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Abstract

The best method to forecast tsunami waveforms, inundation, and wavefields
caused by a submarine earthquake is by conducting linear or non-linear tsunami
simulation. However, these methods have the disadvantages of a relatively high
computational cost and the necessity for immediate warning announcements when
a tsunami is imminent. The main objective of this study is to forecast tsunami
inundation, waveforms, and wavefields in a timely manner shortly after an earth-
quake occurs.

In the first part of this study, tsunami inundation is forecasted by utilizing a
database. The method aims to provide tsunami inundation forecasts without
conducting non-linear tsunami model. The database consists of tsunami inunda-
tion and waveforms from multiple fault scenarios. The system is divided into two
stages. In the first stage, preliminary earthquake information is used to find the
appropriate tsunami inundation scenario in the database. In the second stage,
a real-time tsunami waveform simulation is conducted to find the best-case sce-
nario by minimizing the error between computed tsunami waveforms and those in
database. Furthermore, this method is able to produce good tsunami inundation
forecasts in a reliable time.

The second part of this study involves machine learning algorithms for tsunami
inundation forecasting. Two machine learning models, a convolutional neural
network and a multilayer perceptron, are used to estimate tsunami inundation
in real-time. Non-linear tsunami simulation from same fault scenarios as men-
tioned in the first part of this study is conducted. The result of the maximum
tsunami amplitude in a low-resolution grid and the associated tsunami inunda-
tion in a high-resolution grid are then stored in the database. The convolutional
neural network selects tsunami inundation in the high-resolution grid as the fore-
cast based on pattern similarity between the input, which is the results of linear
forward modeling in the low-resolution grid, and the precomputed patterns in

v



vi

the database. Slightly different from the convolutional neural network, instead
of selecting the best-fit scenario in the database, the multilayer perceptron di-
rectly generates the inundation forecast based on knowledge acquired during the
training process. The methods have been conducted by using the hypothetical
future Nankai megathrust earthquake with Atashika and Owase Bays in Japan as
the study cases. The results show that the proposed methods are extremely fast
(less than 1 s) and comparable with nonlinear forward modeling. Therefore, the
proposed methods can be used as a deterministic model for real-time simulation.

In the third part of this study, the performance of three data-driven models,
including unfine- and fine-tuned probabilistic regularized extreme learning ma-
chines, and a support vector machine are examined to forecast tsunami waveform
at coastal stations in real-time. The proposed methods are applied to an exper-
imental case with the 2004 Kii (M7.5) and the 2011 Tohoku earthquake (M9.0).
The results show that a fine-tuned probabilistic regularized extreme learning
machine can produce better prediction accuracy compared to the conventional
tsunami waveform inversion and the other data-driven models with quick cal-
culation time. The support vector machine is also a promising method as the
maximum tsunami height prediction is closer to the observation than the other
models. Furthermore, the proposed data-driven models are also compared with a
conventional waveform inversion, and the results show that the proposed models
provide a better general approximation. Therefore, the proposed methods can
be used as a surrogate for the deterministic model for real-time computation.
Furthermore, our proposed methods produce a consistent prediction which is an
important factor for the real-time warning system.

The last part of this study is integrating a deep predictive coding network with
the data assimilation method. Unlike the original data assimilation, which con-
tinuously compute the wavefield when the observed data is available, this study
only use a short sequence of the previously assimilated wavefields to forecast the
future wavefields. Since the predictions are computed through matrix multiplica-
tion, the future wavefields can be estimated in seconds. The proposed method is
applied to the simple bathymetry case and the 2011 Tohoku tsunami. The results
show that the proposed method is very fast and comparable to the original data
assimilation. Therefore, the proposed method is promising to be integrated with
the data assimilation to reduce the computational cost.
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Chapter 1

Introduction

1.1 Background

Tsunami is one of the most disastrous natural events in the world. Unlike the
other natural disasters, the tsunamis have a tremendous impact on the loss
of lives, property damages, and economic disruption. In 2004, a strong earth-
quake with a magnitude of about Mw 9.0∼9.3 (Lay et al., 2005) called Sumatra-
Andaman earthquake, generated the most powerful tsunami ever recorded in hu-
man history. The tsunami caused a great loss of property and human lives. From
∼280,000 confirmed fatalities which spreads in South and South East Asian, and
African countries, ∼250,000 fatalities were only in Indonesia. Another signifi-
cant tsunami, the 2011 Tohoku tsunami, which is the most powerful earthquake
recorded in Japanese history, caused more than 20,000 people died and miss-
ing, destroyed 126,602 buildings and caused economic damage of $ 210 billion
(Ranghieri, 2014). One of the reasons why tsunamis are incredibly destructive,
other than because of their power, tsunamis are difficult to predict. Before the
2011 Tohoku earthquake event, most tsunami warning systems are depending on
the earthquake prediction and integrated with the earthquake forecasting sys-
tem. Since there is a high degree of uncertainty in predicting earthquake sources
in real-time, it also results in the inaccuracy of tsunami prediction.

After the 2011 Tohoku earthquake, the attention of many earthquakes and tsunamis
researchers is moved to the Nankai region for a possible future megathrust earth-
quake. The Nankai Trough is one of the most active subduction zones in the
world. Many massive submarine earthquakes have been generated and well
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1.1 Background 2

recorded in this region. Based on historical records, Ishibashi (2004) showed
that earthquakes in this zone have a recurrence interval between 100 and 150
years. Five major earthquakes in the Nankai Trough have been identified (see
Fig. 1.1): the 1707 Hoei earthquake, the 1854 Ansei Tokai and Ansei Nankai
earthquakes, the 1944 Tonankai earthquake, and the 1946 Nankai earthquake.
Among those earthquakes, the 1707 Hoei event marked the strongest earthquake
in the preindustrial history of Japan, and a giant tsunami followed it. Three
main fault segments are in this region: the Tokai, the Tonankai, and the Nankai.
In those historical earthquakes, the three segments ruptured individually or si-
multaneously. In the future, it is expected that the three segments will rupture
simultaneously and generate a massive earthquake. Because the Nankai Trough
is relatively close to the coast of southeastern Japan (less than 150 km away), if
the earthquake induces a tsunami, it will reach the coast in a very short time.
Therefore, a fast and robust tsunami early warning system is required to prevent
large casualties caused by Nankai Trough earthquakes in the future.

Over the last decades, the development of the real-time tsunami warning system
has been advancing, as a derivative of the rapid development of computational
technologies. Various numerical modeling frameworks have been developed in
the past (Baba et al., 2016, Imamura et al., 2006, Titov et al., 2016) and still
become the main tools to assess the impact caused by the tsunamis. However,
since those methods require a relatively high computational load, especially for
real-time simulation, a novel method is badly needed to cut the computational
cost. Recently, machine learning algorithms gain popularity not only in the com-
puter science field but also in the other field. Unfortunately, the application of
such frameworks is limited in tsunami research. This study presents methods to
predict tsunami inundation, waveforms, and wavefields. Those three goals are ex-
amined by using different approaches. Tsunami inundation prediction is divided
into two parts, one of them using machine learning frameworks. Furthermore,
both tsunami waveform and wavefield predictions are assessed by using different
types of machine learning frameworks. Even though those proposed methods are
evaluated by using different frameworks, the basis of the algorithms are similar,
all of those goals are utilizing database which consists of precomputed simulation
from multiple scenarios. In this study, convolutional neural network (CNN) and
multilayer perceptron (MLP) are used to forecast tsunami inundation, extreme
learning machine (ELM) and support vector machine (SVM) are used to forecast
tsunami waveform, and finally a deep predicting coding network is used to predict
tsunami wavefield.



3 Chapter 1

Figure 1.1: Past earthquakes in Nankai Subduction zone (Source: http://www.
jma.go.jp/jma/en/Activities/earthquake.html accessed on June 1st, 2018)

1.2 Objectives

The primary objective of this study is to forecast tsunami inundation, waveforms,
and wavefields promptly after a submarine earthquake occurs. In this study,
several previous earthquakes in the Nankai and Japan trench region, namely, the
1944 Tonankai, the 2004 Nankai, the 2011 Tohoku, the predicted future Nankai
megathrust earthquakes are used as study cases.

This study is conducted with the following motivations. First, this study attempts
to reduce the computational time of the previous methods in forecasting tsunami.
Many studies have been proposed; however, most of them still require a high
computational cost. To accommodate this problem, a high-performance computer
is usually used to speed up the computational time. However, with the limited
availability of such facilities, espescially in developing countries, a light yet reliable
tsunami warning system is preferable.

http://www.jma.go.jp/jma/en/Activities/earthquake.html
http://www.jma.go.jp/jma/en/Activities/earthquake.html
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Second, this study attempts to develop a new approach that can be used as
an alternative to forecast tsunami, which has similar performance to the deter-
ministic model. Currently, the best method to predict tsunami is by running
a linear and/or non-linear tsunami model. However, a high computational cost
is generally required, as mentioned in the first objective. In this study, several
methods are evaluated and compared with the conventional tsunami simulation.
The proposed are trained by using the results of the tsunami model. Hence, it is
acknowledged these new methods to be applied for real-time tsunami forecasting.

1.3 Limitations of the study

In many parts of this study, the initial sea surface caused by earthquake-generated
seafloor deformation is used. However, this study doesn’t consider the complex
behaviour of the seafloor deformation. The seafloor deformation in this study is
calculated from a well-verified model (Okada, 1985) and assummed as the initial
sea surface elevation for tsunami simulation.

1.4 Thesis outline

Chapter 1 explains the background of the study, motivations, objectives, and the
expected outputs of the study. A brief literature review is also explained, as a
more detailed review will be shown at the beginning of the each later chapter.

Chapter 2 discusses the first attempt to forecast tsunami inundation in real-time
by using a database. Mie and Aichi Prefecture are selected as the study case of
the study. The development of the tsunami inundation and waveform database
are presented in this chapter. At the first stage of warning, the system only
requires the location of the earthquake to extract tsunami inundation from the
database as the forecast. When a fixed earthquake information is available, the
prediction is improved by comparing simulated and precomputed waveforms at
virtual observation stations to find out the best-fit scenario in the database.

Chapter 3 is an extension of Chapter 2. In this chapter, tsunami inundation
database as in Chapter 1 is used. There are two proposed machine learning
frameworks in this study, the CNN and MLP. CNN is proposed to replace the
second stage of the warning system in Chapter 2. At the same time, the MLP
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is used to directly generate the tsunami inundation forecast based on learned
knowledge during the training process.

Chapter 4 discusses the application of the ELM and SVM for tsunami waveform
prediction. The performance of both methods are compared to the conventional
tsunami waveform inversion (TWI). Unlike the traditional ELM in which param-
eters the first layer of the network is determined randomly, in this study, are
trained by using the backpropagation approach to reduce the model uncertainty.

Chapter 5 presents an algorithm, a deep predictive coding network, for spatiotem-
poral prediction of tsunami wavefield. The method is proposed to cut the compu-
tational time required by tsunami data assimilation. Various statistical measures
are conducted to evaluate the performance of the model.

Chapter 6 presents the conclusions of this study. Detail summary for each chapter
(Chapter 2, Chapter 3, Chapter 4, and Chapter 5) is also presented.
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Chapter 2

Database-based tsunami inundation
forecasting

2.1 Problem description

The 2011 Tohoku earthquake left more than 15,000 people dead or missing
(Kazama and Noda, 2012). It was the biggest earthquake followed by a tsunami
ever recorded in Japanese history. Tsunami warnings and advisories were is-
sued for areas along the coast of Hokkaido to Kyushu and the Ogasawara Islands
(Ozaki, 2011). The Japan Meteorological Agency (JMA) estimated that the ini-
tial earthquake magnitude was Mjma 7.9, obtained within three minutes after
the earthquake. Then, it was revised to be Mjma 8.4 in more than an hour after
the earthquake (Ohta et al., 2012). Further study revealed that those magnitudes
underestimated the actual earthquake magnitude of Mw 9.0 (Gusman et al., 2012,
Satake et al., 2013).

On the basis of experiences during the 2011 Tohoku tsunami and the possibility
of a tsunami generated by a future great interplate earthquake of the Nankai
Trough, a robust and accurate tsunami inundation forecast system is required.
Tang et al. (2008) developed a tsunami forecast model for the Pacific and At-
lantic coasts by using a tsunami source function database. DART (Deep-ocean
Assessment and Reporting of Tsunami) data were used as the main input of the
system. When an earthquake occurred, the data obtained from DART were used
to compute a tsunami source for real-time tsunami simulation. Abe and Imamura
(2012) applied a tsunami inundation database for a tsunami inundation forecast-

7
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ing system in the case of the 2011 Tohoku earthquake. Real-time tsunami height
information obtained from GPS buoys was used as an additional constraint to
produce an accurate inundation forecast. However, because of the limited num-
ber of GPS buoys, when a GPS buoy is located far from the forecasted area, it
may produce the wrong inundation forecast. Similar to the study of Abe and
Imamura (2012), Tomita and Takagawa (2014) enhanced the system by utilizing
a graphic processing unit to quickly estimate tsunami propagation and inunda-
tion. Gusman et al. (2014) proposed a new real-time tsunami inundation forecast
system called NearTIF (Near-field Tsunami Inundation Forecasting), also with
the study case of the 2011 Tohoku earthquake. This system uses a database
that consists of a tsunami inundation map and tsunami waveform at the virtual
comparison points. The database was developed by assuming a number of hypo-
thetical thrust-type earthquake scenarios in a subduction zone. Van Veen et al.
(2014) implemented an early warning system in Sumatra called RiskMap. This
system was also constructed based on 1,250 hypothetical earthquake locations.
This system was purposed not only to produce tsunami inundation forecast but
also to warn residents by turning on sirens for the warning and evacuation process.
Those previous studies have a similar assumption in developing their database;
they assume simple fault model scenarios as tsunami sources and compute them
by solving a nonlinear shallow water equation. The method proposed by Tang
et al. (2008) may be suitable for far-field tsunamis in which DARTs are located far
from the coast, while the methods proposed by Abe and Imamura (2012), Gus-
man et al. (2014) and Van Veen et al. (2014) are more appropriate for near-field
tsunamis, as their methods utilize an observational system that is close to the
coast. Earthquake information is not necessary for the method of Gusman et al.
(2014) but is still required for the other methods. Oishi et al. (2015) conducted
direct tsunami numerical simulation by using the K supercomputer, one of the
most powerful supercomputers in the world, which is installed at the RIKEN
Advanced Institute for Computational Science, Kobe, Japan. It requires only 1.5
minutes to obtain accurate tsunami inundation in Sendai City.

From those previous studies, it can be concluded that there are two main types of
tsunami inundation forecasting systems: those that utilize a database and those
that conduct direct numerical forward modeling. For direct forward modeling,
a high-performance computer or supercomputer is usually used to shorten com-
putational time. But access to the government supercomputer is limited, and
there are difficulties using the supercomputer itself, especially in a real event. By
using a database, government agencies in developing countries with limited equip-
ment can develop their own systems easily. Simulated tsunami inundation from
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hypothetical earthquake scenarios is widely used as a main part of the database.

The basic concept of our forecasting system using a database is a combination
of those from previous studies: when an earthquake occurs, the system will find
the nearest position between the actual earthquake coordinate and scenarios in
the database as similarly used by Van Veen et al. (2014) and Abe and Imamura
(2012) for the initial stage. This stage is expected to be essential for the early
warning and evacuation process. Additionally, we apply the assumption proposed
by Gusman et al. (2014) for the next stage in which if different earthquakes pro-
duce similar tsunami waveforms near the coastal area, they will produce similar
tsunami inundation. Therefore, our database not only consists of tsunami inun-
dation but also tsunami waveform.

Owase is one of the cities in Mie Prefecture, located in the southeastern Kii
Peninsula, directly facing the Pacific Ocean (Fig. 2.1). Many regional and inter-
regional tsunamis that have severely damaged the city have been recorded. The
tsunami sources mostly came from off the Kii Peninsula, which is usually called
the Tonankai segment. In 1960, a far-field Chilean tsunami also hit Owase with
a maximum inundation depth of about 1 m (Hatori et al., 1981). Because it
experienced many destructive tsunamis, and previous tsunami inundation depth
data were available, this city was selected as a study case in this study. Here,
we evaluate the performance and applicability of a tsunami inundation forecast
system by using a database in Owase, Mie Prefecture, as it is expected to be one
of the most damaged areas in the event of a future Nankai Trough earthquake.
One previous earthquake and two predicted future earthquake scenarios are used
for evaluation. The results of the tsunami inundation forecast then compared
with the observation field data and forward modeling.

2.2 Methodology

The hydrodynamics characteristics and behavior of onshore tsunami are strongly
influenced by nearshore bathymetry and tsunami waveform. Tsunami height and
period in the nearshore strongly affected the result of inundation on the land.
Various tsunami numerical models have been developed, such as, Method of
Splitting Tsunami (MOST) (Titov et al., 2016) and the Tohoku University’s Nu-
merical Analysis Model for the Investigation of Near–field tsunamis (TUNAMI)
(Imamura et al., 2006). Even though each other of the numerical models are rela-
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Figure 2.1: (a) Location of hypothetical earthquake scenarios for database.
Red circles indicate the coordinate of earthquake epicenter for thrust-type and
“tsunami earthquake” scenarios. Blue circles indicate the coordinate of earthquake
epicenter for reverse-type scenarios. Small green circles along the coast indicate
the location of virtual comparison points. The outermost boundary shows com-
putational domain A (coarsest grid) and the black rectangle shows computational
domain D (finest grid). (b) The black rectangle indicates the location of Owase.
Virtual comparison point number 18, 19, and 20 are shown as a green circle.

tively different, but some of the results of tsunami inundation are closely similar.
Based on this characteristic, it is assumed that if different earthquakes produce
similar waveform in nearshore region, then they would produce similar tsunami
inundation. Following this assumption, a real-time tsunami inundation forecast
system by using database is developed. The database is made up of precomputed
tsunami inundation and tsunami waveforms from multiple hypothetical earth-
quake sources. The earthquake information such as earthquake location, depth,
and magnitude are still needed in the system. Once the earthquake information is
available, a real-time tsunami waveform simulation can be done. By minimizing
the root mean square error (RMSE) between the simulated tsunami waveform
and the pre-computed tsunami waveform in the database, a site-specific scenario
can be obtained. Then, the tsunami inundation from the selected scenario can
be assumed as the tsunami inundation forecast.

The real-time tsunami inundation forecast system is divided into two stages. The
details of each stage are explained below as well as in Fig. 2.2.

• Stage 1: When an earthquake occurs, preliminary earthquake information
(earthquake coordinate, magnitude, and depth) will be available shortly
and can be accessed in JMA or the U.S. Geological Survey (USGS) bulletin.
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Figure 2.2: Flowchart of the proposed system

This information then is used as input for Stage 1. In this stage, the system
will find coordinates and round up the magnitude to the nearest scenario
in the database and then select the corresponding tsunami inundation as
the tsunami inundation forecast. This stage can be repeated until fixed
earthquake information or the tsunami source becomes available.

• Stage 2: Once the fixed earthquake information or tsunami source becomes
available (e.g., through W-phase or tsunami waveform inversion), a real-
time tsunami waveform simulation by solving a linear shallow water equa-
tion can be done. The results of the tsunami waveform simulation at virtual
comparison points are then compared with the precomputed tsunami wave-
form in the database. The system will search and select a tsunami inunda-
tion forecast by minimizing RMSE between a real-time tsunami waveform
and a precomputed tsunami waveform. If tsunami inundation forecasts
from this stage are different from those of Stage 1, then tsunami inunda-
tion forecasts from Stage 1 are replaced with those from this stage. In some
cases, the wave period of the simulated tsunami waveform and precomputed
tsunami waveform are significantly different. To avoid this problem and to
obtain a reliable tsunami inundation scenario in the database, a time shift
method is applied. This method is adopted from Gusman et al. (2014) and
proven to be effective in order to find appropriate scenario in database.
For example, if two similar waveforms have different wave-phase, the re-
sulted RMSE between those two waveforms will be high. Therefore, the
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waveforms need to be manually shifted in time domain to produce a more
reasonable misfit results. During the 2011 Tohoku earthquake and tsunami,
JMA failed to catch reliable fixed earthquake information as a result of the
magnitude threshold in the JMA system. This happened because, previ-
ously, Japan had no experience with earthquakes of magnitudes more than
Mw 8.5. However, USGS could provide fixed and accurate earthquake in-
formation in 20 min after the earthquake, whereas JMA required 134 min
(Goda and Abilova, 2016). Now, JMA has modified its system, and Stage
2 is expected to be conducted at less than 20 min after earthquake.

2.2.1 Bathymetry and topography data

Various studies explained the importance of high-resolution bathymetric and to-
pographic data for assessment of tsunami (e.g. Mofjeld et al., 2001, Tang et al.,
2008). The bathymetry, topography, and levee elevation data in the spherical
coordinate system covering the coastal area in Mie and Aichi Prefectures were
obtained from the G-Spatial Information Center of Japan. Then, the levee eleva-
tion data were integrated to the topography and bathymetry data for the input
of tsunami simulation. The combination of these data was divided into four
grid sizes: 30 arc-sec for domain A as the coarsest grid, 10 arc-sec for domain
B, 3.33 arc-sec for domain C, and 1.11 arc-sec for domain D as the finest grid.
Bathymetry and distribution of computational domains are shown in Fig 2.1a.
For clarity, only computational domains applicable to Owase are shown.

2.2.2 Fault model scenarios

A tsunami inundation and waveform database is constructed from hypotheti-
cal earthquake scenarios. Earthquake models from those scenarios are assumed
as simple rectangular fault models. The mechanism of an earthquake-induced
tsunami within the Nankai Trough usually can be explained by using thrust fault
mechanism. However, further study revealed that the other fault mechanisms
could have possibly occurred in the Nankai Trough zone. Satake (2015) believed
that the 1605 Keicho earthquake, with its source near the Nankai Trough axis, was
a “tsunami earthquake,” because it generated a considerably large tsunami, yet
no groundbreaking records were documented. A number of high-angle thrust-
faulting earthquakes were also observed in the outer-rise region of the Nankai
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Figure 2.3: Rectangular fault model. Black dot represent the hypocenter of
earthquake

trough with relatively shallow depth (Craig et al., 2014). Three types of fault
model scenarios are used in this study—thrust fault, reverse fault, and tsunami
earthquake—to accommodate all possibilities of fault mechanism in the Nankai
Trough zone. Thrust fault and tsunami earthquake types are located on the plate
interface of the Nankai Trough, and the reverse fault is located in the outer-rise
region. For one site, there are 72 scenarios of the thrust fault mechanism, 96
scenarios of the tsunami earthquake type, and 160 scenarios of the reverse fault
mechanism. Detail explanation of rectangular fault model is shown in the Fig.
2.3. The strike angle (φ) of 225◦ is applied in all scenarios as an average strike
angle in the Nankai Trough subduction zone, and the rake angle (λ) is set to
90◦ as an ideal degree for a subduction tsunami. Slab1.0 (Hayes et al., 2012), a
slab model for subduction zone, is used to determine the dip angle (δ) for thrust
fault scenarios, whereas δ = 10◦ is used for the tsunami earthquake type and δ
= 45◦ for the reverse fault scenarios. Slab1.0 is also used to determine the fault
depth for thrust fault and tsunami earthquake scenarios. In the Slab1.0 model,
previous earthquake depths are relatively similar to slab depth Fig. 2.4; therefore
slab depth is to be assumed to be the depth of the earthquake. For the reverse
fault type, fault depth ranges from 5 to 20 km, based on a previous study that
the depth of outer-rise earthquakes ranged from 6 to 18 km (Craig et al., 2014).
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Figure 2.4: A comparison between the depth of earthquakes and the average
depth of earthquakes (Source: Hayes et al. (2012))

Earthquakes of magnitude Mw 8.0–9.0 are selected for the thrust fault type and
7.0–8.4 for tsunami earthquake and reverse fault–type scenarios (Table 2.1). In
this study the depth of the earthquake/fault is placed in the middle of a rect-
angular plane to accommodate the fault centroid depth, whereas most previous
studies placed the earthquake depth at the top center edge of the fault plane. The
locations of hypothetical earthquakes are selected by following the characteristics
of the Nankai Trough subduction zone (Fig. 2.1a).

Table 2.1: Fault parameters of earthquake scenarios

Fault type Magnitude Depth Strike Dip Rake
(Mw) (km) (◦) (◦) (◦)

Thrust 8.0-9.0 SLAB1.0 225 SLAB1.0 90
Tsunami earthquake 7.0-8.4 SLAB1.0 225 10 90
Reverse 7.0-8.4 5,10,15,20 225 45 90

To calculate the size of the fault plane, a magnitude scaling relation is used.
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Several magnitude scaling relations have been developed and tested in previous
research. Wells and Coppersmith (1994), Hanks and Bakun (2002), and Blaser
et al. (2010) developed widely used scaling relations. Gusman et al. (2015) con-
cluded that the Hanks and Bakun relation was the most appropriate relation
to represent the major slip for the 2011 Tohoku tsunami. In this study, the
scaling relation for the plate-boundary earthquake (Eq. 2.1) by Murotani et al.
(2013) was used. This scaling relation was originally developed by utilizing 26
plate-boundary earthquakes with magnitudes ranging from Mw 6.7 to Mw 8.8
Murotani et al. (2008) and modified by adding seven giant earthquakes (Mw
∼9.0). This scaling relation was tested to be able to explain the fault size of
earthquakes in the Nankai Trough region.

S = 1.34× 10−10M2/3
o (2.1)

where S is the rupture area (in kilometers squared) andMo is the seismic moment
(in Newton meters). Length and width of the fault plane can be directly derived
from the scaling relation by using a simple relationship where the length is equal
to twice the width. However, for the tsunami earthquake type, fault width is
typically much shorter than fault length. Hence, fault width is assumed to be
less than 50 km for tsunami earthquake scenarios Tanioka and Satake (1996).

2.2.3 Tsunami inundation and waveform database

The tsunami inundations and waveforms in the database are simulated by solving
a nonlinear shallow water equation on a staggered grid leap-frog scheme (Gusman
et al., 2009). Spherical coordinate system is used to calculate tsunami propagation
with the origin at the Earth’s center. By assuming the Earth is to be a sphere,
r is constant and equal to the Earth’s radius R. Latitude (θ) and longitude (ϕ)
is covering Earth sphere. The shallow water or the long wave theory is explained
by the following equations:
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The tsunami run-up heights and inundation are calculated by solving non-linear
momentum conservation equation with bottom friction terms. By using analogy
to the quadratic friction law in uniform flow, the bottom friction terms in the
equation are explained. Then, the shallow water or the long wave theory in the
Cartesian coordinate system is explained by the following expressions:
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Manning’s roughness coefficient n is used to calculate the non-dimensional fric-
tional coefficient Cf = gn2/D1/3. Constant n value of 0.025 is applied homo-
geneously in the whole computational domain. In the equations, M and N are
discharge fluxes along latitude and longitude axes, respectively, t is the time, η is
the water level, g is the gravitational constant, D is the total water depth, and f
is the coefficient of Coriolis. The edge of computational domain is used as open
boundary.

A moving boundary condition is applied to determine wet and dry cells for
tsunami inundation. Calculation of discharge between two cells is done when
elevation in the dry cell is lower than water level in the wet cell. Otherwise, the
discharge will be defined as zero. A time step of 0.5 sec is used to satisfy the
numerical stability condition. Manning’s roughness coefficient of 0.025 is chosen
and applied homogeneously for all domains. This Manning’s roughness coeffi-
cient is widely used for tsunami simulation (Imamura, 2009). In this simulation,
134 virtual tsunami comparison points along the coastal area are selected (Fig.
2.1a). From these virtual comparison points, searching for the best-case scenario
of tsunami inundation can be done. Tsunami simulation is conducted for 2 hours,
and the results of the tsunami waveform at each virtual comparison point are
then stored in the database as a precomputed tsunami waveform.

2.3 Results and discussion

To test the performance of the database, one previous earthquake, the 1944
Tonankai earthquake, is used as a tsunami source model. The slip distribu-
tion of that earthquake was estimated on small subfaults (10×10 km) by using
the tsunami waveform inversion method (Baba and Cummins, 2005). And also
two scenarios of expected future earthquakes, the Tokai–Tonankai and Nankai
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Megathrust earthquakes, are used to test the capability of the database. The
slip distributions of those earthquakes were obtained from G-Spatial Informa-
tion Center of Japan (https://www.geospatial.jp/gp_front/). The Nankai
Trough is divided into three major segments, which are the Tokai, Tonankai, and
Nankai segments. For the Tokai–Tonankai earthquake model, the Tokai and To-
nankai segments are assumed to rupture together. This scenario may represent
the highest earthquake threat that would cause the most severe damage to Mie
and Aichi prefectures. For the Nankai Megathrust earthquake model, the Tokai,
Tonankai, and Nankai segments are assumed to be ruptured at the same time,
making this the worst-case scenario of a Nankai Trough earthquake.

To calculate initial sea surface elevation for tsunami simulation, a surface de-
formation in an elastic half-space model (Okada, 1985) is used by utilizing pa-
rameters from those earthquake slip distributions (strike, slip, dip, rake, depth,
length, and width). Sea surface deformation is assumed to be the same as seafloor
deformation.

2.3.1 The 1944 Tonankai earthquake

Owase in Mie Prefecture is selected as a study case and virtual comparison point
no. 19, which represents the nearest virtual comparison point chosen to find the
best-case scenario in the database. For consistency of the results, we have chosen
the three nearest virtual comparison points, and all of them produced the same
results. Accordingly, only virtual comparison point no. 19 is selected in this
study.

For the first stage, let us assume that preliminary earthquake information (earth-
quake magnitude and coordinate) is the same as fixed earthquake information.
Then, by using this information, a scenario with similar earthquake magnitudes
and coordinates is selected as the tsunami inundation forecast. Because there
are two fault mechanism scenarios (thrust fault and tsunami earthquake) with
the same coordinate, it is difficult to determine which scenario is more appropri-
ate. This condition may be confusing in a real event in which a quick decision
is needed, especially when many fault types and scaling relations are considered.
However, in this case, the scenario from the tsunami earthquake fault type is
selected as the tsunami inundation forecast because of larger inundation coverage
(Fig. 2.5). The maximum depth of the tsunami inundation forecast obtained
from stage 1 is about 5.5 m. The result strongly overestimates the field survey,

https://www.geospatial.jp/gp_front/
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Figure 2.5: Tsunami inundation forecasts of the 1944 Tonankai earthquake case
from stage 1 results: (a) a tsunami inundation forecast selected from the tsunami
earthquake scenario; (b) a tsunami inundation forecast selected from the thrust
scenario

where actual maximum tsunami inundation was 2.8 m (Hatori et al., 1981)(Fig.
2.6). This also shows that the forecast accuracy of tsunami inundation may be
low even when using the same epicenter coordinate and earthquake magnitude as
fixed earthquake information. Therefore, obtaining a reliable tsunami inundation
forecast by using only earthquake coordinates and magnitudes is not sufficient.

Stage 2 can be performed when fixed earthquake information or a reliable tsunami
source becomes available. By using earthquake information (magnitude, coordi-
nate, depth, rake, dip, slip), a simple rectangular fault model can be assumed to
create initial sea surface for real-time tsunami waveform simulation. To calcu-
late the size of the fault plane, the same scaling relation as used in developing
the tsunami inundation database can be used. A tsunami source model using a
simple rectangular fault plane to calculate the real-time tsunami waveform is still
included in this study by considering limited tsunami observational systems (e.g.,
GPS buoys) around the Tonankai segment, which is not sufficient to produce a
reliable tsunami source by using more advanced methods, such as a waveform
inversion. In a real event, if a more reliable tsunami source is available, it can be
used to substitute the tsunami source from this simple rectangular assumption
to simulate a real-time tsunami waveform. However, the tsunami source model
obtained by Baba and Cummins (2005) is used in this experiment and assumed
as a real tsunami source. The result of the simulated tsunami waveform is then
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Figure 2.6: Tsunami inundation map from field survey in Owase City due to the
1944 Tonankai earthquake. (Source: Hatori et al. (1981))

compared with a pre-computed tsunami waveform in the database at virtual com-
parison points to select the best-case scenario. In this case, time shift method is
selected from −10 to 10 min with a 1 min interval.

The comparison between the real-time tsunami waveform and the precomputed
waveform in the database is shown in Fig. 2.7a. The lowest RMSE from the
time shift method is 0.469 at a time shift of eight minutes, and it is shown as
the initial gap of the simulated waveform in the figure. Then, the search engine
selects the corresponding scenario as the best-case scenario from database. The
searching algorithm requires less than one second to find the best-case scenario in
the database for one site, whereas real-time tsunami waveform simulation requires
a time of about one minute. To give enough waveform information of a near-field
tsunami, 60-minute data are used. The first negative phase of the precomputed
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waveform may be caused by a simple rectangular fault model assumption in
developing the database, and the virtual comparison point is located close to
the negative initial water surface in the tsunami source model. The maximum
precomputed tsunami wave height is very close to the maximum tsunami wave
height from the real-time waveform simulation. From the best-fit scenario in
the database, the tsunami wave will reach the coast of Owase in less than 20
minutes, whereas the required time to obtain fixed earthquake information is
20 minutes based on the 2011 Tohoku earthquake event. Even the database can
provide good estimation of tsunami inundation, but a quick tsunami source model
is required in minutes in order to calculate the real-time tsunami waveform as
soon as possible. In the future, quick and reliable earthquake information such as
by utilizing W-phase solutions (e.g., Gusman and Tanioka (2013)) is promising
to reduce the required time to obtain a tsunami source model. The maximum
tsunami inundation depth from a selected scenario in the database is 2.74 m (Fig.
2.7b), which is very similar to that from the field survey. The forecasted tsunami
inundation coverage and depth are also similar to the tsunami inundation result
calculated from forward modeling (Fig. 2.7c). The maximum tsunami inundation
depth from forward modeling is 2.62 m, slightly underestimating the maximum
inundation depth from the field survey by 0.2 m. This may also indicate the
good validity of the forward modeling results to the actual tsunami inundation.
Overall, the tsunami inundation forecast is good enough to reproduce actual
tsunami inundation induced by the 1944 Tonankai earthquake.

2.3.2 Predicted future Tokai–Tonankai earthquake

Recently, the Nankai Trough has been considered to be the best location to study
the mechanism of a great interplate earthquake with well-documented historical
records. In the near future, it is expected that a Mw 8.0-class earthquake would
occur (Yokota et al., 2015). The predicted future Tokai–Tonankai earthquake
scenario is assumed to be a tremendous earthquake that would severely damage
Mie and Aichi Prefectures. Slip distribution of the Tokai–Tonankai earthquake
consists of 553 subfaults of different size. The earthquake magnitude is equal to
Mw 8.5 by assuming a rigidity of 5 × 1010 Nm. Because there is no information
about the earthquake’s location in this case, only stage 2 is conducted.

The result of tsunami inundation forecast and waveform comparison is shown
in Fig. 2.8. The optimum time shift is obtained at one minute with an RMSE
of 0.549 (Fig. 2.8a). Similar to the 1944 Tonankai earthquake case, the initial
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Figure 2.7: The stage 2 results of the 1944 Tonankai earthquake case: (a) com-
parison between the precomputed tsunami waveform from the selected scenario
and the simulated tsunami waveform; (b) a tsunami inundation forecast from the
selected scenario. (c) a tsunami inundation from forward modeling.

negative amplitude of a precomputed waveform is caused by the tsunami source
model. It indicates that the virtual comparison point is located inside the tsunami
source model. A selected precomputed tsunami waveform database can catch
the maximum wave height of a simulated waveform very well. The wave phase
of a precomputed tsunami waveform is also similar to a simulated waveform,
especially for the first wave. Even though the database was built based on a simple
rectangular fault model, it still can resemble the characteristics of a tsunami
waveform from an earthquake model that is assumed to be a real event. The
maximum tsunami inundation depth from the best-case scenario in the database is
4.90 m (Fig 2.8b). This result underestimates the maximum tsunami inundation
depth (5.51 m) calculated from forward modeling using the same earthquake
model (Fig. 2.8c). However, inundation coverage is almost identical. From
the selected scenario, a tsunami wave will reach the Owase coastal area in less
than 15 minutes. During this short time, a reliable tsunami source model is
required immediately in order to announce warning and evacuation processes
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Figure 2.8: The stage 2 results of the Tokai–Tonankai earthquake case. (a) com-
parison between the precomputed tsunami waveform from the selected scenario
and simulated tsunami waveform; (b) a tsunami inundation forecast from the
selected scenario; (c) a tsunami inundation from forward modeling.

to the community. At present, tsunami waveform inversion is the best method
to produce the most accurate tsunami source model. Unfortunately, with this
limited time, it may not be enough to yield an accurate tsunami source, especially
with limited tsunami observational systems in this zone. Therefore, as mentioned
before, we still consider the use of a simple rectangular fault model to create a
tsunami source model, as earthquake information will become available faster
than will the tsunami waveform. Accordingly, we are conducting a further study
to solve this problem, and the result will be presented in the near future.

2.3.3 Predicted future Nankai Megathrust earthquake

The predicted future Nankai Megathrust earthquake is assumed to be the worst
case of a Nankai Trough earthquake, where the Tokai, Tonankai, and Nankai seg-
ments are ruptured together and generate huge earthquakes followed by tsunamis.
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The slip distribution is divided into 1,188 subfaults with various fault sizes, and
it can generate an earthquake of magnitude Mw 8.9 by assuming a rigidity of
5 × 1010 Nm. Similar to the Tokai–Tonankai earthquake case, only stage 2 is
conducted.

The lowest RMSE of 0.728 is obtained, and the best-fit scenario in the database
is selected (Fig 2.9a). The maximum wave height of the simulated tsunami wave-
form is the slightly overestimated maximum wave height from the selected sce-
nario in the database and has a peak time gap of the maximum wave. The inunda-
tion coverage and maximum inundation depth of the selected scenario are under-
estimated compared with those calculated from forward modeling, where the max-
imum inundation depth is 5.80 m (Figs. 2.9b and 2.9c). Both simulated tsunami
waveforms of the predicted future Nankai Megathrust and Tokai–Tonankai earth-
quakes select the same scenario for the tsunami inundation forecast. This may
explain that more variation of earthquake and fault model scenarios in devel-
oping a tsunami inundation and waveform database is required to improve the
capability of the database.

In all cases, it takes less than 20 min for a tsunami wave to reach the Owase coastal
area because of the short distance between the earthquake rupture area and the
coast (less than 150 km). Conducting real-time forward modeling with a 2 h
simulation time will take about 30 min by using regular computer (equipped with
an Intel i-7 4.2 GHz CPU) run on multiple threads (parallel). Therefore, real-time
forward modeling is not feasible for the Nankai Trough earthquake except when a
high-performance computer, such as the K-supercomputer, is used. Furthermore,
this database can be used as an alternative tool to forecast tsunami inundation
generated by the Nankai Trough earthquake.

Additionally, from the results of tsunami inundation from forward modeling be-
tween the Tokai–Tonankai earthquake (Fig. 2.8c) and the Nankai Megathrust
earthquake (Fig. 2.9c), it can be said that inundation coverage and maximum
inundation depth are not significantly different by considering quite different
earthquake magnitudes and rupture areas. It can be concluded that tsunamis
generated by the Nankai segment are less of a threat to Mie and Aichi coastal
area. Tsunamis from the Nankai segment may lose energy during propagation
and not reach the coast of Mie and Aichi because of the relatively far distance
and refraction process.



2.4 Summary 24

Figure 2.9: The stage 2 results of the Nankai Megathrust earthquake case. (a)
comparison between the precomputed tsunami waveform from the selected sce-
nario and the simulated tsunami waveform; (b) a tsunami inundation forecast
from the selected scenario; (c) a tsunami inundation from forward modeling.

2.4 Summary

The first attempt of this study discussed the possibility of utilizing tsunami in-
undation and tsunami waveforms in a precomputed database for tsunami inun-
dation forecasting in the Mie and Aichi prefectures of Japan, with the study
case in Owase. A database that consists of tsunami inundation and waveforms
from 17 hypothetical earthquake models with multiple fault configurations and
parameters has been developed in this study.

By using one previous earthquake model and two predicted future earthquake
models, we tested the performance of the database. The 1944 Tonankai earth-
quake was selected to represent previous earthquake cases, and the Tokai–Tonankai
and Nankai Megathrust earthquakes represented predicted future earthquake
cases. The stage 1 results of the 1944 Tonankai earthquake case explain that
only utilizing earthquake coordinates and magnitudes is not enough to produce
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a reliable tsunami inundation forecast, even though it can be done shortly after
preliminary earthquake information becomes available. The comparisons between
the tsunami inundation forecast and tsunami inundation calculated from forward
modeling show that the database can fairly well resemble tsunami inundation
from numerical forward modeling. This result shows that tsunami inundation
forecasting based on the database is suitable for application in the coastal area
of the Mie and Aichi prefectures.

However, to conduct real-time tsunami waveform simulation, fixed earthquake
information or reliable tsunami source is needed. Based on the 2011 Tohoku
earthquake, fixed earthquake information can be obtained at 20 min after the
earthquake. This required time is too long because tsunami waves would reach
the coast of Owase within less than 20 min. In the future, a quick and reliable
method of tsunami source estimation is needed to cut the required time to obtain
the tsunami source model.
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Chapter 3

Tsunami inundation forecasting by
using machine learning

3.1 Problem description

Generally, the objective of tsunami forecasting is mainly to predict the tsunami
waveform and tsunami inundation. Both are vital information during a tsunami
event: tsunami waveform prediction is essential for early warning, while the in-
undation prediction is crucial for the evacuation process. This Chapter is an im-
provement of the warning system in Chapter 2, in which we focus on the tsunami
inundation prediction. Most of the challenges in predicting tsunami inundation in
real time is dealing with the computational load. Running a non-linear tsunami
model is the most accurate method to predict tsunami inundation. However,
with a very short effective period for announcing tsunami information, particu-
larly in the Nankai Trough region, it is not suitable to run a forward model that
requires a simulation time of tens of minutes or even hours on a regular computer.
Oishi et al. (2015) used a supercomputer to simulate tsunami inundation in real
time and was able to generate tsunami inundation for Sendai City with only 1.5
min of computational time. Similarly, Musa et al. (2018) equipped a supercom-
puter simulation with a delivery/mapping server to send the expected inundation
map to the local government. Even so, the use of supercomputers, which are
usually owned by the government, has limitations and difficulties, especially for
countries or institutions that do not have such facilities. A real-time tsunami in-
undation forecasting system based on a database for far-field tsunamis has been
developed by the National Oceanic and Administration (Tang et al., 2008, Titov
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et al., 2005). However, it may not be suitable for near-field tsunami events be-
cause it requires direct forward simulation in the system. A more comprehensive
tsunami inundation forecasting system for near-field tsunamis has been developed
by Gusman et al. (2014). This system finds the best tsunami inundation scenario
in the database by matching precomputed and real-time computed tsunami wave-
forms at virtual observation stations in the coastal region. Recently, there have
been further improvements in the use of offshore bottom pressure data for rapid
coastal tsunami estimation (Igarashi et al., 2016, Maeda et al., 2015, Tanioka,
2018, Tsushima et al., 2014, Yamamoto et al., 2016). Although such methods
are useful for early tsunami warnings, additional procedures are still required to
estimate tsunami inundation, as most of these methods are based on a linear
long-wave model.

Here we improve the searching algorithm proposed by Gusman et al. (2014), which
uses the tsunami waveform at virtual observation points as the input to find the
best-fit scenario in the database. To speed up the matching algorithm, we use a
convolutional neural network (CNN). Similar to the study conducted by Mulia
et al. (2018), we use maximum tsunami amplitude in the low-resolution grid as the
model input instead of tsunami waveforms at virtual observation points. Because
the tsunami inundation database is usually numerically computed from many
simple earthquake scenarios, we believe that simply selecting tsunami inundation
from the best scenario in the database is not sufficient to represent the uniqueness
and the complexity of an actual earthquake source. Therefore, we also use another
machine learning framework, a multilayer perceptron (MLP), to forecast tsunami
inundation directly based on the pattern of maximum tsunami amplitude in the
low-resolution database.

3.2 Database development

3.2.1 Study site

In this experiment, we use the Nankai megathrust earthquake to test the perfor-
mance of our proposed method. We choose two locations for study sites: Atashika
and Owase bays (Fig. 3.1a). Atashika Bay directly faces the Pacific Ocean and is
approximately 1 to 3 km wide, while Owase bay is a U-shaped bay approximately
7 km wide and 10 km long. Both areas are tsunami-prone areas that have ex-
perienced many destructive tsunamis in the past, such as the 1707 Hoei tsunami
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Figure 3.1: (a) Epicenter of fault scenarios used to develop the database. Red
circles indicate the coordinate of the top center of the fault for thrust fault and
tsunami earthquake scenarios. Blue circles indicate the coordinate of the top cen-
ter of the fault for reverse fault scenarios. (b) Domain of low- resolution database
at Atashika Bay. (c) Domain of high-resolution database at Atashika. (d) Do-
main of low-resolution database at Owase Bay. (e) Domain of high-resolution
database at Owase

(Furumura et al., 2011), the 1944 Tonankai tsunami (Kikuchi et al., 2003), and
the 1960 Chilean tsunami (Hatori et al., 1981). Because the location of both
areas is close to the earthquake source in Nankai Trough, a tsunami generated
in Nankai can reach those areas within a very short time (less than 20 min), as
explained in Chapter 2. The unique U-shape of Owase Bay may also generate
tsunami amplification as a result of soliton fission due to resonance in the bay
(Yamanaka et al., 2016).

3.2.2 Fault model scenarios

In this chapter, the same fault model scenarios, as in Chapter 2, are used. Those
scenarios are assumed as three types of simple rectangular faults: thrust (re-
verse fault with low dip angle), tsunami earthquake, and reverse. Earthquake
magnitudes for the thrust fault ranging from 8.0 to 9.0 (0.2 interval), and 7.0 to
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8.4 (0.2 interval) for the tsunami earthquake and reverse fault is used; in total,
there are 328 fault scenarios. The strike angle (θ) is set to 225◦ as an average
orientation of the Nankai Trough subduction zone, while the rake angle (λ) is set
to 90◦. The dip angle (δ) for the thrust fault scenarios is determined according
to SLAB 1.0 (Hayes et al., 2012), while for the tsunami earthquake and reverse
fault scenarios, it is set to 10◦ and 45◦, respectively. The depths of the fault for
the thrust and tsunami earthquake scenarios are also determined from SLAB 1.0.
For the reverse fault scenarios, the fault depth ranges from 5 to 20 km (5-km
interval) according to the outer-rise seismicity depth in Nankai studied by Craig
et al. (2014). A magnitude scaling relation for the plate-boundary earthquake
proposed by Murotani et al. (2013) (Eq. 2.1) is used to calculate the area of
the fault. To compute the initial sea surface for tsunami simulation, we use a
coseismic deformation in an elastic half-space model (Okada, 1985) to calculate
seafloor deformation, and only the vertical component is used. The computed
seafloor deformation is assumed to be the initial sea surface.

3.2.3 Precomputed tsunami database

A well-verified tsunami numerical model, JAGURS (Baba et al., 2016, 2015), is
used to simulate 2-h tsunami propagation and inundation from the fault scenarios.
The simulation is conducted in the spherical coordinate system. Based on Satake
(1995), the equation of motion for non-linear shallow water theory is expressed
as follows:
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and the continuity equation is,
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where h is the wave height above mean sea water level, d is water depth, t is
time, ϕ and θ are longitude and latitude coordinate, respectively, u and ν are
velocity flux along longitude and latitude axes, R is radius of the Earth, g is the
gravitational acceleration, and Cf is the non-dimensional frictional coefficient.
Slightly different with the shallow water equation used in Chapter 2, the latitude
coordinate θ in this equation is measured southward from the North Pole. A
moving wet and dry boundary condition is used to compute tsunami run-up
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and inundation. To solve Eq. (3.1), (3.2), (3.3), staggered grid leap-frog finite
difference method is used. The computational domain consists of four nested grids
with resolutions of 30, 10, 3.33, and 1.11 arcsec. We use a linear long-wave model
for the low- and intermediate-resolution grids (30, 10, and 3.33 arcsec) and a non-
linear long-wave model for the high-resolution grid (1.11 arcsec). The topography
and bathymetry datasets are obtained from the Cabinet Office of Japan. We set
the simulation time step of ∆t=0.25 sec to satisfy the computational stability
and a rise time of 60 sec.

To develop the tsunami database, maximum tsunami amplitude in the low-
resolution grid (30 arcsec) and tsunami inundation in the high-resolution grid
(1.11 arcsec) are stored to create low-resolution and high-resolution databases,
respectively. Because the limit of inundation for each earthquake scenario is dif-
ferent in the high-resolution database, the grid points that satisfy inundation
coverage for all scenarios are fixed. We consider only the wet grid for the low-
resolution database and dry grid for the high-resolution database. The coverages
of the low-resolution and high-resolution domains are defined in the area of in-
terest (Fig. 3.1b - e).

3.3 Machine learning

In this study, we use two types of machine learning algorithms for two different
tasks: CNN for classification and MLP for regression. Similar to the other data-
driven models, both CNN and MLP require training process to acquire knowl-
edge from the database, which consists of maximum tsunami amplitude at low-
resolution grid and tsunami inundation at high-resolution grid. In the training
process, the output variables of CNN are dicrete values representing the scenar-
ios index, while continuous values for MLP. Here, the CNN is proposed as an
alternative to the matching algorithm suggested by Gusman et al. (2014) and
Mulia et al. (2018), while the MLP is proposed to directly reproduce tsunami
inundation in the high-resolution grid. In the other words, to generate tsunami
inundation prediction, CNN still relies on the database, in which its network will
select the best-fit scenario from the database, while MLP is independent from the
database. The flowchart of the application of CNN and MLP to forecast tsunami
inundation is shown in Fig. 3.2. The flow of the system is similar to Stage 2 in
Chapter 2. The difference is that the input for tsunami inundation forecast in the
Stage 2 is the computed tsunami waveform, while in this chapter is the maximum
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tsunami amplitude at low-resolution grid. The detailed explanation and network
configuration of the CNN and MLP as well database for training and testing
are explained in the following subsection. Both proposed frameworks are imple-
mented using an open-source and popular machine learning library, Tensorflow
(Abadi et al., 2016).

Figure 3.2: Flowchart of the application of CNN and MLP for tsunami inundation
forecasting

3.3.1 CNN model

The CNN is a machine learning algorithm that is usually used for image or pattern
recognition problems (Ciregan et al., 2012, Garcia and Delakis, 2004, Krizhevsky
et al., 2012, Sermanet et al., 2013, Tompson et al., 2015), in which it is considered
as the best among the other neural network (NN) methods (Krizhevsky et al.,
2012). One of the advantages of a CNN over a regular NN is the capability to
capture local patterns. Local patterns, which are obtained by down-sampling
the input data into small fragments through the convolutional and pooling op-
erator, improve the accuracy of global pattern recognition if they are examined
from a large-scale view. A regular CNN typically consists of three layers: the
convolutional layer, the pooling layer, and the fully connected layer.

The architecture of CNN used in this study is shown in 3.3. Within the convolu-
tional layer, the input data are filtered and transferred onto the feature map by
applying a set of the convolutional kernel. The output of a convolutional layer
can be analytically formulated as

f = σ (Wx+ b) (3.4)
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Figure 3.3: CNN architecture

where W are the weights of the kernel with kernel size m × n, b is the bias
of the kernel, x is the input kernel, and r is the transfer function. For the
transfer function r, we select a rectified linear unit (ReLU) transfer function
(Nair and Hinton, 2010), f(x) = max(0, x), to introduce the nonlinearity of the
network. The pooling layer compresses the size of the feature map and merges the
semantically similar features into one feature (Lecun et al., 2015, LeCun et al.,
1998). Typically, the pooling unit computes the maximum of a local unit kernel
in one feature map. Then, all of the features are sent to the output layer through
fully connected layer (conventional NN layer). The distribution over classes is
mapped in the output layer by adding a classifier, that is, a softmax activation
function.

We carefully investigate the layer configuration, and we finally use only one stage
each of the convolutional layer, nonlinearity, and pooling layer, which are followed
by two fully connected layers with 128 and 64 nodes. We set the kernel size as
3× 3 and 2× 2 for the convolutional and pooling layers, respectively. As typical
deep-learning networks, a CNN may be subjected to overfitting caused by model
complexity. It is usually typified by excellent training performance but unreliable
testing performance. To avoid this problem, we apply a new kind of regularization
term called dropout (Sutskever et al., 2014). The dropout algorithm randomly
removes or ignores the hidden nodes and their incoming and outgoing connec-
tions with a given dropout probability p (p = 0.2 in this study). This technique
reduces the complex co-adaptation in the hidden nodes and improves the model
performance (Sutskever et al., 2014). To fit the network parameters to the train-
ing dataset, which is obtained by minimizing the categorical cross-entropy loss
function, we use a back-propagation algorithm with an Adam optimizer (Kingma
and Ba, 2015).
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Figure 3.4: MLP architecture

3.3.2 MLP model

The MLP is a popular and most-often-used artificial neural network. It is well
known for its outstanding performance because of its ability for universal approx-
imation. The mathematical formulation of the MLP is inspired by the structure
of the human brain to deal with nonlinear tasks (Haykin, 2008). Therefore, it is
an effective method to solve regression problems (e.g.,Bienvenido-Huertas et al.
(2019)), such as the problems in this study. The network structure of the MLP
consists of three parts: an input layer, one or more hidden layers, and an output
layer. MLP architecture is shown in 3.4. The output value of a hidden node n
can be expressed as

f = σ
(
W lσ(W (l−1) . . . (W 0x+ b0) + b(l−1)) + bl

)
(3.5)

where l indicates the final layer. For the activation function r, we select the ReLU
activation function (Nair and Hinton, 2010), similar to the CNN model. We apply
a loss function based on mean squared error and minimize it by using the Adam
optimizer (Kingma and Ba, 2015). Dropout and L2 norm regularizations with
regularization parameter γ (γ = 0.001 in this study) are used to avoid over-
fitting. We investigate the appropriate number of hidden layers and nodes and
find that a relatively deep and wide network architecture is necessary to capture
the pattern of nonlinear characteristics of tsunami inundation. An MLP network
that consists of five hidden layers with 128 nodes is sufficient to produce a reliable
prediction.
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3.3.3 Training dataset

Two types of databases are used in this study, of low resolution and high resolu-
tion, as explained in Sect. 3.2. The input data for training is the same for both
the CNN and MLP models, that is, the low- resolution database, with a slightly
different array configuration. For the low-resolution model, the array size of each
scenario is 15× 15 (Atashika) and 20× 20 (Owase) for the CNN model, while for
the MLP model, the array is reshaped into a one-dimensional array with sizes of
225 (Atashika) and 400 (Owase). The training target of the CNN model is an
array of integers ranging from 1 to 328 to represent the scenario ranking, while
the MLP model uses the high-resolution database as the training target. In the
high-resolution model, the total number of grid points for each scenario are 6055
and 5826 for Atashika and Owase, respectively. We then stack the array from 328
scenarios in row vectors to create a low-resolution database with array sizes of
328×15×15 (Atashika) and 328×20×20 (Owase) for the CNN model and array
sizes of 328 × 225 (Atashika) and 328 × 400 (Owase) for the MLP model. In a
similar manner, the array sizes of the high-resolution database become 328×6055

(Atashika) and 328× 5826 (Owase).

3.3.4 Testing dataset

We apply our proposed method to a hypothetical future scenario of the Nankai
megathrust earthquake (M8.7) (Central Disaster Management Council, 2003)
where the Tokai, Tonankai, and Nankai segments rupture simultaneously. The
initial coseismic deformation of the hypothetical Nankai megathrust is shown in
Fig. 3.5a. The hypothetical Nankai megathrust tsunami source is used by the
Japanese government to formally estimate the tsunami risk and hazard caused
by such a disastrous event. In a real event, once a reliable tsunami source is
obtained, we then compute tsunami propagation using a linear tsunami model in
the low-resolution grid to obtain the maximum tsunami amplitude. The maxi-
mum tsunami amplitude generated by the Nankai megathrust earthquake at the
selected area (Fig. 3.5b, c) is then used as input for our proposed methods to
generate tsunami inundation forecasts. In addition, the simulated tsunami inun-
dation in the high-resolution grid from a nonlinear tsunami model is considered
as a pseudo observation to validate our proposed method.
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Figure 3.5: (a) Initial tsunami source of the hypothetical Nankai megathrust
earthquake. (b) Maximum tsunami amplitude at Atashika as input to the net-
works. (c) Maximum tsunami amplitude at Owase as input to the networks

3.4 Tsunami inundation results

To quantify the prediction accuracy, the forecasted inundation is compared with
the inundation from the forward modeling (depth and coverage). Because we
use the pseudo observation, and because the tsunami inundation forecasts in our
study may have inundation coverages different from that obtained by forward
modeling, we select a relative error (d) to measure the model performance and
avoid the errors caused by the logarithm of zero values

d =
1

N

N∑
i=1

(
2× (Yi − Ŷi)
|Yi|+ |Ŷi|

)
(3.6)

where Yi and Ŷi indicate the tsunami inundation depth from the forward modeling
and prediction at point i, respectively, and d is a signed expression ranging from
-2 to 2 that is positive for underestimation and negative for overestimation of
the prediction over the observation. When d is closer to zero, it indicates better
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forecast accuracy. In addition, we also use a standard statistical measure, root
mean square error (RMSE), which measures the average magnitude of the error.

3.4.1 CNN model results

Conventionally, comparing the result of direct linear forward modeling with the
precomputed result in the database is the easiest method to find the best-fit
scenario. This assumption was used by Gusman et al. (2014) to compare the
tsunami waveforms from direct forward modeling with those in the database.
However, when utilizing an extensive database (e.g., Baba et al. (2014)), such a
method is not practical because it may require a relatively long computational
time. Mulia et al. (2018) also used a similar method by comparing maximum
tsunami amplitudes in the low-resolution grid with those precomputed in the
database. To simplify the searching process, the input and the database should
go through a principal component analysis (PCA) to reduce the dimensionality
and select the scenario that gives the smallest Euclidian distance relative to the
direct forward modeling as the forecast.

Once it is trained, the CNN is able to find the best-fit scenario in near real
time (Kolsch et al., 2018, Wang et al., 2019). Furthermore, the convolutional
and pooling layers, which give the CNN an outstanding pattern recognition, may
reduce the misrecognition caused by the complexity of the data. The comparison
between CNN-estimated tsunami inundation and the tsunami inundation from
the forward modeling at Atashika and Owase are shown in Figs. 3.6b and 3.6b,
respectively, while the statistical measures are shown in Table 3.1. In Atashika,
the CNN-estimated tsunami inundation is very similar to the tsunami inundation
from the forward modeling having similar coverage, with d = −0.003 and RMSE
= 1.882 m (Fig. 3.6b). The maximum inundation depth is slightly larger, by 0.53
m, than the maximum inundation depth from the forward modeling. In contrast,
the tsunami inundation forecast in Owase shows underestimation of the tsunami
inundation from the forward modeling, with d = 0.548 and RMSE = 2.117 m
(Fig. 3.7b). Moreover, the forecast has a limit of inundation that is significantly
lower than that of the forward modeling in the southern part of Owase (area
below latitude 34◦04′30′′), with a total underestimation of 405 grid points. The
forecasted maximum inundation depth in Owase also has a slightly larger error
than that at Atashika with a discrepancy of 0.63 m.

In this study, we apply a k-fold cross-validation technique in training the network.
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Figure 3.6: (a) Reference tsunami inundation at Atashika obtained from forward
modeling. (b), (c) Forecasts obtained from the proposed methods. (d), (e) Ab-
solute error between forecasts and forward modeling

The k-fold cross-validation is necessary to reduce the variance of the model and
the bias, and thus allow us to estimate the generalization capability of the machine
learning (Jiang andWang, 2017). We randomly divide the dataset into tenfolds, in
which each fold consists of nine subsets for training the model, and the remaining
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subset for the testing. This folding procedure is repeated 10 times. The average
value of the tenfolds is generally accepted to quantify the capability of the model
against an independent dataset. Implementing tenfolds of k-fold, we find out that
our model correctly recognizes the appropriate scenario for a training dataset with
accuracy of 98.80% and 98.21% in Atashika and Owase, respectively.

3.4.2 MLP model result

Because every submarine earthquake has unique characteristics (i.e., coseismic
deformation), the forecasted tsunami inundation from the best-fit scenario se-
lected by the CNN may not closely represent the real tsunami inundation caused
by the simple fault assumption used to develop the database. Unlike a CNN
purposed for classification tasks, in which the algorithm will select the best-fit
scenario from the database, the MLP has the ability to produce a unique output
based on the knowledge acquired during the learning process. In other words, the
MLP acts like tsunami inundation modeling based on the pattern of the training
samples.

The comparison between MLP-estimated tsunami inundation and the forward
modeling for Atashika and Owase are shown in Figs. 3.6c and 3.7c, respectively.
The MLP-estimated tsunami inundation in Atashika underestimates the forward
modeling with d = 0.007 and RMSE = 2.190 m, as shown in Table 3.1. The
forecast poses inundation coverage similar to that of the forward modeling, even
though it has a lower accuracy compared with the CNN, which is indicated by
the larger RMSE value. The maximum inundation depth forecasted by the MLP
is very similar to the forward modeling, with a discrepancy of 0.25 m. In Owase,
the MLP provides a better result compared with the CNN, with d = ˘0.061 and
RMSE = 1.142 m. The MLP-estimated maximum inundation depth is also al-
most identical to that of the forward modeling. An obvious difference between
the tsunami inundation forecasts from the CNN and MLP in Owase is the limit of
inundation. The forecast from the MLP successfully provided acceptable inunda-
tion coverage, with total overestimation of 104 grid points, whereas the CNN has
an underestimation with a greater magnitude. Applying k-fold cross-validation
with tenfolds produced an RMSE ranging from 0.35 m to 0.60 m and 0.32 m
to 0.85 m for the testing dataset at Atashika and Owase, respectively. For the
training dataset, the error ranges from 0.28m to 0.75m and 0.35m to 0.50m at
Atashika and Owase, respectively.
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Figure 3.7: (a) Reference tsunami inundation at Owase obtained from forward
modeling. (b), (c) Forecasts obtained from the proposed methods. (d), (e) Ab-
solute error between forecasts and forward modeling
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Table 3.1: Statistical measures of the results.

Method Site d RMSE Min Max Mean Number
of inun-
dated
grid
points

(m) (m) (m) (m)
Forward
modeling

Atashika - - 0 9.378 7.735 527
Owase - - 0 5.754 3.761 1279

CNN
Atashika -0.003 1.882 0 9.904 7.588 545(18)
Owase 0.548 2.117 0 6.378 3.410 874(-405)

MLP
Atashika 0.073 2.190 0 9.123 6.505 546(19)
Owase -0.061 1.142 0 5.768 3.656 1383(104)

Values in parentheses in the last column indicate the differences in the number
of inundated grid points modeling. Positive values indicate overestimation, and
negative values indicate underestimation between forecasts and forward.

3.5 Discussion

Like the other tsunami inundation forecasting systems that use an algorithm that
matches scenarios against a database (Gusman et al., 2014, Mulia et al., 2018,
Setiyono et al., 2017), the performance of the forecast depends on the variability
and the number of scenarios used to develop the database. The under-estimation
of the CNN-forecasted tsunami inundation over the forward modeling at Owase
indicates that the number of scenarios in our database is not sufficient, and thus
the pattern of the maximum tsunami amplitude of the new input cannot fit a
pattern in the low-resolution database. However, even with the limited scenarios,
the MLP can provide a more acceptable result. One of the drawbacks of the
MLP, as with the other black-box models, is that the forecasted inundation depth
cannot represent the physical meaning of the physics of tsunami inundation.

For further analysis of the performance of the forecasts, the relative error at
the grid points is also presented as a box and whiskers diagram (Fig. 3.8). At
Atashika, the results from both methods show a similar distribution. For the
CNN, the median of the relative error is slightly closer to zero than the MLP re-
sult. The forecast from the CNN also possesses better accuracy than that of the
MLP, as indicated by the range and length of the box and whiskers, though the
differences are not significant. In contrast, the distribution of the relative error
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Figure 3.8: Box and whisker plots indicating the relative error between forward
modeling and the forecasts at Atashika and Owase

of the forecast at Owase exhibits characteristics different from that at Atashika.
Most of the relative errors of the forecast from the CNN are distributed within a
range of 0 to 2, which indicates a strong underestimation caused by a significant
difference in the limit of inundation between the forecast and forward modeling.
In contrast, the MLP presents a more satisfactory result, in which the relative
errors are mostly distributed near zero. Additionally, in Figs. 3.6e and 3.7e, it
is observed that the overestimation and underestimation of the forecasted inun-
dation depth are mostly located near the edge of the limit of inundation. To
suppress this effect, which is probably caused by the model complexity, the MLP
requires an additional regularizer (L2 norm regularizer) in addition to the dropout
regularizer. This may also explain why the MLP can capture the pattern of the
inundation limit more easily than it can capture the inundation depth. A further
study is being conducted to address this issue by using a stacked generalization
ensemble method, and the results will be presented in the future.

The CNN and MLP models learn the pattern of the maximum tsunami am-
plitude during the training process. After the network has been trained, the
prediction can be made quickly by performing a matrix multiplication procedure.
We use a desktop computer equipped with an Intel i7 processor to conduct for-
ward modeling, while a notebook computer with an i5 processor performed the
machine learning simulation. Computationally, the nonlinear forward model re-
quires about 40 min (on eight cores) for a 2-h simulation, while CNN and MLP
require less than 1 s (0.069 and 0.084 s for CNN and MLP, respectively, on a single
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processor) to produce a tsunami inundation forecast. In a real event, although
the time required for the prediction process can be ignored, the proposed methods
depend heavily on a reliable tsunami source model. Considering that a tsunami
caused by a hypothetical future Nankai megathrust earthquake can quickly reach
the region used in this study, a robust and fast method to obtain a tsunami
source model is needed. Seismic waves, which propagate faster than tsunamis,
are promising for use in estimating the tsunami source about 5 to 10 min af-
ter the earthquake, as presented by Gusman and Tanioka (2013) and Kanamori
(2015). Furthermore, computing the maximum tsunami amplitude using a linear
model in the low-resolution grid takes less than 2 min on a regular computer (on
eight cores). In total, to generate a tsunami inundation forecast, it only takes
approximately 7–12 min. By using our proposed methods, we can provide more
lead time, which is very important to give sufficient warning to coastal residents
who need to evacuate the inundation area.

The advantages of our proposed methods over the NearTIF method (Gusman
et al., 2014) are that our proposed methods can provide better and faster tsunami
inundation prediction because the MLP can predict tsunami inundation using
the learned scenarios and they have no waveform time-shifting procedure, as in
NearTIF which may take some time. The ability of our proposed methods is
similar to that of the method proposed by Mulia et al. (2018), which is able to
provide a unique tsunami inundation forecast. However, in the method of Mulia
et al. (2018), applying the interpolation method produces a tsunami inundation
prediction that is exactly half of the Euclidian distance between the two closest
samples, whereas the MLP produces inundation prediction based on the patterns
learned during the training process. A problem arises when the number of scenar-
ios is limited, so that the tsunami inundation from the two closest samples may
be significantly different. Thus, the interpolation method may produce inunda-
tion prediction with significant overestimation or underestimation. Therefore, we
would expect that the MLP provides a better tsunami inundation result compared
with the method of Mulia et al. (2018).

For future development, adding more fault scenarios is essential to improve the
prediction capability of the models. This can be accomplished by incorporat-
ing unique features from well-verified earthquakes or tsunami source models of
previous events in the region, such as the 1707 Hoei (Furumura et al., 2011),
the 1944 Tonankai (Baba et al., 2006), and the 1946 Nankai (Murotani et al.,
2015) events. To consider the uncertainty of source properties of future tsunami-
genic earthquakes, stochastic earthquake sources (Goda et al., 2018) are sug-
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gested for inclusion. Incorporating the influence of tides in shallow waters within
the tsunami simulation could provide substantial results for tsunami hazard pre-
paredness (Lee et al., 2015), and thus this effect should be considered in a future
study. Additionally, although it requires high computational cost, incorporating
a dispersive effect in the nonlinear tsunami model successfully reproduces soli-
ton fission along the Sendai coast during the 2011 Tohoku tsunami (Baba et al.,
2015). With U-shaped topography, Owase is also subjected to soliton fission ef-
fects (Yamanaka et al., 2016); therefore, applying dispersive effects may provide
a more comprehensive database.

It is straightforward to apply the proposed methods in this study to other loca-
tions. However, because the model parameters (weight and bias) are particularly
purposed for Atashika and Owase, it is necessary to re-train the model to fit each
new specific location. Of course, the low-resolution and high-resolution domains
need to be carefully adjusted to give a reliable result. In the near future, it is ex-
pected that these data-driven models will become a standard method for solving
various problems, especially early warning tasks.

3.6 Summary

To improve the matching algorithm in Chapter 2 and previous studies (Gusman
et al., 2014, Mulia et al., 2018), two machine learning models (CNN and MLP)
have been developed in this experiment. The concept of the CNN is similar to
the method proposed by Mulia et al. (2018), which selects the best-fit scenario
in the database based on similarity pattern between computed and precomputed
maximum tsunami amplitude in the low-resolution grid. The difference is that
the pattern recognition in the previous study is conducted by using principal
component analysis, a conventional dimensionality reduction algorithm, while the
dimensionality reduction is performed within the convolutional and pooling layers
of a CNN in this experiment. Because the database is developed from limited
simple fault scenarios, there is a possibility that the CNN is unable to find the
appropriate best-fit scenario, as shown for Owase. However, the MLP, which
is purposed for the regression task, is able to yield a more acceptable forecast
than CNN when there is no scenario in the database that has a pattern similar
to that produced by direct forward modeling. With a quick calculation time,
both methods are strong candidates for a future tsunami inundation forecasting
system.
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The proposed methods rely on accurate and reliable tsunami source models to
generate inundation forecasts. Due to the short distance between the Nankai
Trough and the nearby Japanese coast, a fast and reliable tsunami source model
is needed. A tsunami source model based on W-phase inversion Gusman and
Tanioka (2013), which only requires about 10 min, is a promising method for
integration with the proposed methods. In the future, further development should
focus on improving the reliability of the database by incorporating more scenarios.
The network architecture may also need to be improved to accommodate more
input variables, such as tsunami height at observation stations, to produce a
better forecast.
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Chapter 4

Data-driven models for tsunami
waveforms forecasting

4.1 Problem description

In general, the primary purpose of the tsunami early warning system (TEWS) is to
predict tsunami waveforms and inundation as quick as possible after a submarine
earthquake occurs. A typical method to forecast tsunami waveform is by using
the tsunami waveform inversion (TWI). This method is regarded as one of the
most suitable methods for tsunami waveform forecasting with robust prediction
performance and has been widely used in many studies (e.g. Tsushima et al., 2009,
Yasuda and Mase, 2013). Recently, many comprehensive TEWSs usually require
a tsunami inundation database, which computed from various fault scenarios, to
avoid a high-computational load of the non-linear tsunami simulation in order to
forecast tsunami inundation in real-time (e.g. Gusman et al., 2014, Mulia et al.,
2018, Setiyono et al., 2017). In this chapter, we focus on tsunami waveform
prediction.

The advancement of data-driven techniques, such as neural networks (NNs), has
resulted in new approaches as an alternative to the deterministic model. Namekar
et al. (2009) used an NN and utilized the precomputed tsunami waveforms for
training the NN in advance. Even though it is convenient to be used in real-
time, however, we believe that conducting real-time training of the NN against
observed data would produce a better forecast. Romano et al. (2009) also used
an NN to forecast tsunami height and arrival time in spatial distribution. How-

53



4.2 Tsunami observational system and bathymetry data 54

ever, their proposed method may not be suitable for near-field tsunami events
because they rely on the fixed earthquake parameters, which are subjected to
uncertainty, as the input of the model. Mase et al. (2011) applied an NN with a
single hidden layer to forecast the tsunami height at the observation points. How-
ever, for warning and evacuation purposes, in addition to the tsunami height, the
information of tsunami arrival time is also essential. Mulia et al. (2016) success-
fully applied another type of data-driven model, a regularized extreme learning
machine (ELM), to predict tsunami waveforms generated by the 2011 Tohoku
earthquake. In a real event, their proposed method only requires the informa-
tion of the location of the earthquake, then utilizes the Green’s database as the
model input. The result showed that ELM outperforms the TWI method and
could capture the nonlinearity of the tsunami. It is widely known that forecast-
ing tsunami waveform generated by an earthquake in real-time is dealing with
uncertainty. The uncertainty usually is caused by incomplete information of the
source parameters. By applying an ELM as conducted by Mulia et al. (2016),
the uncertainty arises due to random parameters (i.e., input weights and biases)
inside its network. In other words, each run will produce a different forecast. In
a real event, this condition may cause confusion as to which of the forecasts is
reliable.

In this study, we improve the method proposed by Mulia et al. (2016). We use
a probabilistic regularized extreme learning machine (PRELM), which originally
developed to deal with data with noises, to forecast tsunami waveform. We
then fine-tune the network parameters to improve the forecast consistency and
reduce the uncertainty caused by the randomness of the input weights and biases.
Furthermore, we compare the performance of the forecasts with that forecasted by
a conventional TWI and another popular data-driven model, the support vector
machine (SVM) (Cortes and Vapnik, 1995). We apply our proposed methods to
the 2004 Kii earthquake and the 2011 Tohoku earthquake.

4.2 Tsunami observational system and bathymetry

data

For the 2004 Kii earthquake case, we use the existing tsunami observational sys-
tem that consists of the ocean bottom pressure (OBP) gauges and global position-
ing system (GPS) buoys. The OBP gauges were developed and operated by sev-
eral Japanese agencies. Japan Agency for Marine Earth Science and Technology



55 Chapter 4

(JAMSTEC) installed and operated most of OBP gauges in Nankai Trough called
Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET). The
first phase of the DONET program installed 20 stations located off Kii Peninsula
and further classified as DONET 1. The second phase of DONET is referred to as
DONET 2 consists of 29 stations located on the west side of DONET 1 to cover
a wider monitoring region. The Japan Meteorological Agency (JMA) and the
National Research Institute for Earth Science and Disaster Prevention (NIED)
operated the other OBP gauges other than the DONET system that consisted
of 14 stations. The Port and Harbours Bureau, Ministry of Land, Infrastruc-
ture, Transport and Tourism (MLIT), Japan operated the GPS buoys through
the Port and Airport Research Institute (PARI) (Nagai et al., 2008). The GPS
buoys are equipped with real-time kinematic (RTK) technology and able to mea-
sure sea-level changes in second. For the 2011 Tohoku earthquake case, we only
use six GPS buoys (G801, G802, G803, G804, G806, G807), which also oper-
ated by MLIT. The distribution of those existing tsunami observation stations is
shown in Fig. 4.1a and c. The bathymetry and topography we use for numerical
simulation are based on the General Bathymetric Chart of the Ocean (GEBCO)
dataset. The GEBCO 2019 with 15 arcsec resolution is selected. The computa-
tional domain ranges from 130◦ E to 141◦E and 30◦N to 36◦N for the 2014 Kii
earthquake case, and from 140◦ E to 146◦E and 36◦N to 42◦N. The bathymetry
map is shown in Fig. 4.1a.

4.3 Methodology

4.3.1 Tsunami numerical model and Green’s function

Similar to TWI, this study utilizes the responses of unit sources distributed in-
side the influenced area as Green’s function. The Green’s function database is
computed using a numerical model under a linear long-wave (LLW) assumption.
The momentum and continuity equations in spherical coordinate system are:
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Figure 4.1: (a) Bathymetry profile and existing tsunami observational system in
the Nankai region. (b) Unit source locations (blue circles symbol) and selected
unit sources in this study (red circles symbol). (c) Bathymetry profile and existing
tsunami observational system in the Tohoku region. (d) Unit source locations
(blue circles symbol) and selected unit sources in this study (red circles symbol).
Star symbol indicates the epicenter of the earthquake

where, η is the tsunami height measured from still sea surface, M and N are
the components of velocity along x and y directions, ϕ and λ are latitude and
longitude, d is the water depth, and g is the gravitational constant. We solve
these tsunami equations by using a finite difference method with a staggered
grid.

To depress artificial reflections from model boundaries that cannot be effectively
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absorbed by using traditional boundary conditions, we apply a perfectly matched
layer (PML) boundary condition (Maeda et al., 2016). In the numerical simu-
lation, we set the time step (∆t) is 0.5 s to satisfy the Courant-Friedrichs-Lewy
condition with 2 h simulation time.

4.3.2 Tsunami waveform inversion

TWI is one of the most robust methods to estimate the initial fault slip of a
submarine earthquake that generates tsunami with high accuracy. The reason is
that water propagation can be evaluated precisely by using linear or nonlinear
long-wave model compared to the seismic propagation, which is dealing with
unknown properties within the Earth. In our study, we use TWI to estimate
the initial tsunami source instead of a fault model. In this manner, tsunami
waveforms in the coastal regions can be predicted directly.

The principle of TWI, synthetic observed tsunami profiles are a linear super-
position of wave profiles as Green’s function of distributed unit sources with 1
m initial amplitude that are computed using the linear long-wave model. The
superposition equation is as follows,

η(j, t) =
∑
i

(Gi(j, t)xi (0 ≤ t ≤ T ) (4.4)

where η(j, t) is the observed waveform at the jth station, Gi(j, t) is Green’s func-
tion recorded at the jth station from the ith unit source, and xi is the unknown
parameter indicating the displacement of the ith unit source. We densely dis-
tributed unit sources inside the study area with 20 km interval. For each unit
source, we apply a Gaussian shape as initial water surface (z) with initial ampli-
tude (A) of 1 m,

zi(λ, ϕ) = Aiexp

[
−(λ− λi)2 + (ϕ− ϕi)2

2σ2

]
(4.5)

where Ai is the amplitude with λi and ϕi as the center of the unit source and σ =
30 km is the blob spread in λ and ϕ directions. To accommodate coseismic seafloor
deformation, we modify the Green’s function by subtracting initial water surface
heights from the synthetic observed tsunami profiles at observation stations. The
modification formula as described by Tsushima et al. (2012) is

G′′i (j, t) = Gi(j, t)−Di(j)

∫ t

∞
χ(δ)dδ (4.6)
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where G′′i (j, t) is the modified Green’s function, Di is the initial seafloor deforma-
tion, and the term

∫ t
∞ χ(δ)dδ indicates seafloor deformation in temporal evolution,

which is set to be 1 for instantaneous tsunami generation.

To estimate the value of xi, we solve Eq. (4.4) by using the singular value de-
composition (SVD) method. In vector form, Eq. (4.4) can be written as

η = Gx (4.7)

The SVD of G ∈ Rm×n is described as G = UΣV T , where U ∈ Rm×m, Σ ∈
Rm×n, and V ∈ Rn×n. To avoid overfitting, we minimize both total square loss
and regularization term. Now, we can obtain the final objective function, that is,

min
x

=

[
1

2
‖Gx− η‖2 +

γ

2
‖x‖2

]
(4.8)

where γ > 0 is the regularization parameter (γ = 1, in this study) and I is an
identity matrix. Finally, the normal equation of Eq. (4.8) is

x = V (ΣTΣ + γI)−1ΣTUT (4.9)

To determine the number of unit sources used in the inversion, we follow the
method proposed by Mulia et al. (2016). The unit sources are limited by a circle
area with a certain radius defined by the inversion time range. The selected unit
sources are w(t), where (t = r/v) ≤ T , r is the radius of a circle with epicenter
as the center, and v is a constant to adjust the size of the circle. We set v= 10.5
and 5 km/min after several trial and error tests for the 2004 Kii and 2011 Tohoku
earthquake cases, respectively. The selected unit sources are shown in Fig. 4.1c
and 1d.

4.3.3 Probabilistic extreme learning machine

Similar to the traditional NN, an ELM consists of three layers: input layer,
hidden layer, and output layer. In ELM, the input weights that connect input
layer and hidden layer are randomly generated. While for the output weights
that bridge between hidden layer and output layer are determined by computing
the Moore-Penrose generalized inverse matrix. The ELM with N̂ hidden nodes
can be formulated as

N̂∑
i=1

= βig(wiaj + bi) = ηj, j = 1, . . . , N (4.10)
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where βi is the output weights, g(wiaj + bi) indicates the output of ith hidden
node with activation function g, aj = [a(j,1, . . . , aj,n]T ∈ Rn is Green’s function as
used in TWI, which is the waveform at observational stations originating from the
jth unit source with the number of unit sources n, wi = [w(i,1, . . . , wi,n]T ∈ Rn

is the input weights at the ith hidden node, bi is the bias or threshold at the
ith hidden node. In our study, the training dataset for ELM is

{
aj,ηj

}N
j=1

. For
activation function, we use exponential linear units (ELUs) instead of the well-
known nonlinear sigmoid function. The ELUs is purposed to avoid the vanishing
gradient problem which is caused by a sigmoid function in deep architecture
network (Clevert et al., 2016). Even though we use shallow networks in this
study, the ELUs is also capable to accelerate the learning process. Considering
the dimension of our input function (vector dimension of a) is small, and the fact
that ELM models require more hidden nodes compared the other neural networks,
we set the number of hidden nodes N̂ is equal to 80% of the vector dimension of
the input function.

The objective function of PRELM minimizes the discrepancy between mean and
variance for both modeling error and noise, while the standard ELM only mini-
mizes modeling error (Lu et al., 2018). In other words, the distribution of model-
ing errors is taken into account. Similar to TWI, to avoid overfitting and provide
better model performance, a regulation term can be added (Huang et al., 2012).
Finally, the objective function of PRELM can be formulated as

min
β

[
1

2
‖β‖2 +

1

2

γ

N

N∑
i=1

(ei − ζ)2 + C
1

2
ζ2

]
(4.11)

where ei is the modeling error, ζ is the global error factor which connects among
errors, and γ and C are the regularization parameters (γ = 24 and C = 23 in
this study). When the number of hidden nodes are smaller than the number
of training samples, the output weights β of the PRELM can be computed by
solving Eq. (4.11),

β = HT (HH2 +
I

(γ/N)
+
O

C
)
−1
η (4.12)

where O is a matrix of ones whose elements are 1.

4.3.4 Fine-tuning

As mentioned in the beginning, predicting tsunami waveform generated by an
earthquake in real-time is dealing with uncertainty due to limited information
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of the earthquake source parameters. The ELM is also one of the uncertainty
sources since the input weights and biases are defined randomly. Similar to a
standard neural network, the most common way to reduce the uncertainty caused
by randomness in ELM architecture is by updating or adjusting the network
weights and biases according to the output error.

Once the network parameters (input weight, bias, and output weight) are ini-
tialized using PRELM, we then optimize them by using the adaptive moment
estimation (Adam) optimizer (Kingma and Ba, 2015). The initial network pa-
rameters for optimization are computed by using the PRELM algorithm during
the training stage. Since the network parameters are relatively well-defined be-
cause they have been trained in advance, Adam optimization should be done
quickly. Besides, Adam is well-known as a rapid optimizer and suitable for a
wide range of optimization problems in the machine learning field (Wilson et al.,
2017). Hereafter, we call the fine-tuned PRELM the PRELM-FT.

4.3.5 Support vector machine

SVM is one of the emerging learning models in the past two decades due to
its outstanding capability in solving classification problems. Cortes and Vapnik
(1995) concluded that SVM could be viewed as a type of SLFNs after conducting a
rigorous study about the relationship between SVM and deep architecture feedfor-
ward model. In this study, we decide to use ν-support vector regression (ν-SVR)
(Schölkopf et al., 2000), a variant of SVM for regression problems. For a given
similar training dataset as in ELM

{
aj,ηj

}N
j=1

, where aj = [a(j,1, . . . , aj,n] ∈ Rn,
ν-SVR can be analytically modelled as

ŵa+ b = f(a) (4.13)

where ŵ is the vector variable and b is the bias. We can see that the formulation
of ν-SVR is similar to the ELM (Eq. 4.10), and the vector variable matrix
of ŵ resembles the input weights w. The objective function of ν-SVR with
regularization term is

min
ŵ,b,ξ,ξ∗,ε

[
1

2
ŵT ŵ + γ

(
νε+

1

n

n∑
i=1

(ξ + ξ∗)

)]
s.t. (ŵTφ(ai) + b)− ηi ≤ ε+ ξ\1\i,

ηi − (ŵTφ(ai) + b) ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ i = 1, . . . , n, ε ≥ 0

(4.14)
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where ν is the SVM constant (ν=0.1, in this study), ε is the error at each ai or
indicates the tube size of the SVM with everything above ε is defined as slack
variables (e.g. ξi,ξ∗i ), γ is the regularization parameter, and φ denotes nonlinear
mapping into a higher-dimensional feature space. According to Karush-Kuhn-
Tucker (KKT) theorem, solving the following dual problem is equivalent to train
the SVM, that is,

min
α,α∗

[
1

2
(α−α∗)TQ(α−α∗) + ηT (α−α∗)

]
s.t.OT (α−α∗) ≤ 0, OT (α−α∗) = γ̂nν,

0 ≤ αi, α
∗
i ≤ λ̂, i = 1, . . . , n

(4.15)

where Qij = K(ai, aj) ≡ φ(ai)
Tφ(aj), γ̂ = γ/n, O is a matrix of ones whose

elements are 1, and αi and α∗i are Lagrange multipliers. The solution to Eq.
(4.15) is

n∑
i=1

(−αi + α∗i )
TK(ai,a) + b (4.16)

We use a Gaussian radial basis function (RBF), a general-purpose kernel function,
and applicable for most problems. The RBF is usually used when the knowledge
about the data is unknown before the learning process. The RBF kernel is ex-
pressed as follows,

K(ai, aj) = e−γ‖ai−aj‖
2

(4.17)

where γ = 1/n is the parameter of the RBF function (γ = 0.1, in this study).

4.4 Experimental results and discussion

To evaluate the performance of the models, we compare the observed and fore-
casted waveforms by calculating the Pearson correlation coefficient (r) and root
mean square errors (RMSE). We also compute the accuracy score (Tsushima
et al., 2009) of the tsunami forecasting using the following equation.

accuracy score =

[
1−

∑N
j=1(ηj − η̂j)2∑N

j=1 η
2
j

]
(4.18)

where η2j is the forecasted waveform. Generally, a higher accuracy score indicates
a better accuracy of the forecasts. Furthermore, we compare tsunami arrival
time and maximum wave height at selected GPS buoy locations as testing points
(Fig. 4.1d) since these are very important indicators for early warning. Aside



4.4 Experimental results and discussion 62

from that, we include scatter plots for further analysis and interpretation of the
proposed models.

To test the performance of our proposed models, we conduct two experimental
cases, the 2004 Kii and the 2011 Tohoku earthquakes. The fault model of the
2004 Kii earthquake is obtained from Yamanaka (2004), which is computed from
teleseismic body waves. Because no OBPs were installed at the time of the
2004 Kii tsunami, we use synthetic data for the 2004 Kii earthquake case by
conducting a numerical simulation. By assuming seafloor deformation is equal to
the initial water surface profile, we use Okada’s model (Okada, 1985) to calculate
the tsunami source model. The simulated waveforms recorded at observational
stations are assumed as a pseudo-observation that will be used to quantify our
model performance. The observational system in the Nankai region consists of
GPS buoy and OBP, which are not free from noises or outliers. To provide realistic
data, we add white Gaussian noise to every observation station. Since the noise
level of OBP is generally lower than the GPS buoy, we set a signal-to-noise ratio
of 30:1 for OBP calculated from the ratio between maximum wave amplitude
and standard noise deviation as similarly used by Mulia et al. (2017) and slightly
larger ratio of 30:5 for GPS buoy. For the 2011 Tohoku earthquake case, we use
a real tsunami data. The data has been preprocessed to remove the non-tsunami
components such as seismic waves and tides.

It is evident that in any inversion process, data with longer inversion time range
will improve the forecast accuracy. We define the inversion time period of 10 min
for the 2004 Kii earthquake case, and 35 min for the 2011 Tohoku earthquake
case according to Gusman et al. (2014). By using that period of data, we forecast
50 min tsunami waveform at testing points (Fig. 4.1a and c). We select four
GPS buoy stations (Muroto, Tokushima, Owase, and Omaezaki) and six stations
(G801, G802, G803, G804, G806, G807) as the testing points for the 2004 Kii
and 2011 Tohoku earthquake cases, respectively.

It is worth noting that PRELM, PRELM-FT, and SVM models should be care-
fully optimized by adjusting the parameters to obtain the best performance of
the models. For the PRELM and PRELM-FT, besides requiring more hidden
nodes, the accuracy of the forecasting is affected by regularization parameters.
In the SVM model, the model accuracy is affected by the SVM constant ν and
RBF parameter γ. In this study, those parameters are optimized by conducting
a grid-search method. Because those are user-controlled parameters, in a real
event, however, those parameters need to be adjusted through trial and error
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procedure, since there is no certain rule to determine the best value.

4.4.1 The comparisons of PRELM and PRELM-FT

In terms of the model formulation, the PRELM is similar to the model proposed
by Mulia et al. (2016), with only slightly different in the computation of the dis-
tribution of modeling error. Both models rely on the randomization of the input
weights and biases, as Huang et al. (2006) presented that the approximation capa-
bility of ELM can be achieved when the inputs are projected randomly. However,
in this manner, the prediction from each run would be different. In the context
of a warning system, in addition to the accuracy of the predictions, prediction
consistency is also important. To give more consistent predictions, therefore, the
network parameters of the PRELM need to be fine-tuned. Once the PRELM
is trained, we then optimize the network parameters by using Adam optimizer.
Since the network has been trained in advance, the optimization procedure only
requires 10-30 iterations to achieve reliable results. To evaluate the benefits of
fine-tuning the PRELM, we conduct 50 consecutive runs to quantify the uncer-
tainty of the predictions. Both of PRELM and PRELM-FT are implemented
using an open-source machine learning library, Tensorflow (Abadi et al., 2016).

Comparisons between PRELM, PRELM-FT, and observation are shown in Fig.
4.2 and 4.3 for the 2004 Kii and 2011 Tohoku earthquake, respectively. In the
figure panel, the light blue and red shaded areas represent the prediction vari-
ability areas bounded by 10th/90th percentiles for the 2004 Kii and 2011 Tohoku
earthquakes, respectively, while the solid lines represent their means. For both
earthquake cases, it can be observed that the predictions from 50 consecutive
runs of the PRELM are highly variable. For the 2004 Kii earthquake case, the
PRELM exhibits significant variability of the predictions relative to the maximum
observed tsunami height. A similar condition also applies to the 2011 Tohoku
earthquake case. However, PRELM shows relatively low prediction variability
at the time between 0-35 min, which most likely occurred because the predic-
tions are within the inversion time range. Furthermore, PRELM-FT, which is a
fine-tuned PRELM, successfully reduces the variability of the predictions. The
areas bounded by 10th/90th percentiles are hardly seen for the predictions by the
PRELM-FT indicating consistent predictions. Therefore, the level of the uncer-
tainty of the PRELM prediction caused by random parameters of the network
can be significantly reduced by fine-tuning the network parameters. Hereafter,
we assume the mean of the results of 50 PRELM consecutive runs as the PRELM
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Figure 4.2: Comparison of forecasted waveforms between PRELM, PRELM-FT,
and the observations at the testing stations for the 2004 Kii earthquake. The grey
shaded area indicates the training period. The shaded areas around the graph
indicate the area bounded by 10th/90th percentiles for PRELM and PRELM-FT
forecasts, while the solid lines indicate the mean from 50 consecutive runs.

forecast, while only from a single run for the other models, since the variability
is neglectable.

4.4.2 All models comparisons

Overall, all of the models produce reliable and similar tendencies in capturing the
pattern of the observed tsunami waveforms. The comparisons of the forecasted
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Figure 4.3: Comparison of forecasted waveforms between PRELM, PRELM-FT,
and the observations at the testing stations for the 2011 Tohoku earthquake.
The grey shaded area indicates the training period. The shaded areas around
the graph indicate the area bounded by 10th/90th percentiles for PRELM and
PRELM-FT forecasts, while the solid lines indicate the mean from 50 consecutive
runs.

waveform from all proposed models and observations are shown in Fig. 4.4 and
4.5 for the 2004 Kii and 2011 Tohoku earthquake cases, respectively. To provide
a clear judgment of the performance of the models, we assess three essential
indicators: the accuracy of tsunami waveform, maximum tsunami amplitude,
and arrival time. Furthermore, to quickly determine which data-driven model
performs the best, we then give a rank to each data-driven models. The rank is
calculated based on the accuracy score. For each tsunami case, the lowest rank
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at each testing station is one point, and the highest rank is equal to the number
of the testing station. The ranking results of the models are shown in Fig. 4.6
and 4.7.

Figure 4.4: Comparison of forecasted waveforms between PRELM, PRELM-FT,
SVM, TWI, and the observations at the testing stations for the 2004 Kii earth-
quake. Shaded area indicates the training period.

It is clear from Fig. 4.4 that the forecasts from the proposed data-driven models
for the 2004 Kii earthquake possess a similar tendency. TWI and followed by
the PRELM-FT successfully provide the best waveform prediction accuracy, as
indicated with the highest rank shown in Fig. 4.6a. It is also evident that
SVM tends to forecast maximum tsunami amplitudes closer to the observations
at most of the testing stations (also indicated by the highest rank shown in
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Figure 4.5: Comparison of forecasted waveforms between PRELM, PRELM-FT,
SVM, TWI, and the observations at the testing stations for the 2011 Tohoku
earthquake. Shaded area indicates the training period.

Fig 4.6b), except at Omaezaki that slightly outperformed by PRELM-FT. The
PRELM outperforms the other models in terms of the accuracy of the tsunami
arrival time, as indicated in Fig. 4.6c, though it is clearly shown in Fig. 4.4 that
the difference is not significant. According to the total ranks of the data-driven
models, the PRELM-FT performs the best, while PRELM shows the lowest rank
(Fig. 4.6d). For the 2011 Tohoku earthquake case, PRELM-FT and followed by
SVM produces the highest waveform and tsunami arrival time accuracy compared
to the other proposed models (Fig. 4.7a and c). Similar to the 2004 Kii earthquake
case, the SVM can capture the maximum tsunami height better than the other
models (Fig. 4.7b). From both earthquake cases, PRELM-FT obtains the highest
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Figure 4.6: The performance rank of the models for the 2004 Kii earthquake. (a)
The rank for tsunami waveform accuracy. (b). The rank for maximum tsunami
amplitude accuracy. (c) The rank for tsunami arrival time accuracy. (d) The
total rank.

ranking, indicating that PRELM-FT is superior to the other models. However,
in terms of maximum tsunami height accuracy, SVM is better.

Additionally, to further investigate the performance of the proposed methods, we
include the scatter and Gaussian fit plot for each method as presented in Fig.
4.8 and 4.9 for the 2004 Kii and 2011 Tohoku earthquake cases, respectively. In
the 2004 Kii earthquake case, PRELM-FT, SVM, and TWI produce forecasts
which have a relatively similar distribution and agreement with the observation
(Fig. 4.8). They also show similar performance indicated by similar statistical
measures (RMSE and r), while PRELM has the lowest performance. For the case
of the 2011 Tohoku earthquake, the PRELM-FT forecast shows the most similar
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Figure 4.7: The performance rank of the models for the 2011 Tohoku earth-
quake. (a) The rank for tsunami waveform accuracy. (b). The rank for maximum
tsunami amplitude accuracy. (c) The rank for tsunami arrival time accuracy. (d)
The total rank.

distribution with the observation compared to the other models as shown in the
Gaussian fit plot (Fig. 4.9). It also yields the best performance indicated by the
statistical measures.

Most of the comparisons of evaluation indicators reveal that PRELM-FT can
achieve more accurate predictions. However, imposing Adam optimizer into
PRELM-FT makes the training time longer due to the iteration process. PRELM-
FT requires 0.8 s of training time, which is longer than PRELM (0.07 s), SVM
(0.3 s), and TWI (0.3 s). Applying ELUs as the transfer function, the PRELM
presents remarkable training time, faster than that in the previous study (0.35
s) (Mulia et al., 2016). Also, PRELM-FT as the other NN-based networks are
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Figure 4.8: Scatter plots and Gaussian fits resulted by the proposed methods
versus the observations for the 2004 Kii earthquake.

prone to overfitting and higher probability to converge in local minima. Unlike
NN, SVM is more resistant to overfitting and able to find the global optimum
solution during the training process. Therefore, with faster training time and
a slightly different performance with the PRELM-FT, SVM is also a promising
method for real-time tsunami waveform forecasting.

All of the models perform very well with RMSE < 1 and r > 0.8 for the 2004 Kii
earthquake. Apart from the coseismic deformation of the 2004 Kii earthquake is
relatively less complicated compared to the 2011 Tohoku earthquake, the deploy-
ment of dense OBP (DONET) system may improve the accuracy of prediction.
Following the 2011 Tohoku event, an advance and dense OBP network called
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Figure 4.9: Scatter plots and Gaussian fits resulted by the proposed methods
versus the observations for the 2011 Tohoku earthquake.

S-net is also installed around Japan Trench which covers a wide area of the east-
ern coast of Japan with 30-50 km grid spacing (Maeda et al., 2015, Saito, 2013).
Therefore, the prediction performance for the 2011 Tohoku earthquake case may
improve when the S-net is included.

The advantages of our proposed methods over the published model (Mulia et al.,
2016) is that it provides consistent prediction. PRELM and the other variants
of conventional ELM would produce a different result for each run. Therefore,
conventional ELM may not be suitable for early warning systems, in which the
prediction consistency is an essential factor. In this study, the unit sources in-
cluded in the inversion are determined by limiting the unit sources with a certain
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radius with the earthquake coordinate as the center. However, this method may
not represent the actual coseismic deformation as the epicenter of the earthquake
is not always at the center of the deformation area. Therefore, incorporating a
fast optimization procedure to select the unit sources is suggested for future de-
velopment. Both of the 2004 Kii and 2011 Tohoku earthquake exhibit dispersive
effects, as presented in the previous study (Saito et al., 2014, 2010). Even though
it requires a high computational load, applying a dispersive model in developing
the Green’s function database may provide more accurate predictions.

4.5 Summary

This study presents an application of data-driven models including, PRELM,
PRELM-FT, and SVM for robust forecasting of tsunami waveform in real-time.
The basic idea of the PRELM is similar to the method proposed by Mulia et al.
(2016), which also uses an ELM variant. The difference is that the input param-
eters of the previous study are randomly assigned, while the input parameters
in this study are then iteratively-optimized by using Adam optimizer. Conse-
quently, in the previous study, each model run would produce a different predic-
tion which may not be suitable for early warning tasks. In addition to producing
a quick and accurate prediction, the TEWS also requires a consistent prediction
to avoid confusion during a real event. With fully-trained network parameters,
the PRELM-FT can yield a better forecast with a significant improvement than
PRELM. PRELM-FT is also superior to TWI and another popular data-driven
model, SVM, indicated by the highest rank in two earthquake cases. However,
due to the iteration procedure during the optimization, the PRELM-FT requires
more computational time. In terms of waveform forecasting accuracy, PRELM
shows the best performance; however, in terms of maximum tsunami height accu-
racy, SVM outperforms the other methods. Therefore, with faster training time
than PRELM-FT, SVM is also a promising method for future tsunami waveform
forecasting tool.

Overall, PRELM-FT and SVM are strong candidates for the future TEWS tool
by considering its good approximation. In the future, we should focus on improv-
ing the performance of the method by using a more sophisticated procedure in
selecting and developing the Green’s function.
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Chapter 5

Deep predictive coding network for
wavefields forecasting

5.1 Problem description

Tsunami forecasting systems have advanced significantly in recent years, espe-
cially since the 2004 Indian Ocean and 2011 Tohoku tsunamis. In most forecasting
systems, information on the earthquake source parameters, that is, earthquake
coordinates, depth and fault size, are necessary to run the tsunami propagation
model (Satake, 2015). Calculating the earthquake source parameters from seis-
mic observations in real-time is a difficult task because of the complexity of the
structure beneath the Earth. Even though the parameters can also be calculated
using the waveform inversion method (Satake, 1989), it still requires many trials
and errors to find the best-fit fault configuration. With the vast deployment of
offshore observation stations in recent years, many studies prefer tsunami fore-
casting systems that estimate sea surface deformation instead of the earthquake
source mechanisms (Titov et al., 2005, Tsushima et al., 2011). Several studies
have proposed comprehensive forecasting systems that use a tsunami database to
forecast tsunami inundation caused by a near-field earthquake (Gusman et al.,
2014, Mulia et al., 2018, Setiyono et al., 2017). However, these studies are not
free from uncertainty in estimating the tsunami source.

Real-time data transmission through a high density of observational instruments
interconnected with a cabled network has been conducted in Japan for more
than a decade to provide tsunami predictions. In the Nankai region, the Dense

77
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Oceanfloor Network System for Earthquakes and Tsunamis, which is a cabled
network for tsunami and seismic measurement, has been extended to cover a
wider region (Baba et al., 2014, Kaneda et al., 2015). A new cabled network,
S-Net (Yamamoto et al., 2016), is currently being installed in the Japan Trench,
and some operations were started in 2016.

With the availability of dense observation stations, Maeda et al. (2015) first pro-
posed a data assimilation (DA) method which was able to forecast tsunami wave-
fields without the need to know information on the earthquake source parameters
by utilizing the observed tsunami amplitude. The technique was introduced to
avoid uncertainties in estimating the tsunami source. The method was success-
fully implemented for the 2011 Tohoku earthquake. However, besides requiring
a dense observation network, it also has a high computational cost because of
the direct linear long-wave (LLW) numerical simulation. To reduce the computa-
tional cost, Wang et al. (2017) used a Green’s function database to speed up the
assimilation process. However, unlike the original tsunami DA, the method was
not developed to predict the tsunami wavefield, but only to synthesize waveforms
at points of interest. An improved DA was presented by Yang et al. (2019) with
an even higher computational cost because of the introduction of the ensemble
Kalman filter into the model.

Here we conduct a numerical experiment by integrating a deep predictive coding
network (Lotter et al., 2017) with the DA. The method was initially used in the
computer vision field to predict future video frames. In this study, the predictive
coding network is used to predict the next time steps of the tsunami wavefield
utilizing a short sequence of the previously assimilated wavefield. In this man-
ner, tsunami propagation after the last assimilated wavefield is estimated by the
predictive coding network. Like the other typical data-driven methods, the com-
putational time of the predictive coding network is short. The method reduces
the computational time for DA; this enables the tsunami wavefield and arrival
time at the coastal region to be predicted within a short time. We first developed
a tsunami propagation database from predefined scenarios to train the predic-
tive coding network. To evaluate the performance of our proposed method, we
conducted experiments with two cases: simple bathymetry, and the 2011 Tohoku
earthquake.
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5.2 Methodology

In this study, DA is combined with the deep predictive coding network to quickly
estimate tsunami wavefield. The proposed method can also be viewed as a hybrid
method between DA and deep predictive coding network. At first, the deep pre-
dictive coding needs to be trained by using a database. The database consists of
DA-assimilated wavefield from a set of predefined scenarios. In the application,
when a tsunami generated by submarine earthquake occurs, from the observed
tsunami at a dense observational stations, the DA can directly assimilated the
wavefield. However, since the computational cost of the DA is very high, the DA
is unable to quickly forecast the future wavefield with an ordinary computational
machine. At this point, the deep predictive coding network will take over the pre-
diction process. The deep predictive coding network requires the DA-assimilated
tsunami wavefields, but only in a short sequence, as the the input. By using a
short sequence of the DA-assimilated wavefield, the deep predictive coding net-
work will forecast the future sequence wavefield based on the acquired knowledge
during the training process. In other words, the prediction by the deep predic-
tive coding network is independent from the DA. Since the prediction process of
the predictive coding network is a matrix multiplication task, a longer wavefield
estimation can be obtained with a minimum computational cost. The flowchart
of the application of the proposed method is shown in Fig. 5.1. The detailed
explanation of the DA and deep predictive coding network as well as the training
database are shown in the following sub-sections.

Figure 5.1: The flowchart of the application of hybrid DA and deep predictive
coding network for tsunami wavefield forecasting
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5.2.1 Data assimilation

The sequential DA method has been widely used in weather forecasting (Kalnay,
2002). The tsunami DA method proposed by Maeda et al. (2015) for simulating
tsunami wavefields in real-time is based on the optimal interpolation method,
which has a lower computational cost than the more advanced method using the
ensemble Kalman filter, under the assumption that the system is linear. Even
though the optimal interpolation method is simple, however, the DA approach
showed good agreement with real tsunami data (Gusman et al., 2016, Heidarzadeh
et al., 2019, Wang et al., 2019, 2017) and the synthetic case (Mulia et al., 2017). In
the numerical simulation, the tsunami wavefield at the nth time step is represented
as xn(η(n∆t, x, y),M(n∆t, x, y), N(n∆t, x, y)), where η is the tsunami height, M
and N are the velocities in the x and y directions and ∆t is the time step. The
DA method can be expressed as

xfn ≡ Fxan−1 (5.1)

xan = xfn +W (yn −Hxbn) (5.2)

At each time step, the forecasted tsunami wavefield xfn at the nth time step is
computed by numerically solving linear long wave theory in Cartesian coordinates
using the assimilated wavefield at the previous time step xan−1. The vector F is
the propagation matrix, which corresponds to the 2-D LLW tsunami propagation
model. The residual between the observed tsunami amplitude and the forward
simulation at the observation station yn is calculated as (yn −Hxfn). H is a
vector that has a value of 1 at the observation stations and zero at the other
elements, and is used to extract the forecasted tsunami height at the observation
stations. The residual is then multiplied by the smoothing matrixW to bring the
assimilated wavefield closer to the observed tsunami wavefield. The smoothing
matrix is an essential factor in DA as it controls the quality of the assimilated
wavefield. We compute the smoothing matrix by solving the following equation:

W = PHT + (HPHT −R)−1 (5.3)

where P f = 〈εfεfT 〉 and R = 〈εOεOT 〉 are the error covariance matrices of the
forward simulation and the observations, respectively. εf and εO are the Gaussian
errors of the forward simulation and observations, respectively, while εfT and εOT

are the corresponding transpose matrices.

By iteratively solving Eqs. (5.1) and 5.2, the tsunami wavefield is assimilated,
and we can obtain forecasted tsunami waveforms at any location inside the model
domain during and after the assimilation process.
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5.2.2 Deep predictive coding networks

Traditionally, static images are used to train computer vision models. However, in
the real world, the visual world involves spatiotemporal movement. As a complex
system, the human brain is continuously making spatiotemporal predictions based
on the incoming sensory stimuli, and this is mirrored in the concept of predictive
coding (Friston and Kiebel, 2009, Rao and Ballard, 1999). Predictive coding
networks were initially developed by Lotter et al. (2017) based on this concept,
but reformulated in recent deep learning techniques, and trained using a gradient
descent method with an implicitly embedded loss function. A network consists
of several repeating stacked layers that make local predictions of the input to
the modules. The difference between the actual input and this prediction then
proceeds to the higher layer. The architecture of the proposed method is shown
in Fig. 5.2. Each level of the network is composed of four main components: an
input convolutional unit (Al), a recurrent representation unit (Rl), a prediction
unit (Âl) and an error representation unit (El). The recurrent representation unit
Rl estimates the prediction Âl of the input Al. The error unit El computes the
difference between Al and Âl, and then passes it to the next layer of the network
as input Al+1. The representation unit Rl receives a copy of the error matrix El
along with the input from the representation unit of the higher layer Rl+1, which
is then used to estimate future predictions.

Atl =

{
xt l = 0

maxpool
(
ELU(conv(Et

l−1))
)

l > 1
(5.4)

Âtl = ELU
(
conv(Rt

l)
)

(5.5)

Et
l =

[
ELU(Atl − Âtl);ELU(Âtl − Atl)

]
(5.6)

Rt
l = convLSTM(Et−1

l , Rt−1
l , upsample(Rt

l+1)) (5.7)

Predictive coding networks initially focused on image sequences in video data.
In this study, we use the assimilated tsunami wavefields from the DA process.
Considering a sequence from the assimilated tsunami wavefield xt as the input
to the model, the target for the lowest layer of the network is set to the input
sequence itself, that is At0 = xt∀t. Except for layer 0, the targets for the higher
layers Atl are determined by a convolution of error units from the lower layer Et

l−1,
which is followed by an exponential linear unit (ELU) activation function (Clevert
et al., 2016) and max-pooling, as described in Eq. (5.4). After several experi-
ments, we found that the ELU activation function is more suitable for our study
than the rectified linear unit function that was used in the original model. We
used the convolutional long short-term memory (convLSTM) units (Hochreiter
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Figure 5.2: Architecture of the deep predictive coding network

and Schmidhuber, 1997, Shi et al., 2015) as the backbone for the representation
units. Then Rt

l is determined by the representation from the previous time step
Rt−1
l , Et−1

l , as well as Rt
l+1 (Eq. (5.7)). Rt

l+1 should go through an upsampling
procedure because of the max-pooling in Atl units. The predictions Âtl are esti-
mated through a convolution of Rt

l and followed by an ELU activation function
(Eq. (5.5)). Finally, the error units Et

l are computed from the difference between
Atl and Âtl and then divided into ELU-activated positive and negative values (Eq.
(5.6)). The model is trained by minimizing the sum of the error units.

First, we develop a database from multiple predefined scenarios to train the
model. The scenario and experiment settings are explained in the next section.
For each scenario, we simulate the tsunami propagation using the LLW tsunami
model. The synthesized tsunami heights at every time step (∆t = 1 s) are used to
estimate the tsunami wavefield through the assimilation process using Eq. (5.1).
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Once the assimilation process has started, we use the assimilated wavefield from
those scenarios with 1 min intervals to train the model. Since the proposed algo-
rithm learns the pattern of the tsunami propagation during the training process,
we would expect the model to behave similarly to the tsunami propagation model.
The predictive coding network in this study was composed of four layers of net-
works with 3× 3 filter sizes, and channel sizes of 1, 48, 96 and 192 for each layer.
The model was trained using a gradient descent based optimization technique,
RMSprop (Hinton et al., 2012), with a learning rate α of 0.001, decreasing by a
factor of 10 halfway through the training process.

5.3 Numerical implementation and results

To quantify the prediction accuracy of the proposed method, the forecasted wave-
fields are compared to the assimilated wavefield computed by DA. However, quan-
titative assessment of the generative models is a complex problem (Theis et al.,
2016), and we adopted a structural similarity index measurement (SSIM) (Wang
et al., 2004) to measure the model performance quantitatively. SSIM is currently
widely used in the image vision field to provide a clear judgment of the similarity
between two images:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5.8)

where µx and µy are the averages of the images x and y, respectively and σ2
x and

σ2
y are the variances of x and y, respectively. C1 = (k1L)2 and C2 = (k2L)2 are two

variables that are designed to avoid a zero denominator, while L is the dynamic
range of the pixel values and k1 = 0.01 and k2 = 0.03 are constants. SSIM is
a signed expression ranging between –1 and 1, with a larger value indicating a
greater similarity. We also used a conventional statistical measure, the root mean
square error (RMSE), which measures the average magnitude of the prediction
error.

5.3.1 Simple bathymetry

To assess the performance of our proposed method, we conducted a numerical
experiment with a simple bathymetry profile as the simplest case. The numerical
domain is shown in Fig. 5.3. We set a mild bathymetry slope of 0.33% with a
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shallowest depth of 1000 m and a deepest of 2000 m. The size of the numerical
domain was 300 km in the x and y directions with a grid width of δx = δy = 1000

m. We set an array of 25 virtual stations as a dense observation station is typically
required by the conventional DA method to provide a good assimilation result.
The distance between observation points in the x− and y-directions was 15 km.
We used a two-dimensional cosine basis function (Hossen et al., 2015) for the
initial water surface:

ηi =
η0
4

[
1 + cos

(
π(x− x0)

L

)][
1 + cos

(
π(y − y0)

L

)]
, −L ≤ xi, yi ≤ L,

(5.9)
where L is the characteristics source size, and we chose L= 70 km. The maximum
initial height η0 = 1 at x = xo and y = yo, which is the center of the source. This
basis function provide a more compact solution than the conventional Gaussian
basis function used in Chapter 4 and previous studies (e.g. Mulia et al., 2016,
Saito et al., 2010).

Three scenarios of the initial tsunami sources were used; two for the training, and
one for testing purposes. The location of the initial tsunami sources for training
and testing is shown in Fig. 5.3. For training, we first simulated the tsunami
propagation using the LLW tsunami model. Assuming the recorded waveform
at observation stations as the observed data, once the tsunami signal had been
recorded at the stations, the assimilation process had started, and we concate-
nated the assimilated wavefield with 1 min intervals from those two scenarios as
the training input. We found that a training the model with a training epoch of
350 was enough to provide a good representation of the database. The training
epoch represents the number of cycle of the feedforward and backpropagation
computation in a traditional NN, which requires about 1 h computational time.
Similarly, for the prediction, once the assimilation process had begun, four assim-
ilated tsunami wavefields with an interval of 1 min originating from the testing
scenario were used as the input to the model. We configured the model using
four assimilated wavefields, enabling the model to predict the next four steps in
the wavefield.

A comparison between the predictions, DA, and forward modeling is shown in
Fig. 3. We set the initial water surface at t = 0 as the tsunami source. When
the tsunami reached the observation stations, in this case, at t = 11 min, the
data assimilation started. Here we used four assimilated wavefields starting from
t = 11 min to 14 min (Fig. 5.4a) to predict the next four frames of the wavefield,
i.e., t = 15 to 18 min (Fig. 5.4b). From the comparison, the estimated wavefields
are visually very similar to the DA (Fig. 5.4c). The model can mimic the charac-
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Figure 5.3: Domain of the simple bathymetry case. The colored area indicates the
location of the cosine basis function of the initial water surface for training and
testing purposes. The blue dots indicate the array of the observation stations.

teristics of the DA indicated with SSIM and RMSE values ranging from 0.891 to
0.960 and 0.02 to 0.06 m, respectively. We included quantile-quantile (Q-Q) plots
to further analyze the differences between the forecasts and DA (Fig. 5.5). The
Q-Q plots suggest that the forecasts had a similar distribution to the DA. We also
randomly selected ten observation stations and compared the recorded waveforms
produced by the proposed method and DA (Fig. 5.5). The selected stations are
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Figure 5.4: Comparisons of the wavefields for the model input and the estimated
wavefields from the proposed method, DA and forward modeling for the simple
bathymetry case. (a) Input to the model; (b) Forecasted tsunami wavefields; (c)
Assimilated tsunami wavefields; (d) Results of forward modeling

Figure 5.5: Q-Q plots between the proposed method and DA for the simple
bathymetry case
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Figure 5.6: Comparisons of waveforms between the proposed method and DA at
randomly-selected stations for the simple bathymetry case

plotted in Fig. 5.3. Overall, the forecasted waveforms were almost identical to
the waveforms estimated by the DA with a mean correlation coefficient of 0.995.
The figure shows that the DA (Fig. 5.4c) provided a good wavefield approxima-
tion in the vicinity of the observation points, though a broader coverage of the
stations may be necessary to improve the quality of the assimilated wavefield, as
exhibited in the forward modeling results (Fig. 5.4d). However, here we only
focused on the performance of the proposed model over the DA.

5.3.2 The 2011 Tohoku tsunami

Next, we applied the proposed method to the tsunami induced by the 2011 Tohoku
earthquake. We used bathymetry data with a relatively coarse resolution of 4050
m (Fig. 5.7a). The bathymetry dataset, which was obtained from the Cabinet
Office of Japan, is based on a nautical chart and digital data compiled by the
Japan Coast Guard and the Japan Hydrographic Association.

For model training, we arranged multiple scenarios for simple rectangular fault
models. We set 15 reference points as the top-center of the faults. The placement
of the reference points is shown in Fig. 5.7b. We set an earthquake magnitude
ranging from 8.0 to 9.0 (0.2 intervals); in total, there were 90 scenarios. The earth-
quake depth, strike and dip angle were determined based on SLAB 2.0 (Hayes
et al., 2018), while the rake angle was set to 90◦ for all scenarios, representing the
thrust fault mechanism. To calculate the area of the fault, the magnitude scale
relation for the plate-boundary proposed by Murotani et al. (2013) (Eq. 2.1) was
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Figure 5.7: (a) Bathymetry data and the locations of S-Net and GPS buoys
stations; (b) Top-center of the fault scenarios to develop the database

used. We used a coseismic deformation in an elastic half-space model (Okada,
1985), to compute the initial sea surface for the DA. Similar to the simple case,
the training epoch was set to 350. For model testing, we used a source model
of the 2011 Tohoku earthquake (Gusman et al., 2012). The slip distribution was
calculated by conducting a joint inversion using a tsunami, GPS and seafloor
deformation data.

A comparison between the predictions, DA and forward modeling is shown in Fig.
7. In this case, the DA process started at t = 1 min. We used four frames of the
assimilated wavefield from t = 1 to 4 min (Fig. 5.8a) as the input to the model to
predict the next four frames of the wavefield (t = 5 to 8 min). The results show
that the predictions (Fig. 5.8b) are very similar to the DA (Fig. 5.8c) with SSIM
and RMSE values ranging from 0.949 to 0.955 and 0.173 to 0.196, respectively.
We further explored the capability of the proposed method by recursively feeding
back the prediction into the model to provide longer wavefield predictions up to t
= 36 min. We show four snapshots of the resulting forecasts at t = 14, 21, 28 and
35 min (Fig. 5.9). In Fig. 5.11, we also compared the assimilated and forecasted
waveforms from ten randomly-selected S-Net stations and with real waveform
data from the 2011 Tohoku tsunami recorded at five GPS buoys (GB801, GB802,
GB803, GB804, GB806). The location of the GPS buoys and selected observation
stations are shown in Fig. 5.7a. At ten S-Net stations, the forecasted waveforms
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show reasonably good agreement with the DA, with a mean correlation coefficient
of 0.748. However, both the assimilated and forecasted waveforms underestimated
the observations at the GPS buoys. Nonetheless, both exhibit similar trends to
the observations.

Figure 5.8: Comparisons of the wavefields for the model input and the estimated
wavefields from the proposed method, DA and forward modeling for the 2011
Tohoku tsunami. (a) Input to the model; (b) Forecasted tsunami wavefields; (c)
Assimilated tsunami wavefields; (d) Results of forward modeling
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Figure 5.9: Comparisons of the estimated wavefields from the proposed method,
DA and forward modeling for the 2011 Tohoku tsunami at t = 14, 21, 28 and 35
min. (a) Forecasted tsunami wavefields; (b) Assimilated tsunami wavefields; (c)
Results of forward modeling

Figure 5.10: Q-Q plots between the proposed method and DA for the 2011 Tohoku
tsunami
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Figure 5.11: Comparisons of the waveforms between the proposed method, DA
and observations at GPS buoys and randomly-selected stations for the 2011 To-
hoku tsunami

5.4 Discussion

Computational speed is one of the most critical factors for real-time tsunami fore-
casting. In the previous studies (Gusman et al., 2016, Maeda et al., 2015, Yang
et al., 2019), tsunami DA has successfully provided accurate results at a rela-
tively high computational cost. The predictive coding network learns the pattern
of tsunami propagation during the training period. Once the model has been
trained, the spatiotemporal tsunami wavefield prediction can be made quickly
by only performing a matrix multiplication procedure. We used a personal com-
puter equipped with an Intel i7 processor, an 8-gigabyte graphics processing unit
(GPU), and 16 gigabytes of memory for model training and testing. Compu-
tationally, generating four frames of future wavefield predictions utilizing four
frames of the assimilated wavefield as the input requires a computational time of
0.2 sec. The computational time to obtain the input (four frames of DA-generated
wavefields) is 1.38 min. In total, it only requires 1.38 min and 1.6 sec to pro-
vide wavefield predictions from t = 1 to 36 min in the case of the 2011 Tohoku
earthquake, while the DA requires about 7 min. The comparison of computa-
tional time between DA and the proposed method for the 2011 Tohoku tsunami
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Figure 5.12: Comparisons of the computational time between the proposed
method and DA for the 2011 Tohoku tsunami

is plotted in Fig. 5.12. Furthermore, by using a finer grid, the DA may require
a more significantly high computational cost. Therefore, with this quick compu-
tation time, we can provide immediate warnings, which is very important for the
evacuation process.

In the original DA, the tsunami model is based on LLW theory. Even though
incorporating nonlinearity or a dispersive effect may improve the quality of the
DA, this would be better avoided, as it may further increase the computational
cost. Since the learning process of the proposed method is based on the database,
incorporating those scenarios is more practical, because the tsunami simulation
is conducted in advance.

For the case of the 2011 Tohoku tsunami, both the proposed method and DA-
generated waveforms at the GPS buoys underestimate the observations (Fig. 10).
With the limited memory capacity of our standard GPU, we decided to use a
relatively coarse bathymetry resolution. As a result, a high accuracy forecasting
result may not be achieved in this study, because, as explained in previous studies
(Gusman et al., 2009, Satake, 1995), the forecast accuracy is strongly dependent
on the topography resolution. A more sophisticated GPU should be used in
future studies to accommodate a finer bathymetry resolution. In addition, since
the error propagates over time steps, the optimum length of future predictions
should be carefully investigated in future work. It is clear from Figs. 5.4b, 5.8b,
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Figure 5.13: The SSIM and RMSE results over the time step for the 2011 Tohoku
tsunami case

5.9a, and 5.13 that the SSIM and RMSE tend to degrade over the time steps.
The degradation is also shown in Q-Q plots (Fig. 5.10), where the outliers are
more apparent at the longer time steps of the predictions. Overall, based on the
results, the proposed network shows promise for integration with DA to reduce
the computational cost.

5.5 Summary

We conducted a study using a deep predictive coding network along with the DA
to forecast a tsunami wavefield in real-time. The objective of this research was
to assess whether the application of a deep predictive coding network combined
with the DA could be implemented for a real-time warning system. We conducted
two study cases: simple bathymetry and the 2011 Tohoku tsunami. The results
showed that only utilizing four frames of the assimilated wavefields enabled the
model to satisfactorily forecasted the next four frames of the wavefield with SSIM
values in the range 0.891–0.960, and up to 32 future frames with SSIM values in
the range 0.781–0.955 for the simple bathymetry and the 2011 Tohoku tsunami,
respectively. With a quick computational time and reasonably accurate results,
it is concluded that the proposed method is applicable for a real-time warning
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system. In the future, a more advanced GPU with a higher memory capacity
should be used to accommodate finer bathymetry, so that the higher prediction
accuracy can be obtained.
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Chapter 6

Discussion and Conclusion

This study evaluates the applications of the database and machine learning al-
gorithms to forecast tsunami inundation, waveforms, and wavefields. Currently,
conducting numerical tsunami simulation in real-time shortly after a submarine
earthquake occurs is still the best method to estimate the tsunami. However,
during a short golden period, conducting forward modeling is numerically expen-
sive. Several approaches have been developed and investigated here to minimize
the computational cost of predicting the tsunami and therefore to speed-up the
early-warning process in TEWS. The first part of this study (Chapter 2) presents
the early development of the database-based tsunami inundation forecasting sys-
tem. The proposed methods in the second part of the thesis (Chapter 3) improves
the matching algorithm in the first proposed method in Chapter 2 by integrating
machine learning frameworks into the system. The proposed methods in Chap-
ter 2 and Chapter 3 have the same aim that is to forecast tsunami inundation.
The proposed methods in the third part of the thesis (Chapter 4) uses a variant
of ELM and SVM as alternatives to TWI method to predict tsunami waveforms.
The last part of the thesis (Chapter 5) introduces a hybrid data assimilation and
deep predictive coding network for spatiotemporal prediction of tsunami wave-
field. Overall, all of the proposed methods are strong candidates for TEWS to
provide quick information of tsunami inundation, waveforms, and wavefields in a
real event.

All proposed methods are not intended to be compared with each other, but as
integral parts of TEWS. The first part of this study (Chapter 2) discussed the
possibility of utilizing tsunami inundation and tsunami waveforms to forecast
tsunami inundation in real-time. A database that consists of tsunami inundation
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and waveforms from 328 predefined fault scenarios has been developed. Three
earthquake models: one past earthquake and two predicted future earthquakes,
are used to test the model performance. The 1944 Tonankai earthquake represents
the past earthquake, and the Tokai-Tonankai and Nankai Megathrust earthquakes
represent the predicted future earthquakes. The Stage 1 of the proposed method
can quickly predict the tsunami inundation, because it only requires the infor-
mation of earthquake magnitude and epicenter location, which can be obtained
in a short time after an earthquake occurs. Even though it can be done quickly,
the tsunami inundation prediction from Stage 1 overestimates the forward mod-
eling as exhibited in the 1944 Tonankai case. It indicates that only by using the
earthquake magnitude and location is not enough to generate a reliable tsunami
inundation forecast. Nevertheless, the Stage 1 is important in a real event to
provide a quick tsunami estimation. As the earthquake information is usually re-
vised over the time until seismologist determine the fixed information, the Stage
1 can be conducted repeatedly when a new preliminary earthquake information
is available. In the Stage 2, linear tsunami simulation is performed when fixed
earthquake information or source model is available. The best-fit scenario is se-
lected by minimizing error between simulated and precomputed waveforms, then
the corresponding tsunami inundation is assummed to be the inundation predic-
tion. For the 1944 Tonankai earthquake case, the Stage 2 successfully improves
the accuracy of the prediction from the Stage 1. The predicted maximum tsunami
inundation depth (2.74 m) is very similar to the field survey (2.80 m) as well as
forward modeling (2.62 m).

In the second part of the study (Chapter 3), two machine learning models (CNN
and MLP) are proposed to improve the matching algorithm in Chapter 2 and
also in previous studies (Gusman et al., 2014, Mulia et al., 2018). In the pre-
vious part, manual time shifting procedure is necessary due to the difference of
wave-phase between simulated and precomputed waveforms in order to find the
best-fit scenario. The concept of the CNN is similar to the method proposed by
Mulia et al. (2018), which selects the best-fit scenario in the database based on
similarity pattern between computed and precomputed maximum tsunami am-
plitude in the low-resolution grid. The difference is that the pattern recognition
in the previous study is conducted by using principal component analysis, a con-
ventional dimensionality reduction algorithm, while the dimensionality reduction
is performed within the convolutional and pooling layers of a CNN in this study.
Because the database is developed from limited simple fault scenarios, there is
a possibility that the CNN is unable to find the appropriate best-fit scenario, as
shown for Owase. However, the MLP, which is purposed for the regression task,
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is able to yield a more acceptable forecast than CNN when there is no scenario in
the database that has a pattern similar to that produced by direct forward mod-
eling. Both methods are faster (0.069 and 0.084 for CNN and MLP, respectively)
than the matching algorithm in Chapter 2, which requires several seconds due to
the time-shifting procedure.

In Chapter 2 and Chapter 3, an accurate and reliable tsunami source models is
necessary as the input for linear forward modeling in order to find the best-fit
scenario in database. Based on the 2011 Tohoku earthquake, fixed earthquake
information can be obtained at 20 min after the earthquake. In the case of
Nankai region, this required time is too long because it is expected that tsunami
induced by Nankai Megathrust would reach the coast of Owase within less than
20 min. Due to the short distance between the Nankai Trough and the nearby
Japanese coast, a fast and reliable tsunami source model is needed. Tsunami
source estimation from Real Time Kinematic (RTK) GPS (Ohta et al., 2012),
waveform inversion (Tsushima et al., 2009), and W-phase inversion Gusman and
Tanioka (2013) are promising methods for integration with the proposed meth-
ods. In the future, further development should focus on improving the reliability
of the database by incorporating more scenarios. This can be done by includ-
ing well-verified tsunami sources from previous events, such as the 1701 Hoei
(Furumura et al., 2011), the 1944 Tonankai (Baba et al., 2006), and the 1946
Nankai earthquake (Murotani et al., 2015). Incorporating the influence of tides
(Lee et al., 2015) and uncertainties from stochastic earthquake source models
(Goda et al., 2018) are also suggested. Despite of the high computational cost,
dispersive tsunami model successfully reproduce the soliton fission along Sendai
coast during the 2011 Tohoku earthquake (Baba et al., 2015). With U-shape to-
pography, Owase is also subjected to experience soliton effect (Yamanaka et al.,
2016); therefore, applying dispersive terms in nonlinear tsunami tsunami model
may enhance the quality of the database. The network architecture of CNN and
MLP may also need to be improved to accommodate more input variables, such
as tsunami height at observation stations, to produce a better forecast.

The third part of this study (Chapter 4) presents an application of data-driven
models including, PRELM, PRELM-FT, and SVM for robust forecasting of tsunami
waveform in real-time. The proposed methods are purposed to provide a quick
estimation of tsunami waveforms at observational stations. Furthermore, the
estimated waveforms is useful as the input of the matching algorithm in Stage
2 in Chapter 2. The basic idea of the PRELM is similar to the method pro-
posed by Mulia et al. (2016), which also uses an ELM variant. The difference
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is that the input parameters of the previous study are randomly assigned, while
the input parameters in this study are then iteratively-optimized by using Adam
optimizer. Consequently, in the previous study, each model run would produce
a different prediction which may not be suitable for early warning tasks. In ad-
dition to producing a quick and accurate prediction, the TEWS also requires a
consistent prediction to avoid confusion during a real event. With fully-trained
network parameters, the PRELM-FT can yield a better forecast with a signifi-
cant improvement than PRELM. PRELM-FT is also superior to TWI and an-
other popular data-driven model, SVM, indicated by the highest rank in two
earthquake cases. However, due to the iteration procedure during the optimiza-
tion, the PRELM-FT requires more computational time. In terms of waveform
forecasting accuracy, PRELM shows the best performance; however, in terms of
maximum tsunami height accuracy, SVM outperforms the other methods. There-
fore, with faster training time than PRELM-FT, SVM is also a promising method
for future tsunami waveform forecasting tool. Overall, PRELM-FT and SVM are
strong candidates for the future TEWS tool by considering its good approxima-
tion. In the future, we should focus on improving the performance of the method
by using a more sophisticated procedure in selecting and developing the Green’s
function. In this study, the unit sources included in the inversion are determined
by limiting the unit sources with a certain radius with the earthquake coordi-
nate as the center. However, this method may not represent the actual coseismic
deformation as the epicenter of the earthquake is not always at the center of
the deformation area. Therefore, incorporating a fast optimization procedure to
select the unit sources is suggested for future development. Both of the 2004
Kii and 2011 Tohoku earthquake exhibit dispersive effects, as presented in the
previous study (Saito et al., 2014, 2010). Even though it requires a high com-
putational load, applying a dispersive model in developing the Green’s function
database may provide more accurate predictions.

In the last part of this study (Chapter 5), a hybrid DA and deep predictive coding
network is proposed for real-time spatiotemporal tsunami wavefields prediction.
Tsunami wavefields can be assummed as tsunami source for linear tsunami model,
which is essensial for the proposed methods in Chapter 2 and Chapter 3. The
extracted waveforms from tsunami wavefields also useful as the input of matching
algorithm in the Stage 2 (Chapter 2). Therefore, a quick estimation of tsunami
wavefield is a step forward for real-time tsunami inundation forecasting. Cur-
rently, DA is a promising tool to estimate tsunami in real-time, as it directly
assimilates tsunami wavefields from the observed tsunami height at dense ob-
servational stations. However, DA requires a high computational load due to
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the direct tsunami simulation within the model. Therefore, in this study, DA is
coupled with the deep predictive coding network to speed-up the spatiotemporal
predictions of tsunami wavefields. The idea is that by using a short sequence of
DA-assimilated wavefield, then the predictive coding can forecast the future se-
quence of tsunami wavefields. To be noted that the tsunami wavefields predicted
by the deep predictive coding network are independent from the DA. Similar
to the CNN and MLP methods, the deep predictive coding network should be
trained in advance with multiple predefined scenarios. We conducted two study
cases: simple bathymetry and the 2011 Tohoku tsunami. At first, the deep predic-
tive coding network is trained, in which with four frames of input, the model will
able to predict the next four frames. The results showed that only utilizing four
frames of the assimilated wavefields enabled the model to satisfactorily forecasted
the next four frames of the wavefield with SSIM values in the range 0.891–0.960
for the simple bathymetry case. However, the length of the predictions are not
sufficient for TEWS as longer predictions is better to estimate tsunami charac-
teristics (height and propagation) near the coasts. Furthermore, by recursively
feeding back the predictions as the input, the model is able to forecast longer
sequence of tsunami wavefields. By using four frames of assimilated wavefields,
the model successfully estimates up to 32 future frames with SSIM values in the
range 0.781–0.955 for the 2011 Tohoku tsunami case. The predictions of 32 frames
can be conducted quickly (1.6 s), while the original DA requires computational
time of about 30 min. With a quick computational time and reasonably accurate
results, it is concluded that the proposed method is applicable for a real-time
warning system. In the future, a more advanced GPU with a higher memory
capacity should be used to accommodate finer bathymetry, so that the higher
prediction accuracy can be obtained.

Principally, the concept of TEWS in this study is similar to the JMA’s sys-
tem. Kamigaichi (2015) explained that JMA’s TEWS utilizes rapid estimation
of seismic waves recorded at seismic network to calculate preliminary earthquake
parameters (magnitude, depth, latitude, and longitude). The earthquake pa-
rameters then are used as the input of the system, in which tsunami estimation
(maximum tsunami amplitude and arrival time) is conducted by linearly inter-
polated precomputed tsunami database from a large set of fault scenarios. This
procedure takes a computational time as quick as 3 min. When a fixed earthquake
parameters are available, the tsunami prediction is revised. These procedures are
similar to the Stage 1 and Stage 2 in Chapter 2. To find out the best-fit scenario,
JMA’s system interpolates the adjacent scenarios around the epicenter. In this
study, the best-fit scenario can be selected by conducting two procedures. The
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first one is by comparing simulated and precomputed tsunami waveforms at vir-
tual observational stations (Chapter 2), and by using CNN to find the maximum
tsunami amplitude in database that similar to the simulated one (Chapter 3).
However, tsunami generation is an uncertainty process, in which it is strongly
influenced by topography and initial seafloor deformation. By only considering
simple fault scenarios in developing the database, the selected tsunami inundation
may not provide a reliable result. This problem is also exhibited in Chapter 3, in
which the selected best-fit scenario by CNN is underestimate the forward mod-
eling due to the limited tsunami database. To solve this problem, MLP is used.
Unlike CNN and matching algorithm in Chapter 2 which select the best-fit sce-
nario in database as a tsunami inundation forecast, MLP generates the tsunami
inundation based on learned knowledge during the training process. Therefore,
the prediction results are unique and independent from the database.

Finally, all the proposed methods are promising forecasting tools to be integrated
in TEWS. The database-based tsunami inundation forecasting system developed
in Chapter 2 is able to generate tsunami inundation forecast which shows a good
agreement with the field survey, even though a more scenarios in database is re-
quired for more reliable prediction. Furthermore, CNN in Chapter 3 is proposed
as a subsitute of matching algorithm in the Chapter 2 with a faster computational
time. Since the tsunami database is developed based on simple rectangular fault
scenarios, and by the fact that the seafloor deformation caused by a submarine
earthquake is strongly nonlinear, the best-fit scenario selected from the database
may not represent the actual condition of tsunami inundation. In such a con-
dition, MLP successfully produce a more reliable forecast, because MLP learns
the characteristics of tsunami inundation during the training process. Therefore,
even though the database is limited, the MLP may produce a better forecast than
CNN and matching algorithm in Chapter 2. To provide tsunami waveforms at
the virtual observational points in Chapter 2, PRELM-FT and SVM are proposed
in Chapter 4. Both methods outperforms TWI in terms of computational time
and waveforms accuracy. In Chapter 5, a coupled method between DA and deep
predictive coding network may provide tsunami waveforms at virtual observation
points, which is necessary in Chapter 2, and maximum tsunami amplitude at
low-resolution grid, which is required in Chapter 3. Combining the deep predic-
tive coding network with the DA has successfully reduce the computational cost
required for spatiotemporal tsunami wavefields prediction with a satisfactorily
results.
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