-
ity of their solutions. In Section 3, we recall a few basic concepts from shape calculus
and give the shape derivatives of the states. Then, we compute the first-order shape
derivative of the cost J through chain rule approach followed by the computation
of its corresponding second-order shape derivative at the solution of the free bound-
ary problem (1). Also, we shortly discuss about the ill-posedness of the proposed
shape optimization formulation by inspecting the shape Hessian form at a critical
shape. Meanwhile, in Section 4, we examine the existence of optimal solution to
the minimization problem under consideration. After that, in Section 5, we describe
how the gradient and Hessian informations can be utilized in formulating an efficient
boundary variation algorithm to numerically solve the present optimization problem.
Finally, we demonstrate the feasibility of the newly proposed shape optimization ap-
proach by solving some concrete problems. Also, to illustrate the efficiency of the
proposed method, we compare our numerical results with the results obtained by the
classical Dirichlet-data-tracking cost functional approach. We end the paper with a
brief conclusion given in Section 6.

2 Preliminaries

We first review an essential quality of the state solutions which is vital in guaranteeing
the existence of their shape derivatives.

2.1 Weak formulation of the state equations

The respective variational formulations of the state problems (3) and (6) are stated as
follows.

Find uN ∈ H1(Ω), with uN = 1 on Γ, such that∫
Ω

∇uN · ∇ϕdx =
∫
Σ

λϕdσ, ∀ϕ ∈ H1
Γ,0(Ω); (7)

Find uR ∈ H1(Ω), with uR = 1 on Γ, such that∫
Ω

∇uR · ∇ϕdx+
∫
Σ

βuRϕdσ =
∫
Σ

λϕdσ, ∀ϕ ∈ H1
Γ,0(Ω), (8)
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where H1
Γ,0(Ω) is the space of test functions in the introduction. It is well-known that

the variational equation (7) admits a unique solution in H1(Ω), while it can easily be
verified (for instance, by means of Lax-Milgram theorem) that (8) also have a unique
solution in H1(Ω) (see [39,58]).

Remark 1 We emphasize that since β > 0, then uniqueness of weak solution uR ∈
H1(Ω) is guaranteed for the mixed Robin-Dirichlet problem (6). Moreover, we note
that we may actually consider β to be a function on Σ instead of just being a positive
constant. In this case, however, we require β := β(x) to be at least an L∞ function
on Σ (i.e., β ∈ L∞(Σ)) and be positive almost everywhere in the free boundary to
ensure uniqueness of weak solution to (6) (cf., e.g, [58, Lemma 7.36.3, p. 617]). In
this regard, we mention here in advance that in Section 3, we will in fact consider the
mean curvature of the free boundary Σ as the function β. Evidently, β = κ belongs to
L∞(Σ) because of Rademacher’s theorem (recall that Ω, by assumption, is C2,1 reg-
ular). Hence, the first mentioned requirement for existence of unique weak solution
to (6) is satisfied, however, the condition that κ(x) > 0 on Σ only holds for convex
domains. Nevertheless, this is not an issue when the domain A (whose boundary is
represented by Γ) is convex because, according to [48, Theorem 2.1] (and the refer-
ences therein), when A is convex, then so is the unique solution domainΩ∗ to the free
boundary problem (1).

2.2 Higher regularity of the state solutions

The unique solution uN of the PDE system (3) actually possesses higher regularity if
Ω is assumed to be at least C1,1 regular. In fact, the solution is also in H2(Ω) in this
case, and in general, ifΩ is of class Ck+1,1, where k is a non-negative integer, then uN
is Hk+2 regular. This claim can easily be verified since the fixed boundary Γ and the
free boundary Σ are disjoint, (see, e.g., [10, Theorem 29]). Analogously, the unique
solution uR ∈ H1(Ω) of (6) also have higher regularity depending on the degree of
smoothness of Ω. More precisely, if Ω is of class Ck+1,1 (again k is a non-negative
integer), then uR is also an element of Hk+2(Ω) (see, e.g., [52, Remark 3.5]). For
more details about existence and uniqueness of solutions to mixed Robin-Dirichlet
problems in W s,2 for bounded domains in Rd, we refer the readers to [58, Section
7.36].

3 Shape Sensitivity Analysis of the States and Cost Function

Let us consider a bounded and connected domain U ⊃ Ω and a family of deformation
fields

Θ := {V ∈ C2,1(U,R2) : V = 0 on ∂U ∪Γ}. (9)

Clearly, every V ∈Θ forces Γ to remain invariant after a deformation since V vanishes
on Γ. Hence, Γ is a component of the boundary of any perturbation ofΩ. In this work,
every admissible perturbation of the reference domain Ω is described as follows.
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Given an element of Θ, we perturb Ω by means of the so-called perturbation of the
identity operator (see, e.g., [22, Section 2.5.2, p. 147] or [10]):

Tt :Ω 7−→Ωt, x 7−→ Tt (x) = x+ tV(x).

For sufficiently small t and for each V ∈ Θ, the operator Tt can be shown to be a C2,1

diffeomorphism from Ω onto its image (cf. [71]).
With the above definition of Ωt := Tt (Ω), the state solutions uNt and uRt satisfy

−∆uNt = 0 in Ωt, uNt = 1 on Γt,
duNt

dnt
= λ on Σt ; (10)

−∆uRt = 0 in Ωt, uRt = 1 on Γt,
duRt
dnt
+ βuRt = λ on Σt, (11)

respectively, where nt is the unit outward normal to Σt . Here, we can actually drop
t in Γt because Γt = Γ for all t. Note that for t = 0, we recover the reference domain
Ω :=Ω0, with fixed boundary Γ := Γ0 and free boundary Σ := Σ0.

Next, let us recall some key definitions from shape calculus. We say that the
function u(Ω) has a material derivative u̇ and a shape derivative u′ at zero in the
direction V if the limits

u̇ = lim
t↘0

u(Ωt ) ◦Tt −u(Ω)
t

, u′ = lim
t↘0

u(Ωt )−u(Ω)
t

,

exist, respectively, where (u(Ωt ) ◦Tt )(x) = u(Ωt )(Tt (x)). These expressions are re-
lated by

u′ = u̇− (∇u ·V) (12)

provided that ∇u ·V exists in some appropriate function space [22,71]. In general,
if u̇ and ∇u ·V both exist in the Sobolev space Wm,p (Ω), then u′ also exists in that
space.

3.1 Shape derivative of the states

To establish the existence of the shape derivative of J, one needs to show that the
material and shape derivatives of the states uN and uR exist and, consequently, apply
the chain rule. Apparently, the shape derivatives of uN and uR were already obtained
in [9] and [72], respectively. Their existence can be guaranteed if Ω is assumed to be
at least C2,1 regular.

Lemma 1 ([9]) Let Ω be a bounded C2,1 domain. Then, uN ∈ H3(Ω) is shape dif-
ferentiable with respect to the domain, and its shape derivative u′N ∈ H1(Ω) is the
unique solution of the mixed Dirichlet-Neumann problem




−∆u′N = 0 in Ω,
u′N = 0 on Γ,

∂nu′N = divΣ (V ·n∇ΣuN)+ λκV ·n on Σ,
(13)

where κ denotes the mean curvature of Σ.
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Lemma 2 ([72]) Let Ω be a bounded C2,1 domain. Then, uR ∈ H3(Ω) is shape dif-
ferentiable with respect to the domain, and its shape derivative u′R ∈ H1(Ω) is the
unique solution of the mixed Robin-Neumann problem




−∆u′R = 0 in Ω,
u′R = 0 on Γ,

∂nu′R+ βu′R = divΣ (V ·n∇ΣuR)+ λκV ·n− β(∂nuR+ κuR)V ·n on Σ.
(14)

If β = κ, then for the shape derivative u′R of the solution of (6), it holds that u′R ≡ 0
when Σ is the free boundary.

3.2 First-order shape derivative of the cost function

Our objective here is to derive the shape derivative of the cost function J in the
direction of a deformation field V ∈ Θ. We recall that, for a given functional J :Ω→
R, its directional Eulerian derivative at Ω in the direction V, if it exists, is defined as
the limit

lim
t↘0

J (Ωt )− J (Ω)
t

=: dJ (Ω)[V].

In addition, if the derivative dJ (Ω)[V] exists for all V and the map V 7→ dJ (Ω)[V] is
linear and continuous, then J is shape differentiable at Ω, and this mapping will be
referred to as the shape gradient of J at Ω. According to the well-known Hadamard-
Zolésio structure theorem (see, e.g., [21, Theorem 3.2 and Remark 3.1, Corollary 1]),
the shape gradient of J depends only on the normal component of V on the boundary
of Ω when the domain is regular enough.

For our proposed cost function J (Σ) given in (5), the shape derivative under the
assumption that

“β = κ and u′R is the shape derivative of the solution of (6)
where Σ is the free boundary”

(A)

is given in the following proposition.

Proposition 1 Let Ω be of class C2,1 and V ∈ Θ. Also, let us assume that condition
(A) holds true. Then, the Dirichlet-data-gap cost functional J is shape differentiable
with

dJA(Σ)[V] =
∫
Σ

[ (
λpN+

1
2

u2
N

)
κ−∇ΣuN · ∇ΣpN

]
n ·Vdσ, (15)

where pN denotes the adjoint state which is the unique solution to the PDE system

−∆pN = 0 in Ω, pN = 0 on Γ, ∂npN = uN on Σ, (16)

κ denotes the mean curvature of Σ and the tangential gradient ∇Σ is given by

∇Σ (·) = ∇(·) |Σ − ∂n(·)n.
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Proof We use chain rule approach coupled with the adjoint method to obtain the
shape derivative of J given by (15). Let Ω be of class C2,1 and V ∈ Θ. Since the
state variables uN and uR are sufficiently regular, we can apply Hadamard’s boundary
differentiation formula (cf. [22, Theorem 4.3, p. 486] or [46,71]):

d
dt

∫
∂Ωt

f (t,σ) dσt

�����t=0
=

∫
∂Ω

∂ f (0,σ)
∂t

dσ+
∫
∂Ω

(
∂ f (0,σ)
∂n

+ κ f (0,σ)
)

V ·ndσ,

(17)
where f ∈ C([0, ε],W2,p (U)), p > 1, and d

dt f (0) exists in W1,p (U), to obtain

dJ (Σ)[V] =
∫
Σ

(uN−uR)(u′N−u′R) dσ

+

∫
Σ

[
βuR(uN−uR)+

1
2
κ(uN−uR)2

]
V ·ndσ. (18)

Here, of course, u′N and u′R satisfy (13) and (14), respectively. If u′R is the shape
derivative of the solution of (6) where Σ is the free boundary and β = κ, then by
Lemma 2, u′R ≡ 0 in Ω. The expression for dJ (Σ)[V] given by (18) then simplifies to

dJA(Σ)[V] =
∫
Σ

uNu′N dσ+
1
2

∫
Σ

κu2
NV ·ndσ, (19)

where we put the subscript “·A” to emphasize that condition (A) was imposed in the
computation of the shape gradient (see also comment on notation below).

We stress that the representation (19) of the shape derivative J in the direction
of V at Ω is actually not useful for practical applications, especially in the numerical
realization of the minimization problem (5) because it would require the solution of
(13) for each velocity field V. This issue can be resolved using the adjoint method,
particularly by introducing the adjoint system (16). Using (13) and (16), we observe,
via Green’s second identity, that∫

Σ

u′NuN dσ =
∫
Σ

u′N∂npN dσ =
∫
Σ

pN∂nu′N dσ

=

∫
Σ

pN [divΣ (V ·n∇ΣuN)+ λκV ·n]dσ. (20)

At this point, it is useful to recall the so-called tangential Green’s formula (see, e.g.,
[22, Eq. 5.27, p. 498]): let U be a bounded domain of class C1,1 and Ω ⊂ U with
boundary Γ. For V ∈ C1,1(U,R2) and f ∈W2,p (U), p > 1, we have∫

Γ

( f divΓV+∇Γ f ·V) dσ =
∫
Γ

κ f V ·ndσ, (21)

where κ is the mean curvature of Γ. In addition, when V ·n = 0, we obviously have∫
Γ

f divΓVdσ = −
∫
Γ

∇Γ f ·Vdσ.
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Now, note that V ·n∇ΣuN ·n = 0. Hence, by the above identity, we have that∫
Σ

pNdivΣ (V ·n∇ΣuN) dσ = −
∫
Σ

∇ΣuN · ∇ΣpNV ·ndσ. (22)

Combining equations (19), (20) and (22), we get the desired result. ut

Remark 2 We recall from [50, Theorem 4.1] (with g = const. = λ and f ≡ 0) (see also
[32, Lemma 2.1]) that the shape gradient of J1 is given by

dJ1(Σ)[V] =
∫
Σ

[
∂

∂n

(
1
2

u2
N+ λpN

)
+

(
1
2

u2
N+ λpN

)
κ−∇uN · ∇pN

]
n ·Vdσ

=:
∫
Σ

G1n ·Vdσ.

It seems not obvious, but the kernel G given in (15) only differs by ∂
∂n

(
1
2u2

N

)
from

G1. This can be made more clear if we apply the identity

−〈∇ΣuN,∇ΣpN〉 = −〈∇uN,∇pN〉+
∂uN
∂n

∂pN
∂n
= −〈∇uN,∇pN〉+ λ

∂pN
∂n

(23)

to (15). Thus, in addition, we can actually write the shape gradient of J equivalently
as follows

dJA(Σ)[V] =
∫
Σ

[ (
λpN+

1
2

u2
N

)
κ−〈∇uN,∇pN〉+ λ

∂pN
∂n

]
n ·Vdσ. (24)

Notation Throughout the rest of the discussion, we shall denote the shape gradient of
J in the direction of V at Ω obtained under condition (A) as dJA and its correspond-
ing kernel by GA; i.e.,

GA :=
(
λpN+

1
2

u2
N

)
κ−〈∇uN,∇pN〉+ λ

∂pN
∂n

(25)

(cf. Proposition 1). Meanwhile, the expression dJ simply refers to the shape gradient
of J obtained without imposing assumption (A). More precisely, the expression for
dJ is given by equation (18):

dJ (Σ)[V] =
∫
Σ

[
ww′+

(
βuRw+

1
2
κw2

)
V ·n

]
dσ, (26)

where we use the notation w = uN−uR and w′ = u′N−u′R for simplicity.

Before going to the next subsection, let us also express dJ (Σ)[V] in another form
through the adjoint method. For this purpose, let us consider two harmonic functions
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ΞN and ΞR that both vanish on Γ, and such that ∂nΞN = w and ∂nΞR+ βΞR = w on Σ.
Then, by Green’s second identity together with equations (13) and (14), we have∫
Σ

ww′dσ =
∫
Σ

[
u′Nw−u′R(∂nΞR+ βΞR)

]
dσ =

∫
Σ

[
u′Nw−ΞR(∂nu′R+ βu′R)

]
dσ

=

∫
Σ

ΞN divΣ (V ·n∇ΣuN) dσ

−

∫
Σ

ΞR {divΣ (V ·n∇ΣuR)− β(∂nuR+ κuR)V ·n} dσ

=: J1− J2.

Note that the integral
∫
Σ
v divΣ (V ·n∇Σu) dσ, for any u,v ∈ H3(Ω), can be expressed

as
∫
Σ
v divΣ (V ·n∇Σu) dσ = −

∫
Σ

(∇Σu · ∇Σv)V ·ndσ =
∫
Σ

(∂nu∂nv−∇u · ∇v)V ·ndσ
via (21) and because V ·n∇Σu = 0. Hence, we have

J1− J2 =

∫
Σ

{∇ΣuR · ∇ΣΞR−∇ΣuN · ∇ΣΞN+ βΞR[λ + (κ− β)uR]}V ·ndσ

=

∫
Σ

[∇uR · ∇ΞR−∇uN · ∇ΞN+ λw− (λ − βuR)(w− βΞR)]V ·ndσ

+

∫
Σ

{βΞR[λ + (κ− β)uR]}V ·ndσ.

Inserting the above expression to (26), we arrive at the following result.

Proposition 2 Let Ω be of class C2,1 and V ∈ Θ. Then, J is shape differentiable with
dJ (Σ)[V] =

∫
Σ

Gn ·Vdσ where

G := ∇uR · ∇ΞR−∇uN · ∇ΞN+ λ(uN−uR)− (λ − βuR)(uN−uR− βΞR)

+ βΞR[λ + (κ− β)uR]+ βuR(uN−uR)+
1
2
κ(uN−uR)2, (27)

and the quantities ΞN and ΞN are the respective solutions to the following adjoint
systems

−∆ΞN = 0 in Ω, ΞN = 0 on Γ, ∂nΞN = uN−uR on Σ; (28)
−∆ΞR = 0 in Ω, ΞR = 0 on Γ, ∂nΞR+ βΞR = uN−uR on Σ. (29)

Remark 3 Again, similar to what has been pointed out in the proof of Proposition
1, we remark that the main reason for rewriting the shape gradient dJ (Σ)[V] given
in (26) into dJ (Σ)[V] =

∫
Σ

Gn ·Vdσ is to avoid the computations of solutions to the
boundary value problems (13) and (14) for each velocity field V which are impractical
to use in an iterative procedure.

As an immediate consequence of Proposition 2, we have the following optimality
result.
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Corollary 1 Let the domain Ω∗ be such that u = u(Ω∗) satisfies the overdetermined
boundary value problem (1); i.e., it holds that

u = uR = uN on Ω
∗
.

Then, the domain Ω∗ fulfils the necessary optimality condition

dJ (Σ∗)[V] = 0 for all V ∈ Θ.

In addition, of course, it also holds that dJA(Σ∗)[V] = 0 for all V ∈ Θ.

Proof At the shape solution Ω = Ω∗ of the Bernoulli problem (1), uN = 0 on Σ∗.
Hence, ∇uN = (∂nuN)n on Σ and it follows that ∇uN · τ = 0 on Σ∗. Moreover, we see
that ΞN ≡ 0 and ΞR ≡ 0 (and also pN ≡ 0) in Ω

∗
. Thus, G given by (27) is zero (so is

GA given by (25)), which implies the assertion. ut

In the next section, we shall compute the second-order shape derivative of J at Ω in
the direction of two vector fields from Θ. We first treat the case when condition (A)
is imposed during the calculation of the shape derivative followed by the case when
it is disregarded (see Subsection 3.4).

3.3 Second-order shape derivative of the cost function

Let us now compute the shape Hessian of J at Ω in the direction of two vector fields
V,W ∈ Θ. Due to standard regularity theory for elliptic equations, we know that the
H3(Ω) regularity of uN provides the same regularity H3(Ω) to pN. Hence, for suffi-
ciently small s, it is clear that the derivative dJA(Ωs (W))[V] of J (under assumption
(A)) atΩs (W) ⊂U is well-defined. Our next goal is to find an expression for the limit

lim
s↘0

dJA(Ωs (W))[V]−dJA(Ω)[V]
s

=: d2 JA(Σ)[V,W],

where

dJA(Ωs (W))[V] =
∫
Σs

GAsns ·Vdσs,

GAs =

(
λpNs +

1
2

u2
Ns

)
κs −〈∇uNs,∇pNs〉+ λ

∂pNs

∂ns
. (30)

Here, Σs := Σs (W) denotes the free boundary of the perturbed domain Ωs :=Ωs (W)
obtained via the deformation field W ∈ Θ and uNs ∈ H3(Ωs) is the unique (weak)
solution of the state system (3) on Ω̄ = Ω̄s . On the other hand, κs = divΣsns , and ns

and τs respectively denote the unit outward normal and unit tangent vectors on Σs .
Accordingly, if, for all V and W in Θ, d2 J (Σ)[V,W] exists and is bilinear and

continuous with respect to V and W, then J is said to be twice shape differentiable at
Ω. In this case, the map (V,W) 7→ d2 J (Σ)[V,W] is called the shape Hessian of J at
Ω in the V,W direction. For an admissible domain Ω, it can be shown that the shape
Hessian has its support on ∂Ω and it is independent on the tangential component of
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W on the boundary. However, the exact expression for the shape Hessian, in general,
consists of the tangential component of V. This means, basically, that the shape Hes-
sian is generally not symmetric (see, e.g., [22, Chapter 9, Section 6]). Even so, at the
optimal shape solution Ω∗ of J, it can be proved that only the normal components
of V and W contributes to the shape Hessian. Here, we focus our attention on this
situation since we are only interested in the expression for the shape Hessian of J at
the solution Ω∗ of the exterior Bernoulli free boundary problem (1).

Proposition 3 Let Ω be of class C2,1, V,W ∈ Θ, and β be the mean curvature of Σ.
Then, the shape Hessian of J at Ω∗ is given by

d2 JA(Σ∗)[V,W] =
∫
Σ∗
λκp′NWn ·Vdσ, (31)

where p′NW denotes the shape derivative of the adjoint state pN in the direction of W
satisfying the PDE system

−∆p′NW = 0 in Ω∗, p′NW = 0 on Γ, ∂np′NW = u′NW + λW ·n on Σ∗, (32)

where u′NW denotes the shape derivative of uN in the direction of W.

Proof In the proof, we denote the shape derivative of ϕ in the direction W by ϕ′ (i.e.,
ϕ′ = ϕ′W ) for simplicity. Let Ns = Ns (W) be a smooth extension of ns (see, e.g, [22,
Equation (4.37), p. 491]). Using (17) with f (s,σ) = GAsns ·V = GAsNs ·V (GAs is
given by (30)), and V replaced by W, we get

d2 JA(Σ)[V,W] =
∫
Σ

(
G′AN+GAN′

)
·Vdσ

+

∫
Σ

{
∂GA
∂n

(N ·V)+GA
∂(N ·V)
∂n

+ κGAN ·V
}

n ·Wdσ. (33)

By Corollary 1, we know that GA = 0 on Σ∗. Hence, noting that N|Σ = n, we obtain

d2 JA(Σ∗)[V,W] =
∫
Σ∗

{
G′An ·V+

∂GA
∂n

(n ·V)n ·W
}

dσ. (34)

Here, because pN ≡ 0, and uN = 0 and ∂nuN = λ on Σ∗, G′A |Σ∗ is given by

G′A |Σ∗ =
{

(λp′N+uNu′N)κ+
(
λpN+

1
2

u2
N

)
κ′

− 〈∇u′N,∇pN〉− 〈∇uN,∇p′N〉 +λ(∇p′N ·n+∇pN ·n′)
} ���Σ∗

= λκp′N.

On the other hand, we note that, for ϕ,ψ ∈ H3(Ω), ∇(∇ϕ · ∇ψ) · n = (∇2ϕ∇ψ +
∇2ψ∇ϕ) · n. This identity holds true because the Hessian ∇2ϕ of ϕ is symmetric.
Hence, the term ∂nGA vanishes on Σ∗ because

∂nGA |Σ∗ =

{
(λ∂npN+uN∂nuN)κ+

(
λpN+

1
2

u2
N

)
∂nκ

− (∇2uN∇pN+∇
2pN∇uN) ·n +λ∇2pNn ·n

} ���Σ∗
= 0.
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Thus, we have

d2 JA(Σ∗)[V,W] =
∫
Σ∗
λκp′NWn ·Vdσ,

where p′NW satisfies the PDE system (32), proving the proposition. ut

In view of the previous proposition, we see that in order to evaluate the shape Hessian
of J, we first need to compute the solution p′NW of (32) (although the derivation of this
set of equations follows standard techniques issued, for example, in [71], we provide
it in the appendix for the sake of completeness; see Proposition A.1) which depends
on u′NW and hence to the perturbation field W. In terms of numerical aspect, this step
is quite problematic to implement in an iterative procedure because it would require
the solution of (32) for each deformation field W at every iteration. To resolve the
issue, we can again apply the adjoint method (see Remark 4 in Section 3.4) as done
in the proof of Proposition 1. Before we do this, let us first examine the symmetry of
the shape Hessian d2 J (Σ∗) of J with respect to the velocity fields V and W.

3.4 Symmetricity of the Shape Hessian at a Critical Shape

Here, let us derive the shape Hessian d2 J (Σ∗)[V,W], but in a slightly different fash-
ion, of J without imposing assumption (A) in expressing its shape gradient (see ex-
pression (26)). We will show that, in this case, the corresponding expression for the
shape Hessian is symmetric with respect to V and W. Again, we denote w = uN −uR
and let Ns = Ns (W) again be a smooth extension of ns . Then, J (Σ) = 1

2

∫
Σ
|w |2 dσ

and from (17), we obtain

dJ (Σ)[V] =
∫
Σ

{ww′V +gV ·n}dσ,

where g = w∇w ·n+ 1
2 κw

2. Furthermore, we get

d2 J (Σ)[V,W]

=

∫
Σ

{w′Ww′V +ww
′′
VW + [∂nww

′
V +w∂nw

′
V + κww

′
V ]W ·n}dσ

+

∫
Σ

{g′WV ·N+gV ·N′W + [∂ngV ·N+g∂n(V ·N)+ κgV ·N]W ·n}dσ, (35)

where w′′VW denotes the shape derivative of w along the directions of V and W (ap-
plied consecutively) and g′W =w

′
W∇w ·N+w∇w

′
W ·N+w∇w ·N

′
W +

1
2 κ
′
Ww2+ κww′W .

Now, according to Corollary 1, we have w ≡ 0 and g ≡ 0 at Σ = Σ∗ which also gives
us g′W ≡ 0 on Σ∗. Therefore, d2 J (Σ∗)[V,W] =

∫
Σ∗
w′Vw

′
W dσ. Meanwhile, for β = κ,

we know that u′R ≡ 0 on Ω̄∗ by Lemma 2. Thus, we obtain

d2 J (Σ∗)[V,W] =
∫
Σ∗

u′NVu′NW dσ, (36)

which clearly shows the symmetry (with respect to the deformation fields V and W)
of the shape Hessian at a critical shape.
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Let us now write (36) in its equivalent form using the adjoint method. For this
purpose, we will denote the corresponding adjoint of u′NV and u′NW by ΦW and ΦV ,
respectively. (The choice of subscripts for these adjoints will be made clear below.)

Clearly, both ΦW and ΦV are harmonic functions and both vanishes on Γ. Mean-
while, on Σ∗, we take ∂nΦW = u′NW and ∂nΦV = u′NV , so that (via Green’s second
identity) we obtain the following equalities∫
Σ∗

u′NVu′NW dσ =
∫
Σ∗

u′NV ∂nΦW dσ =
∫
Σ∗
ΦW ∂nu′NV dσ =

∫
Σ∗
ΦW (λκV ·n) dσ

=

∫
Σ∗

u′NW ∂nΦV dσ =
∫
Σ∗
ΦV ∂nu′NW dσ =

∫
Σ∗
ΦV (λκW ·n) dσ.

Consequently, the adjoint states ΦW and ΦV satisfy the PDE systems

−∆ΦW = 0 in Ω∗, ΦW = 0 on Γ, ∂nΦW = u′NW on Σ∗; (37)
−∆ΦV = 0 in Ω∗, ΦV = 0 on Γ, ∂nΦV = u′NV on Σ∗, (38)

respectively. Hence, we conclude that (36) can also be expressed as

d2 J (Σ∗)[V,W] =
∫
Σ∗
λκΦWV ·ndσ =

∫
Σ∗
λκΦVW ·ndσ, (39)

whereΦW andΦV satisfy (37) and (38), respectively. Evidently, this shows that, at the
optimal shape solution Ω∗ of J, only the normal components of V and W contributes
to the shape Hessian.

Remark 4 We emphasize that the shape Hessian d2 JA(Σ∗)[V,W]=
∫
Σ∗
λκp′NWn ·Vdσ

given in Proposition 3 is also impractical to use in numerical calculation because an
appropriate choice for the deformation field W is difficult to determine directly from
the given boundary integral (see Section 5). To circumvent this difficulty, we again
apply the adjoint method. First, we let Ψ be harmonic on Ω such that it vanishes
on Γ. Letting ∂nΨ = λκV ·n on Σ, we get (via Green’s second identity and equation
(32)) the following equalities

∫
Σ
λκp′NWn ·Vdσ =

∫
Σ

p′NW ∂nΨdσ =
∫
Σ
Ψ∂np′NW dσ =∫

Σ
(Ψu′NW + λΨ)n ·Wdσ. Next, we let another function Π to be harmonic on Ω such

that Π = 0 on Γ. Also, we let ∂nΠ = Ψ, so that (via Green’s second identity) we
have

∫
Σ
Ψu′NW dσ =

∫
Σ
∂nΠu′NW dσ =

∫
Σ
Π∂nu′NW dσ =

∫
Σ
λκΠn ·Wdσ. Summariz-

ing these results we can therefore write the shape Hessian d2 JA(Σ∗)[V,W] as

d2 JA(Σ∗)[V,W] =
∫
Σ∗
λκp′NWn ·Vdσ =

∫
Σ∗
λ(Ψ+ λκΠ)n ·Wdσ, (40)

where Ψ and Π satisfy the following PDE systems

−∆Ψ = 0 in Ω∗, Ψ = 0 on Γ, ∂nΨ = λκV ·n on Σ∗; (41)
−∆Π = 0 in Ω∗, Π = 0 on Γ, ∂nΠ = Ψ on Σ∗, (42)

respectively. Here, we notice that Ψ ≡ u′NV on Ω̄∗. Hence, looking back to equation
(38), we find that ΦV is exactly equal to Π satisfying (42) which means that we may
actually write the shape Hessian d2 J (Σ∗)[V,W] given in (39) as

d2 J (Σ∗)[V,W] =
∫
Σ∗
λκΠn ·Wdσ. (43)
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Remark 5 In (35), we notice the dependence of the shape Hessian d2 J (Σ)[V,W] (for
Ω different from the optimal domain Ω∗) to the shape derivative κ′W of the mean
curvature κ along W ∈ Θ appearing on g′W . The explicit form of κ′W can be shown to
be given by (see [22,71])

κ′W = trace
{

D
[
(DWn ·n)n− (DW)>n

]
−DnDW

}
−∇κ ·W.

Clearly, this expression consists of a second-order tangential derivative of the pertur-
bation field W, and this derivative actually exists due to our assumption that Ω is of
class C2,1 [22,71]. From this observation, we deduce that the shape Hessian defines
a continuous bilinear form

d2 J (Σ) : H1(Σ)×H1(Σ)→ R;

that is, |d2 J (Σ)[V,W]| . ‖V‖H1 (Σ) ‖W‖H1 (Σ) . Here, the notation H1(·) denotes the
Sobolev space H1(·) := {u := (u1,u2) : u1,u2 ∈ H1(·)} and is equipped with the norm
‖u‖2H1 ( ·)

= ‖u1‖
2
H1 ( ·)
+ ‖u2‖

2
H1 ( ·)

. Similar definition is also given to the H1
Γ,0(·)-space.

In view of the previous remark, it is natural to ask whether it is true that d2 J (Σ∗)[V,V] &
‖V‖2H1 (Σ∗)

. This question actually refers to the stability of a local minimizer Ω∗ of J.
In relation to this, we recall from [23,24] (a result regarding sufficient second or-
der conditions) that a local minimizer Ω∗ is stable if and only if the shape Hessian
d2 J (Σ∗) is strictly coercive in its corresponding energy space H1(Σ∗). Unfortunately,
this kind of strict coercivity cannot be established for the shape Hessian d2 J (Σ∗) of
J. Nevertheless, we shall show in the next subsection that sufficient condition can be
derived to obtain strict coercivity in a weaker space. We note that the derived coer-
civity criterion is exactly the same as in the case of the shape Hessian d2 Ji of the
cost functional Ji , i = 1,2,3,4, as shown in [31,32,33,68], respectively. It is worth
remarking that, among these cost functions, only the shape Hessian d2 J2(Σ∗) of J2 is
H1(Σ∗)-coercive under the derived coercivity criterion (see [31, Proposition 2.12]).

For the sake of comparison, let us also compute the shape Hessian of the cost
functional J1(Σ) at Σ = Σ∗. From Remark 2, we know that the gradient of J1(Σ) only
differs by the addition of the integral

∫
Σ

(uN∇uN ·n)n ·Vdσ =:
∫
Σ
g1n ·Vdσ from the

shape gradient of J (Σ). Computing the shape derivative of g1 at Ω = Ω∗ along the
deformation field W, we get g′1W |Σ∗ = u′NW (∇uN ·N)+uN(∇u′NW ·N+∇uN ·N′W ) |Σ∗ =
λu′NW . Meanwhile, we have ∇(uN∇uN ·n) ·n = (∇uN ·n)2 +uN[(∇2uN)n] ·n = λ2 on
Σ∗. Hence, from (34) with G replaced by g1, together with equation (31) in Propo-
sition 3, we get the final expression for the shape Hessian of J1 at Ω = Ω∗ (cf. [32,
Equation (21)]):

Proposition 4 Let Ω be of class C2,1 and V,W ∈ Θ. Then, the shape Hessian of J1 at
Ω∗ is given by

d2 J1(Σ∗)[V,W] =
∫
Σ∗

{
λ(κp′NW +u′NW )n ·V+ λ2(n ·V)n ·W

}
dσ.

Here, we mention that the above expression was also computed in [32] but through
shape calculus for star shape domains, hence, we refer the readers to the aforemen-
tioned reference for comparison.
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Meanwhile, following Remark 4, we can also write d2 J1(Σ∗)[V,W] in terms of
appropriate adjoint states. To do this, we let Υ be harmonic in Ω and be zero on Γ.
Moreover, we let ∂nΥ = λV · n on Σ, so that by Green’s second identity we have,∫
Σ

u′NW (λn ·V) dσ =
∫
Σ

u′NW ∂nΥdσ =
∫
Σ
Υ∂nu′NW dσ =

∫
Σ
λκΥn ·Wdσ. Hence, us-

ing the results from Remark 4, we therefore have the following equivalent expression
for d2 J1(Σ∗)[V,W]:

d2 J1(Σ∗)[V,W] =
∫
Σ∗
{λ2κΠ+ λκΥ+ λΨ+ λ2(n ·V)}n ·Wdσ,

where the adjoint states Ψ and Π satisfy the boundary value problems (41) and (42),
respectively, while Υ is the unique solution to the PDE system

−∆Υ = 0 in Ω∗, Υ = 0 on Γ, ∂nΥ = λV ·n on Σ∗. (44)

Here, it is worth to stress out that the shape Hessian d2 J1(Σ∗)[V,W] depends on the
solutions of three boundary value problems as opposed to the case of d2 JA(Σ∗)[V,W]
which depends only on the solutions of two PDE systems. In terms of numerical
aspects, this means that we need to solve an additional variational problem in order
to evaluate the descent direction for a gradient-based descent algorithm.

3.5 Coercivity of the Shape Hessian at its Optimal Solution

Let us now determine which weaker space of H1(Σ∗) does the shape Hessian d2 J (Σ∗)
is strictly coercive. To do this, we use the method already used in [28] (see also [31,
32,33,68]). We start by introducing the following operators which are linear contin-
uous as a multiplier by a smooth function (see [68, Section 3.4]):

L : H1/2(Σ∗)→ H1/2(Σ∗), LV := λVn;

M : H1/2(Σ∗)→ H1/2(Σ∗), Mv := κv.

Here, Vn :=V ·n and κ is, of course, the mean curvature of Σ∗. The continuity of these
operators follows from the following result.

Lemma 3 Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary Γ := ∂Ω. Then,
the map v 7→ φv is continuous in H1/2(Γ) for any v ∈ H1/2(Γ) and φ ∈ C0,1(Γ).

Proof Recall that the fractional Sobolev space H1/2(Γ) (the trace space for H1(Ω))
is equipped with the norm

‖v‖1/2,2 = ‖v‖L2 (Γ) + |v |1/2,2,Γ, |v |1/2,2,Γ =

(∫
Γ

∫
Γ

|v(x)− v(y) |2

|x− y |2
dx dy

) 1/2

.

Let φ be a Lipschitz function. Then, we have the inequality

|φ(x)v(x)−φ(y)v(y) | . ‖φ‖∞ |v(x)− v(y) |+ |v(y) | |x− y |.
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Hence, |φv |1/2,2,Γ can be estimated as follows

|φv |1/2,2,Γ =

(∫
Γ

∫
Γ

|φ(x)v(x)−φ(y)v(y) |2

|x− y |2
dx dy

) 1/2

. ‖φ‖∞ |v |1/2,2,Γ +

(∫
Γ

∫
Γ

|v(y) |2 dx dy
) 1/2

. ‖φ‖∞ |v |1/2,2,Γ + |Γ|
1/2‖v‖L2 (Γ) .

Because ‖φv‖L2 (Γ) 6 ‖φ‖∞‖v‖L2 (Γ) , then the assertion is proved. ut

In addition to the operators introduced above, let us also define the map S as the
Steklov-Poincaré operator on Σ∗ which is defined by (see [72])

S : H1/2(Σ∗)→ H−1/2(Σ∗), S(Φ) :=
∂Ψ

∂n
�����Σ∗
, (45)

where Ψ ∈ H1(Ω∗) satisfies

−∆Ψ = 0 in Ω∗, Ψ = 0 on Γ, Ψ = Φ on Σ∗.

The operator S, also called the Dirichlet-to-Neumann map, is H1/2(Σ∗)-coercive (cf.
[33, Lemma 2]). Its inverse R called the Neumann-to-Dirichlet map is defined by

R : H−1/2(Σ∗)→ H1/2(Σ∗), R

(
∂Ψ

∂n

)
:= Φ |Σ∗ ,

where Φ ∈ H1(Ω∗) satisfies

−∆Φ = 0 in Ω∗, Φ = 0 on Γ, ∂nΦ = ∂nΨ on Σ∗.

Now, using the operatorsL,M,R, and denoting the L2(Σ∗)-inner product by (·, ·)L2 (Σ∗) ,
we can write (31) as

d2 JA(Ω∗)[V,W] = (MLV,R (LW+R (MLW)))L2 (Σ∗) .

By the continuity of the maps L andM, and the bijectivity of R, we deduce that the
shape Hessian d2 JA at Ω∗ is L2(Σ∗)-coercive (whenever κ is non-negative) and we
state this result formally as follows.

Proposition 5 For Σ∗ with non-negative mean curvature κ, the shape Hessian d2 JA
at Ω∗ is L2(Σ∗)-coercive; i.e.,

d2 JA(Σ∗)[V,V] & ‖V‖2L2 (Σ∗) .

The above result also means that the minimization problem “minΩ J (Σ) subject to (3)
and (6)” (with condition (A) imposed in computing the gradient) is (algebraically)
ill-posed. We further discuss this notion of ill-posedness (in the case of the present
shape optimization formulation) briefly as follows. As already mentioned in the pre-
vious subsection, the shape optimization problem is well-posed if its local minimum
is stable; that is, if the shape Hessian d2 JA(Σ∗) is strictly coercive in its energy space
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H1(Σ∗) (i.e., d2 JA(Σ∗)[V,V] & ‖V‖2H1 (Σ∗)
). If, on the other hand, the positivity of the

shape Hessian at Σ∗ only holds on a weaker (Sobolev) space, then the shape opti-
mization problem is said to be (algebraically) ill-posed (cf. [30,32]). This means,
in particular, that tracking the Dirichlet data in the L2-norm is not sufficient, and
as strongly assumed by the authors in [34], they have to be tracked relative to H1.
This aforementioned lack of coercivity is known from other PDE-constrained opti-
mal control problems as the so-called two-norm discrepancy (see, e.g., [30] and the
references therein) and this concept of norm discrepancy under shape optimization
framework was first observed in [23,24,25,27], among others.

Remark 6 In case of the cost functional J4(Ω) = 1
2 |uN −uR |

2
H1 (Ω)

examined in [68],

the shape Hessian is likewise a continuous bilinear form, i.e., d2 J4(Ω) : H1(Σ) ×
H1(Σ) → R. This result is primarily due to the fact that the computed expression
for d2 J4(Ω) also consists of the shape derivative κ′ of the mean curvature κ. Also,
using the operators introduced above, the shape Hessian d2 J4 at Ω∗ was shown to be
expressible as

d2 J4(Ω∗)[V,W] = (MLV,R (M +S)LW)L2 (Σ∗) ,

which is H1/2(Σ∗)-coercive provided that Σ∗ has non-negative mean curvature κ.

Remark 7 Similarly, we have that d2 J1(Ω) : H1(Σ) ×H1(Σ) → R and using the op-
erators introduced above, we may write the shape Hessian of J1 at Ω = Ω∗ given in
Proposition 4 as follows:

d2 J1(Ω∗)[V,W] = (R (M +S)LV,R (M +S)LW)L2 (Σ∗) ,

This expression is also H1/2(Σ∗)-coercive (i.e., d2 J1(Σ∗)[V,V] & ‖V‖2H1/2 (Σ∗)
) pro-

vided that Σ∗ has non-negative mean curvature κ.
On the other hand, in case of the shape Hessian d2 J (Σ∗)[V,W], we deduce (via

the continuity of the maps L andM, and the bijectivity of R) that

d2 J (Σ∗)[V,V] = ‖R (MLV)‖2
L2 (Σ∗) ∼ ‖MLV‖2

H−1 (Σ∗),

whenever κ is non-negative. Here, the notation “P ∼ Q” means that “P . Q and P &
Q.” Hence, the positivity of d2 J (Σ∗) holds only in the weaker space L2(Σ∗).

4 Existence of optimal domains of the shape optimization problem

Before going to the numerical treatment of the proposed shape optimization reformu-
lation “minΩ J (Σ) subject to (3) and (6)” (or equivalently, “minΩ J (Σ) subject to (7)
and (8)”) of (1) and for completeness, let us first address the question of existence of
optimal solution to the said problem. On the other hand, as regards to the existence
of solution to the exterior Bernoulli FBP (1), we refer the readers to [1].

To carry out our present task, we use the results established in [68] regarding the
continuity of the state problems with respect to domain. We begin by rewriting the
weak formulations (7) and (8) of (3) and (6), respectively, as follows:
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Find zN = uN−uN0 ∈ H1
Γ,0(Ω) such that∫

Ω

∇zN · ∇ϕdx+
∫
Ω

∇uN0 · ∇ϕdx−
∫
Σ

λϕdσ = 0, ∀ϕ ∈ H1
Γ,0(Ω); (46)

find zR = uR−uR0 ∈ H1
Γ,0(Ω) such that∫

Ω

∇zR · ∇ϕdx+
∫
Ω

∇uR0 · ∇ϕdx+
∫
Σ

βzRϕdσ−
∫
Σ

λϕdσ = 0, ∀ϕ ∈ H1
Γ,0(Ω).

(47)
In above equations, uN0 and uR0 are two fixed functions in H1(U) such that uN0 =
uR0 = 1 on Γ. Given the unique solvability of (46) and (47) in H1(Ω), we define the
map Ω 7→ (zN, zR) = (zN(Ω), zR(Ω)) and denote its graph by

F = {(Ω, zN(Ω), zR(Ω)) :Ω ∈ Oad and zN(Ω), zR(Ω) satisfies (46)–(47) on Ω}.

Hence, the problem “minΩ J (Σ) subject to (7) and (8)” is equivalent to the problem
of finding a solution (Ω, zN(Ω), zR(Ω)) that minimizes J (Ω) = J (Ω, zN(Ω), zR(Ω))
on F . Such minimization problem is usually solved by endowing the set F with a
topology for which F is compact and J is lower semi-continuous. For this purpose,
we follow the ideas developed in [43] and the ones furnished in [13,42].

Let us now characterize the set of admissible domains Oad and then give an ap-
propriate topology on it. In the previous section, we assume a C2,1 regularity for the
domain Ω to guarantee the existence of the shape derivatives of the states and to
establish the shape Hessian of J, for the existence proof of optimal solution to the
problem




Find (Ω∗, zN(Ω∗), zR(Ω∗)) ∈F such that
J (Ω∗, zN(Ω∗), zR(Ω∗)) 6 J (Ω, zN(Ω), zR(Ω)), ∀(Ω, zN(Ω), zR(Ω)) ∈F ,

(48)

it is enough to assume that Ω has a C1,1 smooth free boundary Σ (cf. [68]). Hence,
we let Σ be parametrized by a vector function φ ∈ C1,1(R,R2) (i.e., Σ = Σ(φ) = {φ =
(φ1(t), φ2(t)) : t ∈ (0,1]}) where, in addition, φ is assume to possess the following
properties:

(P1) φ is injective on (0,1] and is 1-periodic;
(P2) there exist positive constants c0,c1,c2 and c3 such that

|φ(t) | 6 c0, c1 6 |φ
′(t) | 6 c2, |φ′′(t) | 6 c3, for all t ∈ (0,1);

(P3) Ω =Ω(φ) ⊂ U, U is a fixed, connected, bounded open subset of R2;
(P4) there is a positive constant γ such that dist(Γ,Σ(φ)) > γ.

If φ satisfies the above conditions, then we say that φ is inUad. The set of admissible
domains Oad we consider here is now given as follows

Oad = {Ω =Ω(φ) ⊂ U : φ ∈ Vad}, (49)
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where Vad is a compact subset of Uad. An example of Vad is the set {φ ∈ Uad :
|φ′′(t)− φ′′(s) | . |t − s |, t, s ∈ (0,1]} which is compact in C1,1(R,R2). In addition to
(49), we shall also consider the larger set

Õad = {Ω =Ω(φ) ⊂ U : φ ∈ Uad}.

The set U in assumption (P3) and the one introduced in Section 3 are not necessarily
the same set. However, we point out that in (P3), we are assuming that all admissible
domains Ω(φ) are contained in the hold-all domain U in the same manner that the
universal set U in equation (9) holds all the possible deformations of the reference
domainΩ. Also, we assume that U is large enough that it contains the optimal domain
Ω∗ that solves the exterior Bernoulli FBP (1). Here, we are in fact requiring that
dist(Σ(φ), ∂U) > 0, for all φ ∈ Uad, and dist(Σ∗, ∂U) > 0. In this way, we can say
that the shape optimization problem “minΩ J (Σ) subject to (7) and (8)” is indeed
equivalent to the free boundary problem (1). Meanwhile, in view of (49), we see that
every admissible domain Ω(φ) is a uniformly open set in R2 and therefore satisfy
the well-known uniform cone property (cf. [46]). Moreover, as a consequence, these
admissible domains satisfy a very important extension property. More precisely, for
every k > 1, p > 1 and domain Ω ∈ Õad, there exists an extension operator

EΩ : W k,p (Ω)→W k,p (U) (50)

such that ‖EΩu‖W k,p (U ) 6 C‖u‖W k,p (Ω) , where C is a positive constant independent
of the domainΩ (see [18]). Using these properties, we can ensure a uniform extension
ũ ∈ H1(U) from Ω to U of every function u ∈ H1(Ω). In the discussion that follows,
we will use this result to finally define the topology we shall work with.

Let us first define the convergence of a sequence {φn} ⊂ Uad by

φn→ φ⇐⇒ φn→ φ and φ′n→ φ′ uniformly on [0,1], (51)

i.e., if and only if φn→ φ in the C1-topology. We can then define the convergence of
a sequence of domains {Ωn} := {Ω(φn)} ⊂ Õad by

Ωn→Ω⇐⇒ φn→ φ. (52)

Meanwhile, we define the convergence of a sequence {zNn} of solutions of (46) on
Ωn to the solution of (46) on Ω as follows

zNn→ zN⇐⇒ z̃Nn→ z̃N weakly in H1(U). (53)

Similarly, the convergence of a sequence {zRn} of solutions of (47) on Ωn to the
solution of (47) on Ω is define

zRn→ zR⇐⇒ z̃Rn→ z̃R weakly in H1(U). (54)

In (53) and (54), the extensions z̃i, z̃in, i = N,R, are defined as EΩzi,EΩzin, i = N,R,
respectively, where EΩ is of course the extension operator (50).
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Finally, the topology we introduce on F is the one induced by the convergence
defined by

(Ωn, zNn, zRn)→ (Ω, zN, zR)⇐⇒



φn→ φ,
zNn→ zN,
zRn→ zR.

(55)

We now state the main result of this section.

Theorem 1 The minimization problem (48) admits a solution in F .

As stated before, the existence proof is reduced to proving the compactness of F
and the lower semi-continuity of J. Regarding the former problem, we note that
the convergence φn → φ follows immediately from the compactness of Vad and the
Arzelà-Ascoli theorem, hence, the compactness of F with respect to the convergence
(55) is already guaranteed. This means that we only need to show the continuity of
the state problems (3) and (6) with respect to the domain in order to complete the
proof of compactness of F . The proof of this continuity is not straightforward but
has already been done in [68] using the tools established in [14,15], so we simply
state the result as follows.

Proposition 6 ([68]) With the convergence of a sequence of domains given in (52),
we let {(φn, zNn, zRn)} be a sequence in F where zNn := zN(φn) and zRn := zR(φn)
are the weak solutions of (46) and (47) on Ωn := Ω(φn) ⊂ Õad, respectively. Then,
there exists a subsequence {(φk, zNk, zRk )} and elements φ ∈ Uad and zN, zR ∈ H1(U)
such that

φk → φ, z̃Nk ⇀ zN in H1(U), z̃Rk ⇀ zR in H1(U),

where zN = zN(φ) = z̃N |Ω(φ) and zR = zR(φ) = z̃R |Ω(φ) are the unique solutions of
equations (46) and (47) on Ω :=Ω(φ), respectively.

In the proof of the above proposition, three essential estimates were utilized. The
first one is a result regarding the uniform Poincaré inequality proved in [15] (see,
particularly, Corollary 3(ii)). The second one concerns about the uniform continuity
of the trace operator with respect to the domain (see [13, Theorem 4]), and the last
auxiliary result is about a uniform extension of the state variables from Ωn to U such
that their respective H1(U)-norms are bounded above by a constant positive number
(see first part of the proof of Proposition 6 given in [68]). For completeness, we recall
them as follows:

Lemma 4 Let φ ∈ Vad and Ω(φ),Ωn := Ω(φn) ∈ Õad. Then, the following results
hold.

(i) For every u ∈ H1
Γ,0(Ω), we have the estimate ‖u‖L2 (Ω) . |u|H1 (Ω) .

(ii) For all real number q such that 1
2 < q 6 1 and functions u ∈ H1(U), we have

‖u‖L2 (Σ(φ)) . ‖u‖Hq (U ),

where ‖ · ‖Hq (U ) denotes the Hq (U)-norm.
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(iii) There exists a uniform extension z̃Rn (respectively z̃Nn) of zRn (respectively zNn)
from Ωn to U and a constant CR > 0 independent of n such that ‖ z̃Rn‖H1 (U ) 6 CR
(respectively ‖ z̃Nn‖H1 (U ) 6 CN, where CN > 0 is constant).

In relation to the second statement of the above lemma, we note that due to assump-
tion (P3) and the uniform cone property of the domain Ω(φ) ∈ Õad, the norm of the
trace map tr : H1

0 (U) → L2(Σ(φ)) can actually be bounded uniformly with respect
to Ω(φ) ∈ Oad; see [59]. On the other hand, we mention that the proof of Lemma
4(iii) given in [68] uses the first two estimates (i) and (ii). Note that the third part
of the lemma already guarantees the existence of a subsequence of { z̃Rn} (respec-
tively { z̃Nn}) which weakly converges in H1(U) to a limit denoted by z̃R (respec-
tively z̃N). Hence, the proof of Proposition 6 is completed by showing that the re-
striction of z̃R (respectively z̃N) in Ω(φ) coincides with the unique solution of (47)
(respectively (46)). Because of the basic role Lemma 4(iii) plays in the proof of the
lower-semicontinuity of J, we provide its proof below.

Proof (Proof of Lemma 4(iii)) Throughout the proof we use the notation (·)n :=
(·)(φn). From a famous paper of Chenais [18], we know that the solution zRn of
(47) on Ωn admits an extension z̃Rn in H1(U) such that

‖ z̃Rn‖H1 (U ) . ‖zRn‖H1 (Ωn ) .

So, to establish our desired result, we need to prove that ‖zRn‖H1 (Ωn ) is bounded with
respect to n. In view of (8), taking ϕ = zRn ∈ H1

Γ,0(Ωn), we have∫
Ωn

|∇zRn |
2 dx+

∫
Σn

β |zRn |
2 dσ = −

∫
Ωn

∇uR0 · ∇zRn dx+
∫
Σn

λzRn dσ.

This yields the estimate

|zRn |
2
H1 (Ωn ) 6 |uR0 |H1 (U ) |zRn |H1 (Ωn ) + |λ | |U |

1/2‖zRn‖L2 (Σn ) . (56)

Next, we show that ‖zRn‖L2 (Σn ) can be bounded by |zRn |H1 (Ωn ) . This is where we
apply the first two parts of the lemma (i.e., Lemma 4(i) and (ii)) to obtain

‖zRn‖L2 (Σn ) . ‖ z̃Rn‖H1 (U ) . ‖zRn‖H1 (Ωn ) . |zRn |H1 (Ωn ) .

Going back to (56), we get

|zRn |H1 (Ωn ) . ‖uR0‖H1 (U ) + |λ | |U |
1/2.

Applying Lemma 4(i) once more, we obtain

‖zRn‖H1 (Ωn ) . ‖uR0‖H1 (U ) + |λ | |U |
1/2,

which establishes the boundedness of {‖ z̃Rn‖H1 (U ) }. The same line of argument can
be used to prove that there exists a uniform extension z̃Nn of zNn from Ωn to U and a
constant CN > 0 independent of n such that ‖ z̃Nn‖H1 (U ) 6 CN. (In fact, taking β = 0
in above proof easily verifies this statement.) ut
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Having recalled the above results, we now proceed on the second part of the proof of
Theorem 1 by proving the next result.

Proposition 7 The cost functional

J (Σ) = J (Ω,uN(Ω),uR(Ω)) =
1
2

∫
Σ

|uN(Ω)−uR(Ω) |2 dσ

is lower semi-continuous on F in the topology induced by (55).

To prove the above proposition, we will exploit the parametrization φ of Σ. Also, its
properties stated in assumption (P3) will be used implicitly many times in the proof.
The following result, which is a consequence of Lemma 4(ii) (see [13, Corollary 2],
and also [14, Corollary 1]), will also be central to the proof of Proposition 7 given
below.

Lemma 5 ([13,14]) Let φ ∈ Uad and {φn} ⊂ Uad be a sequence such that φn→ φ in
the C1([0,1],R2)-norm. Then, for any u ∈ H1(U), we have limn→∞u ◦ φn = u ◦ φ in
L2([0,1]).

Proof (Proof of Proposition 7) Let {(Ωn,uNn,uRn)} be a sequence in F ,Ωn :=Ω(φn),
and assume that (Ωn,uNn,uRn) → (Ω,uN,uR) as n → ∞, where Ω := Ω(φ) and the
triple (Ω,uN,uR) is in F . For convenience, we let wn = uNn − uRn (recalling that
w = uN−uR) and their extensions in H1(U) by w̃n and w̃, respectively. Here, we em-
phasize that w = w̃ |Ω is in H1

Γ,0(Ω) which is essentially due to the boundedness of the
trace operator. Moreover, for any u ∈ H1

Γ,0(U), the restriction u|Ωn is in H1
Γ,0(Ωn). We

have

2|J (Σ(φn)− J (Σ(φ)) |

=
�����

∫
Σ(φn )

|wn |
2 dσ−

∫
Σ(φ)
|w |2 dσ

�����

6
�����

∫ 1

0

[
|(wn ◦φn)(t) |2 |φ′n(t) | − |(w ◦φ)(t) |2 |φ′(t) |

]
dt
�����

6
�����

∫ 1

0

[
(wn ◦φn)2− (w ◦φ)2

]
|φ′n | dt

�����
+
�����

∫ 1

0
(w ◦φ)2(|φ′n | − |φ

′ |) dt
�����

=: I1+ I2.

We first look for an estimate for the second integral I2. For this purpose, we apply the
estimates in Lemma 4 and the compactness of the injection of H1(U) into Hq (U) for
1
2 < q < 1, to obtain

I2 . sup
[0,1]
|φ′n −φ

′ | ‖w‖2
L2 (Σ(φ)) . sup

[0,1]
|φ′n −φ

′ | ‖ w̃‖2
H1 (U ) . sup

[0,1]
|φ′n −φ

′ |.

Clearly, using the uniform convergence of φn→ φ in [0,1] (see (51)), we get the limit
limn→∞ I2 = 0.
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On the other hand, to get an estimate for the first integral I1, we first apply the
identity a2− b2 = (a− b)2+2b(a− b) to obtain

I1 6
�����

∫ 1

0
(wn ◦φn −w ◦φ)2 |φ′n | dt

�����
+2

�����

∫ 1

0
(w ◦φ)(wn ◦φn −w ◦φ) |φ′n | dt

�����
=: I11+2I12.

For I12, we have the estimate

I12 6
�����

∫ 1

0
(w ◦φ)(wn ◦φn −w ◦φn) |φ′n | dt

�����
+
�����

∫ 1

0
(w ◦φ)(w ◦φn −w ◦φ) |φ′n | dt

�����
. ‖w‖L2 (Σ)

(
‖wn −w‖L2 (Σn ) + ‖w ◦φn −w ◦φ‖L2 ([0,1])

)
. ‖w̃n − w̃‖Hq (U ) + ‖w ◦φn −w ◦φ‖L2 ([0,1]) .

On the other hand, for I11, we have

I11 6
�����

∫ 1

0
(wn ◦φn −w ◦φn)2 |φ′n | dt

�����
+2

�����

∫ 1

0
(wn ◦φn −w ◦φn)(w ◦φn −w ◦φ) |φ′n | dt

�����

+
�����

∫ 1

0
(w ◦φn −w ◦φ)2 |φ′n | dt

�����
. ‖wn −w‖

2
L2 (Σn ) + ‖wn −w‖

2
L2 (Σn ) (‖w‖L2 (Σn ) + ‖w‖L2 (Σ))+ ‖w ◦φn −w ◦φ‖L2 ([0,1])

. ‖w̃n − w̃‖Hq (U ) + ‖w ◦φn −w ◦φ‖L2 ([0,1]) .

The above estimates were obtained using the inequalities in Lemma 4. Combining
them, we arrive at

I1 . ‖w̃n − w̃‖Hq (U ) + ‖w ◦φn −w ◦φ‖L2 ([0,1]) .

Applying Lemma 5, and again using the compactness of the injection of H1(U)
into Hq (U) for 1

2 < q < 1, the convergences w̃n ⇀ w̃ in H1(U)-weak and φ′n →

φ′ in the C1([0,1],R2)-norm (see Proposition 6), we obtain limn→∞ I1 = 0. Thus,
limn→∞ |J (Σ(φn)− J (Σ(φ)) | = 0. Consequently, we find that limn→∞ J (Ωn,uNn,uRn) =
J (Ω,uN,uR); that is, J is continuous, and in particular, lower semi-continuous. ut

To conclude this section, let us formally provide the proof of Theorem 1 using Propo-
sition 6 and Proposition 7.

Proof (Proof of Theorem 1) Let (Ωn, zNn, zRn), Ωn = Ω(φn), be a minimizing se-
quence for the cost function J; that is, (Ωn, zNn, zRn) is such that

lim
n→∞

J (Ωn, zNn, zRn) = inf{J (Ω, zN, zR) : (Ω, zN, zR) ∈F }.

From Proposition 6, there exists a subsequence (Ωk, zNk, zRk ) and an element Ω =
Ω(φ) ∈ Oad such that Ωk →Ω (i.e., φk → φ uniformly in the C1 topology), z̃Nk ⇀ z̃N,
z̃Rk ⇀ z̃R in H1(U), and the functions z̃N |Ω and z̃R |Ω are the unique weak solutions to



A second-order shape optimization algorithm for the exterior Bernoulli free boundary problem 27

(46) and (47) inΩ, respectively. Using these, together with the continuity of J proved
in Proposition 7, we conclude that (by virtue of [43, Theorem 2.10])

J (Ω, z̃N |Ω, z̃R |Ω) = lim
k→∞

J (Ωk, zNk, zRk ) = inf{J (Ω, zN, zR) : (Ω, zN, zR) ∈F }.

ut

Remark 8 It is worth remarking that in [32], the authors did not tackle the question
of existence of optimal solution of the shape optimization problem examined in their
paper which is the Poisson case of (1) with a regular Dirichlet and Neumann data on
the fixed boundary and free boundary, respectively. Nevertheless, the authors tacitly
supposed the existence of optimal domains and assumed that it is sufficiently regular
to accomplish their objectives. We mention that, with the appropriate modification
on the proof of Theorem 1, the existence analysis for the shape optimization problem
studied in [32] can be carried out in a similar fashion (see [13]).

5 Numerical Algorithm and Examples

Here, using the gradient and Hessian informations, we will formulate a boundary
variation algorithm to numerically solve the minimization problem (5). We shall use
a Lagrangian-like method to carry out the numerical realization of the problem in con-
trast to the one applied in [12,44,50] which is an Eulerian-like type method known as
level-set method (see [64]). Of course, our approach is also different from [31,32,33]
which employs the concept of boundary integral equations and were then solved by
boundary element methods. Furthermore, there is another numerical method which
was recently proposed in [40] that employs the notion of conformal mapping method
to solve the FBP (1). This solution method was recently developed by Haddar and
Kress in [40] and relates the Bernoulli problem in the context of inverse problems.
Much more recently, another method was also introduced by Kress in [54] in an at-
tempt to improve the use of boundary integral equations for numerically solving the
Bernoulli problem. In terms of numerical performance, he demosntrated that his re-
cently proposed method inspired by Trefftz’ integral equation method [73] is more
robust and wider applicable than that of [40]. We mention here that Trefftz’ approach,
in principle, can be considered as a so-called trial method (see, e.g., [72]) which is
also a prominent numerical method for solving free boundary value problems such
as the Bernoulli problem.

5.1 Numerical Algorithm

In the following discussion, we give the details of the numerical algorithm we use to
solve some concrete numerical examples of (5).
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5.1.1 The Sobolev gradient method

Let us denote by Ωk the shape of the domain at the kth iteration. Then, at the (k +
1)th iteration, the shape Ω can be updated as Ωk+1 := Ωtk+1 = (I2 + tkV)Ω, where
tk > 0 is some small step size parameter and V represents the descent deformation
field Vk at the kth iterate. In perturbing the domain Ω, we may take V|Σ = −Gn
as the descent direction. However, this choice of the descent direction may cause
undesirable oscillations on the free boundary of the shape solution Ω∗. To avoid such
phenomena, we compute the descent direction via the so-called H1 gradient method
[6]; that is, we take V as the unique solution in H1

Γ,0(Ω) of the variational problem∫
Ω

(∇V : ∇ϕ+V ·ϕ) dx = −
∫
Σ

Gn ·ϕ dσ, ∀ϕ ∈ H1
Γ,0(Ω). (57)

In this sense, the deformation field V, also called in some literature as a Sobolev
gradient (see, e.g., [60]), provides a smooth extension of Gn over the entire domain
Ω, which not only smoothes the boundary [5] but also provides a preconditioning of
the descent direction. The method of regularizing the descent direction using (57) is
similar to the idea behind the so-called traction method introduced and popularized
in [2,3,4,5].

On the other hand, we note that the kernel G given in (15) depends on the mean
curvature of Σ. This means that we first need to calculate κ in order to determine V.
In this investigation, we evaluate this expression by first creating a smooth extension
of n using the idea of the H1 gradient method and then calculate κ as the divergence
of that smooth extension. This technique is possible because, by Proposition 5.4.8 of
[46, p. 218] (see also [38, Lemma 16.1, p. 390]), we know that, for a domain Ω of
class C2, there exists a unitary C1 extension ñ of n such that the mean curvature may
be defined as

κ = divΣn = div ñ.

Hence, based on this idea, we may numerically compute κ via the equation κ = divN,
where N is the smoothed extension of n satisfying the equation∫

Ω

∇N : ∇ϕ dx+
∫
Σ

N ·ϕ dσ =
∫
Σ

n ·ϕ dσ, ∀ϕ ∈ H1(Ω). (58)

5.1.2 Step Size

Let us now turn our attention to the computation of the step size to be used in our
algorithm. It is worth mentioning that the choice for tk can be decided in many ways.
Here, we shall update tk ∈ (0, ε] (where ε > 0 is some sufficiently small real number)
by following a heuristic approach inspired by the Armijo-Goldstein line search strat-
egy similar to the one offered in [50], but for level-set methods. Given the choice of
descent direction V|Σ = −Gn (this means, basically, that a(·, ·) in equation (60) below
is the usual inner product in L2(Σ)) and the definition of the domain Ωε , we know
that

J (Σε ) ' J (Σ0)+ εdJ (Σ0)[V] = J (Σ0)− ε‖G‖2
L2 (Σ0) (< J (Σ0)).
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The requirement J (Σε ) = (1−α)J (Σ0) for some α ∈ (0,1) then suggests the choice
ε = αJ (Σ0)/‖G‖2

L2 (Σ0)
. However, since we are regularizing V via (57), we need to

replace the L2-norm of G appearing in the denominator of the previous formula with
the H1(Ω)-norm of V, and then finally define the step size tk as

tk = αJ (Σk )/‖V‖2H1 (Ω) . (59)

We further explain the above formula as follows. In general, we may in fact con-
sider the variational equation

a (V,ϕ) = −〈Gn,ϕ〉L2 (Σ) , ∀ϕ ∈ X, (60)

where a(·, ·) is some bounded coercive bilinear form on an appropriate space X, to
obtain a regularization of the descent direction −Gn (see, e.g., [5, Section 6.3]). Then,
using (60) and the requirement that the relation J (Σε ) = (1 − α)J (Σ0) = J (Σ0) +
ε 〈Gn,V〉L2 (Σ) holds for some α ∈ (0,1), we end up with the equation

ε = −α
J (Σ0)

〈Gn,V〉L2 (Σ)
= α

J (Σ0)
a (V,V)

,

for any V ∈ H1
Γ,0(Ω). Hence, at each iteration, we may choose, for a fixed α, the step

size parameter tk as tk = αJ (Σk )/a (V,V) . This formula for tk clearly provides a
natural choice for the magnitude of the step size when the descent direction V is reg-
ularized using equation (60). Nevertheless, as investigated in [67] through various nu-
merical experiments, it is possible to change the denominator a (V,V) in the formula
for tk to get a better step size. In fact, by changing the H1(Ω)-norm in (59) by either
the H1

Γ,0(Ω)- or the L2(Σ)-norm, for instance, we can speed up the convergence of
the algorithm given below, as exhibited in [67]. Indeed, this claim can easily be sup-
ported by the fact that the sequence of inequalities ‖V‖−2

H1 (Ω)
. ‖V‖−2

H1
Γ,0 (Ω)

. ‖V‖−2
L2 (Ω)

obviously holds.
Now, with α ∈ (0,1) fixed, the step size will be decided according to the following

rule: we take tk as in (59) whenever there is a decrease in the computed cost value
from the previous to the next iteration loop (i.e., if J (Σk+1) 6 J (Σk )). Otherwise, if
the cost value increases, we reduce the step size and go backward: the next iteration
is initialized with the previous shape Ωk . We also reduce the step size tk if reversed
triangles are detected within the mesh update.

5.1.3 The Boundary Variation Algorithm (First-Order Method)

The main steps required for the computation of the kth domain is summarized as
follows:

Step 1 Fix the step size parameter and choose an initial shape Ω0.
Step 2 Solve the state equations and their corresponding adjoint state systems onΩk .

Also, solve the variational problem (58) on Ωk .
Step 3 Using the shape gradient, compute the descent direction Vk via (57) and the

step size tk by (59).



30 Julius Fergy T. Rabago, Hideyuki Azegami

Step 4 Using Vk and tk , perturb the current domain by Ωk+1 = (I2+ tkVk )Ωk .

Finally, to complete the above steps, we need to specify the stopping condition. Here,
we terminate the algorithm as soon as the inequality condition

J (Σk )/J (Σ0) < η, (61)

is satisfied for some sufficiently small real number η > 0 or if the algorithm already
completed a specified (maximum) computing time. It worth mentioning that a typical
stopping criterion is to find that whether the shape gradients in some suitable norm
are small enough. However, since we use the continuous shape gradients, it is hope-
less for us to expect very small gradient norm because of numerical discretization
errors. In addition, because we will be comparing our proposed method with that of
the classical Dirichlet-data-tracking approach and since this method uses a different
cost function, a normalization of the cost histories with the initial cost value that
corresponds to each method seems more appropriate to our case.

We shall refer to the above sequence of procedures with dJA given by (15) as the
gradient as Algorithm A.1. On the other hand, when using the full shape gradient dJ
given in Proposition 2 in Step 3, the above steps will be referred to as Algorithm B.1.

5.1.4 Incorporating the Shape Hessian Information in the Numerical Procedure

We remark that, with the help of the shape Hessian information, we can obviously
improve the convergence of the numerical method given in the previous section in
terms of the number of iterations required to complete the iteration scheme (see,
e.g., [28,68,72]). However, the drawback of a second-order method is that, in most
cases, it demands additional computational burden and time to carry out the task. In
this section, we will formulate a second-order optimization algorithm to solve the
minimization problem (5) following an idea first proposed by the second-author in
[7] (see also [8, Problem 4.2, Eq. (29)]). Particularly, we use a variant of the so-called
H1 Newton (or Sobolev Newton) method which utilizes the Hessian information to
compute the descent direction. The basic idea of this method is that it incorporates the
shape Hessian in obtaining a regularized descent direction for the algorithm similar
to equation (60) (see Remark 9 below). In our case, however, we propose to use only
the shape Hessian information at the solution of the FBP (1) (i.e., we use (40)).

To do the task, we define the descent direction W ∈H1
Γ,0(Ω) as the unique solution

of the variational equation∫
Ω

(∇W : ∇ϕ+W ·ϕ) dx = −
∫
Σ

(G+H∗[V])n ·ϕ dσ, ∀ϕ ∈ H1
Γ,0(Ω), (62)

where G, as before, is the kernel of the shape gradient while H∗[V], in this case,
denotes only the kernel of the shape Hessian at the solution of the FBP (1), i.e.,∫
Σ∗

H∗[V]n ·Wdσ := d2 J (Σ∗)[V,W] (cf. (43)). In case of the shape gradient com-
puted with assumption (A), the corresponding notation is H∗A[V]. In terms of the
adjoint states, these kernels of the shape Hessians are exactly given by

H∗[V] = λκΠ[V] and H∗A[V] = λ(Ψ[V]+ λκΠ[V]), (63)



A second-order shape optimization algorithm for the exterior Bernoulli free boundary problem 31

respectively. Here, of course, Ψ and Π satisfy equations (41) and (42), respectively.
In above expressions, we added the notation (·)[V] to emphasize that the expression
it is attached to is dependent to the deformation field V.

Now, the main steps to compute the kth domain Ωk are essentially the same as
that given in Section 5.1.3. However, in order to take into account the procedure in
computing W, we divide the third step of the original algorithm as follows:

Step 3.1 Using the shape gradient, compute the descent direction Vk via (57).
Step 3.2 Compute Ψ and Π by solving the PDE systems (41) and (42) at Ω =Ωk .
Step 3.3 Using the shape gradient and the shape Hessian, compute the descent direc-

tion Wk using (62).

Moreover, in Step 4 of the original algorithm, we replace Vk with the new deforma-
tion field Wk ; that is, we perturb the kth domain by Ωk+1 = (I2+ tkWk )Ωk . Here, the
step size tk can still chosen on the basis of the formula given in (59). However, in our
experience, this formula for the step size does not give much improvement in terms
of convergence speed for the second-order shape optimization algorithm. To exploit
the advantage of utilizing the shape Hessian information, an appropriate step size for-
mula has to be used to achieve at least a superlinear (or even quadratic) convergence
rate for the algorithm (see Remark 10 below).

Remark 9 We also remark that the computed boundary integral expression (33) with
GA replaced by G in the proof of Proposition 3, in general, can be further written into
the following form

d2 J (Σ)[V,W] =
∫
Σ

[
G′WVn+ (∂nG+ κG) VnWn−GK +G(DV)Wn

]
dσ,

where K = vΣ · (DΣn)wΣ +n · (DΣv)wΣ +n · (DΣw)vΣ, Vn :=V ·n for V ∈ Θ, v =V|Σ,
v = vΣ + vnn := (v · τ)τ+ (v ·n)n and DΣ denotes the tangential differential operator
called the tangential Jacobian matrix given as DΣv = DV|Σ − (DVn)n> (see, e.g.,
[22, Eq. (5.2), p. 495]). Evidently, the above expression for the shape Hessian is
composed of symmetric and non-symmetric terms with respect to the deformation
fields V and W [63]. This lack of symmetry and complexity in form of the shape
Hessian provides much difficulty for its utilization and numerical implementation
([62,70]). Nevertheless, as proposed by Simon in [70], one can still utilize the shape
Hessian in an optimization procedure in a much simpler way by dropping the non-
symmetrical part of the Hessian (see, e.g., [49]), allowing one to obtain a second
order expansion of the form J (Σ)+dJ (Σ)[V]+d2 J (Σ)[V,V] of J (Σ) with respect to
the descent direction V. Note that the necessary optimality condition give rise to the
variational formulation of the Newton equation

d2 J (Σ)[V,W] = −dJ (Σ)[V], ∀V ∈ H1
Γ,0(Ω),

whose solution W may be used as a descent direction in a gradient-based descent
algorithm (cf. equation in Step 3 of [43, Section 4.1.1, Algorithm 4.1, p. 131]). Fol-
lowing this idea, and employing a smoothing technique such as (60), we arrive at
equation (62) which gives us a new regularized descent direction W.
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Remark 10 In addition to the previous remark, and as also noted by Simon in [70]
(see his remark in Section 2.1), we mention that the velocity of gradient methods
(such as Algorithm A.1) can be improved by choosing the step size as the neg-
ative ratio between the shape gradient over the shape Hessian. For example, the
kth approximation of Ω0 can be computed as Ωk+1 = (I2 + t f

k
Vk )Ωk where t f

k
=

−dJ (Σk )[Vk]/d2 J (Σk )[Vk,Vk]. Here, the step generated by the formula for t f is
commonly called as the (full) Newton step (see, e.g., [61, Section 3.3]).

In our case, since we are using regularized descent directions, the above idea is,
in a sense, equivalent to taking tk as a scalar multiple of the ratio of the square of
the H1(Ω)-norm of V over the squared H1(Ω)-norm of W. Indeed, from a similar
proposition issued in Subsection 5.1.2, we can naturally take

tk = α̃‖V‖2H1 (Ωk )/‖W‖
2
H1 (Ωk ), (64)

for a fixed α̃ ∈ (0,1], as the kth step size of the second-order optimization algorithm
proposed in Subsection 5.1.4.

In (64), we introduced the step size parameter α̃ simply to control the magnitude of
the descent step during each iteration. We recall that, in most optimization problems,
the introduction of a step size parameter to Newton’s method is primarily due to the
fact that the method is quite sensitive if the initial guess is too bad. Common strategies
to globalize the method is to introduce a line search strategy or to work with the so-
called trust region methods (see, e.g., Section 3.4 and Chapter 4 of [61]). In practice,
the former strategy is accomplished by scaling the Newton’s step by some coefficient
0< α̃ 6 1 in every iteration (as we have done in (64)). Taking α̃ = 1 obviously amounts
to a full Newton step and choosing α̃ < 1 yields the so-called damped Newton method
(see, e.g., [16, Section 9.5.2, p. 487]) which has an increased convergence radius (this,
however, does not work well in general), and also has a reduced convergence order
(not quadratically anymore). Nevertheless, when the approximant is judged to be near
to a solution, α̃ = 1 is taken and the convergence would be as good as for the standard
(or pure) Newton’s method.

Here, we opted to apply a line search method in our proposed second-order (shape
optimization) algorithm to address two main issues when taking the full Newton step.
Firstly, we notice that, in some situations, choosing a full Newton step is not necessar-
ily the best strategy to start the approximation procedure, especially if the initial guess
is far from the (optimal shape) solution. Secondly, we observe that the full Newton
step is sometimes too large that the cost functions become insensitive with respect
to geometric perturbations, occasionally causing the algorithm to overshoot or con-
verge prematurely to a less optimal solution (see Example 5.2.4). On the other hand,
although the step size parameter α̃ can be made at most equal to the unit value when
the approximant is estimated to be close to the optimal solution, we only fixed α̃ to be
of constant value (6 1) throughout the iteration process. Nevertheless, a backtracking
procedure as in Subsection 5.1.2 will still be employed in the algorithm, meaning that
the maximum step size at each iteration of the algorithm is only bounded above by a
fraction (determined by the value of α̃) of the full Newton step.

Despite the fact that the idea is already known in the literature, we emphasize
that the formula for the step size given by (64) is, to the best of our knowledge,
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novel to this work. We shall refer to the modifications of Algorithm A.1 and Al-
gorithm B.1, exploiting the shape Hessian informations given in (63) and the new
step size formula for tk , as Algorithm A.2 and Algorithm B.2, respectively. Also, for
the sake of comparison, we will also run our propose iterative procedures using the
classical Dirichlet-data-tracking approach in solving the numerical examples in the
next section. We will refer to these procedures as Algorithm C.1 for the first-order
method (with shape gradient dJ1 in Remark 2) and Algorithm C.2 for the second-
order method (with shape Hessian d2 J1 given in Proposition 4). Regarding the latter
method, it is worth to mention that a second-order shape optimization method that
utilizes the Dirichlet-data-tracking cost functional J1 in Lagrangian-like method has
not been done yet in previous numerical investigations. Hence, this paper is the first
to investigate the feasibility and efficiency of employing the said formulation in a
second-order shape optimization (finite element based solution) procedure for solv-
ing the exterior Bernoulli FBP (1).

5.2 Numerical Examples

The test cases we give below are all performed in two-dimension using the program-
ming software FREEFEM++ (see [45]). All weak formulations described in previous
sections are solved using P2 finite element discretization where the number of dis-
cretization points on the free and fixed boundaries are initially set to Next × Nint =
120× 100 discretization points. Meanwhile, we use the built-in function movemesh
of FREEFEM++ in perturbing the reference domain Ω during the optimization pro-
cess. In addition, we use the function adaptmesh with minimum edge size hmin and
maximum edge size hmax during mesh adaption to refine and avoid the degeneracy of
the triangles in the meshes. In all examples, we set hmin = 1/80 and hmax = 1/40 ex-
cept for the third problem where we take hmin = 1/10 and hmax = 1/5. Moreover, we
terminate the iterations as soon as J (Σk+1)/J (Σ0) < 10−8 or if the algorithm already
runs for 60 seconds of computing time. Furthermore, in all examples we give below,
the Robin coefficient β is, of course, chosen to be equal to κ (the mean curvature
of the free boundary) in Algorithm A.1 and Algorithm A.2, while for Algorithm B.1
and Algorithm B.2 we take β = 100. All computations are carried out on a 1.6 GHz
Intel Core i5 Macintosh computer with 4GB RAM processors.

5.2.1 Example 1: Axisymmetric case

We first consider a simple axisymmetric case. Given that C(0,r) and C(0,R) are
the circles centered at the origin with radius r > 0 and R > r , respectively, the pure
Dirichlet problem (problem (4))

−
∂2u
∂ρ2 −

1
ρ

∂u
∂ρ
= 0 for r < ρ < R, u(r) = 1, and u(R) = 0,
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has the exact solution u(ρ) = log (ρ/R)/ log (r/R). In this case, ∂nu(R) = 1/[R log (r/R)].
Hence, the exterior Bernoulli FBP (1) with

Γ = {x ∈ R2 : |x | = r } and λ =
1

R log
(
r
R

) , 0 < r < R, (65)

has the unique exact free boundary solution Σ∗ = C(0,R). Moreover, the explicit ex-
pression uD satisfying (4) on Ωρ (the annular domain with inner radius r and outer
radius ρ centered at the origin) is given by

uD(Ωρ) =
log |x | − log ρ
logr − log ρ

.

Similarly, for the mixed Dirichlet-Neumann problem (3) with assumptions given by
(65), the explicit expression for its solution uN is given by

uN(Ωρ) = λρ log
(
|x |
r

)
+1.

Meanwhile, for the mixed Dirichlet-Robin problem (6) with fixed β > 0 and λ in
(65), the PDE system

−
∂2u
∂ρ2 −

1
ρ

∂u
∂ρ
= 0 for r < ρ < R, u(r) = 1, and ∂nu(R)+ βu(R) = λ,

has the solution u = uR(Ωρ) explicitly given by

uR(Ωρ) =
1+ λρ log

(
|x |
r

)
− βρ log

(
|x |
ρ

)
1− βρ log

(
r
ρ

) .

Thus, when the free boundary is given by Σρ = {x : |x | = ρ}, the exact values of the
functionals J1, J2, J3, J4 and J are given by the following expressions:

J1(Σρ) =
1
2

∫
Σρ

u2
N dσ = πρ

(
1− λρ log

(
r
ρ

) ) 2
,

J2(Σρ) =
1
2

∫
Σρ

(
∂uD
∂n
− λ

) 2
dσ =

π

ρ
(
log

(
r
ρ

) ) 2

(
1− λρ log

(
r
ρ

) ) 2
,

J3(Ωρ) =
1
2

∫
Ωρ

|∇ (uN−uD) |2 dx =
π

log
(
ρ
r

) (
1− λρ log

(
r
ρ

) ) 2
,

J4(Ωρ) =
1
2

∫
Ωρ

|∇ (uN−uR) |2 dx =
π

log
(
ρ
r

) *.
,

βρ log
(
r
ρ

)
1− βρ log

(
r
ρ

) +/
-

2 (
1− λρ log

(
r
ρ

) ) 2
,

J (Σρ) =
1
2

∫
Σρ

|uN−uR |
2 dσ = πρ*.

,

βρ log
(
r
ρ

)
1− βρ log

(
r
ρ

) +/
-

2 (
1− λρ log

(
r
ρ

) ) 2
.
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Fig. 1: Variation of the cost functionals J1, J2, J3, J4 and J with respect to ρ

Figure 1 shows that the algorithms using J1, J2, J3, J4 and J are not equivalent.
Next, we evaluate the efficiency of the first-order shape optimization methods

presented in the previous sections (i.e., Algorithm A.1, Algorithm B.1 and Algorithm
C.1) in solving a concrete example of the present test problem. For this purpose,
we let r = 0.3 and R = 0.5 (hence, R∗ = 0.5), giving us λ = −3.9152. We choose
the circle centered at the origin with radius 0.6 as our initial guess (i.e., we take
Σ0 =C(0,0.6)). The results of the convergence tests using Algorithm A.1, Algorithm
B.1 and Algorithm C.1 for values of α = 0.1,0.3,0.5 are depicted in Figure 2. This
includes the histories of mean radii shown in Fig. 2(a), the histories of relative errors
εk = | R̄k −R∗ | shown in Fig. 2(b), and the histories of cost values (normalized with its
initial value) plotted on logarithmic scale in Fig. 2(c). In these figures, the ‘kth mean
radii,’ denoted by R̄k , means the average distance from the origin of the nodes on the
exterior boundary of the kth domain Ωk , and Σk denotes the kth approximation of
the optimal free boundary Σ∗. In all cases, the computed values of the cost functions
at ΣK that correspond to each algorithm, where K denotes the optimal termination
index (i.e., K := min{k ∈ N0 : stopping condition is satisfied}), are all found to be of
magnitude less than 10−6. Furthermore, the computed relative errors εk in all cases
are of magnitude of order 10−4. Meanwhile, we notice from Figure 2(a) that our
proposed formulation coupled with our present numerical scheme with α = 0.3 solves
the solution of the test problem as fast as the Kohn-Vogelius formulation (combined
with the level-set method) used in [12] in terms of the number of iterations required
to complete its corresponding iteration process. In fact, our proposed method with
the step size parameter α set to 0.5 is even faster than the said approach used by
Ben Abda et al. in [12]. On the other hand, it is evident from the shown figures
that Algorithm B.1 posseses faster convergence rate than Algorithm C.1. Hence, our
proposed method (without, of course, imposing condition (A)) is more efficient than
the classical Dirichlet-data-tracking approach, at least in solving the present case
problem. In contrary, however, Algorithm A.1 (in which condition (A) is assumed)
converges to the solution of the test problem slower than Algorithm C.1.
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(a) Histories of Mean Radii

(b) Histories of Error Values

(c) Histories of Cost Values

Fig. 2: Histories of (a) mean radii, (b) error values and (c) cost values of Example
5.2.1 for values of α = 0.1,0.3,0.5 (left, middle and right plots, respectively) using
the gradient based algorithms A.1, B.1 and C.1

Now, we resolve the test problem using Algorithm A.2, Algorithm B.2 and Al-
gorithm C.2. The computational results obtained from these second-order shape op-
timization methods are shown in Figure 3. Looking at the graphs depicted in the said
figure, it seems that our proposed method, with or without condition (A) (respec-
tively, Algorithm A.2, and Algorithm B.2) is faster than the second-order Dirichlet-
data-tracking approach (i.e., Algorithm C.2). In this case, however, Algorithm B.2
and Algorithm C.2 were ran with α̃ = 0.3 while we used the full Newton step (i.e.,
α̃ = 1) for Algorithm A.2. Again, the computed final cost values, in all cases, are of
magnitude less than 10−6 and the absolute errors at the final iterate εK are all found to
be of magnitude of order 10−4. Notice from the left most plot in Figure 3 that the first
iterate of Algorithm A.2 already overshoots the solution. Even so, the second iterate
is already close enough to the optimal solution as evident in the said plot.

In the next two examples, we further examine the effect of imposing condition (A)
in the shape optimization process. This time we consider two concrete problems that
have non-trivial fixed boundaries. Also, due to the limitation of the proposed shape
optimization method coupled with condition (A) (see Remark 1), we only consider
cases wherein the optimal shape solution are nearly convex. More precisely, for the
first problem, we consider the case when the fixed boundary has a shape like an
inverted letter T. On the other hand, for the second case problem, we consider a fixed
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Fig. 3: Histories of mean radii (left plot), error values (mid plot) and cost values (right
plot) for Example 5.2.1 using the second-order shape optimization algorithms A.2,
B.2 and C.2

boundary that has two disjoint components similar to the one examined in [54]. In
these cases, since the exact optimal free boundaries are difficult to solve analytically,
we simply assume Σ∗ as the final free boundary computed using finer meshes and at
longer computing times.

5.2.2 Example 2: An inverted T-shaped fixed boundary

Next, we consider Γ = ∂S as the boundary of the T-shape

S := ((−3/8,3/8)× (−1/4,0))∪ ((−1/8,1/8)× [0,1/4)),

and let λ = −10. We solve the present problem using algorithms A.1, B.1, A.2, and
B.2. For the first-order methods, we take α = 0.1 while for the second-order algo-
rithms, we choose α̃ = 0.9. The results of the computations are shown in Figure 4.
Here, the evolution of the free boundaries with initial profile Σ0 = C(0,0.6) are il-
lustrated in Figure 4(a). Observe from these figures that the evolution of the free
boundaries are clearly different from each other (as expected), especially when the
approximant is closing to the optimal free boundary. Meanwhile, a comparison be-
tween the histories of cost values and histories of Hausdorff distances between the
kth approximation and the (approximate) optimal free boundaries (here, we denote
by dH(Σk,Σ∗)) obtained from the four algorithms are shown in Figure 4(b) and Figure
4(c), respectively. Looking at these figures, it seems that Algorithm B.1 is converging
faster than Algorithm A.1 at first few iterations, but then the condition is reversed af-
ter 12 iterations. Meanwhile, comparing their corresponding second-order methods,
it appears that Algorithm A.2 and Algorithm B.2 are comparable in terms of conver-
gence speed. On the other hand, the second-order methods are obviously much faster
than the first-order methods as expected. In these numerical tests, the computed cost
values are all found to be of magnitude of order 10−4. Furthermore, the calculated
Hausdorff distances between the final free boundaries obtained from the four algo-
rithms (including the approximate optimal free boundary) are found to be of order
10−3. This means that the computed final free boundaries are almost identical.

5.2.3 Example 3: A domain with fixed boundary having two disjoint components

For the third example, we look at one of the test problems studied in [54]. Particularly,
we let λ = −1.5 and define the fixed boundary Γ as the union of two disjoint kite-
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton methods (right)

(b) Histories of cost values

(c) Histories of Hausdorff distances

Fig. 4: Computational results of Example 5.2.2 using algorithms A.1, B.1, A.2 and
B.2

shaped figures which are parametrically defined as follows:

Γ
1 = {(1+0.7cosθ −0.4cos2θ, sinθ)>,0 6 θ 6 2π},

Γ
2 = {(−2+ cosθ +0.4cos2θ,0.5+0.7sinθ)>,0 6 θ 6 2π}.
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Here, the initial guess Σ0 for the free boundary is taken to be the circle C(0,5.0). In
addition, we again choose α = 0.1 and α̃ = 0.9 in the first- and second-order methods.
The results of the computations using algorithms A.1, B.1, A.2, and B.2 are shown
in Figure 5. In particular, Figure 5(a) shows the evolutions of the free boundaries
obtained using the four algorithms while the remaining plots, Figure 5(b) and Fig-
ure 5(c), illustrate the histories of cost values and Hausdorff distances dH(Σk,Σ∗),
respectively. In this problem, it appears that Algorithm B.1 is completely much faster
than Algorithm A.1 as oppose to the previous problem. However, we notice a similar
convergence behavior on the second-order methods as in the previous example. More
precisely, it seems that Algorithm B.2 converges faster that Algorithm A.2 as the ap-
proximant gets closer to the optimal free boundary. Meanwhile, as in the previous
example, the computed cost values are all found to be of magnitude of order 10−4,
and the computed final free boundaries are almost identical with each other (i.e., their
Hausdorff distances are computed to be of order 10−3).

In the last two examples presented above, the computed final free boundaries
are found to be nearly convex. To complete our numerical investigation, we need to
consider another example wherein the optimal free boundary is clearly non-convex.
For this purpose, however, we focus on comparing our proposed method with that of
the classical Dirichlet-tracking approach (noting, of course, that condition (A) is not
appropriate to take into account in solving this new last and final case problem).

5.2.4 Example 4: A dumb-bell like shape fixed boundary

We consider Γ = ∂D as the boundary of a dumbbell-like domain D similar to the one
examined by Eppler and Harbrecht in [29] which has the following parametrization

D := {(0.45cosθ,0.3sinθ(1.25+ cos2θ))>,0 6 θ 6 2π},

and take λ = −10. For this problem, we again choose the circle C(0,0.6) as the ge-
ometric profile of the initial free boundary Σ0. Moreover, we let α = 0.3 as the step-
size parameter for the first-order methods and take α̃ = 0.8 for the second-order algo-
rithms. The computational results using algorithms B.1, C.1, B.2, and C.2 are summa-
rized in Figure 6. Looking at Figure 6(a), it is evident that the free boundaries evolve
differently from each algorithm. In particular, referring to the results of the first-order
methods shown in the other plots (Figure 6(b) and Figure 6(c)), it seems that our pro-
posed method is somewhat faster than the classical Dirichlet-data-tracking approach.
Regarding second-order methods, however, it looks like that the classical approach is
converging faster than the Dirichlet-data-gap tracking formulation. In fact, as early as
the second iterate, the classical Dirichlet-data-tracking approach was already able to
detect the non-convexity of the optimal free boundary. Nevertheless, as the approxi-
mants get closer to the optimal free boundary, we observe that the proposed method
then converge faster than the classical approach (at least based on the right plot de-
picted in Figure 6(c)). Even so, the computed optimal free boundary obtained from
the two formulations are almost identical as evident in Figure 6(d) (in fact, the com-
puted Hausdorff distance between the computed final free boundaries obtained from
the two formulations has magnitude of order 10−3). Lastly, in all cases, the computed
cost values are all found to be of magnitude of order 10−5 or lower. However, as we
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton methods (right)

(b) Histories of cost values

(c) Histories of Hausdorff distances

Fig. 5: Computational results of Example 5.2.3 using algorithms A.1, B.1, A.2 and
B.2
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see in the right plot in Figure 6(b), it seems that the cost functional J is less sensi-
tive than the Dirichlet-data-tracking cost functional J1 in this example. We further
explain this property of the cost function below, giving emphasis on the notion of ill-
posedness of the proposed formulation “minΩ J (Σ) subject to (7) and (8)” discussed
in Subsection 3.5.

Sensitivity of the cost functionals J and J1. We conclude our numerical example
by discussing the effect of the step size parameter α̃ in the ‘sensitivity property’
of the cost functionals J and J1. As pointed out at the end of subsection 5.1.4, the
main purpose of introducing a step size parameter in our second-order methods is
to control the magnitude of the step size (i.e., to limit the maximum step) at every
iteration. Recall that, at the kth iterate, we only accept the step size tk only if it
provides a decrease in the cost value (i.e., if J (Σk+1) 6 J (Σk )); otherwise, we do a
backtracking procedure. In our numerical experiments, we observe that taking a full
Newton step at every iterate is not a good strategy at all because the cost functional J
(as well as J1) seems to be insensitive with respect to large geometric perturbations.
For illustration, we refer to Figure 7(a) where we logarithmically plot the histories
of cost values obtained from resolving the present case problem using Algorithm
B.2 and Algorithm C.2 with the full Newton step tk = ‖V‖2H1 (Ωk )

/‖W‖2H1 (Ωk )
(i.e.,

α̃ = 1.0). Noticeably, several adjacent iterations differ only with very small values
(and almost insignificant). Hence, the non-uniform sensitivity of the cost with respect
to the descent directions. This observation can actually be viewed as a validation to
our findings that the present formulation is algebraically ill-posed (see Proposition
5 and Remark 7). That is, in this case, the ill-posedness of the present optimization
formulation could also mean that larger deformations in the domains may have little
effect on the cost functional. On the other hand, the evolution of the free boundaries
with the full Newton step are shown in Figure 7(b) while a comparison between
the computed free boundaries using the two second-order algorithms is depicted in
Figure 7(c). In the latter figure, the difference between the two computed geometries
is clearly discernible and, in this case, the final free boundary computed through the
classical approach (i.e., Algorithm C.2) is more accurate than the one obtained via the
proposed method (i.e., Algorithm B.2). Meanwhile, scaling the (full) Newton steps
by a factor of α̃ = 0.2 at every iteration (in both Algorithm B.2 and Algorithm C.2)
lead to the computational results shown in Figure 8. The figure shows, in particular,
the histories of cost values and Hausdorff distances both plotted in Figure 8(a) (left
and right plot, respectively). Referring, in particular, to the left plot shown in Figure
8(a), it is clear that the costs J and J1 are decreasing almost uniformly from the initial
to their respective final values. However, it is apparent from the figure that the cost
J is more sensitive (and therefore has higher convergence behavior) than J1. In fact,
because the number of iterations required by Algorithm B.2 to reach the optimal free
boundary is less than that of Algorithm C.2 (as evident in the right graph plotted in
Figure 8(a)), we can conclude that the proposed method is indeed much faster than
the classical Dirichlet-data-tracking approach. This observation is, of course, also
evident from the evolution of the free boundaries shown in Figure 8(b) wherein we
recognized a big difference on how the two algorithms actually develop the initial free
boundary into an optimal one. We mention here that we also ran the two algorithms
using several other values for α̃ between zero and the unit value (to solve the present
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton methods (right)

(b) Histories of cost values

(c) Histories of Hausdorff distances

(d) Computed free boundaries obtained via gradient methods (left) and via Newton methods (right)

Fig. 6: Computational results of Example 5.2.4 using algorithms B.1, C.1, B.2 and
C.2
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case problem), and, as in the previous cases, we found that the proposed method is, in
general, faster that the classical approach of minimizing the Dirichlet-data-tracking
cost functional. Nevertheless, the cost function J becomes more insensitive than J1
as the step size parameter α̃ increases in value.

6 Conclusion

We presented a second-order shape optimization algorithm for solving the exterior
Bernoulli free boundary problem using a new boundary cost functional which mea-
sures the L2-gap at the free boundary of two auxiliary states, one of which is a solu-
tion of a mixed Dirichlet-Neumann problem and the other of which satisfies a mixed
Dirichlet-Robin problem. The novelty of the present investigation is the utilization
of the shape Hessian information at the solution of the free boundary problem in the
iterative scheme formulated to numerically solve the minimization problem. Numer-
ical results revealed that the first- and second-order shape optimization methods put
forward in this study is, in general, faster than the classical approach of tracking the
Dirichlet data in L2 sense. Thus, in this investigation, the robustness of the proposed
method was shown not only theoretically but also numerically.
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A Shape Derivative of the Adjoint State pN

Let us first introduce some notations and present some properties of the operatorTt (see Section 3) that will
be useful to our analysis. For t ∈ (0, ε) (ε > 0 sufficiently small), the transformation Tt is invertible and
Tt,T

−1
t ∈ D1 (R2,R2) (see, e.g., [10, Lemma 11]). In addition, the Jacobian matrix of the transformation

Tt = Tt (V) associated with the velocity field V denoted by det DTt (X) is strictly positive. Here, we
shall use the notations (DTt )−1 and (DTt )−> to denote the inverse and inverse transpose of the Jacobian
matrix DTt , respectively. Also, for convenience, we write At = det DTt (X)(DT−1

t )(DTt )−> and wt =

det DTt (X) |(DTt )−>n | which represent the Jacobian matrix of Tt with respect to the boundary ∂Ω.
The following lemma, whose proof can be found in [22,71], will also be essential to our analysis.

Lemma A.1 Let V be a fixed vector field in Θ (see (9)) and I = (−t0, t0), with t0 > 0 sufficiently small.
Then, the following regularity properties of Tt hold

(i) t 7→ det DTt (X) ∈C1 (I,C (Ω̄))
(iii) t 7→ wt ∈C

1 (I,C (Σ))

(v)
d
dt

wt |t=0 = w
′(0) = divΣV

(ii) t 7→ At ∈C
1 (I,C1 (Ω̄))

(iv) limt↘0 wt = 1

(vi)
d
dt

At |t=0 = A′(0),

where A′(0) = (divV)I2 − (DV+ (DV)>) and the limits defining the derivatives at t = 0 exist uniformly
in x ∈ Ω̄.

Before we derive the shape derivative of pN, and for completeness, let us first prove the unique solvability
of the adjoint problem on the perturbed domain Ωt .
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(a) Histories of cost values

(b) Evolution of the free boundaries using Algorithm B.2 (left) and Algorithm C.2 (right)

(c) Computed free boundaries

Fig. 7: Computational results of Example 5.2.4 using Algorithm B.2 and Algorithm
C.2 with the full Newton step (i.e., α̃ = 1.)
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(a) Histories of cost values (left) and Hausdorff distances (right)

(b) Evolution of the free boundaries

Fig. 8: Computational results of Example 5.2.4 using Algorithm B.2 and Algorithm
C.2 with the scaled full Newton step (i.e., α̃ = 0.2)

Lemma A.2 For any t > 0 sufficiently small, the variational problem: find pt
N ∈ H

1 (Ω) such that pt
N = 0

on Γ and ∫
Ω

At∇p
t
N · ∇ϕ dx−

∫
Σ

wtu
t
Nϕ dσ = 0, ∀ϕ ∈ H1

Γ,0 (Ω). (66)

admits a unique solution pt
N in H1 (Ω).

Proof We first note that the variational problem being examined is obtained from the problem: find pNt ∈

H1 (Ωt ) such that pNt = 0 on Γ and∫
Ωt

∇pNt · ∇ϕ dxt −
∫
Σt

uNtϕ dσt = 0, ∀ϕ ∈ H1
Γ,0 (Ωt ), (67)

via the application of domain and boundary transformation formulas (see, e.g., [71, Proposition 2.46–2.47]).
In fact, the functions φt : Ωt → R and φt : Ω→ R are related through the equation φt = φt ◦Tt . Hence,
if pNt solves the variational equation (67), then pt

N = pNt ◦Tt satisfies (66). In addition, the boundary
condition pt

N = pNt ◦Tt = 0 on Γ implies that pt
N is actually in H1

Γ,0 (Ω).

Now, consider the bilinear form bt ( ·, ·) : H1
Γ,0 (Ω)→ R defined by

bt (φt, ϕ) =
∫
Ω

At∇φ
t · ∇ϕ dx, ∀φt, ϕ ∈ H1

Γ,0 (Ω). (68)
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Note that, as a consequence of Lemma A.1, At is bounded. Hence, it is clear that bt ( ·, ·) is continuous
because |bt (φt, ϕ) | = ���

∫
Ω
At∇φ

t · ∇ϕ dx��� . ‖At ‖L∞ (Ω) ‖φ
t ‖H1 (Ω) |ϕ |H1 (Ω) . Moreover, bt ( ·, ·) is co-

ercive. Indeed, from the fact that At → I uniformly on Ω̄ as t → 0, we know that there exist sufficiently
small values for t > 0 such that ‖At − I‖L∞ (Ω) < 1. So, we have

bt (φt, φt ) =
∫
Ω

At∇φ
t · ∇φt dx =

�����

∫
Ω

(At − I)∇φt · ∇φt + |∇φt |2 dx
�����

> ‖∇φt ‖2
L2 (Ω)

− ‖At − I‖L∞ (Ω) ‖∇φ
t ‖2

L2 (Ω)

& |∇φt |2
H1 (Ω)

.

Next, we consider the functional ω : H1
Γ,0 (Ω) → R defined by 〈ω,ϕ〉 =

∫
Σ
wtu

t
Nϕ dσ. Evidently, this

functional is continuous because of the boundedness of |wt |∞ and due to the sequence of inequalities

�����

∫
Σ

wtu
t
Nϕ dσ

�����
. |wt |∞ ‖u

t
N ‖L2 (Σ) ‖ϕ ‖L2 (Σ) . |wt |∞ ‖u

t
N ‖H1 (Ω) |ϕ |H1 (Ω) .

Thus, by Lax-Milgram theorem, the function pt
N, vanishing on Γ, is the unique solution to the variational

equation (66) in H1 (Ω). This proves the lemma. ut

Proposition A.1 Let Ω be a bounded C2,1 domain. The shape derivative of the adjoint state variable
pN ∈ H

3 (Ω) atΩ =Ω∗ satisfying the mixed Dirichlet-Neumann problem (16) is a solution to the following
mixed boundary value problem:

−∆p′NW = 0 in Ω∗, p′NW = 0 on Γ, ∂np
′
NW = u

′
NW +λW ·n on Σ∗.

Proof The proof mainly contains two parts; we first prove the existence of the material derivative of pN,
then we formally proceed on the derivation of its shape derivative.

Step 1. Existence of the material derivative of pN. The variational formulation of (16) on the reference
domain Ω is given as follows: find pN ∈ H

1
Γ,0 (Ω) such that∫

Ω

∇pN · ∇ϕ dx−
∫
Σ

uNϕ dσ = 0, ∀ϕ ∈ H1
Γ,0 (Ω). (69)

Subtracting (66) with t = 0 from the case where t > 0, for all ϕ ∈ H1
Γ,0 (Ω), we obtain∫

Ω

{At∇p
t
N −∇p

t
N +∇p

t
N −∇pN } · ∇ϕ dx−

∫
Σ

{wtu
t
N −u

t
N +u

t
N −uN }ϕ dσ = 0.

Hence, we have a unique solution pt
N − pN ∈ H

1
Γ,0 (Ω) to the variational equation∫

Ω

∇(pt
N − pN) · ∇ϕ dx = −

∫
Ω

(At − I)∇pt
N · ∇ϕ dx+

∫
Σ

(wt −1)ut
Nϕ dσ+

∫
Σ

(ut
N −uN)ϕ dσ, (70)

for all ϕ ∈ H1
Γ,0 (Ω). We note that ∇pt

N is uniformly bounded in L2 (Ω;R2) and we have the convergence
∇pt

N → ∇pN also in that space. Indeed, using the boundedness of ‖At ‖L∞ (Ω) from below, we get the
estimate

‖∇pt
N ‖

2
L2 (Ω)

.

∫
Ω

At∇p
t
N · ∇p

t
N dx =

∫
Σ

wtu
t
Np

t
N dσ . |wt |∞ ‖u

t
N ‖H1 (Ω) ‖p

t
N ‖L2 (Ω) .

Because ut
N is uniformly bounded in H1 (Ω) (cf. [10, Theorem 23], see also [50, Proposition 3.1]), the

uniform boundedness of ∇pt
N in L2 (Ω;R2) immediately follows, and so the convergence ∇pt

N →∇pN in
L2 (Ω;R2). Next, we divide both sides of (70) by t and denote φt := 1

t (pt
N − pN) to obtain

∫
Ω

∇φt · ∇ϕ dx = −
∫
Ω

(
At − I
t

)
∇pt

N · ∇ϕ dx+
∫
Σ

(
wt −1

t

)
ut

Nϕ dσ+
∫
Σ

*
,

ut
N −uN

t
+
-
ϕ dσ,
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for all ϕ ∈ H1
Γ,0 (Ω). We choose a sequence {tn } such that tn → 0 as n→∞. Our goal is to show that

the limit limn→∞φt exists. Using the boundedness of 1
tn

(At − I) and 1
tn

(wt −1) in L∞, we deduce that
∇ptn

N is bounded in L2 (Ω;R2), and thus the boundedness of φtn in H1
Γ,0 (Ω). Hence, we can extract a

subsequence, which we still denote by {tn }, such that limn→∞ tn = 0. Moreover, there exists an element
φ of H1

Γ,0 (Ω) such that φtn ⇀φ weakly in H1
Γ,0 (Ω). From the convergences ∇ptn

N →∇pN in L2 (Ω;R2)

and utn
N → uN in L2 (Σ), together with Lemma A.1(v)–(vi), we get∫

Ω

∇φ · ∇ϕ dx = −
∫
Ω

A∇pN · ∇ϕ dx+
∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ,

for all ϕ ∈ H1
Γ,0 (Ω), where u̇N = limt↘0

1
t (ut

N−uN) which is exactly the material derivative of uN at t = 0
in the direction W. This function exists and is actually an element of H1

Γ,0 (Ω) as shown, for example, in

[9]. Hence, the above equation admits a unique solution in H1 (Ω) and we deduce that φtn ⇀φ for any
sequence {tn }. This implies the strong convergence of φtn to φ in L2 (Σ). Now, taking ϕ =φtn ∈H1

Γ,0 (Ω),
we obtain

lim
tn→0

|φtn |2
H1 (Ω)

= − lim
tn→0

{∫
Ω

(
A(tn )− I

tn

)
∇ptn

N · ∇φ
tn dx

}
+ lim

tn→0

{∫
Σ

(
w(tn )−1

tn

)
utn

N φtn dσ
}

+ lim
tn→0




∫
Σ

*
,

utn
N −uN

tn
+
-
φtn dσ




= −

∫
Ω

A∇pN · ∇φdx+
∫
Σ

uNφdivΣWdσ+
∫
Σ

u̇Nφdσ = |φ |H1 (Ω) .

The norm convergence and the weak convergence of φtn in H1
Γ,0 (Ω) implies the strong convergence of

φtn to φ ∈ H1
Γ,0 (Ω). This guarantees the existence of the material derivative of pN.

Step 2. Computing the shape derivative of pN at Ω =Ω∗ along the deformation field W. From the pre-
vious step, we showed the existence of the material derivative of pN in H1

Γ,0 (Ω). Denoting this derivative
by ṗN, we know that it satisfies the variational equation∫

Ω

∇ṗN · ∇ϕ dx = −
∫
Ω

A∇pN · ∇ϕ dx+
∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ, ∀ϕ ∈ H1
Γ,0 (Ω). (71)

In addition, it is clear that ṗN = 0 on Γ. Applying Green’s formula to the above variational form, we get

−

∫
Ω

ϕ∆ṗN dx+
∫
Σ

ϕ∂n ṗN dσ =
∫
Ω

ϕdiv(A∇pN) dx−
∫
Σ

ϕA∂npN dσ

+

∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ, ∀ϕ ∈ H1
Γ,0 (Ω).

First, let us choose ϕ ∈ H1
0 (Ω). Then, we have −

∫
Ω
ϕ∆ṗN dx =

∫
Ω
ϕdiv(A∇pN) dx. Since, H1

0 (Ω)
is dense in L2 (Ω), we obtain −∆ṗN = div(A∇pN) in Ω. Next, we choose ϕ ∈ H1

Γ,0 (Ω) such that ϕ is
arbitrary in Σ. This gives us∫

Σ

ϕ∂n ṗN dσ = −
∫
Σ

ϕA∂npN dσ+
∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ.

Because the traces of functions in H1
Γ,0 (Ω) are dense in L2 (Σ), we arrive at ∂n ṗN =−A∂npN+uNdivΣW+

u̇N on Σ. Summarizing these results, we see that ṗN satisfies the following boundary value problem:

−∆ṗN = div(A∇pN) in Ω, ṗN = 0 on Γ, ∂n ṗN = −A∂npN +uNdivΣW+ u̇N on Σ.

From above equations, and due to the fact that W vanishes on Γ, we immediately obtain (in view of the
identity (12)) p′N = ṗN −W · ∇pN = 0 on Γ. Now, we consider ϕ ∈ H2 (Ω). Note that for C1,1 domain, we
have that uN ∈ H

2 (Ω) (see [10, Theorem 29] and also [50]). Hence, uN ∈ H
3/2 (Σ) which, in turn, means
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that pN ∈ H
2 (Ω) by standard elliptic regularity theory. Given this regularity of pN and since −∆pN = 0 in

Ω, we can therefore write −
∫
Ω
A∇pN · ∇ϕ dx as follows (see [50, Lemma 4.1])

−

∫
Ω

A∇pN · ∇ϕ dx =
∫
Ω

∇(W · ∇pN) · ∇ϕ dx+
∫
Σ

∂npN (W · ∇ϕ) dσ−
∫
Σ

(∇pN · ∇ϕ)W ·ndσ, (72)

for all ϕ ∈ H2 (Ω). Hence, using the identity (12), we have the equation∫
Ω

∇ṗN · ∇ϕ dx =
∫
Ω

∇p′N · ∇ϕ dx+
∫
Ω

∇(W · ∇pN) · ∇ϕ dx, ∀ϕ ∈ H1
Γ,0 (Ω).

Combining this equation with (71) and (72) yields∫
Ω

∇(W · ∇pN) · ∇ϕ dx+
∫
Σ

∂npN (W · ∇ϕ) dσ−
∫
Σ

(∇pN · ∇ϕ)W ·ndσ+
∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ

=

∫
Ω

∇p′N · ∇ϕ dx+
∫
Ω

∇(W · ∇pN) · ∇ϕ dx, ∀ϕ ∈ H2 ∩H1
Γ,0 (Ω).

Applying Green’s formula on the right side of the above equation we arrive at

−

∫
Ω

ϕ∆p′N dx+
∫
Σ

ϕ∂np
′
N dσ =

∫
Σ

∂npN (W · ∇ϕ) dσ−
∫
Σ

(∇pN · ∇ϕ)W ·ndσ

+

∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ, ∀ϕ ∈ H2 ∩H1
Γ,0 (Ω).

Now, we choose ϕ ∈C∞0 (Ω). This leads us to −∆p′N = 0 in Ω. Moreover, we get

∫
Σ

ϕ∂np
′
N dσ =

∫
Σ

(uNW−∇pNW ·n) · ∇ϕ dσ+
∫
Σ

uNϕdivΣWdσ+
∫
Σ

u̇Nϕ dσ.

Observe that (uNW−∇pNW · n) · n = 0. Hence, we can replace ∇ϕ |Σ by the tangential gradient ∇Σϕ.
Using the tangential Green’s formula (see equation 21) thrice, noting that W · n∇ΣpN · n = 0, and then
using the relation u̇N = u

′
N +W · ∇uN, we obtain∫

Σ

ϕ∂np
′
N dσ =

∫
Σ

ϕdivΣ (∇pNW ·n) dσ+
∫
Σ

u̇Nϕ dσ

=

∫
Σ

ϕκ (∇pNW ·n) ·ndσ−
∫
Σ

(∇Σϕ · ∇pN)W ·ndσ+
∫
Σ

u̇Nϕ dσ

=

∫
Σ

ϕκuNW ·ndσ−
∫
Σ

(∇Σϕ · ∇ΣpN)W ·ndσ+
∫
Σ

u̇Nϕ dσ

=

∫
Σ

ϕκuNW ·ndσ+
∫
Σ

ϕdivΣ (∇ΣpNW ·n) dσ+
∫
Σ

(u′N +W · ∇uN)ϕ dσ,

for all ϕ ∈ H2 ∩H1
Γ,0 (Ω). Since the trace of functions from H2 (Ω) is dense in L2 (Σ), we deduce the

boundary condition on for p′N given by ∂np′N = divΣ (∇ΣpNW ·n) + κuNW ·n+u′N +W · ∇uN. Summa-
rizing these results, and letting Ω =Ω∗, we get

−∆p′N = 0 in Ω∗, p′N = 0 on Γ, ∂np
′
N = u

′
N +λW ·n on Σ∗,

as desired. ut

It is worth remarking that the existence of the shape derivative p′N of pN can only be justified if uN is
H3-regular. Hence, we require that Ω be at least of class C2,1 so that uN (as well as uR) is in H3 (Ω) (see,
e.g., [10, Theorem 29]).
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