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SIMPLE-MINDED OBJECTS AND CM DG MODULES I

Preface

This thesis is divided into three parts. The first one is aim to introduce a new reduction process
of triangulated categories. In the second part, we introduce Cohen-Macaulay differential graded
modules over Gorenstein differential graded algebras and study their representation theory. In
the third one, we built a bijection between simple-minded systems in negative Calabi-Yau cluster
category and silting objects in some subcategory of derived category. The first chapter is devoted
to basic definitions and properties used in this thesis.

Part 1. Derived categories and triangulated categories appear in many areas of mathematics,
such as algebraic geometry, representation theory and algebraic topology. An important way to
construct a new triangulated category is the Verdier quotient. But usually the morphisms in the
quotient category are too complicated to understand. It is known in some nice cases (see for
example, [AI, IYa1, IYo, CSP]), Verdier quotient can be realized as a reduction process, which is
another way to construct a new triangulated category. The reduction can be realized as a certain
sub (or subfactor) category of the given one and is easier to study.

The first part of this thesis, which is based on [Ji2], is devoted to introducing a new reduction
process of triangulated categories with respect to simple-minded collections(or SMC for short).
Simple modules are one of the most basic and important objects in the representation theory of al-
gebras. There have been many generalizations and studies of simple modules. Among them, SMC
in derived categories and SMS (=simple-minded system) in singularity categories have particular
importance. SMCs play a key role in Koszul duality [BGS, KN], and bijectively correspond to
silting objects (which are generalizations of projective modules in derived categories)[Ric2, KaY1].
SMSs appear naturally in some negative Calabi-Yau (=CY) triangulated categories [KL, D, CS3],
including the stable categories of Cohen-Macaulay (=CM) dg modules [Ji1], which will be intro-
duced and studied in the second part of this thesis.

Let k be a field. Let T be a Krull-Schmidt k-linear triangulated category. We introduce the
SMC reduction U of T with respect to some pre-SMC R (see Definition 0.2.4) as the Verdier
quotient U = T / thick(R). Our first result realizes U as the additive subcategory

Z = R[≥0]⊥ ∩ ⊥R[≤0]

of T under some mild assumptions (R1) and (R2) in Section 1.2 (see Section 0.1 for the definition
of ( )⊥ and ⊥( )). Namely,

Theorem 0.0.1 (Theorem 1.2.1). Under the setting above, the following results hold.

(1) The composition Z ↪→ T → U gives an equivalence Z '−→ U ;
(2) There is a bijection

SMCRT := {SMCs of T contain R} ←→ SMCU := {SMCs of U}.

This result can be regard as a dual of silting reduction [IYa1], where it was necessary to take
an ideal quotient of Z. It also plays an important role in the proof of Theorem 2.7.1.

Another aim of Part 1 is to generalize the singularity category of a finite dimensional Gorenstein
k-algebra A over a field k. In this case, the singularity category is defined as the Verdier quotient
Dsg(A) = Db(modA)/Kb(projA) by [B, O]. Buchweitz’s equivalence states that Dsg(A) is triangle
equivalence to the stable category CMA of Cohen-Macaulay A-modules. A key observation in our
context is that Db(modA) has a SMC consisting of simple A-modules, and there is a relative Serre
functor ν =?⊗L

A DA.
To generalize the notion of singularity categories and Buchweitz’s equivalence, we work on a

SMC quadruple (T , T p,S,S), where T p is a thick subcategory of a triangulated category T , S is
a relative Serre functor, S is a SMC of T and they satisfy some conditions (see Definition 1.3.1).
We define the singularity category as the Verdier quotient

Tsg := T /T p.
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In this setting, we can define some subcategories F and P of T (see Section 1.3 for the details),
where in the algebra case above, F = CMA and P = projA. Our second result realizes Tsg as a
subfactor category of T .

Theorem 0.0.2 (Theorem 1.3.5 (1), (2)). Let (T , T p,S,S) be a SMC quadruple and let Tsg, F ,
P be defined as above. Then

(1) F is a Frobenius extriangulated category with ProjF = P (in the sense of [NP]);
(2) The composition

F ⊂ T → Tsg

induces an equivalence π : F[P]

'−→ Tsg. Moreover, Tsg has a Serre functor S[−1].

Theorem 1.3.5 can be regard as a dual of the equivalence between the fundamental domain and
the cluster category [Am, Gu, IYa1], where it was not necessary to take ideal quotient.

We end the first part by studying the relation between the SMC reduction of T and the SMS
reduction introduced by [CSP] of Tsg for a SMC quadruple (T , T p,S,S) with S = [d] for some
d ≥ 1. We show the SMS reduction is the shadow of SMC reduction (see Theorem 1.5.4), that is,
the following diagram of operations commute.

T
sing. category //

SMC reduction

��

Tsg

SMS reduction

��
U

sing. category// Usg
∼= (Tsg)R

The results we obtain here are parallel to the connection between silting reductions and CY re-
ductions given in [IYa1].

Part 2. The second part of this thesis is devoted to introducing Cohen-Macaulay (CM) differential
graded (dg) modules and study their representation theory. This part is based on the paper [Ji1].
The notion of Cohen-Macaulay (CM) modules is classical in commutative algebra [Ma, BH], and has
natural generalizations for non-commutative algebras [B, H2, IW]. The category of CM modules
has been studied by many researchers in representation theory (see, for example, [CR, Yo, Si, LW]).
On the other hand, the derived categories of differential graded (dg) categories introduced by
Bondal-Kapranov [BK] and Keller [K1, K3] is an active subject appearing in various areas of
mathematics [Min, T, Ye1]. We are aimed to introduce CM dg modules to connect these two
subjects.

We work on a nice class of dg k-algebras A called Gorenstein (see Assumption 2.1.1) and
introduce the category CMA (see Definition 2.2.1) of CM dg A-modules. For the case of Gorenstein
algebras, the category of CM modules is a Frobenius exact category, and we have Buchweitz’s
equivalence as mentioned above. In our setting, CMA does not necessarily have a natural structure
of exact category. Instead, the following result shows it has a natural structure of extriangulated
category, which is introduced by Nakaoka and Palu [NP] as a common generalization of exact
category and triangulated category.

Theorem 0.0.3 (Theorems 2.2.4, 2.3.1 and 2.3.7). Let A be a non-positive proper Gorenstein dg
algebra. Then

(1) CMA is functorially finite in Db(A);
(2) CMA is a Frobenius extriangulated category with Proj(CMA) = addA;
(3) The stable category CMA := (CMA)/[addA] is a triangulated category;
(4) The composition CMA ↪→ Db(A)→ Db(A)/ perA induces a triangle equivalence

CMA = (CMA)/[addA] ' Db(A)/ perA = Dsg(A);

(5) CMA admits a Serre functor and CMA admits almost split extensions.
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One of the traditional subjects is the classification of Gorenstein rings which are representation-
finite in the sense that they have only finitely many indecomposable Cohen-Macaulay modules.
Riedtmann [Rie2, Rie3] and Wiedemann [W] considered the classification of representation-finite
self-injective algebras and Gorenstein orders respectively in the 1980s. In both classifications,
configurations play an important role. We introduce negative Calabi-Yau (CY) configuration (see
Definition 2.5.1), which recovers Riedtmann’s configuration as (−1)-CY configuration, to classify
representation-finite Gorenstein dg algebras A.

Let d be a positive integer. We say a Gorenstein dg k-algebra A is d-self-injective (resp. d-
symmetric) if addA = addDA[d−1] in D(A) (resp. D(Ae)). We characterize simple dg A-modules
as a (−d)-CY configuration (see Theorem 2.5.5), which generalizes [Rie2, Proposition 2.4].

Let ∆ be a Dynkin digram. For a subset C of vertices of Z∆, we define a translation quiver
(Z∆)C by adding to Z∆ a vertex pc and two arrows c→ pc → τ−1(c) for each c ∈ C (see Definition
0.5.1). Our main result of Part 2 states that the Auslander-Reiten quivers of representation-finite
d-symmetric dg algebras are classified by (−d)-CY configurations in the following sense.

Theorem 0.0.4 (Theorem 2.7.1). Let ∆ be a Dynkin digram. Let C be a subset of vertices of
Z∆/S[d]. The following are equivalent.

(1) C is a (−d)-CY configuration;
(2) There exists a d-symmetric dg k-algebra A with AR quiver of CMA being (Z∆)C/S[d].

For the case ∆ = An, we give another proof of Theorem 0.0.4 (see Theorem 2.8.32) by introduc-
ing some combinatorial objects called maximal d-Brauer relations (see Definition 2.8.2). In this
case, for any given (−d)-CY configuration C, the corresponding d-symmetric dg k-algebra is given
explicitly by Brauer tree dg algebra (see Section 2.8.3 for the details). The following table explains
the comparison among different configurations.

(−d)-CY (d ≥ 1) (−1)-CY 0-CY
(−d)-CY configuration Riedtmann’s configuration Wiedemann’s configuration

maximal d-Brauer relation Brauer relation 2-Brauer relation
d-self-injective dg algebras self-injective algebras Gorenstein orders

We point out that for representation-finite d-self-injective dg algebras A, the notation ‘(−d)-CY
configuration’ of CMA coincides with d-SMS. We will study d-SMS in negative cluster category in
the third part.

Part 3. Fomin and Zelevinsky [FZ1] showed that cluster algebras of finite type correspond bi-
jectively with finite root systems Φ. As a generalization of their combinatorial structure, Fomin
and Reading [FR] introduced generalized cluster complex ∆d(Φ) for each positive integer d. It is
a simplicial complex whose ground set is the disjoint union of d copies of the set Φ+ of positive
roots and the set of negative simple roots, and studied actively in combinatorics [Ar, STW]. It is
known that ∆d(Φ) is categorified by (d+ 1)-Calabi-Yau ((d+ 1)-CY) cluster categories Cd+1(kQ) 1

for the corresponding Dynkin quiver Q [K2, T]. The category Cd+1(kQ) has special objects called
cluster tilting objects, which correspond bijectively with maximal simplices in ∆d(Φ) [Z] and with
silting objects contained in some subcategory of Db(kQ) [BRT1]. Culster tilting objects also play
a key role in Cohen-Macaulay representations [I2].

Recently there is increasing interest in negative CY triangulated categories (see [CS1, CS2, CS3,
CSP, HJY, Ji1, Ji2, Jo1, KYZ]), including (−d)-CY cluster categories C−d(kQ). These categories
often contain special objects called d-simple-minded systems (or d-SMS) [CS2] (see Definition
0.2.7). It plays a key role in the study of Cohen-Macaulay dg modules [Ji1], as shown in Part 2.

The aim of Part 3 is to show that there is a bijection between d-SMSs and maximal simplices
in ∆d(Φ) without negative simple roots (Theorem 3.1.1). In particular, the number of d-SMSs in
C−d(kQ) is precisely the positive Fuss-Catalan number (see Section 3.1.1 for the definition). Our
method is based on a refined version of silting-t-structure correspondence.

1(d + 1)-CY cluster categories are usually called d-cluster categories in hereditary setting, and (d + 1)-cluster

categories in non-hereditary setting.
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Preliminary

0.1. Notations

Throughout this thesis, k will be a field. All algebras, modules and categories are over k.
We denote by D = Homk(?, k) the k-dual. When we consider graded k-module, D means the
graded dual. Let T be an additive category. Let S be a full subcategory of T . For an object
X in T , a morphism f : S → X is called a right S-approximation if S ∈ S and HomT (S′, f)
is surjective for any S′ ∈ S. We say S is contravariantly finite if every object in T has a right
S-approximation. Dually, we define left S-approximation and covariantly finite subcategories. We
say S is functorially finite if it is both contravariantly finite and covariantly finite. If T is a
Krull-Schmidt k-linear category, we denote by ind T the set of indecomposable objects in T .

We denote by addS the smallest full subcategory of T containing S and closed under iso-
morphism, finite direct sums, and direct summands. Denote by [S] the ideal of T consisting of
morphisms which factor through an object in addS and denote by T

[S] the additive quotient of T
by S. Define subcategories

⊥S := {X ∈ T | HomT (X,S) = 0},
S⊥ := {X ∈ T | HomT (S, X) = 0}.

We denote by [1] (or 〈1〉) the suspension functors for triangulated categories. Let T be a
triangulated category. For any X,Y ∈ T and n ∈ Z, when we write HomT (X,Y [>n]) = 0 (resp.
HomT (X,Y [<n]) = 0, HomT (X,Y [≥n]) = 0, HomT (X,Y [≤n]) = 0), we mean HomT (X,Y [i]) = 0
for all i > n (resp. i < n, i ≥ n, i ≤ n).

Let S be a full subcategory of T . We denote by thick(S) the smallest thick subcategory con-
taining S. Let S ′ be another full subcategory of T . Define a new subcategory of T as follows.

S ∗ S ′ := {X ∈ T | there is a triangle S → X → S′ → S[1] with S ∈ S and S′ ∈ S ′}.
If HomT (S,S ′) = 0, that is, if HomT (S, S′) = 0 for any S ∈ S and S′ ∈ S ′, we write S∗S ′ = S ⊥ S ′.
For subcategory S1, · · · ,Sn of T , we define S1 ∗ · · · ∗ Sn and S1 ⊥ · · · ⊥ Sn inductively. We say S
is extension-closed if S ∗S = S. We denote by Filt(S) the smallest extension-closed subcategory of
T containing S. It is easy to see Filt(S) =

⋃
n≥1 S ∗ · · · ∗ S︸ ︷︷ ︸

n

. We write Filt(S[≥n]) = Filt(
⋃
i≥n S[i])

and Filt(S[≤ n]) = Filt(
⋃
i≤n S[−i]). If S = {S} has only one object, we write thick({S}) as

thick(S), and we use same convention for add,Filt and ∗.
Here we recall some well-known results on additive closures and approximations for later use.

Lemma 0.1.1. Let T be a Krull-Schmidt triangulated category. Let X and Y be two extension-
closed subcategories of T . Then

(1) If Y ∗ X ⊂ X ∗ Y, then X ∗ Y is also extension-closed;
(2) If HomT (X ,Y) = 0, then add(X ∗ Y) = X ∗ Y;

(3) Let T ∈ T . Let RT
f−→ T → T ′ → X[1] be the triangle extended by the minimal right X -

approximation f of T . Then T ′ ∈ X⊥. If moreover, HomT (Y, T ) = 0, then f is also a
minimal right (Y ∗ X )-approximation of T .

Proof. (1) follows from (X ∗ Y) ∗ (X ∗ Y) = X ∗ (Y ∗ X ) ∗ Y ⊂ X ∗ X ∗ Y ∗ Y = X ∗ Y.
(2) See [IYo, Proposition 2.1 (1)].
(3) The first assertion follows from the proof of [IYo, Proposition 2.3 (1)] and the second one is

easy to check. �

0.2. Simple-minded objects in triangulated categories

0.2.1. t-structure and co-t-structures. Let T be a triangulated category. Let X and Y be two
full subcategories of T . If T = X ⊥ Y, X⊥ = Y and ⊥Y = X hold, we say T = X ⊥ Y is a torsion
pair. If a torsion pair T = X ⊥ Y satisfies X [1] ⊂ X (resp. Y[1] ⊂ Y), we call it a t-structure
(resp. co-t-structure), in this case, we denote by H = X ∩ Y[1] (resp. P = X ∩ Y[−1]) the heart
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(resp. co-heart). We say a t-structure T = X ⊥ Y is stable if X [1] = X . We say a t-structure
T = X ⊥ Y is bounded, if

⋃
i∈Z X [i] = T =

⋃
i∈Z Y[i]. A bounded t-structure is determined by its

heart.

Lemma 0.2.1. Let T = X ⊥ Y be a bounded t-structure with heart H. Then X = Filt(H[≥0])
and Y = Filt(H[<0]).

On the set of t-structures on T , there is a natural partial order defined by

(X ,Y) ≥ (X ′,Y ′) :⇔ X ⊃ X ′ ⇔ Y ⊂ Y ′,
where T = X ⊥ Y = X ′ ⊥ Y ′ are t-structures with hearts H and H′ respectively. It induces a
partial order on the set of hearts of bounded t-structures by Lemma 0.2.1, that is

H ≥ H′ :⇔ X ⊃ X ′ ⇔ Y ⊂ Y ′ ⇔ HomT (H′,H[<0]) = 0. (0.2.1)

An object P ∈ T is called silting object if HomT (P, P [>0]) = 0 and T = thickP . Two silting
objects P and Q are equivalent if addP = addQ. We denote by silt T the set of equivalence classes
of silting objects in T . If P ∈ T is silting, then we have a natural co-t-structure

T = T P≥0 ⊥ T P<0, where T P≥0 := Filt(P [≤0]) and T P<0 := Filt(P [>0]). (0.2.2)

We have a partial order on silt T , that is, for P,Q ∈ silt T ,

P ≥ Q :⇔ T P<0 ⊃ T
Q
<0 ⇔ T P≥0 ⊂ T

Q
≥0 ⇔ HomT (P,Q[>0]) = 0. (0.2.3)

Let S be a thick subcategory of T . Let us recall a sufficient condition for the Verdier quotient
T /S to be realized as an ideal quotient given in [IYa2]. We consider the following setting.

(T0) T is a triangulated category, S is a thick subcategory of T and U = T /S;
(T1) S has a torsion pair S = X ⊥ Y;
(T2) T has torsion pairs T = X ⊥ X⊥ = ⊥Y ⊥ Y.

Let Z := X⊥ ∩ ⊥Y[1] and P := X [1] ∩ Y. Then

Proposition 0.2.2. [IYa2, Theorem 1.1] Under the assumptions (T0), (T1) and (T2), the compo-
sition Z ⊂ T → U induces an equivalence of additive category Z

[P]
∼= U . In particular, the category

Z
[P] has a structure of a triangulated category.

Remark 0.2.3. If (T0), (T1) and (T2) hold, we may regard Z as a Frobenius extriangulated
category with ProjZ = P in the sense of [NP] (see [IYa2, Section 1.2]).

0.2.2. Simple-minded collections and simple-minded systems. Let T be a Krull-Schmidt
triangulated category and let S be a subcategory of T .

Definition 0.2.4. We call S a pre-simple-minded collection (pre-SMC ) if for any X,Y ∈ S, the
following conditions hold.

(1) HomT (X,Y [<0]) = 0;
(2) dimkHomT (X,Y ) = δX,Y .

We call S a simple-minded collection (SMC ) if S is a pre-SMC and moreover, thick(S) = T .

For any pre-SMC, there is a standard t-structure associated to it in the following sense, see [Al,
Corollary 3 and Proposition 4] or [KaY1, Proposition 5.4].

Proposition 0.2.5. Let R be a pre-SMC of T . Let XR := Filt(R[≥0]) and YR := Filt(R[<0]).
HR = Filt(R). Then

(1) We have a bounded t-structure T = XR ⊥ YR with heart HR.
(2) We have XR =

⋃
n≥0HR[n] ∗ HR[n − 1] ∗ · · · ∗ HR and YR =

⋃
n≥1HR[−1] ∗ · · · ∗ HR[−n +

1] ∗ HR[−n].

Let S be a SMC in T and let H = Filt(S). We write T ≤n = Filt(S[≥n]) and T ≥n = Filt(S[≤n]).
The following result is directly from Proposition 0.2.5.
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Lemma 0.2.6. Let T be a triangulated category. Let S be a SMC of T and H = Filt(S). Then

(1) We have a bounded t-structure T = T ≤0 ⊥ T ≥1 with heart H;
(2) For any X,Y ∈ T , we get HomT (X[�0], Y ) = 0;
(3) For any Y ∈ T , we get HomT (H[�0], Y ) = 0 and HomT (Y [�0],H) = 0.

Next we recall the notion of simple-minded systems, which is introduced in [KL] and generalized
in [CS1].

Definition 0.2.7. [CS1, Definition 2.1] Let d ≥ 1. We call S a d-Simple-minded system (or
d-SMS) if for any X,Y ∈ S, the following conditions hold.

(1) dimHomT (X,Y ) = δX,Y ;
(2) HomT (X[i], Y ) = 0 for any 1 ≤ i ≤ d− 1;
(3) T = add Filt({S[d− 1], · · · ,S}).

By [CSP, Lemma 2.8], the condition (3) above is equivalent to say that T = H[d − 1] ∗ H[d −
2] ∗ · · · ∗ H.

0.3. DG algebras

0.3.1. DG algebras and the Nakayama functor. Let A be a dg k-algebra, that is, a graded
algebra endows with a compatible structure of a complex. A (right) dg A-module is a graded
A-module endows with a compatible structure of a complex. Let D(A) be the derived category of
right dg A-modules (see [K1, K3]). It is a triangulated category obtained from the category of dg
A-modules by formally inverting all quasi-isomorphisms. The shift functor is given by the shift of
complexes.

Let perA = thick(AA) ⊂ D(A) be the perfect category and let Db(A) be the full subcategory of
D(A) consisting of the objects whose total cohomology is finite-dimensional.

We consider the derived dg functor

ν :=?⊗L
A DA : D(A)→ D(A),

called the Nakayama functor. We have the following Auslander-Reiten formula.

Lemma 0.3.1. [K1, Section 10.1] There is a bifunctorial isomorphism

DHomDA(X,Y ) ∼= HomDA(Y, ν(X)) (0.3.1)

for X ∈ perA and Y ∈ D(A).

Proof. For any Y ∈ D(A), taking X = A[n], then we have isomorphisms

DHomDA(A[n], Y ) = DH−n(Y ) ∼= Hn(DY ) ∼= HomDA(Y,DA[n]).

By “devissage”, we know the isomorphism holds for any X ∈ perA. �

It is clear that ν restricts to a triangle functor

ν : perA −→ thick(DA). (0.3.2)

By Lemma 0.3.1, (0.3.2) is a triangle equivalence provides that A has finite-dimensional cohomology
in each degree. In this case, if we have perA = thick(DA) (for example, A is a finite-dimensional
Gorenstein k-algebra), then ν defines a Serre functor on perA. Immediately, we have the following
result.

Lemma 0.3.2. Assume A has finite-dimensional cohomology in each degree and perA = thick(DA)
in D(A). Let X,Y be two dg A-modules with finite-dimensional cohomology in each degree. Then
the isomorphism (0.3.1) also holds for Y ∈ perA and X ∈ D(A).

Let A be a dg k-algebra and let M be a dg A-module. Then H0(A) is the usual k-algebra and
we regard Hn(M) as a H0(A)-module for n ∈ Z.

Lemma 0.3.3. Let A be a dg k-algebra and M ∈ D(A). Then
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(1) [KN, Lemma 4.4] For P ∈ addA, the morphism of k-modules

HomD(A)(P,M)→ HomH0(A)(H
0(P ),H0(M))

induced by H0 is an isomorphism;
(2) Dually, for I ∈ addDA, the morphism of k-modules

HomD(A)(M, I)→ HomH0(A)(H
0(M),H0(I))

induced by H0 is an isomorphism.

We need the following lemma for later use.

Lemma 0.3.4. Let A be a dg k-algebra and M ∈ D(A). Then

(1) Let P ∈ addA and f ∈ HomD(A)(M,P ). If the induced map H0(f) : H0(M) → H0(P ) is
surjective, then f is a retraction in D(A);

(2) Let I ∈ addDA and g ∈ HomD(A)(I,M). If the induced map H0(g) : H0(I) → H0(M) is
injective, then g is a section in D(A).

Proof. We only prove (1), since (2) is a dual. Because H0(P ) is a projective H0(A)-module
and H0(f) is surjective, then H0(f) it is a retraction. Then by Lemma 0.3.3, there is p ∈
HomD(A)(P,M), such that H0(f) ◦ H0(p) = IdH0(P). By Lemma 0.3.3 again, we have f ◦ g = IdP.
Therefore f is a retraction in D(A). �

0.3.2. Non-positive dg algebras. We call a dg k-algebra A non-positive if it satisfies Hi(A) = 0
for i > 0. Let A be a non-positive dg k-algebra and M be a dg A-module. We define the standard
truncation τ≤i and τ>i by

(τ≤iM)j :=


M j for j < i,

ker diM for j = i,

0 for j > i.

(τ>iM)j :=


0 for j < i,

M i/ ker diM for j = i,

M j for j > i.

Since A is non-positive, then τ≤iM and τ>iM are also dg A-modules. Moreover, we have a triangle

τ≤iM →M → τ iM → τ≤iM [1]

in D(A). Notice that A′ = τ≤0A has a natural structure of a dg algebra and the inclusion
A′ ↪→ A is a quasi-isomorphism of dg k-algebras. Thus in this thesis, when we mention non-
positive dg k-algebra A, we always assume that Ai = 0 for i > 0. In this case, the canonical
projection A→ H0(A) is a homomorphism of dg k-algebras (here we regard H0(A) as a dg algebra
concentrated in degree 0). Then we can regard a module over H0(A) as a dg module over A via
this homomorphism. This induces a natural functor modH0(A)→ D(A).

Denote by SA the set of simple H0(A)-modules and we may also regard SA as the set of simple
dg A-modules (concentrated in degree 0). Now we introduce the radical of A, which will be used
later. Let P ∈ addA. We have a short exact sequence in modH0(A)

0→ radH0(P )→ H0(P )
f−→ top H0(P )→ 0.

By Lemma 0.3.3, there is a morphism f ′ ∈ HomDb(A)(P, top H0(P )) which is sent to f by H0. Then

we define the radical of P in Db(A) as the third term of the following triangle.

radP → P
f ′−→ top H0(P )→ radP [1].

The following results are well-known.

Lemma 0.3.5. Let A be a non-positive dg k-algebra. Assume Hi(A) is finite-dimensional for any
i ∈ Z. Then

(1) Db(A) is Hom-finite.
(2) Db(A) = thick(SA) and SA is a SMC of Db(A).



SIMPLE-MINDED OBJECTS AND CM DG MODULES 5

Proof. (1) is a corollary of [K1, Theorem 3.1], see also [AMY, Proposition 6.12].
(2) is directly from [KaY2, Proposition 2.1]. �

We need the following useful observation that any SMC of Db(A) can be regarded as simple dg
B-modules for some non-positive dg algebra B.

Proposition 0.3.6. Let A be a non-positive proper dg k-algebra and let S be a SMC of Db(A).

Then there exists a non-positive dg k-algebra B and a triangle equivalence F : Db(B)
'−→ Db(A)

such that F (SB) = S, where SB is the set of simple dg B-modules.

Proof. There is a bijection

{SMCs of Db(A)} ←→ {silting objects of perA}
by [KaY1, Theorem 6.1] (see also [SY, Theorem 1.2]). Then there is a silting object P ∈ perA
corresponding to S. Considering the dg algebra B′ := EndA(P ), then we have Hi(B′) = 0 for i > 0

and the truncation B := τ≤0B′ also has a structure of dg k-algebra, which is quasi-isomorphic
to B′. Notice that the functor RH omA(P, ?) : D(A) → D(B′) is a triangle equivalence by [K1,

Lemma 4.2], so there a triangle equivalence F : D(B) → D(A) which restricts to per and Db.
Moreover, by [SY, Theorem 1.1], we have that F (SB) = S. �

For i ∈ Z, Let Db
≤i (respectively, Db

≥i) denote the full subcategory of Db(A) consisting of those

dg A-modules whose cohomologies are concentrated in degree ≤ i (respectively, ≥ i). This gives
us a standard t-structure as the following result shows.

Proposition 0.3.7. [KaY1, Proposition 2.1] Let A be a non-positive dg algebra. Then

(1) The pair (Db
≤0,D

b
≥0) is a t-structure on Db(A);

(2) For n ≤ m, we have the following, where H is the heart of (Db
≤0,D

b
≥0).

Db
≥n ∩ Db

≤m = H[−n] ∗ H[−n+ 1] ∗ · · · ∗ H[−m];

(3) Moreover, taking H0 is an equivalence from the H to modH0(A), and the natural functor
modH0(A)→ Db(A) is a quasi-inverse to this equivalence.

We call a dg algebra A proper, if A ∈ Db(A). We end this section by a proposition, which plays
an important role in the proof of Theorem 2.8.32.

Proposition 0.3.8. Let A be a non-positive proper dg k-algebra whose underlying graded algebra
is a quotient kQ/I of the path algebra of a graded quiver Q. Let j and j′ be vertices in Q.

(1) If HomDb(A)(Sj , Sj′ [l]) 6= 0 for some l > 0, then there exists a path from j to j′ with degree
bigger than −l;

(2) Assume that the differential of A is zero and I is an admissible ideal of kQ. If there is an
arrow j → j′ with degree −l ≤ 0, then HomDb(A)(Sj , Sj′ [l + 1]) 6= 0.

Proof. (1) Let X0 := Sj . For each i ≥ 0, we take the following triangle,

Xi+1 → Qi → Xi → Xi+1[1],

such that Qi ∈ addA[≥ 0] and the induced map H∗(Qi)→ H∗(Xi) is the projective cover of H∗(Xi)
as a graded H∗(A)-module. Then we have an exact sequence

0→ H∗(Xi+1)→ H∗(Qi)→ H∗(Xi)→ 0.

Thus the composition Qi+1 → Xi+1 → Qi is non-zero. For each direct summand Pai [si] of Qi with
a vertex ai of Q and si ∈ Z, there exists a direct summand Pai−1

[si−1] of Qi−1 with a vertex ai−1

in Q and si−1 ∈ Z, such that HomDb(A)(Pai [si], Pai−1
[si−1]) 6= 0. Then there is a path ai−1  ai

with degree si−1 − si. Repeating this, we obtain a path j = a0  a1  · · ·  ai with degree∑i
k=1(sk−1 − sk) = s0 − si = −si.
By the construction above, we have Sj ∈ Q0 ∗ Q1[1] ∗ Q2[2] ∗ · · · ∗ Ql[l] ∗ Db

≤−l−1. Since

HomDb(A)(Y, Sj′ [l]) = 0 for any Y ∈ Db
≤−l−1 and by our assumption HomDb(A)(Sj , Sj′ [l]) 6= 0,
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then there exists a non-zero map from some object in add(Q0 ∗Q1[1] ∗Q2[2] ∗ · · · ∗Ql[l]) to Sj′ [l],
which implies Pj′ [l] ∈ addQk[k] for some 0 ≤ k ≤ l. Since Q0 = Pj and l is positive, we have
1 ≤ k ≤ l. Since Pj′ [l − k] ∈ addQk, by our argument above, there is a path from j to j′ with
degree k − l, which is bigger than −l.

(2) Consider the following triangle,

radPj → Pj → Sj → radPj [1].

Since the differential of A is zero, I is admissible, and there is an arrow j → j′ with degree −l,
then Sj′ ∈ addH−l(

radPj

rad2Pj
). Then the composition radPj → radPj

rad2Pj
→ H−l(

radPj

rad2Pj
)[l] → Sj′ [l] is

non-zero. Thus HomDb(A)(radPj , Sj′ [l]) 6= 0. Applying the functor HomDb(A)(?, Sj′ [l + 1]) to the
triangle above, we obtain an exact sequence

HomDb(A)(Sj , Sj′ [l])→ HomDb(A)(Pj , Sj′ [l])→ HomDb(A)(radPj , Sj′ [l])→ HomDb(A)(Sj , Sj′ [l+1]).

By dividing into two cases, (l, j) = (0, j′) or not, one can check that the left map is always
surjective. Then HomDb(A)(Sj , Sj′ [l + 1]) 6= 0. �

0.4. Extriangulated categories

0.4.1. Extriangulated categories. In this section, we briefly recall the definition and basic prop-
erties of extriangulated categories from [NP]. We omit some details here, but the reader can find
them in [NP].

Let C be an additive category equipped with an additive bifunctor E : C op ⊗ C → Ab. For
any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an E-extension. Let s be a

correspondence which associates an equivalence class s(δ) = [A
x−→ B

y−→ C] to any E-extension
δ ∈ E(C,A). This s is called a realization of E if it makes the diagrams in [NP, Definition 2.9]
commutative. A triple (C ,E, s) is called an extriangulated category if it satisfies the following
conditions.

(1) E : C op ⊗ C → Ab is an additive bifunctor;
(2) s is an additive realization of E;
(3) E and s satisfy the compatibility conditions in [NP, Definition 2.12].

Extriangulated categories is a generalization of exact categories and triangulated categories. Let
us see some easy examples.

Example 0.4.1. (1) Let C be an exact category. Then C is extriangulated by taking E as the
bifunctor Ext1

C (?, ?) : C op⊗C → Ab and for any δ ∈ Ext1
C (C,A), taking s(δ) as the equivalence

class of short exact sequences (=conflations) correspond to δ;
(2) Let C be a triangulated category. Then C is extriangulated by taking E as the bifunctor

HomC (?, ?[1]) : C op⊗C → Ab, and for any δ ∈ HomC (C,A[1]), taking s(δ) as the equivalence

class of the triangle A→ B → C
δ−→ A[1];

(3) Let C be a triangulated category and let D be an extension-closed (that is, for any triangle
X → Y → Z → X[1] in C , if X,Z ∈ D , then Y ∈ D) subcategory of C . Then D has an
extriangulated structure given by restricting the extriangulated structure of C on D .

Let (C ,E, s) be an extriangulated category. An object X in C is called projective if E(X,Y ) = 0
for any Y ∈ C . We say C has enough projective objects if for any Y ∈ C , there exists Z ∈ C
and δ ∈ E(Y, Z), such that the middle term of the realization s(δ) is projective. We denote by P
(resp. I ) the subcategory of projective (resp. injectvie) objects. When C has enough projective
(resp. injective) objects, we define the stable (resp. costable) category of C as the ideal quotient

C := C /[P] (resp. C := C /[I ]). We call C Frobenius if it has enough projective objects
and enough injective objects, and projective objects coincide with injective ones. In this case C
coincides with C , and we call C the stable category of C .

Proposition 0.4.2. [NP, Corollary 7.4] Let (C ,E, s) be a Frobenius extriangulated category and
let I be subcategory of injective objects. Then C is a triangulated category.
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0.4.2. Auslander-Reiten theory in extriangulated categories. Let us briefly recall Auslander-
Reiten theory in extriangulated categories form [INP]. In this subsection, let (C ,E, s) be an extri-
angulated category.

Definition 0.4.3. [INP, Definition 2.1] A non-split E-extension δ ∈ E(C,A) is said to be almost
split if it satisfies the following conditions

(1) E(C, a)(δ) = 0 for any non-section a ∈ C (A,A′);
(2) E(c, A)(δ) = 0 for any non-retraction c ∈ C (C ′, C).

We say that C has right almost split extensions if for any endo-local non-projective object
A ∈ C , there exists an almost split extension δ ∈ E(A,B) for some B ∈ C . Dually, we say that C
has left almost split extensions if for any endo-local non-projective object B ∈ C , there exists an
almost split extension δ ∈ E(A,B) for some A ∈ C . We say that C has almost split extension if it
has right and left almost split extensions.

Let A ∈ C . If there exists an almost split extension δ ∈ E(A,B), then it is unique up to
isomorphism of E-extensions.

Definition 0.4.4. [INP, Definition 3.2] Let (C ,E, s) be a k-linear extriangulated category.

(1) A right Auslander-Reiten-Serre (ARS) duality is a pair (τ, η) of an additive functor τ : C → C
and a binatural isomorphism

ηA,B : C (A,B) ' DE(B, τA) for any A,B ∈ C ;

(2) If moreover τ is an equivalence, we say that (τ, η) is an Auslander-Reiten-Serre (ARS) duality.

We say k-linear extriangulated category (C ,E, s) is Ext-finite, if dimkE(A,B) < ∞ for any
A,B ∈ C .

Proposition 0.4.5. [INP, Theorem 3.4] Let C be a k-linear Ext-finite Krull-Schmidt extriangu-
lated category. Then the following are equivalent.

(1) C has almost split extensions;
(2) C has an Auslander-Reiten-Serre duality.

The following characterization of almost split extensions are analogous to the corresponding
result on Auslander-Reiten triangles (see [RV, Proposition I.2.1]) and on almost split sequences
(see [ARS]).

Proposition 0.4.6. Assume (C ,E, s) has Auslander-Reiten extensions. Assume A ∈ C is an
end-local object and δ ∈ E(A,B). Then the following are equivalent.

(1) δ is an almost split extension;
(2) δ is in the socle of E(A,B) as right EndC (A)-module and B ∼= τ(A);
(3) δ is in the socle of E(A,B) as left EndC (B)-module and B ∼= τ(A).

0.5. Translation quivers

We recall some definitions and notations concerning quivers. A quiver Q = (Q0, Q1, s, t) is
given by the set Q0 of its vertices, the set Q1 of its arrows, a source map s and a target map t.
If x ∈ Q0 is a vertex, we denote by x+ the set of direct successors of x, and by x− the set of its
direct predecessors. We say that Q is locally finite if for each vertex x ∈ Q0, there are finitely
many arrows ending at x and starting at x. An automorphism group G of Q is said to be weakly
admissible if for each g ∈ G\{1} and for each x ∈ Q0 , we have x+ ∩ (gx)+ = ∅.

A stable translation quiver (Q, τ) is a locally finite quiver Q without double arrows with a
bijection τ : Q0 → Q0 such that (τx)+ = x− for each vertex x. For each arrow α : x → y, we
denote by σα the unique arrow τy → x.

Definition 0.5.1. Let Q be a stable translation quiver and C be a subset of Q0. We define a
translation quiver QC by adding to Q0 a vertex pc and two arrows c→ pc → τ−1(c) for each c ∈ C.
The translation of QC coincides with the translation of Q on Q0 and is not defined on {pc | c ∈ C}.
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Let ∆ be an oriented tree, then the repetition quiver of ∆ is defined as follows:

(1) (Z∆)0 = Z×∆0

(2) (Z∆)1 = Z×∆1∪σ(Z×∆1) with arrows (n, α) : (n, x)→ (n, y) and σ(n, α) : (n−1, y)→ (n, x)
for each arrow α : x→ y of ∆.

The quiver Z∆ with the translation τ(n, x) = (n − 1, x) is a stable translation quiver which does
not depend (up to isomorphism) on the orientation of ∆ which does not depend on the orientation
of ∆ (see [Rie1]).

From now on, we assume ∆ is a Dynkin diagram. Let us fix a numbering and an orientation of
the simply-laced Dynkin trees.

An(n ≥ 1) : 1 // 2 // · · · // n− 1 // n

n− 1

ww
Dn(n ≥ 4) : 1 // 2 // · · · // n− 2

n

gg

4

En(n = 6, 7, 8) : 1 2oo 3

OO

oo // 5 // · · · // n

We define the “Nakayama permutation” S of Z∆ as follows:

• if ∆ = An, then S(p, q) = (p+ q − 1, n+ 1− q);
• if ∆ = Dn with n even, then S = τ−n+2;
• if ∆ = Dn with n odd, then S = τ−n+2φ, where φ is the automorphism which exchanges n and
n− 1;

• if ∆ = E6, then S = φτ−5, where φ is the automorphism which exchanges 2 and 5, and 1 and 6;
• if ∆ = E7, then S = τ−8;
• if ∆ = E8, then S = τ−14.

By [Ga, Proposition 6.5], when we identify the Auslander-Reiten quiver of k∆ as the full subquiver
of Z∆, the Nakayama functor is related to S defined above. We can also define “shift permutation”
[1] of Z∆ by Sτ−1.
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Part 1. Reductions of triangulated categories and simple-minded collections

1.1. Introduction

Triangulated categories appear in many branches of mathematics, such as algebraic geometry,
representation theory and algebraic topology. In derived categories, there are two important classes
of objects: projective objects and simple objects. Projective objects (or more generally, tilting
objects) play a central role in tilting theory, which is one of the standard tools for studying
triangulated categories. Their variants, silting objects and cluster tilting objects, have been used
to study positive Calabi-Yau (= CY) triangulated categories [BMRRT, IYo, KR, KMV] and the
categorification of cluster category [FZ1]. On the other hand, simple objects, or more generally,
simple-minded collections (=SMCs) are also well-studied in derived categories. They are important
in Koszul duality [BGS, KN], and bijectively correspond to silting objects [Ric2, KaY1]. Simple-
minded systems (= SMSs) in stable module categories were introduced in [KL] and studied for
negative CY triangulated categories in [D, CS3]. Recently, there is increasing interest in negative
CY triangulated categories (see, for example [CS1, CS2, CS3, CSP]), including the stable categories
of Cohen-Macaulay (= CM) dg modules [Ji1].

There are two useful tools to study the class of silting (resp. cluster-tilting, SMC, SMS) objects
in a triangulated category T . One is mutation, which gives a new object in this class from a given
one. Another is reduction, which is a new triangulated category U realized as a certain sub (or
subfactor) category of T . There is a bijection between silting (resp. cluster-tilting, SMS, SMC)
objects in U and those in T with some properties. The following picture shows some works on
these subjects, where the reduction of SMC was not studied before.

Projective-like objects

Derived
categories

Silting
mutation [AI]

reduction [AI, IYa1]

Calabi-Yau
triangulated
categories

Cluster-tilting
mutation [BMRRT, IYo]

reduction [IYo]

Simple-like objects

SMC
mutation [KaY1]

reduction [This thesis]

SMS
mutation [D, CS3]
reduction [CSP]

�� ��

Thus our first aim of Part 1 is to introduce the SMC reduction. For a pre-SMCR (which is a SMC
without generating condition) of a Krull-Schmidt triangulated category T , the corresponding SMC
reduction is the Verdier quotient U = T / thick(R). One can realize U as the additive subcategory

Z = R[≥0]⊥ ∩ ⊥R[≤0]

of T under certain assumptions (R1) and (R2) in Section 1.2. Namely,

Theorem 1.1.1 (Theorem 1.2.1). Under the setting above, the following results hold.

(1) The composition Z ↪→ T → U gives an equivalence Z '−→ U ;
(2) There is a bijection

SMCRT := {SMCs in T contain R} ←→ SMCU := {SMCs in U}.

Since Z is not closed under [±1], it dose not have a triangulated structure a priori. Nevertheless,
the theorem above shows that it has a canonical triangulated structure induced by U . Also notice
that, Theorem 1.1.1 can be regarded as a dual of silting reduction [IYa1], where it was necessary
to take an ideal quotient of Z. Theorem 1.1.1 will be used to construct SMCs and it plays an
important role in the proof of Theorem 2.7.1.

The second aim of Part 1 is to generalize the singularity category of a finite dimensional Goren-
stein k-algebra A over a field k. In this case, the singularity category is defined as the Verdier
quotient Dsg(A) = Db(modA)/Kb(projA) by [B, O]. Buchweitz’s equivalence states that Dsg(A) is
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triangle equivalence to the stable category CMA of Cohen-Macaulay A-modules. A key observation
in our context is that Db(modA) has a SMC consisting of simple A-modules, and there is a relative
Serre functor ν =?⊗L

A DA.
To generalize the notion of singularity categories and Buchweitz’s equivalence, we work on a

SMC quadruple (T , T p,S,S), where T p is a thick subcategory of a triangulated category T , S is
a relative Serre functor, S is a SMC of T and they satisfy some conditions (see Definition 1.3.1).
We define the singularity category as the Verdier quotient

Tsg := T /T p.

In this setting, we have a co-t-structure T = T>0 ⊥ T≤0, where T>0 = ⊥S[≥0] and T≤0 = ⊥S[<0].
Using them we define subcategories

F = T ⊥>0 ∩ ⊥(T≤−1 ∩ T p), P = T≥0 ∩ T≤0,

where in the algebra case above, F = CMA and P = projA. Our second result realizes Tsg as a
subfactor category of T .

Theorem 1.1.2 (Theorem 1.3.5 (1), (2)). Let (T , T p,S,S) be a SMC quadruple and let Tsg, F ,
P be defined as above. Then

(1) F is a Frobenius extriangulated category with ProjF = P (in the sense of [NP]);
(2) The composition

F ⊂ T → Tsg

induces an equivalence π : F[P]

'−→ Tsg. Moreover, Tsg has a Serre functor S[−1].

Theorem 1.3.5 can be regard as a dual of the equivalence between the fundamental domain and
the cluster category [Am, Gu, IYa1], where it was not necessary to take ideal quotient.

An important case of Serre quadruple is non-positive CY triple, which is a Serre quadruple
(T , T p,S,S) with S = [1− d] for d ≥ 1. In the rest part of introduction, we will focus on (1− d)-
CY triple. In this case, there is a nice description of F as follows.

Proposition 1.1.3 (Theorem 1.3.5 (3)). Let (T , T p,S) be a (1− d)-CY triple. Then F = H[d−
1] ∗H[d− 2] ∗ · · · ∗H and S is a d-SMS in Tsg, where H = FiltS is the extension-closed subcategory
generated by S.

The third aim of Part 1 is to connect our SMC reductions and the SMS reductions defined by
Coelho Simões and Pauksztello [CSP]. We first show that the SMC reduction of a CY triple gives
rise to a new CY triple.

Theorem 1.1.4 (Theorem 1.5.1). Let (T , T p,S) be a (1 − d)-CY triple. Let R be a subset of S
such that the extension-closed subcategory HR generated by R is functorially finite in T . Let U be
the SMC reduction of T with respect to R. Then the triple (U ,Up,S) is also a (1− d)-CY triple,
where one can regard Up := T p ∩ (thickR)⊥ as a subcategory of U .

For a (1−d)-CY triple (T , T p,S), we know Tsg is a (−d)-CY triangulated category by Theorem
1.1.2 (2), and we can consider the SMS reduction (Tsg)R in Tsg with respect to R introduced in
[CSP]. Our main theorem of Part 1 shows that SMS reduction is the shadow of SMC reduction in
the following sense.

Theorem 1.1.5 (Theorem 1.5.4). Keep the assumption in Theorem 1.1.4. Then there is a triangle
equivalence from the singularity category Usg to the SMS reduction (Tsg)R of the singularity category
Tsg with respect to R.

This can be illustrated by the following commutative diagram of operations.
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T
sing. category //

SMC reduction

��

Tsg

SMS reduction

��
U

sing. category// Usg
∼= (Tsg)R

The diagram above induces a commutative diagram of maps

SMCs in T contains R //

��

SMSs in Tsg contains R

��
SMCs in U // SMSs in (Tsg)R

where the horizontal two maps above are well-defined under mild conditions (see Theorem 1.3.14).
The results we obtain here are parallel to the connection between silting reductions and CY re-
ductions given in [IYa1].

In Appendix A, we give a triangle equivalence induced by derived Schur functors. It provides
us an important class of examples on SMC reduction and it is also useful itself.

1.2. SMC reductions of triangulated categories

The aim of this section is to introduce the SMC reduction. It is an operation to construct a
new triangulated category form the given triangulated category and one of its pre-Simple-minded
collections (pre-SMCs). One important property is that, under mild conditions, there is a bijection
between the SMCs of the new category and the SMCs of the original one containing the given pre-
SMC.

1.2.1. SMC reductions. Let T be a Krull-Schmidt triangulated category and R be a pre-SMC
of T (see Definition 0.2.4). We denote by SMC T the set of SMCs of T and by SMCR T the set
of SMCs of T containing R. We define the SMC reduction of T with respect to R as the Verdier
quotient

U := T / thick(R).

By Proposition 0.2.5, thick(R) admits a natural t-structure thick(R) = XR ⊥ YR, where XR =
Filt(R[≥0]) and YR = Filt(R[<0]), whose heart is denote by

HR = Filt(R).

Consider the following mild conditions.

(R1) HR is contravariantly finite in R[>0]⊥ and convariantly finite in ⊥R[<0];
(R2) For any X ∈ T , we have HomT (X,HR[i]) = 0 = HomT (HR, X[i]) for i� 0.

Notice that by Lemma 0.2.6, (R2) holds if there is a SMC of T containing R . Let

Z := R[≥0]⊥ ∩ ⊥R[≤0].

Similar to silting reduction (see [IYa1, Theorems 3.1 and 3.7]), we have the following results.

Theorem 1.2.1. Assume the assumptions (R1) and (R2) hold. Then

(1) The composition Z ↪→ T → U is an additive equivalence Z '−→ U ;
(2) There is a bijection

SMCR T ←→ SMC U ,
sending S ∈ SMCR T to S\R ∈ SMC U .
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The rest of this section is devoted to the proof of Theorem 1.2.1. We start with the following
observation, which is the ‘dual’ of [IYa1, Proposition 3.2].

Proposition 1.2.2. The following are equivalent.

(1) T = XR ⊥ X⊥R = ⊥YR ⊥ YR are two t-structures;
(2) HR satisfies the conditions (R1) and (R2).

In this case, the heart of t-structures in (1) are HR.

Proof. We first claim that XR ∩ X⊥R [1] = HR = ⊥YR ∩ YR[1]. We only show the first equality
since the second one is dual. Since R is a pre-SMC, then HomT (XR[1],HR) = 0 and thus HR ⊂
XR ∩X⊥R [1]. Now assume X ∈ XR ∩X⊥R [1]. Since we know X ∈ XR = XR[1] ∗HR by Proposition
0.2.5 and HomT (XR[1], X) = 0, then it is clear that X ∈ addHR = HR (Since HR is the heart of
a t-structure, so addHR = HR). Therefore XR ∩ X⊥R [1] = HR.

(1)⇒ (2) We show (R1). For any X ∈ R[>0]⊥ = X⊥R [1], there is a triangle

Z[−1]→ Y
f−→ X → Z

with Y ∈ XR and Z ∈ X⊥R . We claim Y ∈ HR and f is a right HR-approximation of X.
Since X⊥R [−1] ⊂ X⊥R [1], then Y ∈ Z[−1] ∗ X ∈ X⊥R [1] and thus Y ∈ X⊥R [1] ∩ XR = HR. Since
HomT (HR, Z) = 0, then it follows that f is a right HR-approximation. So HR is contravariantly
finite in R[>0]⊥. Dually, HR is convariantly finite in ⊥R[<0].

We show (R2). For any T ∈ T , consider the triangle T ′ → T → T ′′ → T ′[1] with T ′ ∈ XR and
T ′′ ∈ X⊥R . Since HomT (HR[�0], T ′) = 0 by Lemma 0.2.6 and HomT (HR[≥0], T ′′) = 0, then we
know HomT (HR[�0], T ) = 0. The dual argument shows HomT (T [�0],HR) = 0.

(2) ⇒ (1) We only show T = XR ⊥ X⊥R is a t-structure, because the other assertion can
be shown similarly. Since XR[1] ⊂ XR, it is enough to show T = XR ∗ X⊥R . Let X ∈ T .
We have HomT (HR[≥ l], X) = 0 for some l ∈ Z by (R2). Notice that by Proposition 0.2.5,
XR =

⋃
n≥0HR[n] ∗ · · · ∗ HR. If l ≤ 0, then we get X ∈ HR[≥l]⊥ ⊂ HR[≥0]⊥ = X⊥R , and thus

X ∈ XR ∗ X⊥R .
Next we use the induction on l to prove X ∈ XR ∗ X⊥R generally. We assume HR[≥l − 1]⊥ ⊂

XR ∗ X⊥R for some l > 0. By assumption (R1), there exists a triangle H[l − 1]
f−→ X → X ′ → H[l]

such that f is a minimal right (HR[l−1])-approximation of X. Since X ∈ HR[≥l]⊥, then f is also
a minimal right (HR[≥l− 1])-approximation and HomT (HR[≥l− 1], X ′) = 0 by Lemma 0.1.1. By
our assumption, X ′ ∈ XR ∗ X⊥R . Thus X ∈ H[l− 1] ∗X ′ ⊂ HR[l− 1] ∗ XR ∗ X⊥R = XR ∗ X⊥R holds
since XR is extension-closed. �

The following proposition shows the first statement of Theorem 1.2.1.

Proposition 1.2.3. (1) The natural functor Z ↪→ T → U gives an equivalence Z '−→ U ;
(2) We have T = XR ⊥ Z ⊥ YR[1].

Proof. (1) By Propositions 0.2.5 and 1.2.2, we have t-structures thick(R) = XR ⊥ YR and T =
XR ⊥ X⊥R = ⊥YR ⊥ YR. Notice that X [1] ∩ Y = 0, then the assertion holds by Proposition 0.2.2.

(2) It suffices to show X⊥R = Z ⊥ YR[1]. For any M ∈ X⊥R , there is a triangle M ′′[−1]→M ′ →
M → M ′′ with M ′ ∈ ⊥YR[1] and M ′′ ∈ YR[1] by Proposition 1.2.2. Applying HomT (XR, ?) to
this triangle, it is easy to see M ′ ∈ X⊥R . Then M ′ ∈ X⊥R ∩ ⊥YR[1] = Z. So X⊥R = Z ⊥ YR[1]. �

In the next part, we study the triangulated structure of Z, which will be used later. Since U
has a natural structure of triangulated category, then by using the additive equivalence Z '−→ U ,
we may also regard Z as a triangulated category. Now we describe the shift functor 〈1〉 in Z.

We define 〈1〉 on objects of Z first. For any X ∈ Z, we have X[1] ∈ R[>0]⊥ and by (R1), there
exists a HR-approximation of X[1]. Define X〈1〉 as the third term of the following triangle.

RX
fX−−→ X[1]→ X〈1〉 → RX [1] (1.2.1)
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where fX is the minimal right HR-approximation of X[1]. Notice that X〈1〉 is defined uniquely up
to isomorphism. Similarly, we can define X〈−1〉. Immediately, we have the following observation.

Lemma 1.2.4. Let 〈1〉 be defined as above. Then

(1) For any X ∈ Z, we have X〈1〉 ∈ Z;
(2) For X ∈ Z and n ≥ 1, we have X〈n〉 ∈ X[n] ∗ HR[n] ∗ · · · ∗ HR[1].

Proof. (1) Since X ∈ Z, then HomT (R[>0], X[1]) = 0. Notice that XR[1] = Filt(R[>0]) and
XR = XR[1] ∗ HR by Proposition 0.2.5, then fX in triangle (1.2.1) is also a minimal right XR-
approximation of X[1] and X〈1〉 ∈ X⊥R by Lemma 0.1.1 (3).

On the other hand, since X ∈ ⊥YR[1] and RX ∈ HR ⊂ ⊥YR, then X[1] ∈ ⊥YR[2] ⊂ ⊥YR[1]
and RX [1] ∈ ⊥YR[1]. Therefore, X〈1〉 ∈ ⊥YR[1] by triangle (1.2.1). So X〈1〉 ∈ X⊥R ∩⊥YR[1] = Z.

(2) For n ≥ 1, consider the following triangle.

RX〈n−1〉 → X〈n− 1〉[1]→ X〈n〉 → RX〈n−1〉[1], (1.2.2)

where RX〈n−1〉 → X〈n−1〉[1] is the minimal right HR-approximation of X〈n−1〉[1], then we have
X〈n〉 ∈ X〈n− 1〉[1] ∗ HR[1]. By induction, it easy to see X〈n〉 ∈ X[n] ∗ HR[n] ∗ · · · ∗ HR[1]. �

Next we define 〈1〉 on morphisms of Z. Let s ∈ HomZ(X,Y ) for any X,Y in Z. Consider the
following diagram.

RX

h

��

fX // X[1]

s[1]

��

gX // X〈1〉

t

��

// RX [1]

h[1]

��
RY

fY // Y [1]
gY // Y 〈1〉 // RY [1]

(1.2.3)

Since HomT (RX , Y 〈1〉) = 0, then there exists a morphism h ∈ HomT (RX , RY ), such that s[1] ◦
fX = fY ◦ h. Let t : X〈1〉 → Y 〈1〉 be a morphism such that diagram (1.2.3) is commutative. We
define s〈1〉 := t. The following lemma shows s〈1〉 is well defined.

Lemma 1.2.5. Let X,Y ∈ Z. For any s ∈ HomZ(X,Y ), s〈1〉 defined above is determined by s
uniquely.

Proof. We first claim the morphism h in diagram (1.2.3) is uniquely determined by s. If there exists
h′ ∈ HomT (RX , RY ) such that s[1] ◦ fX = fY ◦ h′, then fY ◦ (h − h′) = 0 and moreover, h − h′
factors through Y 〈1〉[−1]. But RX ∈ HR ⊂ XR and Y 〈1〉 ∈ X⊥R , so HomT (RX , Y 〈1〉[−1]) = 0.
Thus h = h′.

Next we show t is unique. If there exists t′ : X〈1〉 → Y 〈1〉 such that the diagram (1.2.3)
commutes. Then we have (t−t′)◦gX = 0, so t−t′ factors through RX [1]. But HomT (RX [1], Y 〈1〉) =
0, then t = t′. �

By Lemma 1.2.4 and Lemma 1.2.5, it is easy to check that 〈1〉 : Z → Z is a well-defined functor.
Notice that the triangle (1.2.1) gives an isomorphism X[1] ∼= X〈1〉 in U .

Next we describe the triangles in Z. Let X,Y ∈ Z and s ∈ HomZ(X,Y ). Then s induces a

triangle X
s−→ Y → Z → X[1] in T . Consider the right HR-approximations of Z and X[1]. We

have the following commutative diagrams.

RZ

��

// RX

��
X

s // Y
t // Z //

u

��

X[1]

��
W // X〈1〉

(1.2.4)

In this case, the following result holds.
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Proposition 1.2.6. Consider the triangulated structure of Z induced by U . Then

(1) The suspension functor of Z is given by 〈1〉;
(2) Let s : X → Y be a morphism in Z. Then the triangle in Z induced by s is X

s−→ Y
ut−→W →

X〈1〉.

Proof. (1) Directly form Lemma 1.2.4 and Lemma 1.2.5.

(2) Notice we have isomorphism Z ∼= W and X[1] ∼= X〈1〉 in U . Moreover, X
s−→ Y

ut−→ W →
X〈1〉 is a triangle in U . Since we have W ∈ Z (similar to the proof of Lemma 1.2.4). Then the
assertion holds by the equivalence Z ' U . �

Now we are ready to prove Theorem 1.2.1.

Proof of Theorem 1.2.1. (1) is directly from Proposition 1.2.3 (1).
(2) Let S ∈ SMCR T . We first show that S\R ∈ SMC U . Since thickT (S) = T , then

thickU (S\R) = U . Let X,Y ∈ S\R. It is clear from Definition 0.2.4 that S\R ⊂ Z. So by
(1), we have

dimHomZ(X,Y ) = dimHomT (X,Y ) = δX,Y .

Since X〈n〉 ∈ X[n] ∗ HR[n] ∗ · · · ∗ HR[1] for n > 0 by Lemma 1.2.4 and HomT (HR[≥0], Y ) = 0,
then by (1) again,

HomU (X[n], Y ) = HomZ(X〈n〉, Y ) = HomT (X〈n〉, Y ) = HomT (X[n], Y ) = 0.

So S\R ∈ SMC U . Therefore, sending S ∈ SMCR T to S\R ∈ SMC U gives us a well-defined
map SMCR T → SMC U , which is clearly injective.

We show the map is also surjective. Let SU be a SMC of U . By (1), we may assume SU ⊂ Z. In
this case, SU is also a SMC of Z. Let S = SU ∪R. We claim S ∈ SMCR T . Since R is a pre-SMC
and Z = R[≥ 0]⊥ ∩ ⊥R[≤ 0], it is clear that dimHomT (X,Y ) = δX,Y for any X,Y ∈ S, and
HomT (X[>0], Y ) = 0 for X ∈ R, Y ∈ S or X ∈ S, Y ∈ R. Next we show HomT (X[>0], Y ) = 0
for any X,Y ∈ SU . Notice that Lemma 1.2.4 (2) implies X[n] ∈ HR[n − 1] ∗ · · · ∗ HR ∗X〈n〉 for
n > 0. Since HomT (HR[≥0], Y ) = 0, then HomT (X[n], Y ) = HomZ(X〈n〉, Y ) = 0 for n > 0.

To show S is a SMC of T , we are left to show T = thickT (S). Since X〈m〉 ∈ thickT (S) for any
X ∈ SU and thickZ(SU ) = Z, then Z ⊂ thickT (S). So thickT (Z ∪ R) ⊂ thickT (S) ⊂ T . But by
Proposition 1.2.3 (2), we have thickT (Z ∪R) = T , so thickT (S) = T and thus S ∈ SMCR T . Then
the map SMCR T → SMC U is bijective. �

1.2.2. Examples. In this subsection, we consider the application of Theorem 1.2.1 to non-positive
dg algebras. We call a dg k-algebra proper, if A ∈ Db(A). We first give the following result.

Proposition 1.2.7. Let A be a non-positive proper dg k-algebra. Let S be a SMC of Db(A) and
R be a subset of S. Then HR = Filt(R) satisfies the conditions (R1) and (R2) in Section 1.2.1.

Proof. We know (R2) is true by Lemma 0.2.6. So we only need to show (R1). In fact, we show
that HR is functorially finite in Db(A). By Proposition 0.3.6, we may assume S = SA is the set of
simple dg A-modules. In this case, H = Filt(S) is equivalent to modH0(A) (see Lemma 0.3.5).

We first claim that H is functorially finite in Db(A). Let M ∈ Db(A). Considering the P -
resolution PM of M , then PM ∼= M in Db(A) and for any N ∈ Db(A), we have HomDb(A)(M,N) =
HomH (A)(PM,N), where H (A) is the homotopy category (see [K1, Section 3]). We write PM as
a k-complex and consider the following diagram.

PM : · · · // P−1 d−1 // P 0 d0 //

f

!!
g

��

P 1 // · · ·

L N
hoo

where N := P 0

Im d−1+K and K := P 0 ∩ A(⊕i≥1P
i). Then N ∈ H and the map f : PM → N above

is a morphism of dg A-modules. For any L ∈ H and a morphism g : PM → L of dg A-modules, we
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have g(K) = 0, so there exists h : N → L such that g = h ◦ f . Then f is a left H-approximation
of M . Thus H is a covariantly finite subcategory of Db(A). Dually, by using I-resolutions, we can
show that H is contravariantly finite. Therefore the claim is true.

To show HR is functorially finite in Db(A), it is enough to show HR is functorially finite in
H = modH0(A). By Lemma 1.2.8 below, we know it is true. Then we finish the proof. �

We need the following well-known fact.

Lemma 1.2.8. Let Λ be a finite-dimensional k-algebra and let R be a subset of simple Λ-modules.
Then HR = Filt(R) is functorially finite in modΛ.

Proof. There exists an idempotent e ∈ Λ such that R = top(1 − e)Λ. It is well-known that we
have a standard recollement of abelian categories (see, for example [PV, Example 2.10])

modΛ/ΛeΛ
i∗=inc. // modΛ

i∗=?⊗ΛΛ/ΛeΛ

xx

i!=HomΛ(Λ/ΛeΛ,?)

ff
j∗=?⊗ΛΛe // mod eΛe

j!=?⊗eΛeeΛ

yy

j∗=HomeΛe(Λe,?)

dd .

Then one can show i∗(modΛ/ΛeΛ) = HR and by [PV, Proposition 2.8], for any M ∈ modΛ, we
have two exact sequences

j!j
∗(M)→M

f−→ i∗i
∗(M)→ 0,

0→ i∗i
!(M)

g−→M → j∗j
∗(M).

It is easy to check that f (resp. g) is a left (resp. right) HR-approxiamtion of M . So HR is
functorially finite. �

Next we give some useful observations, which allow us to realize the SMC reduction of bounded
derived categories as new bounded derived categories.

Proposition 1.2.9. Let A be a non-positive proper dg k-algebra. Let e be an idempotent. Assume
e ∈ A0.

(1) Let R = top(1− e)H0(A). Then the SMC reduction Db(A)/ thick(R) is triangle equivalent to
Db(eAe);

(2) Assume eA is a pre-SMC in Db(modA). Then the SMC reduction Db(modA)/ thick(eA) is
triangle equivalent to Db(B), where B is the dg k-algebra EndperA/ thick eA(A).

Proof. We have a natural derived Schur functor F =? ⊗L
A Ae : D(A) → D(eAe), which restricts

to a functor F b =? ⊗L
A Ae : Db(A) → Db(eAe). It is well-known that F admits a left adjoint

G =?⊗L
eAe eA, which is fully faithful (see for example [K1, Lemma 4.2]).

(1) By Proposition 1.5.12, the functor F b induces a triangle equivalence F b : Db(A)/ kerF b '−→
Db(eAe). Since kerF b = {M ∈ Db(A) | Me = 0 in Db(eAe)}, then by standard truncation, we
have kerF b = thick(R). So the SMC reduction Db(A)/ thick(R) is equivalent to Db(eAe).

(2) We claim under our assumption, G also restricts to Db. Since eA is a pre-SMC, then
End(eA) = eAe is a division ring. Thus Db(eAe) = per eAe and eA has finite projective dimension
as left eAe-module, so G also restricts to Gb : Db(eAe) → Db(A). Then we have an adjoint
pair (Gb, F b) between Db and moreover, we have a t-structure (Gb(Db(eAe)), kerF b) of Db(A).

So there is a triangle equivalent Db(A)/Gb(Db(eAe))
'−→ kerF b. Notice that Gb(Db(eAe)) =

Gb(per eAe) = thickA(eA) and by [KaY2, Corollary 2.12] (b), we have kerF b ∼= Db(B), where B
is the dg k-algebra EndperA/ thick eA(A). Then the SMC reduction Db(A)/ thick(eA) is equivalent

to Db(B). �

Let us consider a concrete example.
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Example 1.2.10. Let A be a finite-dimensional k-algebra presented by a quiver 1
α
// 2

βoo with

relations αβ = 0 = βα. Let Pi (resp. Si), i = 1, 2, be the indecomposable projective (simple)
module which corresponds to the vertex i. It is easy to check P1 is a pre-SMC in Db(modA). Then
by Proposition 1.2.9 (2), the SMC reduction Db(modA)/ thick(P1) is equivalent to Db(B), where
B is the dg algebra k[X]/(X2) with degX = −1 and zero differential. Then by Theorem 1.2.1, we
have the following bijection,

SMCP1
Db(modA) // SMC Db(B)oo

{· · · , S1[−2], S1[−1], S2[1], S2[2], · · · } // {k[i] |∈ Z}oo

.

We mention that in [AI, Example 2.47], the silting quiver of perA is given and by using silting-SMC
correspondence (see [KaY1, Theorem 6.1]), one gets the description of SMC Db(modA) and thus
the description of SMCP1 D

b(modA).

1.3. Singularity category of SMC quadruple

1.3.1. Main results. In this subsection, we introduce the singularity category of a SMC quadruple
and show some basic properties of this category. We give the definition of a SMC quadruple first.

Definition 1.3.1. We say a quadruple (T , T p,S,S) is a SMC quadruple if the following conditions
are satisfied.

(RS0) T is a k-linear Hom-finite Krull-Schmidt triangulated category and T p is a thick subcate-
gory of T ;

(RS1) S : T → T is a triangle equivalence restricting to an equivalence S : T p → T p and satisfying
a bifunctorial isomorphism for any X ∈ T p and Y ∈ T :

DHomT (X,Y ) ' HomT (Y, SX);

(RS2) S is a SMC in T and T = ⊥S[≥0] ⊥ ⊥S[<0] = S[≥0]⊥ ⊥ S[<0]⊥ are co-t-structures of T
satisfying ⊥S[≥0] ⊂ T p and S[<0]⊥ ⊂ T p;

Moreover, If S = [1− d] for some d ≥ 1, we call (T , T p,S) a (1− d)-CY triple.

The definition above is inspired from the following example and we will see (RS2) plays an
important role later.

Example 1.3.2. Let A be a finite-dimensional Gorenstein k-algebra. Then one can show that the
quadruple (Db(modA),Kb(projA), ν,S) is a SMC quadruple, where ν =?⊗L

ADA is the Nakayama
functor and S is the set of simple A-modules.

For simplicity, we introduce the following notations for i ∈ Z.

T>i = T≥i+1 := ⊥S[>−1− i], T<i = T≤i−1 := ⊥S[<1− i];

T >i = T ≥i+1 := Filt(S[<−i]), T <i = T ≤i−1 := Filt(S[≥ 1− i]).
Let (T , T p,S,S) be a SMC quadruple. Then we have co-t-structures T = T>i ⊥ T≤i and moreover,
T>i ⊂ T p by (RS2). Also notice that we have bounded t-structures T = T ≤i ⊥ T >i and T ≤i = T≤i
by Lemma 0.2.6. Immediately, we have the following useful observation.

Lemma 1.3.3. Let (T , T p,S,S) be a SMC quadruple. Then (T p)⊥ = 0 in T .

Proof. For any X ∈ T and i ∈ Z, there exists a triangle X>i → X → X≤i → X>i[1], such that
X>i ∈ T>i ⊂ T p and X≤i ∈ T≤i = T ≤i by (RS2). If X ∈ (T p)⊥, then HomT (X>i, X) = 0 and
thus X≤i ∼= X ⊕ X>i[1] in T . So X ∈ T ≤i for any i ∈ Z. Since T = T ≤0 ⊥ T >0 is a bounded
t-structure by Lemma 0.2.6, then X ∈

⋂
i∈Z T ≤i = 0 . �
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Now we introduce a new class of triangulated categories, which is a generalization of Buchweitz
and Orlov’s construction of singularity categories.

Definition 1.3.4. For a SMC quadruple (T , T p,S,M), we define the singularity category as the
Verdier quotient

Tsg := T /T p.

One important property of Tsg is that Tsg can be realized as a subfactor category of T . To make
it clear, let us introduce the following subcategories of T .

F = T ⊥>0 ∩ ⊥(T≤−1 ∩ T p), P = T≥0 ∩ T≤0, H = T ≥0 ∩ T ≤0.

It is clear P is just the co-heart of the co-t-structure of T = T>0 ⊥ T≤0 and H is the heart of
the t-structure T = T ≤0 ⊥ T >0. Our main results in this section is as follows.

Theorem 1.3.5. Let (T , T p,S,S) be a SMC quadruple. Then we have

(1) F is a Frobenius extriangulated category with ProjF = P in the sense of [NP];
(2) The composition

F ⊂ T → Tsg

induces an equivalence π : F[P]

'−→ Tsg. Moreover, Tsg has a Serre functor S[−1];

(3) If S = [1− d], then F = H[d− 1] ∗ H[d− 2] ∗ · · · ∗ H and π(S) is a d-SMS in Tsg.

Proof. (1) and (2) We want to apply Proposition 0.2.2. Let X = T>0 and Y = T≤0 ∩ T p. Then
it is easy to check F = X⊥ ∩ ⊥Y[1] and P = X [1] ∩ Y. We claim that we have co-t-structures
T p = X ⊥ Y and T = X ⊥ X⊥ = ⊥Y ⊥ Y. In fact, we know X⊥ = T≤0 and T = X ⊥ X⊥
is a co-t-structure by (RS2). For any T ∈ T p, there exists a triangle T>0 → T → T≤0 → T>0[1]
such that T>0 ∈ T>0 and T≤0 ∈ T≤0. Since T>0 ∈ T p by (RS2), so T≤0 is also in T p. Then the
co-t-structure T = X ⊥ X⊥ restricts to a co-t-structure T p = X ⊥ (X⊥ ∩ T p) = X ⊥ Y of T p.

Now we show T = ⊥Y ⊥ Y is also a co-t-structure. Since Y = ⊥S[<0]∩T p, then Y ⊂ S−1S[<0]⊥

by (RS1). Notice that S[<0]⊥ ⊂ T p by (RS2), then it is easy to see S−1S[<0]⊥ ⊂ Y by (RS1). So
Y = S−1S[<0]⊥. By (RS2), there is a co-t-structure T = S[≥0]⊥ ⊥ S[<0]⊥. Then T = ⊥Y ⊥ Y is
also a co-t-structure with ⊥Y = S−1S[≥0]⊥.

By Proposition 0.2.2 and Remark 0.2.3, we know F is a Frobenius extriangulated category with

ProjF = P and the composition F ⊂ T → Tsg induces an equivalence π : F[P]

'−→ Tsg.

We are left to show the existence of Serre functor in Tsg. Let X,Y ∈ T . There exist i ∈ Z such
that Y ∈ T >i (because T = T ≤0 ⊥ T >0 is a bounded t-structure by Lemma 0.2.6). By (RS2),
there is a triangle

X>i → X → X≤i → X>i[1],

with X>i ∈ T>i and X≤i ∈ T≤i = T ≤i. Since HomT (X≤i, Y ) = 0 and X>i ∈ T p, then the
morphism X>i → X is a local T p-cover of X relative to Y in the sense of [Am, Definition 1.2].
Then by [Am, Lemma1.1, Theorem 1.3 and Proposition 1.4], we know S[−1] is a Serre functor of
Tsg.

(3) For the case S = [1 − d], we have ⊥Y = S−1S[≥ 0]⊥ = T >1−d. On the other hand,
X⊥ = T≤0 = T ≤0. So F = X⊥ ∩ ⊥Y[1] = T ≤0 ∩ T ≥1−d = H[d − 1] ∗ H[d − 2] ∗ · · · ∗ H by
Proposition 0.2.5.

Next we show π(S) is a d-SMS in Tsg. Let X,Y ∈ S. We may assume π(X) and π(Y ) are

non-zero objects in Tsg
∼= F

[P] . Since

dimHomTsg(π(X), π(Y )) = dimHom F
[P]

(X,Y ) ≤ dimHomT (X,Y ),

and dimHomT (X,Y ) = δX,Y , then we have dimHomTsg
(π(X), π(Y )) = δπ(X),π(Y ). If d ≥ 1, since

HomT (X[i], Y ) = 0 for any 1 ≤ i ≤ d − 1, then HomTsg(π(X)[i], π(Y )) = Hom F
[P]

(X[i], Y ) = 0.

The fact F = H[d − 1] ∗ H[d − 2] ∗ · · · ∗ H implies that F
[P] = H[d − 1] ∗ H[d − 2] ∗ · · · ∗ H. Then

Tsg = π(H)[d− 1] ∗ π(H)[d− 2] ∗ · · · ∗ π(H). So π(S) is a d-SMS of Tsg. �
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We apply Theorem 1.3.5 to Example 1.3.2 and then we have the following well-known result.

Example 1.3.6. Let A be a finite-dimensional Gorenstein k-algebra. Then P = Kb(projA) and
F = CMA. By theorem 1.3.5, the natural functor CMA ⊂ Db(modA)→ Db

sg(A) gives an equiva-

lence CMA ' Db
sg(A) and moreover, Db

sg(A) has a Serre functor ?⊗L
A DA[−1].

1.3.2. Further properties. In this subsection, we continue to study the properties of a SMC
quadruple. This part is technical and abstract, but we will see it is useful. Let (T , T p,S,S) be a
SMC quadruple. Let P be the co-heart of the co-t-structure T = T>0 ⊥ T≤0. It is clear that P is
a subcategory of T p. We mainly study the properties of P. First we point out that P is silting in
T p.

Proposition 1.3.7. (1) P is a silting subcategory in T p;
(2) We have a co-t-structure T p = Filt(P[≤0]) ⊥ Filt(P[>0]). Moreover, Filt(P[≤0]) = T≥0 and

Filt(P[>0]) = T<0 ∩ T p.

To prove this proposition, we give two lemmas first.

Lemma 1.3.8. For X ∈ T , if there exist i ≤ j ∈ Z such that X ∈ T≥i ∩ T≤j, then X ∈ thickP.

Proof. We apply the induction on j− i. If j− i = 0, then T≥i ∩T≤j = P[−i], the assertion is clear.
Assume it holds for j − i < n, n > 0. Now consider the case j − i = n. There exists a triangle

X<j [−1]→ X≥j → X → X<j

such that X≥j ∈ T≥j and X<j ∈ T<j . Since X,X<j [−1] ∈ T≤j , then HomT (T>j , X<j [−1]) = 0 =
HomT (T>j , X). By the triangle above, we have HomT (T>j , X≥j) = 0. So X≥j ∈ T≤j ∩ T≥j =
P[−j]. Since X<j ∈ T≥i ∩ T≤j−1, by assumption, X<j ∈ thickP. Then X ∈ thickP. So the
statement is true. �

Lemma 1.3.9. For any P ∈ T p, HomT (P,S[n]) 6= 0 for only finite many n ∈ Z.

Proof. We know HomT (P,X[�0]) = 0 by Lemma 0.2.6. On the other hand, we have HomT (P,S[n]) =
DHomT (S[n],SP ) by (RS1), which vanishes for big enough n. So the statement holds. �

Now we are ready to prove Proposition 1.3.7.

Proof of Proposition 1.3.7. (1) Since P is the co-heart of a co-t-structure, then HomT (P,P[>0]) =
0. To show P is silting in T p, it suffices to show T p = thickP. For any P ∈ T p, there are only
finite many n ∈ Z such that HomT (P,S[n]) 6= 0 by lemma 1.3.9. Then there exist i, j ∈ Z such
that P ∈ T≥i ∩ T≤j . By Lemma 1.3.8, P ∈ thickP. So P is a silting object in T p.

(2) Since P is silting in T p, then it is known that P gives us a standard co-t-structure T p =
Filt(P[≤0]) ⊥ Filt(P[>0]) (see [IYa1, Proposition 2.8]). In the proof of Theorem 1.3.5, we showed
the co-t-structure T = T≥0 ⊥ T<0 of T restricts to a co-t-structure T p = T≥0 ⊥ (T<0 ∩ T p) of T p.
Since Filt(P[≤0]) ⊂ T≥0 and Filt(P[>0]) ⊂ T<0, it turns out that these two co-t-structure coincide
with each other. In particular, T≥0 = Filt(P[≤0]). �

Next we study the relation between P and the standard t-structure of T = T ≤0 ⊥ T >0.

Proposition 1.3.10. (1) We have P[≥0]⊥ = T >0 and P[≤0]⊥ = T <0 in T ;
(2) The functor HomT (P, ?) : T → modP restricts to an equivalence form the heart H to modP.

We first show a lemma.

Lemma 1.3.11. (1) P is a contravariantly finite subcategory of T ;
(2) modP is an abelian category.

Proof. (1) Because T = T ≤0 ⊥ T >0 is a t-structure and HomT (P, T >0) = 0, it suffices to show
there exists a right P-approximation for any X ∈ T≤0. Let X ∈ T≤0. There is a triangle X≥0 →
X → X<0 → X≥0[1] with X≥0 ∈ T≥0 and X<0 ∈ T<0. Notice that X≥0 ∈ T≥0 = Filt(P[≤0]) by
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Proposition 1.3.7. Then there is a triangle Y>0 → X≥0 → Y0 such that Y>0 ∈ Filt(P[<0]) and
Y0 ∈ Filt(P[≥0]). It is easy to check Y0 ∈ P. We have the following diagram.

Y>0

f ′

��

Z

X≥0
f //

g′

��

X
g //

β

==

X<0
//

h

OO

X≥0[1]

Y0

α

==

Since X ∈ T ≤0 = T≤0, then HomT (P[<0], X) = 0. Then f ◦ f ′ = 0 and there is α ∈ HomT (Y0, X)
such that f = α ◦ g′.

We claim α : Y0 → X is a right P-approximation of X. Let Z be the third term of the triangle
extended by α. Since β ◦ f = β ◦ α ◦ g′ = 0, then there exists h ∈ HomT (X<0, Z) such that
β = h ◦ g. Since HomT (P, X<0) = 0, then HomT (P, β) = 0. So α is right P-approximation of X.

(2) See [IYa1, Lemma 4.7]. �

Now let us prove Proposition 1.3.10.

Proof of Proposition 1.3.10. (1) We only show P[≥0]⊥ = T >0, since P[≤0]⊥ = T <0 is directly
induced from Proposition 1.3.7. Since P[≥0] ⊂ T≤0 ∩ T p ⊂ T≤0 = T ≤0, then T >0 ⊂ P[≥0]⊥.

We claim P[≥0]⊥ ⊂ T <0. Let X ∈ P[≥0]⊥. Consider the following triangle

X>0[−1]→ X≤0 → X → X>0

with X≤0 ∈ T ≤0 and X>0 ∈ T >0. Since HomT (P[≥0], X>0[−1]) = 0 and HomT (P[≥0], X) = 0,
then by applying HomT (P[≥0], ?) to the triangle above, we have HomT (P[≥0], X≤0) = 0. On the
other hand, by the definition of co-heart, we know P = ⊥S[ 6=0], thus HomT (P[<0], X≤0) = 0. So
HomT (P[n], X≤0) = 0 for any n ∈ Z. Thus X≤0 = 0 by Proposition 1.3.7 and Lemma 1.3.3. So
X ∼= X>0 ∈ T >0. Then P[≥0]⊥ = T >0 holds.

(2) We have H = Filt(S) = P[ 6=0]⊥ by (1). For any P ∈ P, consider the following triangle.

P<0 → P → P 0 → P<0[1] (1.3.1)

with P<0 ∈ T <0 and P 0 ∈ T ≥0. Since HomT (P,S[<0]) = 0 and HomT (P<0[1],S[<0]) = 0, then
HomT (P 0,S[<0]) = 0 and P 0 ∈ H. Let P0 = {P 0 | P ∈ P} ⊂ H be a subcategory of H. It is
easy to check that the functor (−)0 : P → P0 is an equivalence. Since HomT (T <0,H) = 0, then
HomT (P,H) = HomT (P 0,H) for any P ∈ P. So we have the following commutative diagram.

H

HomT (P0,?)
��

HomT (P,?)

%%
modP0

(−)0

' // modP

To show H is equivalent to modP, it suffices to show that P0 forms a class of projective gen-
erators of H. For any X ∈ H and P ∈ P, applying HomT (?, X) to the triangle (1.3.1), we get
HomT (P 0, X[1]) = 0 by HomT (P<0, X) = 0 and HomT (P [−1], X) = 0. So P 0 is projective in H.

For any X ∈ H. Consider the minimal right P-approximation of X (P is a contravariantly finite
subcategory of T by Lemma 1.3.11).

YP → XP → X → YP [1].

Applying HomT (P, ?) to the triangle, we have long exact sequence

HomT (P, XP [i])→ HomT (P, X[i])→ HomT (P, YP [i+ 1])→ HomT (P, XP [i+ 1]).

Since HomT (P, XP [i]) = HomT (P, X[i]) = 0 for i > 0, then HomT (P, YP [> 1]) = 0. For the
case i = 0, since HomT (P, XP) → HomT (P, X) is surjective, then HomT (P, YP [1]) = 0. So
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YP [1] ∈ P[≥0]⊥ = FiltS[<0]. Taking 0-th cohomology, we have an exact sequence (XP)0 → X → 0.
So P0 is a projective generator of H. �

The following Proposition is important in the sequel.

Proposition 1.3.12. Let (T , T p,S,S) be a SMC quadruple. Let X ∈ T≤i and Y ∈ T≥i for
some i ∈ Z. Then for any f ∈ rad(X,Y ) and S ∈ S, the induced map HomT (f, S[−i]) :
HomT (Y, S[−i])→ HomT (X,S[−i]) is zero.

Proof. Let g ∈ HomT (Y, S[−i]). We show g ◦ f = 0. Consider the following diagram,

Xi
α // X

f

��

γ // X<i
// Xi[1]

Y>i // Y

g

��

β // Yi //

h||

Y>i[1]

S[−i]

where Xi ∈ T≥i, X<i ∈ T<i and Y>i ∈ T>i, Yi ∈ T≤i. Since X ∈ T≤i and Y ∈ T≥i, it is easy
to check that Xi, Yi ∈ T≤i ∩ T≥i = P[−i]. Notice that HomT (Y>i, S[−i]) = 0 for Y>i ∈ T>i =
⊥S[≥−i], then there exists h ∈ HomT (Y0, S[−i]) such that g = h ◦ β. Since f ∈ rad(X,Y ), then
β ◦ f ◦α ∈ rad(Xi, Yi), and moreover, we have g ◦ f ◦α = h ◦ β ◦ f ◦α = 0 by the following Lemma
1.3.13. So g ◦ f factors through γ. But HomT (X<i, S[−i]) = 0 by X<i ∈ T≤i = ⊥S[≤−i], then
g ◦ f = 0. �

The following lemma is a generalization of a well-known result: for a finite-dimensional k-algebra
A, the radical map f : Q → P induces a zero map HomA(f, S) = 0, where P,Q are projective
A-modules and S is simple.

Lemma 1.3.13. Let P,Q ∈ P and S ∈ S. Let f ∈ rad(Q,P ), then the induced morphism
HomT (f, S) : HomT (P, S)→ HomT (Q,S) is zero.

Proof. By Proposition 1.3.10, the functor HomT (P, ?) : H → modP is an equivalence. Since
S is the set of simples of H, then HomT (P, S) is simple in modP for any S ∈ S. Since f is
a radical map, then HomT (Q, f) : HomT (Q,Q) → HomT (Q,P ) is a radical map as EndT (Q)-
module. Then the composition HomT (Q,Q)→ HomT (Q,P )→ HomT (Q,S) is zero. Consider the
image of 1Q ∈ HomT (Q,Q) in the composition, we get that the induced morphism HomT (f, S) :
HomT (P, S)→ HomT (Q,S) is also zero. �

1.3.3. Independence of SMC quadruple. The aim of this subsection is to show under certain
conditions, being a SMC quadruple is independent of the choice of SMC. Let (T , T p,S,S) be a
SMC quadruple. Let H = Filt(S). We show the following result.

Theorem 1.3.14. Let S ′ be another SMC of T . Assume that

(1) H′ = Filt(S ′) is functorially finite;
(2) There exists n ∈ Z such that S ′ ⊂ H[n] ∗ H[n− 1] ∗ · · · ∗ H[−n].

Then (T , T p,S,S ′) is also a SMC quadruple.

Proof. To show (T , T p,S,S ′) is a SMC quadruple, we only need to check (RS2) in Definition 1.3.1
holds, that is, T = ⊥S ′[≥0] ⊥ ⊥S ′[<0] = S ′[≥0]⊥ ⊥ S ′[<0]⊥ are co-t-structures of T , satisfying
⊥S ′[≥0] ⊂ T p and S ′[<0]⊥ ⊂ T p. We may assume, up to shift, that

H′ ⊂ H[n] ∗ H[n− 1] ∗ · · · ∗ H. (1.3.2)

Then HomT (H,H′[<−n]) = 0 and HomT (H′,H[<0]) = 0. So in this case, we also have

H ⊂ H′ ∗ H′[−1] ∗ · · · ∗ H′[−n]. (1.3.3)
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We prove T = ⊥S ′[≥0] ⊥ ⊥S ′[<0] is a co-t-structure. By Proposition 0.2.5, we have

⊥S ′[<0] =
⋃
i≥0

H′[i] ∗ H′[i− 1] ∗ · · · ∗ H′. (1.3.4)

Then (1.3.2), (1.3.3) and (1.3.4) imply the following equality.

⊥S ′[<0] =
⋃
i≥n

H[i] ∗ · · · ∗ H[n] ∗ H′[n− 1] ∗ · · · ∗ H′. (1.3.5)

Now fix an integer l ≥ 2n. Let X := H′[l]∗H′[l−1]∗ · · · ∗H′ and Y := ⊥X be two subcategories
of T . Since H′ is convariantly finite, then X is also convariantly finite (see [C1, Theorem 1.4]) and
thus T = Y ∗ X is a torsion pair by [IYo, Proposition 2.3]. We claim that Y ⊂ ⊥S ′[≥0] ∗ ⊥S ′[<0].
Then T = Y ∗X ⊂ ⊥S ′[≥0]∗⊥S ′[<0] ⊂ T and therefore, T = ⊥S ′[≥0]∗⊥S ′[<0] is a co-t-structure.

Now we show the claim. For any Y ∈ Y, there exists a triangle

Y<−l[−1]
f−→ Y≥−l → Y → Y<−l (1.3.6)

such that Y≥−l ∈ T≥−l = ⊥S[≥l+1] and Y<−l ∈ T<−l = ⊥S[≤l]. Since T<−l = FiltS[>l] ⊂ ⊥S ′[<0]
by (1.3.5), then to prove the claim, it suffices to show Y≥−l ∈ ⊥S ′[≥0]. With (1.3.2), we only need
to check the following cases.

(i) HomT (Y≥−l,S[i]) = 0 for l < i;
(ii) HomT (Y≥−l,S[i]) = 0 for n ≤ i ≤ l;
(iii) HomT (Y≥−l,S ′[i]) = 0 for 0 ≤ i ≤ n− 1.

Notice that (i) is clear since Y≥−l ∈ ⊥S[≥ l + 1]. We show (ii). For any n ≤ i ≤ l, since S[i] ⊂ X
by (1.3.3), then HomT (Y,S[i]) = 0. On the other hand, notice that Y<−l[−1] ∈ T≤−l = T ≤−l
and Y≥−l ∈ T≥−l. Then HomT (Y<−l[−1], S[i]) = 0 for n ≤ i < l and by Proposition 1.3.12,
HomT (f, S[l]) = 0. Then (ii) is true by triangle (1.3.6).

We show (iii). For 0 ≤ i ≤ n− 1, (1.3.2) implies S′[i] ⊂ H[2n− 1] ∗ · · · ∗ H ⊂ T ≥−l+1 (Because
l ≥ 2n by our assumption). So in this case, HomT (Y−l[−1],S ′[i]) = 0. Since Y ∈ Y, then
HomT (Y,S ′[i]) = 0 for 0 ≤ i ≤ l. Then by triangle (1.3.6), (iii) is true.

So our claim above holds and thus T = ⊥S ′[≥0] ⊥ ⊥S ′[<0] is a co-t-structure. By (1.3.3),
⊥S ′[≥0] ⊂ ⊥S[≥n]. Since ⊥S[≥n] ⊂ T p, then ⊥S ′[≥0] ⊂ T p. Similarly, one can show T =
S ′[≥0]⊥ ⊥ S ′[<0]⊥ is a co-t-structure of T and S ′[≤0]⊥ ⊂ T p. So (T , T p,S,S ′) is also a SMC
quadruple. �

Immediately form Theorem 1.3.14 above and Theorem 1.3.5 (3), we have the following observa-
tion.

Corollary 1.3.15. Let (T , T p,S,S) be a SMC quadruple. Assume there are only finitely many
indecomposable objects in T (up to isomorphism). Then the functor T → Tsg induces a well-defined
map

{SMCs of T } −→ {d-SMSs of Tsg}.

1.4. Application to Gorenstein dg algebras

In this section, we consider the applications of Theorem 1.3.5 to Gorenstein dg k-algebras, which
are our main study object in Part 2. Let A be a dg k-algebra. Assume A satisfies the following
conditions (see Assumption 2.1.1).

(1) A is non-positive, i.e. Hi(A) = 0 for i > 0 (without loss of generality, we may assume Ai = 0
for i > 0, see Section 0.3.2);

(2) A is proper, i.e. dimk

⊕
i∈Z Hi(A) <∞;

(3) A is Gorenstein, i.e. the thick subcategory perA of the derived category D(A) generated by A
coincides with the thick subcategory generated by DA, where D = Homk(?, k) is the k-dual.
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Let S :=? ⊗L
A DA be the Nakayama functor. Let S = {Si, 1 ≤ i ≤ n} be the set of simple

H0(A)-modules. We may also regard S as the set of simple dg A-modules concentrated in degree
0. In this case, we have the following observation.

Proposition 1.4.1. The quadruple (Db(A), perA,S,S) is a SMC quadruple.

To show this proposition, we need prepare some lemmas first.

Lemma 1.4.2. Let X ∈ Db(A). Then the following are equivalent.

(1) X ∈ perA;
(2) For all Y ∈ Db(A), the space HomDb(A)(X,Y [i]) vanishes for almost all i ∈ Z.

Remark 1.4.3. This lemma is known for finite dimensional k-algebras (see [AKLY, Lemma 2.4]).
Here we generalize it to any non-positive proper dg k-algebras.

Proof. (1)⇒ (2) Since for any Y ∈ Db(A) and i ∈ Z, we have HomDb(A)(A, Y [i]) = Hi(Y ), then it
is clear (2) holds for A. Thus by dévissage, (2) holds for any X ∈ perA = thick(A).

(2)⇒ (1) Assume X ∈ Db(A) satisfies (2). We construct the following triangles inductively.

Pn[ln]
fn−→ Xn → Xn+1 → Pn[ln + 1], (1.4.1)

such that X0 = X, Pn ∈ addA and ln = − sup{l ∈ Z | Hl(Xn) 6= 0}. In addition, the induced map
H−ln(Pn)→ H−ln(Xn) is the projective cover of H−ln(Xn). By our construction, it is easy to see
that l0 < l1 < l2 < · · · . We only need to show Xn = 0 for big enough n and then X ∈ perA.

We claim

HomDb(A)(Xm, S[lm]) = HomDb(A)(X,S[lm]),

for any S ∈ S. Notice that HomDb(A)(Pi[t], S[lm]) = 0 for any i and t < lm. We consider two cases
lm−1 + 1 < lm and lm−1 + 1 = lm. For the first case, we know ln + 1 < lm for all n < m, then we
have

HomDb(A)(Xm, S[lm]) = HomDb(A)(Xm1
, S[lm]) = · · · = HomDb(A)(X,S[lm])

by applying HomDb(A)(?, S[lm]) to triangles (1.4.1) for n < m. For the second case, we consider
the following commutative diagram.

HomDb(A)(Xm−1[1], S[lm]) //

'
��

HomDb(A)(Pm−1[lm], S[lm])

'
��

HomA(H−lm−1(Xm−1), S)
' // HomA(H−lm−1(Pm−1), S).

The left and right arrows are bijective (see for example, [KN, Lemma 4.4]). Since the lower map is
isomorphic by our construction of Pm−1, so is the upper one. Then we have HomDb(A)(Xm, S[lm]) =
HomDb(A)(Xm−1, S[lm]) by triangle (1.4.1) (taking n = m−1). Moreover the claim holds by triangle
(1.4.1).

By our assumption, there exists N > 0, such that for any n > N and S ∈ S, we have
HomDb(A)(X,S[n]) = 0. Since there exists m such that lm > N . Then by the claim above,
HomDb(A)(Xm, S[lm]) = 0 for all S ∈ S. Then it is easy to check

HomA(H−lm(Xm), S) = HomDb(A)(Xm, S[lm]) = 0.

It suggests Xm must be zero. Thus X ∈ P0[l0] ∗ P1[l1] ∗ · · · ∗ Pm[lm] ⊂ perA. �

Lemma 1.4.4. (1) There is a standard co-t-structure of perA given by perA = Filt(A[<0]) ⊥
Filt(A[≥0]). Moreover, we have

Filt(A[<0]) =
⋃
n>0

Filt(A[−n]) ∗ Filt(A[−n+ 1] ∗ · · · ∗ Filt(A[−1]));

Filt(A[≥0]) =
⋃
n≥0

Filt(A) ∗ · · · ∗ Filt(A[n− 1]) ∗ Filt(A[n]).
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(2) Filt(A[<0]) is a contravariantly finite subcategory of Db(A) and Filt(A[≥0]) is a covariantly
finite subcategory of Db(A).

Proof. (1) is well-known, see for example [IYa1, Proposition 2.8].
(2) We only show Filt(A[<0]) is contravariantly finite, since the other statement can be show

in a dual way. Notice that Filt(A) = addA. Then Filt(A[n]) is a functorially finite subcategory of
Db(A) for any n ∈ Z and thus, Filt(A[−n]) ∗ Filt(A[−n + 1]) ∗ · · · ∗ Filt(A[−1]) is contravariantly
finite for n > 0 by the dual of [C1, Theorem 1.4]. Let M ∈ Db(A). There exists n > 0, such that
HomDb(A)(A[<−n],M) = 0. Since

Filt(A[<0]) = Filt(A[<−n]) ∗ (Filt(A[−n]) ∗ Filt(A[−n+ 1]) ∗ · · · ∗ Filt(A[−1])),

then Lemma 0.1.1 (2) suggests that there is a right Filt(A[<0])-approximation of M . Therefore
Filt(A[<0]) is contravariantly finite. �

Now we prove Proposition 1.4.1.

Proof of Proposition 1.4.1. We check the conditions (RS0), (RS1) and (RS2) in Definition 1.3.1
hold. (RS0) is clear and in our setting, (RS1) is well-known (see for example [K1, Section 10.1]).

We show (RS2). We claim Db(A) = ⊥S[≥ 0] ⊥ ⊥S[< 0] is a co-t-structure with ⊥S[≥ 0] =
Filt(A[<0]). In fact, we have a co-t-structure Db(A) = Filt(A[<0]) ⊥ Filt(A[<0])⊥ by Lemma 1.4.4
and [IYo, Proposition 2.3]. Since Filt(A[<0])⊥ = {M ∈ Db(A) | H>0(M) = 0}, then we have

Filt(A[<0])⊥ = Filt(S[≥0]) = ⊥S[<0]

by Proposition 0.2.5. Thus the claim is ture.
Notice that we have another co-t-structure Db(A) = ⊥Filt(A[≥0]) ⊥ Filt(A[≥0]). Since by (RS1),

we have a triangle equivalence S : Db(A) ' Db(A), then S induces a new co-t-structure

Db(A) = ⊥Filt(SA[≥0]) ⊥ Filt(SA[≥0]),

and ⊥Filt(SA[≥ 0]) = Filt(S[< 0]) = S[≥ 0]⊥ by (RS1). Then we have co-t-structure Db(A) =
S[≥ 0]⊥ ⊥ S[< 0]⊥ with S[< 0]⊥ = Filt(SA[≥ 0]) ⊂ perA. So (Db(A), perA,S,S) is a SMC
quadruple. �

We point out that in this case, F = A[<0]⊥ ∩⊥A[>0] is the category CMA of Cohen-Macaulay
dg A-modules, which will be introduced and studied in Part 2. Then by Theorem 1.3.5, we have
the following result.

Corollary 1.4.5. Let A be a Gorenstein proper non-positive dg k-algebra.

(1) The composition CMA ↪→ Db(A) → Db(A)/ perA induces a triangle equivalence CMA
'−→

Db(A)/ perA. Moreover, CMA admits a Serre functor ?⊗L
A DA[−1];

(2) If S = [1− d], then the set of simple dg A-modules is a d-SMS in CMA.

1.5. SMC reduction Versus SMS reduction

1.5.1. The SMC reduction of a Calabi-Yau triple. Let (T , T p,S) be a (1− d)-CY triple for
d ≥ 1. Let R be subset of S such that HR = Filt(R) is functorially finite subcategory of T . Then
R is a pre-SMC of T and the conditions (R1) and (R2) in Section 1.2 hold. Let

U = T / thick(R)

be the SMC reduction of T with respect to R. By relative Serre property (RS1), we have T p ∩
thick(R)⊥ = T p ∩ ⊥ thick(R), which will be denoted by Up, that is,

Up := T p ∩ thick(R)⊥ = T p ∩ ⊥ thick(R).

This category can be regarded as a full subcategory of U (see [Ne, Lemma 9.1.5]).
Our aim in this subsection is to show the SMC reduction of a Calabi-Yau triple gives us a new

Calabi-Yau triple.

Theorem 1.5.1. The triple (U ,Up,S) is a (1− d)-CY triple.
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To prove the theorem above, we need the description of U obtained in Section 1.2. Let

Z := R[≥0]⊥ ∩ ⊥R[≤0].

Then by Theorem 1.2.1, there is an equivalence Z ∼= U and the SMC S in U corresponds to SMC
S ′ := S\R in Z. The following lemma implies the triple (U ,U ′,S) is equivalent to the triple
(Z, T p ∩ Z,S ′). So to prove Theorem 1.5.1, it is equivalent to show (Z, T p ∩ Z,S ′) is a (−d)-CY
triple.

Lemma 1.5.2. We have Up = T p ∩ Z as subcategories of T .

Proof. Let X ∈ T p. Then X ∈ Z if and only if HomT (R[≥ 0], X) = 0 = HomT (X,R[≤ 0]).
By the relative Serre duality (RS1), we have HomT (R[≥0], X) = DHomT (X,R[≥1 − d]). Then
X ∈ T p ∩ Z if and only if X ∈ T p ∩ ⊥ thick(R). �

By (RS2), we have co-t-structures T = ⊥S[≥0] ⊥ ⊥S[<0] = S[≥0]⊥ ⊥ S[<0]⊥. Recall we
denote by T>0 = ⊥S[≥0] and T≤0 = ⊥S[<0]. For X ∈ T , there is a triangle

X≤0[−1]
f−→ X>0 → X → X≤0, (1.5.1)

with X>0 ∈ T>0 and X≤0 ∈ T≤0 = T ≤0. We may assume that f ∈ rad(X≤0[−1], X>0). There is
also a triangle

X ′≥0 → X → X ′<0 → X ′≥0[1],

with X ′≥0 ∈ S[>0]⊥ and X ′<0 ∈ S[≤0]⊥. Then we have the following results.

Lemma 1.5.3. Let X ∈ Z. Then

(1) X>0 ∈ T p ∩ Z and X≤0 ∈ Z;
(2) X ′<0 ∈ T p ∩ Z and X ′≥0 ∈ Z.

Proof. We only prove (1), since the second one can be shown in a similar way. We first show
X>0 ∈ T p∩Z. Since X>0 ∈ T p by (RS2) and T p∩Z = T p∩⊥ thick(R) by Lemma 1.5.2, it suffices
to show X>0 ∈ ⊥ thick(R). Since X>0 ∈ T>0 = ⊥S[≥0], then HomT (X>0,R[≥0]) = 0. Because
HomT (X,R[<−1]) = 0 and HomT (X≤0, R[<0]) = 0, then we have HomT (X>0, R[<−1]) = 0 by
triangle (1.5.1).

We are left to show HomT (X>0, R[−1]) = 0 for any R ∈ R. Since X≤0[−1] ∈ T≤1, X>0 ∈ T≥1

and f ∈ rad(X≤0[1], X>0), then the induced map HomT (f,R[−1]) is zero by Proposition 1.3.12.
Since HomT (X,R[−1]) = 0, then HomT (X>0, R[−1]) = 0 by the triangle (1.5.1). So X>0 ∈
⊥ thick(R) and therefore, X>0 ∈ T p ∩ Z.

Since X>0 ∈ T p ∩ ⊥ thick(R) = T p ∩ thick(R)⊥ and X ∈ Z, then it is easy to check X≤0 ∈ Z
by applying HomT (R[≥0], ?) and HomT (?,R[≤0]) to (1.5.1). Thus the assertion is true. �

Now we are ready to prove Theorem 1.5.1.

Proof of Theorem 1.5.1. It is enough to prove (Z,Z ∩ T p,S ′) is a (1− d)-CY triple.
By Lemma 1.5.2, we know T p ∩ Z is a thick subcategory of Z and moreover, P 〈1〉 = P [1] for

any P ∈ T p ∩ Z. So the conditions (RS0) and (RS1) in Definition 1.3.1 hold directly. Next we
show there is a co-t-structure Z = ⊥S ′〈≥0〉 ⊥ ⊥S ′〈<0〉 and ⊥S ′〈≥0〉 ⊂ T p ∩ Z.

Let X ∈ Z. Consider the triangle (1.5.1), we claim X>0 ∈ ⊥S ′〈≥0〉 and X≤0 ∈ ⊥S ′〈<0〉. Notice
that for any S ∈ S ′ and n ≥ 1, we have

S〈n〉 ∈ S[n] ∗ HR[n] ∗ · · · ∗ HR[1]

by Lemma 1.2.4. Then HomT (X>0,S[≥0]) = 0 implies HomZ(X>0,S ′〈≥0〉) = 0, that is X>0 ∈
⊥S ′〈≥0〉. Similarly, X≤0 ∈ ⊥S ′〈<0〉 by the fact that S〈−m〉 = HR[≤−1] ∗ · · · ∗HR[≤−m] ∗S[−m]
for m > 0 and X≤0 ∈ T ≤0. Thus we have

Z = ⊥S ′〈≥0〉 ∗ ⊥S ′〈<0〉.
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Notice that S ′ is a SMC in Z by Theorem 1.2.1, then ⊥S ′〈< 0〉 = Filt(S ′〈≥ 0〉) and therefore,
HomZ(⊥S ′〈≥ 0〉,⊥S ′〈< 0〉) = 0. So the claim holds and Z = ⊥S ′〈≥ 0〉 ⊥ ⊥S ′〈< 0〉 is a co-t-
structure.

Assume X ∈ ⊥S ′〈≥0〉, consider the triangle (1.5.1), since X>0 ∈ T p by (RS2) and we have
shown X≤0 ∈ ⊥S ′〈<0〉 above, then HomZ(X,X≤0) = 0 and thus X is a direct summand of X>0.
So X ∈ T p and ⊥S ′〈≥0〉 ⊂ T p ∩ Z.

Similarly, one can show Z = S ′〈≥0〉⊥ ⊥ S ′〈<0〉⊥ is also a co-t-structure with S ′〈<0〉⊥ ⊂ Z∩T p.
Thus (Z,Z ∩ T p,S ′) is a (1− d)-CY triple and so is (U ,Up,S). �

1.5.2. SMC reduction reduces SMS reduction. In this section, we study the relation between
SMC reduction and SMS reduction introduced in [CSP]. Let (T , T p,S) be a (1 − d)-CY triple
for d ≥ 1. Let H = Filt(S). Let R be a subset of S such that HR = Filt(R) is functorially finite
subcategory of T .

The singularity category Tsg is a (−d)-CY triangulated category and S is a d-SMS in Tsg by
Theorem 1.3.5. Moreover, we may regard Tsg as a subfactor category of T , that is

F
[P]
' Tsg,

where F = H[d− 1] ∗H[d− 2] ∗ · · · ∗H, and P = T≥0 ∩T≤0. By this description, it is easy to check
HR is also functorially finite in Tsg. Let

(Tsg)R = {X ∈ Tsg | HomTsg(R[i], X) = HomTsg(X,R[−i]) = 0, for 0 ≤ i ≤ d− 1}.

Then we regard (Tsg)R as the SMS reduction of Tsg with respect to R in the sense of [CSP]. By
[CSP, Theorems 4.1 and 5.1], (Tsg)R has a structure of triangulated category.

In Section 1.5.1, we have shown the triple (U ,Up,S) of the reduction of (T , T p,S) is still a
(1 − d)-CY triple (Theorem 1.5.1). Our main result of this subsection is that the SMS reduction
of the singularity category coincides with the singularity category of the SMC reduction in the
following sense.

Theorem 1.5.4. There is a triangle equivalence from Usg = U/Up to (Tsg)R.

Recall we may regard the triple (U ,Up,S) as (Z,Z ∩ T p,S ′). Let H′ = FiltZS ′. Then Usg
∼=

Z/(Z ∩ T p) is equivalent to FZ
[PZ ] by Theorem 1.3.5, where FZ = H′〈d − 1〉 ∗ H′〈d − 2〉 ∗ · · · ∗ H′

and PZ = ⊥H′[ 6=0].
We first show the functor Z ↪→ T → Tsg induces a well-defined functor Z → (Tsg)R. Before

this, we give some general results, which will be used later.

Lemma 1.5.5. (1) Let X ∈ T and Y ∈ T ≤0. Then any morphism in HomTsg
(X,Y ) has a

representative of the form X
f−→ Z

s←− Y such that the cocone of s belongs to T p ∩ T ≤0;
(2) Let X ∈ T ≥0 and Y ∈ T . Then any morphism in HomTsg

(X,Y ) has a representative of the

form X
t←− Z f−→ Y such that the cone of t belongs to T p ∩ T ≥0.

Proof. We only show (1), since (2) can be shown in a similar way. Any morphism X → Y in Tsg

can be written as X
f−→ Z

s←− Y , such that there is a triangle

W
g // Y

s // Z // W [1]

with W ∈ T p. Consider the triangle W>0 → W → W≤0 → W>0[1] with W>0 ∈ T>0 and
W≤0 ∈ T≤0. Notice that W≤0 ∈ T p by the fact T>0 ⊂ T p and the triangle above. Since Y ∈
T ≤0 = T≤0, then HomT (W>0, Y ) = 0 and g factors though W → W≤0. Thus we obtain the
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following commutative diagram of triangles.

W
g //

��

Y
s // Z //

h

��

W [1]

��
W≤0

// Y
hs // Z ′ // W≤0[1]

The morphism X
f−→ Z

s←− Y is equivalent to X
hf−−→ Z ′

hs←− Y , and in this case, the cocone W≤0 of
hs belongs to T p ∩ T ≤0, so the assertion follows. �

The following observation is useful.

Proposition 1.5.6. (1) The functor T → Tsg induces a bijection (resp. surjection) HomT (X,Y )→
HomTsg

(X,Y ) for X ∈ T ≥2−d (resp. X ∈ T ≥1−d) and Y ∈ T ≤0;
(2) The functor T → Tsg induces a bijection (resp. surjection) HomT (X,Y )→ HomTsg

(X,Y ) for

X ∈ T ≥0 and Y ∈ T ≤d−2 (resp. T ∈ T ≤d−1).

Proof. We only prove the first statement and (2) is similar by using Lemma 1.5.5 (2). We first
show HomT (X,Y ) → HomTsg(X,Y ) is surjective for X ∈ T ≥1−d and Y ∈ T ≤0. By Lemma 1.5.5

(1), any morphism in HomTsg
(X,Y ) has a representative X

f−→ Z
s←− Y such that the cocone W of

s is in T p ∩ T ≤0, then we have the following exact sequence

HomT (X,Y )→ HomT (X,Z)→ HomT (X,W [1]).

SinceX ∈ T ≥1−d andW ∈ T p∩T ≤0, then by relative Serre duality (RS1), we have HomT (X,W [1]) =
DHomT (W,X[≤−d]) = 0. So there exists g ∈ HomT (X,Y ) such that f = s ◦ g. Then the mor-

phism X
f−→ Z

s←− Y is equivalent to X
g−→ Y in Tsg and moreover, HomT (X,Y ) → HomTsg(S, T )

is surjective.
Next we show HomT (X,Y )→ HomTsg

(X,Y ) is injective ifX ∈ T ≥2−d. Assume f ∈ HomT (X,Y )

is zero in Tsg, then it factors though some P ∈ T p. We may assume P ∈ T p ∩ T ≤0 by the proof
of Lemma 1.5.5 (1). Then by (RS1), HomT (X,P ) = DHomT (P,X[1− d]) = 0 since X ∈ T ≥2−d.
Thus f is zero in T . So the statement follows. �

The following lemma suggests the existence of functor from Z to (Tsg)R directly.

Lemma 1.5.7. Let X ∈ Z, then

(1) The map HomT (R[i], X)→ HomTsg
(R[i], X) is bijective (resp. surjective) for i ≤ d− 2 (resp.

i ≤ d− 1). In particular, HomTsg
(R[i], X) = 0 for 0 ≤ i ≤ d− 1;

(2) The map HomT (X,R[−i]) → HomTsg
(X,R[−i]) is bijective (resp. surjective) for i ≤ d − 2

(resp. i ≤ d− 1). In particular, HomTsg(X,R[−i]) = 0 for 0 ≤ i ≤ d− 1.

Proof. We only shown (1), since (2) is similar by using Lemma 1.5.3 (2) and Proposition 1.5.6 (2).
The triangle (1.5.1) induces a commutative diagram as follows,

HomT (R[i], X) //

��

HomT (R[i], X≤0)

��
HomTsg

(R[i], X) // HomTsg
(R[i], X≤0)

The upper map is bijective since X>0 ∈ T p ∩ Z ⊂ thick(R)⊥ by Lemma 1.5.3 (1) and the lower
map is bijective since X → X≤0 becomes an isomorphism in Tsg. Since X≤0 ∈ T≤0 = T ≤0, then
the right map is bijective (resp. surjective) for i ≤ d − 2 (resp. i ≤ d − 1) by Proposition 1.5.6
(1), so is the left one. Since X ∈ Z, then HomT (R[≥0], X) = 0. So HomTsg(R[i], X) = 0 for
0 ≤ i ≤ d− 1. �

The following proposition shows we have a triangle functor Z → (Tsg)R.
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Proposition 1.5.8. The composition of functors Z ↪→ T π−→ Tsg induces a well-defined triangle
functor ρ : Z → (Tsg)R.

Proof. By Lemma 1.5.7, it is easy to see ρ(Z) ⊂ (Tsg)R. So ρ : Z → (Tsg)R is well-defined. We
show it is a triangle functor.

First we claim ρ commutes with shift functors. Let X ∈ Z. Then X〈1〉 is defined by the
following triangle (see Section 1.2).

RX
fX−−→ X[1]→ X〈1〉 → RX [1], (1.5.2)

where RX
fX−−→ X[1] is the right HR-approximation of X[1] in T . Now we consider the triangle

(1.5.2) in Tsg. By the equivalence F
[P] ' Tsg (Theorem 1.3.5), it is clear that RX

fX−−→ X[1] is also a

right HR-approximation of X[1] in Tsg. Then ρ(X〈1〉) = ρ(X)〈1〉 in (Tsg)R (see [CSP, Definition
4.2] for the shift functor of (Tsg)R).

Next we show ρ sends triangles in Z to triangles in (Tsg)R. Let s : X → Y be a morphism

in Z. Consider the commutative diagrams (1.2.4), then X
s−→ Y → W → X〈1〉 is the triangle

induced by s in Z by Proposition 1.2.6. In fact, every triangle in Z can be obtained in this way.
Now we consider the diagrams (1.2.4) in Tsg. We have shown that RZ → Z and RX → X[1] are
right HR-approximations in Tsg above. Then by the construction of triangles of (Tsg)R, we know

X
s−→ Y → W → X〈1〉 is the triangle given by s in (Tsg)R (see [CSP, Theorem 4.1 and Definition

4.4]). Then ρ sends triangles to triangles.
So ρ is a triangle functor and the assertion is true. �

Now we are ready to prove our main result.

Proof of Theorem 1.5.4. The natural functor ρ : Z → (Tsg)R is a triangle functor by Proposition
1.5.8. Since ρ(T p) = 0, then ρ induces a triangle functor ρ̃ : Z/(Z ∩ T p) → (Tsg)R. Since

Z/(Z ∩ T p) is equivalent to FZ
[PZ ] by Theorem 1.3.5, we have a functor FZ

[PZ ] → (Tsg)R, which is

also denoted by ρ̃. We claim ρ̃ is fully faithful and dense.
Let S ′ = S\R and H′ = FiltZ(S ′). Then S ′ is a SMC in Z by Theorem 1.2.1 and moreover, S ′

is a d-SMS in FZ
[PZ ] by Theorem 1.3.5. So

FZ
[PZ ]

= H′〈d− 1〉 ∗ H′〈d− 2〉 ∗ · · · ∗ H′.

On the other hand, ρ(S ′) is a d-SMS in (Tsg)R by [CSP, Theorem 6.6] and thus by [CSP, Lemma
2.8], we have

(Tsg)R = ρ(H′)〈d− 1〉 ∗ ρ(H′)〈d− 2〉 ∗ · · · ∗ ρ(H′).
Then it is clear that ρ̃ is dense. We are left to show ρ̃ is fully faithful. Let X,Y ∈ S ′. We may
assume X,Y 6∈ PZ . It is enough to show

Hom FZ
[PZ ]

(X〈i〉, Y 〈j〉) = Hom(Tsg)R(ρ̃(X)〈i〉, ρ̃(Y )〈j〉) (1.5.3)

for any i, j ∈ Z. Let t = j − i. Notice that if t < 0, then the both sides of equation (1.5.3) are
zero. If t = 0. Since

dimHom FZ
[PZ ]

(X,Y ) = dimHomZ(X,Y ) = δX,Y ,

and HomZ(X,Y ) = HomTsg
(ρ(X), ρ(Y )) by Proposition 1.5.6, then (1.5.3) holds.

If t > 0. Notice that Y 〈t〉 ∈ Y [t] ∗ HR[t] ∗ · · · ∗ HR[1] by Lemma 1.2.4. Then there is a triangle
Y [t]→ Y 〈t〉 → Z → Y [t+ 1] in T such that Z ∈ HR[t] ∗ · · · ∗HR[1] ⊂ T ≤−1. Then by Proposition
1.5.6 and five lemma, one can show

HomT (X,Y 〈t〉) = HomTsg(X,Y 〈t〉).
Because HomZ(PZ , Y 〈t〉) = 0 by our constructionof PZ , then Hom FZ

[PZ ]

(X,Y 〈t〉) = HomZ(X,Y 〈t〉).
So the equation (1.5.3) is true. Then ρ̃ is fully faithful.
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Thus ρ̃ : FZ[PZ ] → (Tsg)R gives a triangle equivalence and the theorem holds. �

We finish Part 1 by consider some examples.

Example 1.5.9. Let A be a finite-dimensional symmetric k-algebra and let e be an idempotent.
Let Se = top(1 − e)A. Then by Proposition 1.2.9 (1), the SMC reduction of Db(modA) with
respect to Se is triangle equivalent to Db(mod eAe). Then by Theorem 1.5.4, we have the following
commutative diagram,

Db(modA)
sing. category //

SMC reduction

��

Dsg(A)

SMS reduction

��
Db(mod eAe)

sing. category // Dsg(eAe) ∼= (Dsg(A))Se

We point out that the left map is given by the functor ?⊗L
A Ae : Db(modA)→ Db(modeAe) and,

the upper and lower maps are given by the Verdier quotient. But the right map is usually not
given by functors.

Next we consider a concrete algebra A and check the equivalence Dsg(eAe) ∼= (Dsg(A))Se
by

comparing the AR quivers of them.

Example 1.5.10. Let A be the k-algebra given by the quiver 1

α1

&&
2

β1

&&

α2

ff 3

β2

ff , with relations

{α1α2α1, β2β1β2, α1β1, β2α2, α2α1−β1β2}. Let Si be the simple A-modules at vertices i (i = 1, 2, 3)

and let P1 =
1
2
1

(resp. P2 =
2

1 3
2

, P3 =
3
2
3

) be the indecomposable projective A-module at the vertex

1 (resp. 2, 3). Let e = e1+e2 be an idempotent. Consider the SMC reduction Db(modA)/ thick(S3)
of Db(modA) with respect to S3. It is equivalent to Db(modB) by Proposition 1.2.9 (1), where

B = eAe is given by the quiver 1

α1

&&
2

α2

ff with relations {α1α2α1, α2α1α2}.

Since A is symmetric, then it is well-know that Dsg(A) ∼= modA and the AR quiver of Dsg(A) is
given by ZA3/ν[1]. In fact, we can describe it specifically as follows,

2
1 3 2 1 3

2
2

1 3 2. . . . . .

1
2 3 2

1
2
13

1 2
3

2
3

3
2 1

where the arrows are omitted and a fundamental domain is outlined in dotted line. By the definition
of SMS reduction, we know that

(Db
sg(A))S3 = {X ∈ Db

sg(A) | HomDb
sg(A)(X[i], S3) = 0 = HomDb

sg(A)(S3[i], X) with i = 0, 1}.

So the indecomposable objects of (Db
sg(A))S3

are given by the AR quiver above without the shaded

part. The AR quiver of (Db
sg(A))S3

is ZA2/ν[1], which is the same as the AR quiver of Db
sg(B).

Appendix A. An equivalence induced by derived Schur functor

Let A be a non-positive proper dg algebra. Let e be an idempotent of A. Assume e ∈ A0.
Then eA (resp. Ae) is a right (resp. left) dg A-module. We have a natural derived Schur functor
F =?⊗L

A Ae : D(A) → D(eAe), which restricts to a functor F b =?⊗L
A Ae : Db(A) → Db(eAe). It

is well-known that F admits a left adjoint G =?⊗L
eAe eA. We first give an easy observation.
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Lemma 1.5.11. Let M ∈ Db(eAe). Then G(M) ∈ D(A) is upper bounded and Hi(G(M)) is
finite-dimensional for any i ∈ Z.

Proof. Since M ∈ Db(eAe), we may assume M�0 = 0. We have

DHi(G(M)) = HomD(A)(G(M)[i], DA) = HomD(eAe)(M,F (DA)[i]).

Since M,F (DA)[i] ∈ Db(eAe) and by Lemma 0.3.5, Db(eAe) is Hom-finite, then Hi(M) is finite
dimensional for any i ∈ Z. Notice that M and eA are both upper bounded, so G(M) = M ⊗L

eAe eA
is also upper bounded. �

The following result should be well-known, but we could not find a reference. So we include a
complete proof for the convenience of the reader.

Proposition 1.5.12. Let A be a non-positive proper dg algebra and e ∈ A be an idempotent. Let

F,G be defined as above. Then F induces a triangle equivalence F
b

: Db(A)/ kerF b ' Db(eAe).

Remark 1.5.13. We point out that Proposition 1.5.12 is known for finite-dimensional k-algebra
(see [C2, Lemma 2.2]). But the approach in [C2] fails in dg setting, so here we prove it in a more
direct way.

Proof. Notice that G is fully faithful (see for example, [K1, Lemma 4.2]), then D(A) has a stable
t-structure (ImG, kerF ) and moreover, there is a triangle equivalence F : D(A)/ kerF ' D(eAe).
Considering the following commutative diagram.

D(A)/ kerF
F

'
// D(eAe)

Db(A)/ kerF b

H

OO

F
b

// Db(eAe)
?�

OO

where H : Db(A)/ kerF b → D(A)/ kerF is the natural functor. To show F
b

is fully faithful, it is

enough to show H is fully faithful and F
b

is dense.
(1) H is full. Let X,Y ∈ Db(A). Any morphism X → Y in D(A)/ kerF can be written as

X
s←− Z f−→ Y , such that there is a triangle

K → Z
s−→ X → K[1]

with K ∈ kerF . In this case, F (Z) ∼= F (X) in D(eAe) and thus F (Z) ∈ Db(eAe). Let Z ′ :=

GF (Z). Then we have a natural triangle Z ′
t−→ Z → K ′ → Z ′[1] in D(A) given by the adjoint

pair such that K ′ ∈ kerF . It is easy to check that the morphism X
st←− Z ′

ft−→ Y is equivalent to

X
s←− Z

f−→ Y in D(A)/ kerF . By Lemma 1.5.11, we know that Z ′ is upper bounded and Hn(Z ′)
is finite dimensional for any n ∈ Z.

Now we consider the standard truncation of Z ′. Since X,Y ∈ Db(A), we can find small enough
m such that

HomD(A)(τ
<mZ ′, X) = 0 = HomD(A)(τ

<mZ ′, Y ).

Since F (Z) = Ze, which acts on cohomology, we may also assume τ<mZ ′ ∈ kerF . Then we have
the following diagram.

τ<mZ′

��
Z′

|| ""��
X τ≥mZ′oo // Y
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By our construction, τ≥mZ ′ ∈ Db(A) and the morphism X ← τ≥mZ ′ → Y is equivalent to
X ← Z ′ → Y in D(A)/ kerF . So the functor H : Db(A)/ kerF b → D(A)/ kerF is full.

(2) H is faithful. Let X
p←− U

g−→ Y be any morphism in Db(A)/ kerF b, which sends to zero

map in D(A)/ kerF . Then the morphism is equivalent to X
Id←− X

0−→ Y in D(A)/ kerF . So we
have commutative diagram.

X

Id

~~

0

  
X W

0 //qoo

q

OO

r

��

Y

U

g

>>

p

``

where W ∈ D(A), cone(q) ∈ kerF , gr = 0 and pr = q. By the same strategy in (1), we can take

W ∈ Db(A). Then X
p←− U g−→ Y is also zero map in Db(A). So H is faithful.

(3) F
b

is dense. Let M ∈ Db(eAe). We know G(M) ∈ D(A) is upper bounded and Hi(G(M))
is finite dimensional for any i by Lemma 1.5.11. Notice that we have

F (τ≥nG(M)) = (τ≥nG(M))e = τ≥n(G(M)e) = τ≥n(FG(M)) = τ≥n(M).

Since M ∈ Db(eAe), we may take n � 0 such that τ≥n(M) ∼= M . Then F (τ≥nG(M)) = M and

τ≥n(G(M)) ∈ Db(A). So F̃ is dense. �
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Part 2. Cohen-Macaulay differential graded modules and negative Calabi-Yau
configurations

2.1. Introduction

The notion of Cohen-Macaulay (CM) modules is classical in commutative algebra [Ma, BH], and
has natural generalizations for non-commutative algebras [B, H2, IW], often called Gorenstein pro-
jective modules [ABr, C3, EJ]. The category of CM modules has been studied by many researchers
in representation theory (see, for example, [CR, Yo, Si, LW]). On the other hand, the derived
categories of differential graded (dg) categories introduced by Bondal-Kapranov [BK] and Keller
[K1, K3] is an active subject appearing in various areas of mathematics [Min, T, Ye1]. Among
others, we refer to [An, Jo1, Ji1, KaY2, Schm] for the representation theory of dg categories.

In this part, we introduce Cohen-Macaulay dg modules over dg algebras and develop their
representation theory to build a connection between these two subjects. One of the main properties
of the category of Cohen-Macaulay dg modules is that it has a structure of extriangulated category
and the stable category is equivalent to the singularity category, which is an analogue of Buchweitz’s
equivalence. Moreover, it admits almost split extensions and we can study it by Auslander-Reiten
theory. In fact, there are many nice dg algebras (including those given in this part), whose
categories of Cohen-Macaulay dg modules can be well understood, while the derived category
of dg algebras are usually wild and it is hopeless to classify all the indecomposable objects.

To make everything work well, we need to add some restrictions on dg algebras. More precisely,
we work on dg algebras A over a field k satisfying the following assumption.

Assumption 2.1.1. (1) A is non-positive, i.e. Hi(A) = 0 for i > 0 (without loss of generality, we
may assume Ai = 0 for i > 0, see Section 0.3.2);

(2) A is proper, i.e. dimk

⊕
i∈Z Hi(A) <∞;

(3) A is Gorenstein, i.e. the thick subcategory perA of the derived category D(A) generated by A
coincides with the thick subcategory generated by DA, where D = Homk(?, k) is the k-dual.

In this case, we define Cohen-Macaulay dg A-modules as follows, where we denote by Db(A)
the full subcategory of D(A) consisting of the dg A-modules whose total cohomology is finite-
dimensional.

Definition 2.1.2 (Definition 2.2.1). (1) A dg A-module M in Db(A) is called a Cohen-Macaulay
dg A-module if Hi(M) = 0 and HomDA(M,A[i]) = 0 for i > 0;

(2) We denote by CMA the subcategory of Db(A) consisting of Cohen-Macaulay dg A-modules.

Definition 2.1.2 is motived by the fact that if A is concentrated in degree zero, then the condition
(1) above gives an alternative description of classical Cohen-Macaulay modules [IYa1, Theorem
3.10]. Moreover, in this case the category CMA forms a Frobenius category in the sense of [H1] and
the stable category CMA is a triangulated category which is triangle equivalent to the singularity
category Dsg(A) = Db(modA)/Kb(projA) introduced by Buchweitz [B] and Orlov [O]. However,
CMA does not necessarily have a natural structure of exact category in our setting. Instead, the
following result shows it has a natural structure of extriangulated category introduced by Nakaoka
and Palu [NP].

Theorem 2.1.3 (Theorems 2.2.4, 2.3.1 and 2.3.7). Let A be a non-positive proper Gorenstein dg
algebra. Then

(1) CMA is functorially finite in Db(A);
(2) CMA is a Frobenius extriangulated category with Proj(CMA) = addA;
(3) The stable category CMA := (CMA)/[addA] is a triangulated category;
(4) The composition CMA ↪→ Db(A)→ Db(A)/ perA induces a triangle equivalence

CMA = (CMA)/[addA] ' Db(A)/ perA = Dsg(A);

(5) CMA admits a Serre functor and CMA admits almost split extensions.
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The main examples we consider in this part are trivial extension dg algebras and truncated poly-
nomial dg algebras. We determine all indecomposable Cohen-Macaulay dg modules over truncated
polynomial dg algebras concretely and give their AR quivers (see Theorem 2.4.2 for the details).
We also show that, in this case, the stable category is a cluster category by using a criterion given
by Keller and Reiten [KR] (see Theorem 2.4.9).

One of the traditional subjects is the classification of Gorenstein rings which are representation-
finite in the sense that they have only finitely many indecomposable Cohen-Macaulay modules.
Riedtmann [Rie2, Rie3] and Wiedemann [W] considered the classification of representation-finite
self-injective algebras and Gorenstein orders respectively. In both classifications, configurations
play an important role. We may regard Wiedemann’s configurations as “0-Calabi-Yau” since they
are preserved by Serre functor S and regard Riedtmann’s configurations as “(−1)-Calabi-Yau” since
they are preserved by S◦ [1]. Inspired by this, we introduce the negative Calabi-Yau configurations
to study the AR quivers of CMA.

Definition 2.1.4 (Definitions 2.5.1). Let T be a k-linear Hom-finite Krull-Schmidt triangulated
category and let C be a set of indecomposable objects of T . We call C a (−d)-Calabi-Yau config-
uration (or (−d)-CY configuration for short) for d ≥ 1 if the following conditions hold.

(1) dimkHomT (X,Y ) = δX,Y for X,Y ∈ C;
(2) HomT (X,Y [−j]) = 0 for any two objects X,Y in C and 0 < j ≤ d− 1;
(3) For any indecomposable object M in T , there exists X ∈ C and 0 ≤ j ≤ d − 1, such that

HomT (X,M [−j]) 6= 0.

It is precisely Riedtmann’s configuration if d = 1 and T is the mesh category of Z∆ for a Dynkin
diagram ∆ (see [Rie2, Definition 2.3] for the details). It is easy to see d-SMS (see Definition 0.2.7)
implies (−d)-CY configuration and the converse is also true if Filt(C) is functorially finite in T
due to [CSP, Proposition 2.13]. “(−d)-Calabi-Yau configuration” are also introduced as “left d-
Riedtmann configuration” in [CS2], and further studied in [CS3, CSP]. When the AR quiver of
T is Z∆/G for some Dynkin diagram ∆ and some group G, Calabi-Yau configuration can be
characterized combinatorially (see Section 2.5.3). Our name “(−d)-Calabi-Yau configuration” is
motivated by the following theorem, which is new even for d = 1 (see Remark 2.5.3 for the detail).

Theorem 2.1.5 (Theorem 2.5.2). Let T be a k-linear Hom-finite Krull-Schmidt triangulated cat-
egory with a Serre functor S. Let C be a (−d)-CY configuration in T , then S[d]C = C.

We say a dg k-algebra A in Assumption 2.1.1 is d-self-injective (resp. d-symmetric) if addA =
addDA[d− 1] in D(A) (resp. D(Ae)). The following result, characterizing simple dg A-modules as
a (−d)-CY configuration, generalizes [Rie2, Proposition 2.4].

Theorem 2.1.6 (Theorem 2.5.5). Let A be a d-self-injective dg algebra. Then the set of simple
dg A-modules is a d-SMS, and hence a (−d)-CY configuration in CMA.

Let ∆ be a Dynkin digram. For a subset C of vertices of Z∆, we define a translation quiver
(Z∆)C by adding to Z∆ a vertex pc and two arrows c → pc → τ−1(c) for each c ∈ C (see
Definition 0.5.1). Our main result in Part 2 states that the converse of Theorem 2.1.6 also holds
in the following sense.

Theorem 2.1.7 (Theorem 2.7.1). Let ∆ be a Dynkin digram. Let C be a subset of vertices of
Z∆/S[d]. The following are equivalent.

(1) C is a (−d)-CY configuration;
(2) There exists a d-symmetric dg k-algebra A with AR quiver of CMA being (Z∆)C/S[d].

To study the classification of configurations, Riedtmann [Rie2] gave a geometrical description of
configurations by Brauer relations, and Luo [L] gave a description of Wiedemann’s configuration
by 2-Brauer relations. Similarly, we introduce maximal d-Brauer relations (see Definition 2.8.2).
It gives a nice description of (−d)-CY configurations of type An. This geometric model has been
studied by Coelho Simões [CS2, Theorem 6.5]. By using this model, we show the number of
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(−d)-CY configurations in ZAn/S[d] is 1
n+1

(
(d+1)n+d−1

n

)
(Corollary 2.8.20). We develop several

technical concepts and results on maximal d-Brauer relations and by using them we give another
proof of Theorem 2.1.7 for the case ∆ = An (Theorem 2.8.32). In this case, for any given (−d)-CY
configuration C, the corresponding d-symmetric dg k-algebra is given explicitly by Brauer tree
dg algebra (see Section 2.8.3 for the details). The following table explains the comparison among
different configurations.

(−d)-CY (d ≥ 1) (−1)-CY 0-CY
(−d)-CY configuration Riedtmann’s configuration Wiedemann’s configuration

maximal d-Brauer relation Brauer relation 2-Brauer relation
d-self-injective dg algebras self-injective algebras Gorenstein orders

2.2. Cohen-Macaulay dg modules

Let A be a dg k-algebra. In this section, we assume A satisfies Assumption 2.1.1.

Definition 2.2.1. (1) A dgA-moduleM is called Cohen-Macaulay ifM ∈ Db
≤0(A) and HomDb(A)(M,A[i]) =

0 for i > 0;
(2) We denote by CMA the subcategory of Db(A) consisting of Cohen-Macaulay dg A-modules.

If A is an ordinary k-algebra, then CMA defined here is canonically equivalent to the usual one.
We mention that Yekutieli also introduced Cohen-Macaulay dg modules (see [Ye2, Section 8]), but
it is different from ours. Now we introduce some special dg algebras which are the main objects
in this part.

Definition 2.2.2. Let A be a non-positive dg k-algebra and let d be a positive integer.

(1) We call A d-self-injective if addA = add(DA[d− 1]) in D(A);
(2) We call A d-symmetric if addA = add(DA[d− 1]) in D(Ae).

Since in our setting A is Gorenstein, then the equivalence (0.3.2) induces the following triangle
auto-equivalence.

ν : perA ' perA,

and moreover we get another triangle auto-equivalence ν : Db(A) ' Db(A). In particular, ν is a
Serre functor on perA. We give another description of CMA as follows.

Proposition 2.2.3. (1) CMA = Db
≤0 ∩ ν−1(Db

≥0);

(2) In particular, If A is a d-self-injective dg algebra, then CMA = Db
≤0 ∩ Db

≥−d+1.

Proof. (1) By definition,

A[< 0]⊥ = {X ∈ Db(A) | HomDb(A)(A[< 0], X) = 0} = Db
≤0.

By Lemma 0.3.2, H<0(ν(X)) = HomDb(A)(A[> 0], ν(X)) = DHomDb(A)(X,A[> 0]), then

⊥A[> 0] = {X ∈ Db(A) | H<0(ν(X)) = 0} = {X ∈ Db(A) | ν(X) ∈ Db
≥0}.

Then CMA = Db
≤0 ∩ ν−1(Db

≥0).

(2) Let X ∈ CMA. If A is d-self-injective, then we have

HomDA(X,A[> 0]) = HomDb(A)(X,DA[> d− 1]) = DHomDb(A)(A[> d− 1], X) = 0,

which implies X ∈ Db
≥−d+1. So CMA = Db

≤0 ∩ Db
≥−d+1. �

The first properties of CMA are the following, which are analogues of the well-known properties
of Cohen-Macaulay modules. We refer to Section 0.4.1 for the notion of extriangulated category.
We call the Verdier quotient Db(A)/ perA the singularity category Dsg(A) of A.

Theorem 2.2.4. Let A be a dg k-algebra satisfying Assumption 2.1.1. Then

(1) CMA is an Ext-finite Frobenius extriangulated category with Proj(CMA) = addA;
(2) The stable category CMA := (CMA)/[addA] is a triangulated category;
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(3) The composition CMA ↪→ Db(A)→ Db(A)/ perA induces a triangle equivalence

CMA = (CMA)/[addA] ' Db(A)/ perA = Dsg(A).

Proof. See Corollary 1.4.5. Here we give a concrete proof for the reader. By our definition, CMA is
an extension-closed subcategory of Db(A), then it has a natural extriangulated category structure
by restricting the triangles of Db(A) on CMA (see [NP, Remark 2.18]). By Lemma 0.3.5, Db(A)
is Hom-finite, then so is CMA. It implies that CMA is Ext-finite and addA is functorially finite
in CMA.

Since HomCMA(P,X[1]) = 0 = HomCMA(X,P [1]) for any P ∈ addA and X ∈ CMA, then
we have addA ⊂ Proj(CMA) ∩ Inj(CMA). For any X ∈ CMA, we consider the right (addA)-
approximation P → X, which extends to the following triangle in Db(A).

Y → P → X → Y [1].

It is easy to check Y ∈ CMA by applying the functors HomDb(A)(A[< 0], ?) and HomDb(A)(?, A[>
0]) to the triangle above. So CMA has enough projectives. Similarly, it also has enough injectives.

Finally, we show Proj(CMA) = addA = Inj(CMA). Assume X ∈ CMA is projective, and take
a right (addA)-approximation P → X. As we have shown above, we have a triangle Y → P →
X → Y [1] where Y ∈ CMA. Since X is projective, then HomCMA(X,Y [1]) = 0. Then the triangle
splits and thus X ∈ addA. So Proj(CMA) = addA. Similarly, one can show Inj(CMA) = addA.
Then by Proposition 0.4.2, CMA is a triangulated category.

For the last statement, applying [IYa2, Corollary 2.1] to T = Db(A) and P = addA, we have
CMA is triangle equivalent to Db(A)/ perA. �

Immediately, we have the following.

Corollary 2.2.5. In Theorem 2.2.4, Db(A) = perA if and only if CMA = addA.

Recall from [NP], the suspension functor in CMA is given by the cone of a left (addA)-
approximation X → P → Ω−1X → X[1] for X ∈ CMA. The following result is an analogue
of the well-known property for classical Gorenstein rings.

Proposition 2.2.6. Let A be a dg algebra satisfying Assumption 2.1.1. Then

(1) There is a duality ( )∗ = RH omA(?, A) : Db(A)
'−→ Db(Aop), which restricts to a duality

CMA
'−→ CM(Aop);

(2) For X,Y ∈ CMA and i > 0, we have HomDb(A)(X,Y [i]) = HomCMA(X,Ω−iY ).

Proof. (1) The functor ( )∗ : D(A) → D(Aop) restricts to a duality perA
'−→ per(Aop). For any

M ∈ Db(A), it is clear that RH omA(M,DA) = DM ∈ Db(Aop). Since A is Gorenstein, then

A ∈ thick(DA) and moreover, ( )∗ also induces a duality Db(A)
'−→ Db(Aop). Since CMA = A[<

0]⊥ ∩⊥A[> 0], it is clear that ( )∗ restricts to a functor ( )∗ : CMA→ CM(Aop) and it is a duality.
We have the following diagram.

Db(A)
' // Db(Aop)

CMA
?�

OO

' // CM(Aop).
?�

OO

(2) Consider the following triangle induced by the left (addA)-approximation of Y ,

Y → Q→ Ω−1Y → Y [1].

Applying HomDb(A)(X, ?) to the triangle above, since HomDb(A)(X,A[> 0]) = 0, we see

HomDb(A)(X,Ω
−1Y [t]) = HomDb(A)(X,Y [t+ 1])

for t ≥ 1. Moreover, we have the following exact sequence.

HomDb(A)(X,Q)→ HomDb(A)(X,Ω
−1Y )→ HomDb(A)(X,Y [1])→ 0.



SIMPLE-MINDED OBJECTS AND CM DG MODULES 35

Since HomDb(A)(A, Y [1]) = 0, then for P ∈ addA, every map P → Ω−1Y has a decomposition

P → Q→ Ω−1Y . Then

HomCMA(X,Ω−1Y ) = HomDb(A)(X,Ω
−1Y )/HomDb(A)(X,Q),

which is isomorphic to HomDb(A)(X,Y [1]). Then by induction, one can show HomDb(A)(X,Y [i]) =

HomCMA(X,Ω−iY ) holds for any i ≥ 1. �

The following proposition tells us that when CMA is an ordinary Frobenius category for a
d-self-injective dg algebra A.

Proposition 2.2.7. Assume A is a d-self-injective dg k-algebra. Then CMA is a Frobenius cate-
gory with addA as projective objects if and only if d = 1 (that is, A has total cohomology concen-
trated in degree 0).

Proof. If A has total cohomology concentrated in degree 0, then A is quasi-isomorphic to H0(A). In
this case, H0(A) is a Gorenstein k-algebra and CMA is equivalent to CMH0(A), which is Frobenius.

On the other hand, suppose X is a non-zero object of CMA. If CMA is a Frobenius category
with addA as projective objects, then

HomCMA(A,X) = HomDb(A)(A,X) = H0(X) 6= 0

which implies X 6∈ Db
≤−1. So CMA∩Db

≤−1 = 0. But by Proposition 2.2.3, CMA = Db
≤0∩Db

≥−d+1.
Then d = 1, which implies that A has total cohomology concentrated in degree 0. �

2.3. Auslander-Reiten theory in CMA

We assume that all the dg k-algebras considered in this section satisfy Assumption 2.1.1.

2.3.1. Serre duality and almost split extensions. The aim of this section is to prove the
following theorem.

Theorem 2.3.1. (1) CMA admits a Serre functor ν[−1] =?⊗L
A DA[−1];

(2) CMA admits almost split extensions.

We first show CMA admits a Serre functor. We will consider it in a general setting given in [Am,
Section 1.2]. Let T be a k-linear Hom-finite triangulated category and N be a thick subcategory
of T . Assume T has an auto-equivalence S, which gives a relative Serre duality in the sense that
S(N ) ⊂ N and there exists a functorial isomorphism for any X ∈ N and Y ∈ T

DHomT (X,Y ) ' HomT (Y, SX).

Definition 2.3.2. [Am, Definition 1.2] Let X and Y be objects in T . A morphism p : P → X is
called a local N -cover of X relative to Y if P is in N and it induces an exact sequence

0→ HomT (X,Y )
p∗−→ HomT (P, Y ).

Dually, let Y and Z be objects in T . A morphism q : Y → Q is called a local N -envelop of Y
relative to Z if Q is in N and it induces an exact sequence

0→ HomT (Z, Y )
q∗−→ HomT (Z,Q).

Amiot gave the following sufficient condition for T /N to admit a Serre functor.

Proposition 2.3.3. [Am, Theorem 1.3] Assume for any X,Y ∈ T , there is a local N -cover of X
relative to Y and a local N -envelop of SX relative to Y . Then the quotient category T /N admits
a Serre functor given by S[−1].

To check the condition in Proposition 2.3.3, the following lemma is useful.

Lemma 2.3.4. [Am, Proposition 1.4] Let X and Y be two objects in T . If for any P ∈ N the
vector space HomT (P,X) and HomT (Y, P ) are finite-dimensional, then the existence of a local
N -cover of X relative to Y is equivalent to the existence of a local N -envelop of Y relative to X.
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In our setting, to apply Proposition 2.3.3, we need the following observation.

Lemma 2.3.5. For any X,Y ∈ Db(A), there exists an object PX ∈ perA with a morphism

PX
p−→ X such that we have the following exact sequence.

0→ HomDb(A)(X,Y )
p∗−→ HomDb(A)(PX , Y ).

Proof. Since A is non-positive and X,Y ∈ Db(A), by truncation, we may assume

X := [· · · 0→ Xm dm−−→ Xm+1 dm+1−−−→ · · · dn−1−−−→ Xn → 0→ · · · ],

Y := [· · · 0→ Y s
ds−→ Y s+1 ds+1−−−→ · · · dt−1−−−→ Y t → 0→ · · · ].

Apply induction on n− s.
If n− s < 0, then HomDb(A)(X,Y ) = 0, we can take any object in perA as PX .
Now assume the result is true for n− s = k. Consider the case n− s = k + 1.
There exists QX ∈ addA[−n] and a morphism p : QX → X such that Hn(p) is surjective.

Then Hi≥n(cone(p)) = 0. Let Z = cone(p). By our assumption, there exists PZ ∈ perA with a
morphism r : PZ → Z satisfies our condition. By the Octahedral Axiom, we have the following
diagram.

QX // PX //

��

PZ

��

// QX [1]

QX // X //

��

Z //

��

QX [1]

T

��

T

��
PX [1] // PZ [1]

Then it is easy to check PX is the cover we want. �

Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. (1) Since perA = thick(DA), then ν induces triangle equivalences Db(A) '
Db(A) and perA ' perA. Moreover, ν gives a relative Serre duality by Lemma 0.3.1. We only
need to show the conditions in Proposition 2.3.3 hold in our setting. Because Db(A) is Hom-finite
by Lemma 0.3.5, then by Lemma 2.3.4, it suffices to check the existence of local perA-cover. This
has been proved in Lemma 2.3.5. So the assertion is true.

(2) By Lemma 0.3.5, Db(A) is Hom-finite, then CMA is Ext-finite (see Section 0.4.2). It is clear
that CMA is a k-linear Krull-Schmidt extriangulated category. Moreover, CMA admits a Serre
functor by (1), then by Proposition 0.4.5, CMA admits almost split extensions. �

We give the following lemma for later use.

Lemma 2.3.6. Let X be an non-projective indecomposable object in CMA. Let τ be the Auslander-
Reiten translation. If EndCMA(X) = k, then any non-split extension

τ(X)
f−→ Y

g−→ X

is an almost split extension.

Proof. By Proposition 0.4.6, it is clear. �
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2.3.2. Cohen-Macaulay approximation. In this subsection, we show the following result.

Theorem 2.3.7. (1) CMA is functorially finite in Db(A);

(2) More precisely, we have the following result, where ( )∗ = RH omAop(?, Aop) : Db(Aop)
'−→

Db(A).

Db(A) = CMA ⊥ add(FiltA[> 0]) ⊥ Db
>0(A) = Db

>0(Aop)∗ ⊥ add(FiltA[< 0]) ⊥ CMA.

Immediately, CMA admits a property analogous to the usual Cohen-Macaulay approximation (see
[ABu]) in the following sense.

Corollary 2.3.8. Let M ∈ Db
≤0(A), then there is a triangle

P → T →M → P [1],

such that T →M is a right (CMA)-approximation of M and P ∈ perA.

To show the theorem, we consider the t-structures and co-t-structures on Db(A) first. Let

A≥l = A>l−1 := add
⋃
i≥0

A[−l − i] ∗ · · · ∗A[−l − 1] ∗A[−l],

A≤l = A<l+1 := add
⋃
i≥0

A[−l] ∗A[−l + 1] ∗ · · · ∗A[−l + i].

There are two t-structures and two co-t-structures [P] (also called weight structures [Bo]) in
Db(A) induced by A.

Lemma 2.3.9. (1) The two paris (A[< 0]⊥, A[> 0]⊥) and (⊥A[< 0],⊥A[> 0]) are t-structures on
Db(A);

(2) The two pairs (⊥A[> 0], A≤0) and (A≥0, A[< 0]⊥) are co-t-structures on Db(A).

Proof. (1) By Proposition 0.3.7, (A[< 0]⊥, A[> 0]⊥) = (Db
≤0,D

b
≥0) is a t-structure on Db(A). Since

the Nakayama functor ν induces a triangle equivalence ν : Db(A) ' Db(A), then applying ν−1 to
this t-structure, we get a new t-structure (⊥A[< 0],⊥A[> 0]) on Db(A).

(2) See [IYa1, Propsition 3.2]. �

Now we show the theorem.

Proof of Theorem 2.3.7. We only show (2), since (1) is directly from (2).
By Lemma 2.3.9, we have Db(A) = Db

≤0 ⊥ Db
>0. We claim that Db

≤0 = CMA ⊥ FiltA[> 0].

Let M ∈ Db
≤0 = A[< 0]⊥. Considering the co-t-structure (⊥A[> 0], A≤0), we have the following

decomposition of M .

T →M → S → T [1],

where T ∈ ⊥A[> 0] and S ∈ A<0 = FiltA[> 0]. Applying HomDb(A)(A[< 0], ?) to the triangle

above, we have T ∈ CMA. So the claim holds and Db(A) = CMA ⊥ FiltA[> 0] ⊥ Db
>0(A). By the

duality ( )∗ : Db(Aop)
'−→ Db(A), we have Db(A) = Db

>0(Aop)∗ ⊥ FiltA[< 0] ⊥ CMA. �

We end this section by giving a result analogous to famous results of Auslander and Yamagata
[ARS, Theorem VI.1.4][Ya] on the first Brauer-Thrall theorem. For an object X ∈ Db(A), there is
an integer t such that H<t(X) = 0 and Ht(X) 6= 0. By the standard truncation, we may assume
Xi = 0 for i < t and in this case, we have a natural inclusion Ht(X) ↪→ X. So we may regard
soc Ht(X) as the socle socX of X.

Proposition 2.3.10. Let S be a finite subset of ind(CMA). Then S = ind(CMA) if S is closed un-
der successors in the AR quiver of CMA and for any i ≥ 0, there exists a left (CMA)-approximation
A[i]→ X in Db(A) such that X ∈ addS.
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Proof. Notice that A
id−→ A is the minimal left (CMA)-approximation of A, then A ∈ addS by our

assumption. Let M ∈ ind(CMA). Then there exists i ≥ 0 such that HomCMA(A[i],M) 6= 0. Let
N be the left (CMA)-approximation of A[i] such that N ∈ addS. Then HomCMA(N,M) 6= 0. Let
X1 be an indecomposable direct summand of N with 0 6= f ∈ HomCMA(X1,M). If f is a section,
since X1,M ∈ ind(CMA), then X1

∼= M and we are done. If f is not a section. Considering the
left almost split morphism g : X1 → Y (If X1 ∈ addA, g is given by X1 → X1/ socX1), then
there is a h ∈ HomCMA(Y,M) such that f = h ◦ g. So we can find an indecomposable module
X2 ∈ addY , such that the composition X1 → X2 → M is non-zero. Repeat this step, we may
construct a series of indecomposable modules X1 → X2 → · · · →M , such that the composition is
non-zero. Since S is closed under successors, then Xi ∈ S. Since S is finite and CMA is Hom-finite,
then rad(S,S)N = 0 for big enough N . So there exist n ≥ 1 such that Xn = M and M ∈ addS.
Therefore S = ind(CMA). �

2.4. Example: Truncated polynomial dg algebras

In this section, we give some examples. The reader may skip this section, since results here will
not be used in this part. Consider a truncated polynomial dg k-algebra.

A := k[X]/(Xn+1), n ≥ 0,

with degX = −d ≤ 0 and zero differential. We determine the indecomposable Cohen-Macaulay
modules explicitly and draw the AR quiver of CMA. Then we show CMA is a (d + 1)-cluster
category by using a criterion given by Keller and Reiten [KR]. Let Ai be the dg A-module
k[X]/(Xi), i = 1, 2, · · · , n. We give two small examples first.

Example 2.4.1. (1) Let n = 2 and d = 2. Then the AR quiver of CMA is as follows.

kk[2]k[4]A2[1] A2[1] k[4] k[2] k

A2A2[2]k[1]k[3] k[3] k[1] A2[2] A2

AA

. . . . . .

(2) Let n = 3 and d = 1. Then the AR quiver of CMA is as follows.

k[3]

A2[2]

A3[1]

k[2]

A2[1]

A3

k[1]

A2

k

A

A3A3[1]

A2A2[1]A2[2]

kk[1]k[2]k[3]

A

. . . . . .

By Proposition 2.3.8, for any Ai, 1 ≤ i ≤ n, and t ≥ 0, we have the following triangle.

Ti,t → Ai[td]→ Pi,t → Ti,t[1], (2.4.1)

such that Ti,t → Ai[td] is a right (CMA)-approximation of Ai[td] and Pi,t ∈ perA. We assume Ti,t
is minimal. Then Ti,t is unique up to isomorphism and if Ai[td] ∈ CMA (for example, t = 0 or 1),
we have Ti,t = Ai[td]. We give the first result of this section.

Theorem 2.4.2. Let A be the dg algebra k[X]/(Xn+1), n ≥ 0 with degX = −d ≤ 0 and zero
differential.

(1) Assume d is even. Let N := (n+1)d
2 . Then the AR quiver of CMA is as follows.
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T1,0T1,1T1,N

T2,0T2,1T2,N

Tn−1,N Tn−1,1 Tn−1,0

Tn,0Tn,1Tn,N

T1,0T1,1T1,N

T2,0T2,1T2,N

Tn−1,N Tn−1,1 Tn−1,0

Tn,0Tn,1Tn,N

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

A A

. . . . . .

(2) Assume d is odd. Let Ni := (n+1)d+n−2i+1
2 , 1 ≤ i ≤ n. Then the AR quiver of CMA is as

follows.

Tn,0

Tn−1,0

T2,0

T1,0T1,1

T2,1

Tn−1,1

Tn,1Tn,Nn

Tn−1,Nn−1

T2,N2

T1,N1

.
.
.

.
.

.
.

.
.

.
.

.
.
.
.

.
.
.

. . .

. . .

. . .. . .. . .

. . .. . .. . .. . .. . .

A

. . . . . .

Tn,0

Tn−1,0

T2,0

T1,0T1,1

T2,1

Tn−1,1

Tn,1Tn,Nn

Tn−1,Nn−1

T2,N2

T1,N1

. . .

. . .

. . . . . . . . .

. . . . . . . . . . . . . . .

A

Before proving Theorem 2.4.2, we consider AR triangles in CMA first. It is easy to see that
A is an (nd + 1)-symmetric dg algebra. Then by Proposition 2.2.3, CMA = Db

≤0 ∩ Db
≥−nd. The

Nakayama functor ν : Db(A)→ Db(A) is given by ν =?⊗L
ADA = [−nd]. By Theorem 2.3.1, CMA

admits a Serre functor ν[−1] = [−nd− 1]. Moreover, the Auslander-Reiten translation on CMA is
τ = [−nd− 2]. The following lemma shows Ai and Ti,t are indecomposable.

Lemma 2.4.3. Let Ai, Ti,t be defined as above. Then

(1) EndCMA(Ai) = EndCMA(Ai) = k. Moreover, each Ai is indecomposable in CMA;
(2) Ti,t is indecomposable in CMA.

Proof. (1) For any Ai, 1 ≤ i ≤ n, there is a natural triangle in Db(A).

An+1−i[id]→ A→ Ai → An+1−i[id+ 1]. (2.4.2)

Since An+1−i[id] ∈ D≤−id and Ai ∈ D≥−(i−1)d, then HomDb(A)(An+1−i[≥ id], Ai) = 0. Applying
HomDb(A)(?, Ai) to triangle (2.4.2), we have

EndDb(A)(Ai) ∼= HomDb(A)(A,Ai) = k.

So Ai is indecomposable in CMA. Since A itself is indecomposable in CMA by EndCMA(A) = k,
and Ai 6= A by cohomology. Then Ai 6∈ addA, and Ai is a non-zero object in CMA.

(2) It is clear Ti,t ∼= Ai[td] in CMA. So Ti,t is indecomposable in CMA by (1). Because if t = 0,
Ti,0 = Ai and if t > 0, HomCMA(A,Ai[td]) = 0, then Ti,t does not contain P ∈ addA as a direct
summand. Thus Ti,t is also indecomposable in CMA. �

We point out the periodicity of CMA.

Lemma 2.4.4. The functor [(n + 1)d + 2] : CMA → CMA is isomorphic to the identity functor.
In particular, τ ∼= [d] as functors on CMA and CMA is (d+ 1)-Calabi-Yau.

Proof. Consider the following sequence in the category of dg A⊗Aop-modules.

0→ A[(n+ 1)d]
f−→ A⊗A[d]

g−→ A⊗A h−→ A→ 0

where f is given by f(1) :=
∑n
i=0X

i⊗Xn−i, g is given by g(1⊗1) := 1⊗X−X⊗1 and h is given
by h(1⊗ 1) := 1. Since it is an exact sequence of graded modules, we get two natural triangles in
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D(A⊗Aop).

Kerh
h−→ A⊗A→ A→ Kerh[1]

A[(n+ 1)d]
f−→ A⊗A[d] −→ Kerh→ A[(n+ 1)d+ 1]

Let M ∈ Db(A). Apply the functor M⊗L
A? to the triangles above, we get two triangles in Db(A):

M ⊗L
A Kerh→M ⊗A→M →M ⊗L

A Kerh[1],

M [(n+ 1)d]→M ⊗A[d]→M ⊗L
A Kerh→M [(n+ 1)d+ 1].

Notice that M ⊗ A ∈ perA, then we have natural isomorphisms M
∼−→M ⊗L

A Kerh[1] and M ⊗L
A

Kerh
∼−→M [(n+ 1)d+ 1] in Db(A)/ perA ∼= CMA, which give us the desired isomorphism. �

Remark 2.4.5. The integer (n + 1)d + 2 is the smallest natural number r such that [r] ' id
on CMA. In fact one may consider the shifts of simple dg A-module A1 = k. It is clear that
k[i] ∈ CMA for 0 ≤ i ≤ nd. By the triangle (2.4.2), we have k[nd+ 1] ∼= An in CMA (notice that
An[0, 1, . . . , d] ∈ CMA). Then it is easy to check that k can not be isomorphic to k[i] in CMA for
0 ≤ i ≤ (n+ 1)d+ 1.

Now we describe the AR-triangles in CMA.

Proposition 2.4.6. Let 1 ≤ i ≤ n. Let πi be the natural surjective map πi : Ai → Ai−1 and let
ιi be the natural injective map ιi : Ai[d] → Ai+1 given by ιi(1) := X. Let A0 = 0. Then the AR
triangle in CMA ending in Ai is given by

Ai[d]

(
πi[d]
−ιi[d]

)
−−−−−−→ Ai−1[d]⊕Ai+1

( ιi−1 πi+1 )−−−−−−−−→ Ai.

Proof. First notice that the given sequence is a short exact sequence of graded modules and it
gives a triangle in Db(A) (so in CMA). By Lemma 2.4.3, Aj [m] is indecomposable in CMA for any
m ∈ Z, so the given triangle can not be split. Since EndCMA(Ai) = k, then by Lemma 2.3.6, the
triangle above is an AR triangle. �

It is easy to see that the AR quiver of CMA is of the form ZAn/φ by Proposition 2.4.6 and the
fact that Ti,t are shifts of Ai in CMA. Now we determine the fundamental domain. Notice that
by Lemma 2.4.4, Ai = Ai[(n+ 1)d+ 2] and by the triangle (2.4.2), An+1−i = Ai[−id− 1] in CMA.
We need to find the smallest positive integer m such that Ai = Ai[md] or An+1−i = Ai[md] holds.

Lemma 2.4.7. (1) Assume d is even. Let N := (n+1)d
2 . Then N is the smallest positive integer

such that Ai = Ai[(N + 1)d];

(2) Assume d is odd. Let Ni := (n+1)d+n−2i+1
2 . Then Ni is the smallest positive integer such that

An+1−i = Ai[(Ni + 1)d].

Proof. (1) It is obvious Ai = Ai[(N+1)d] by Lemma 2.4.4. By Remark 2.4.5, we know (n+1)d+2
is the smallest natural number r such that [r] ' id on CMA. Let d = 2e. If l > 0 satisfies
Ai = Ai[ld], then (n+ 1)d+ 2 | ld, that is (n+ 1)e+ 1 | le. Since (n+ 1)e+ 1 and e are coprime,
then (n+ 1)e+ 1 | l and l ≥ (n+ 1)e+ 1 = N + 1.

(2) Assume positive integer s satisfies An+1−i = Ai[sd]. Then by the fact that An+1−i =

Ai[−id−1], we have (n+1)d+2 | sd+id+1. Since sd+id+1 = d+1
2 ((n+1)d+2)+(s− (n+1)d+n+3−2i

2 ),

then we need (n+ 1)d+ 2 | s− (n+1)d+n+3−2i
2 . So the smallest s is Ni + 1. �

We can prove Theorem 2.4.2 now.

Proof of Theorem 2.4.2. The AR triangle given in Proposition 2.4.6 is induced by some conflation

Ti,1 → Ti−1,1 ⊕ Ti+1,0 → Ti,0 (2.4.3)

up to taking projective direct sums in CMA (see [NP]). Notice that for the projective-injective
object A, the only right almost split morphism is given by the natural injection Tn,1 = An[d]→ A
and the only left almost split morphism is given by the natural surjection A → An = Tn,0. Then
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the extension (2.4.3) is an almost split extension in CMA for i 6= n. Then by Lemma 2.4.7, the
AR sub-quiver S of CMA consisting of Ti,d is given as in Theorem 2.4.2. We only need to show
Ti,d gives all indecomposable CM A-modules.

By Proposition 2.3.10, it suffices to show that every left (CMA)-approximation of A[p], p ≥ 0,
belongs to addS. First notice that if p > nd or p = 0, the assertion is obvious (because for the
case p > nd, we have a natural approximation A[p]→ 0 and for the case p = 0, the approximation

is given by A
id−→ A). We only consider other cases and we may assume td < p ≤ (t + 1)d for

some 0 ≤ t ≤ n − 1. Then the left (CMA)-approximation of A[p] is given by the natural map
A[p] → An−t[p]. To show An−t[p] ∈ addS, it is enough to show An−t[p] = Ti,s = Ai[sd] in CMA
for some 1 ≤ i ≤ n and s ≥ 0. It can be shown in the following way.

• Assume (t+1)d−p is even and q = ((t+1)d−p)/2. Then An−t[p] = An−t[((n+1)d+2)q+p] =
An−t[sd], where s = (n+ 1)q + t+ 1. So An−t[p] = Tn−t,s ∈ addS.
• Assume (t + 1)d − p is odd and q = ((t + 1)d − p − 1)/2. By triangle (2.4.2), we have
An−t[p] = At+1[(n− t)d+ p+ 1] in CMA. Then

An−t[p] = An−t[((n+ 1)d+ 2)q + p] = At+1[sd],

where s = (n+ 1)(q + 1). So An−t[p] = Tt+1,s ∈ addS.

Then the result is true. �

Before giving the second result of this section, we give another description of Ti,t, which will be
used later.

Proposition 2.4.8. For any 1 ≤ i ≤ n and t ≥ 0, there exist 1 ≤ j ≤ n and 0 ≤ s ≤ (n+ 1− j)d
such that Ti,t = Aj [s] in CMA.

Proof. First notice that Ti,0 = Ai and Ti,t can be defined by applying induction on t by the
following triangle in Db(A).

Ti,t+1
ft−→ Ti,t[d]→ Pi,t → Ti,t+1[1],

where ft is the minimal right (CMA)-approximation of Ti,t[d] and Pi,t ∈ perA. Also notice that for
any Aj [s] ∈ CMA, the minimal right (CMA)-approximation of Aj [s+d] also has the form of Aj′ [s

′]
for some 1 ≤ j′ ≤ n and 0 ≤ s′ ≤ (n+ 1− j′)d. Then the assertion can be shown inductively. �

Theorem 2.4.2 implies that CMA is a cluster category. In fact we have the following result.

Theorem 2.4.9. The stable category CMA is triangle equivalent to Cd+1(An).

The key ingredient of the proof is Keller and Reiten’s result [KR]. We first show CMA admits
a (d+ 1)-cluster tilting object.

Proposition 2.4.10. Let T :=
⊕n

i=1Ai, then T is a (d + 1)-cluster-tilting object in CMA, that
is, addT is functorially finite in CMA and X ∈ addT if and only if HomCMA(T,X[m]) = 0 for all
1 ≤ m ≤ d.

We show the following lemma first.

Lemma 2.4.11. (1) T is a (d + 1)-rigid object in CMA, i.e. HomCMA(Ai, Aj [s]) = 0 for any
1 ≤ i, j ≤ n and 1 ≤ s ≤ d;

(2) HomCMA(Ai, Aj [−s]) = 0 for any 1 ≤ i, j ≤ n and 1 ≤ s ≤ d− 1;
(3) Let M ∈ CMA. Assume HomCMA(Ai,M [m]) = 0 for any 1 ≤ i ≤ n and 1 ≤ m ≤ d. If

H0(M) = 0, then M = 0.

Proof. By Proposition 2.2.6, we have HomCMA(Ai, Aj [s]) = HomDb(A)(Ai, Aj [s]). Consider the
following two triangles.

An−i+1[id] −→ A −→ Ai −→ An−i+1[id+ 1] −→ A[1], (2.4.4)

Ai[(n− i+ 1)d] −→ A −→ An−i+1 −→ Ai[(n− i+ 1)d+ 1] −→ A[1]. (2.4.5)
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If s > 1, by applying the functor HomDb(A)(?, Aj [s]) to triangle (2.4.4), we have

HomDb(A)(Ai, Aj [s]) = HomDb(A)(An−i+1[id+ 1], Aj [s]).

Apply the functor HomDb(A)(?, Aj [s− id− 1]) to the triangle (2.4.5). Since

HomDb(A)(Ai[(n− i+ 1)d+ 1], Aj [s− id− 1]) = 0,

then

HomDb(A)(An−i+1, Aj [s− id− 1]) = 0.

Thus HomDb(A)(Ai, Aj [s]) = 0.
If s = 1. Apply the functor HomDb(A)(?, Aj [1]) to triangle (2.4.4). Notice that the induced map

HomDb(A)(A[1], Aj [1])→ HomDb(A)(An−i+1[id+ 1], Aj [1])

is surjective. Then HomDb(A)(Ai, Aj [1]) = 0. So (1) is true. The proof of statement (2) is similar
to (1).

For (3), let M ∈ CMA. If M 6= 0 in CMA, let t := min{s ∈ Z | Hs(M) 6= 0}. We may assume
−id ≤ t < −(i− 1)d. We will show HomCMA(Ai,M [t+ id+ 1]) 6= 0, which is a contradiction.

Since H≥0M = 0, then H0M [id+t] = 0. Apply the functor HomDb(A)(?,M [id+t+1]) to (2.4.4),
we have

HomDb(A)(Ai,M [id+ t+ 1]) = HomDb(A)(An−i+1[id+ 1],M [id+ t+ 1]).

Apply the functor HomDb(A)(?,M [t]) to (2.4.5), then

HomDb(A)(An−i+1,M [t]) = HomDb(A)(A,M [t]) = H0(M [t]).

Then HomCMA(Ai,M [id+t+1]) = HomDb(A)(Ai,M [id+t+1]) = H0(M [t]) 6= 0. It is contradictory

to our assumption. So M = 0 ∈ CMA. Since M 6∈ addA by H0(M) = 0, then M = 0. �

Proof of Proposition 2.4.10. Since CMA is Hom-finite, then addT is a functorially finite subcat-
egory of CMA. Let 0 6= M ∈ ind CMA. Then M = A or M = Aj [s] for some 1 ≤ j ≤ n and
0 ≤ s ≤ (n+ 1− j)d by Theorem 2.4.2 and Proposition 2.4.8. Assume HomCMA(Ai,M [m]) = 0 for
any 1 ≤ i ≤ n and 1 ≤ m ≤ d. Then by Lemma 2.4.11, we have H0(M) 6= 0. So M ∈ addT . Then
T is a (d+ 1)-cluster-tilting object in CMA. �

Now we are ready to prove Theorem 2.4.9.

Proof of Theorem 2.4.9. Since dimHomCMA(Ai, Aj) = 0 for i > j and dimHomCMA(Ai, Aj) = 1
for i ≤ j, the endomorphism algebra EndCMA(T ) is isomorphic to a path algebra kQ, where Q
is a quiver of type A with vertices {Ai | 1 ≤ i ≤ n} and arrows Ai+1 → Ai for 1 ≤ i ≤ n − 1.
By Proposition 2.4.10, T is a (d + 1)-cluster-tilting object in CMA. Moreover, by Lemma 2.4.11,
HomCMA(Ai, Aj [−k]) = 0 for any 1 ≤ i, j ≤ n and 1 ≤ k ≤ d − 1. Then by [KR, Theorem 4.2],

there is a triangle equivalence CMA
∼−→ Cd+1(An). �

2.5. Negative Calabi-Yau configurations and combinatorial configurations

2.5.1. Negative Calabi-Yau configurations. In this subsection, we introduce negative Calabi-
Yau configurations in the categorical framework.

Definition 2.5.1. Let T be a k-linear Hom-finite Krull-Schmidt triangulated category and let C
be a set of indecomposable objects of T . For d ≥ 1, we call C a (−d)-Calabi-Yau configuration (or
(−d)-CY configuration) if the following conditions hold.

(1) dimkHomT (X,Y ) = δX,Y for X,Y ∈ C;
(2) HomT (X,Y [−j]) = 0 for any two objects X,Y in C and 0 < j ≤ d− 1;
(3) For any indecomposable object M in T , there exists X ∈ C and 0 ≤ j ≤ d − 1, such that

HomT (X,M [−j]) 6= 0.

If T admits a Serre functor S, then by Serre duality, (3) is equivalent to the following condition.
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(3op) For any indecomposable object N in T , there exists X ∈ C and 0 ≤ j ≤ d − 1, such that
HomT (N,X[−j]) 6= 0.

It is easy to see that “d-SMS” (see Definition 0.2.7) implies “(−d)-CY configuration”. We show
that if T admits a Serre functor S, then any (−d)-CY configuration in T is preserved by the functor
S[d]. This property motivates the name “(−d)-CY configuration”.

Theorem 2.5.2. Let T be a k-linear Hom-finite Krull-Schmidt triangulated category with Serre
functor S. Let C be a (−d)-CY configuration in T , then SC[d] = C.

Remark 2.5.3. For the case d = 1, Riedtmann showed the periodicity of configurations for type
An and Dn in combinatorial setting (see [Rie2, Rie4]).

To prove the theorem above, we need the following well-known property.

Lemma 2.5.4. Let T be a k-linear Hom-finite triangulated category with Serre functor S. Let
X ∈ T with EndT (X) = k and f ∈ HomT (X,SX). Then for any Y ∈ T and g ∈ HomT (SX,Y )
which is not a section, we have g ◦ f = 0.

Proof. We have the following commutative diagram.

HomT (X,SX)
HomT (X,g) //

'
��

HomT (X,Y )

'
��

DHomT (SX,SX) DHomT (Y,SX)
DHomT (g,SX)oo

.

Since the lower map is zero by EndT (SX) = k and the assumption that g is not a section, so is
the upper one. �

Proof of Theorem 2.5.2. The proof falls into two parts.
(a) We first prove S[d]C ⊂ C. For any X ∈ C, we only need to show S[d]X ∈ C. By condition

(3), there exist Y ∈ C and 0 ≤ i ≤ d− 1 such that HomT (Y, S[d]X[−i]) 6= 0. Since

HomT (Y,S[d]X[−i]) = DHomT (X,Y [−d+ i])

If 0 < i ≤ d − 1, it is zero by condition (2). So we must have i = 0. Let f : Y → S[d]X be a
non-zero morphism and consider the triangle extended by f ,

SX[d− 1]
h−→ N

g−→ Y
f−→ SX[d].

We claim that N = 0.
If N 6= 0, then there exist Z ∈ C and 0 ≤ j ≤ d − 1, such that HomT (Z,N [−j]) 6= 0. Let

p ∈ HomT (Z[j], N) be a non-zero morphism. If g ◦ p 6= 0, then j = 0 and g ◦ p is an isomorphism
by Definition 2.5.1(1)(2). Thus g is a retraction and f = 0, a contradiction. So g ◦ p = 0. Then
there exists a morphism q : Z[j]→ SX[d− 1], such that p = h ◦ q.

Z[j]

p

��

q

zz
SX[d− 1]

h // N
g // Y

f // SX[d]

Since p 6= 0, then q 6= 0, which implies that j = d−1 and Z ∼= X by the fact HomT (Z[j],SX[d−
1]) = DHomT (X,Z[j − d+ 1]) and Definition 2.5.1(1)(2). Then by Lemma 2.5.4, we know h is a
section. Thus f = 0, a contradiction. So N = 0 and SX[d] ∼= Y ∈ C.

(b) We prove S[d]C ⊃ C. By considering conditions (1), (2), and (3op), one can show the
statement easily, which is similar to the proof in part (a). We leave it to the reader. �
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2.5.2. CM dg modules and CY configurations. In this subsection, we study CY configurations
in the stable categories of Cohen-Macaulay dg modules over d-self-injective dg algebras. In this
case, we show that the set of simple dg A-modules forms a (−d)-CY configuration in CMA, which
generalizes Riedtmann’s result [Rie2, Proposition 2.4].

Recall from Section 0.3.2, for a non-positive dg k-algebra A with A>0 = 0, we may regard
H0(A)-modules as dg A-modules via the homomorphism A → H0(A). Let {S1, . . . , Sr} be the
set of simple H0(A)-modules. We also regard them as simple dg A-modules (when we talk about
simple modules, we always assume they are concentrated in degree zero part). Recall that if A is
a d-self-injective dg algebra, then CMA = Db

≤0 ∩ Db
≥−d+1 (see Proposition 2.2.3).

The main result in this subsection is the following.

Theorem 2.5.5. Let A be a d-self-injective dg k-algebra with d ≥ 0. Then the set of simple
modules {Si | 1 ≤ i ≤ r} is a d-SMS of CMA, and hence a (−d)-CY configuration of CMA.

To prove this theorem, we start with the following lemma first.

Lemma 2.5.6. Let M ∈ CMA. If d > 1, then for 1 ≤ i ≤ r and 0 ≤ t ≤ d− 2, we have

(1) HomCMA(Si[t], A) = 0
(2) HomCMA(Si[t],M) = HomCMA(Si[t],M).

Proof. We only prove (1), since (2) is immediately from (1). Since DA = A[−d+ 1] in DA, then

HomCMA(Si[t], A) = HomCMA(Si[t− d+ 1], DA) = DHt−d+1(Si) = 0

for 0 ≤ t ≤ d− 2. �

Now we prove Theorem 2.5.5.

Proof of Theorem 2.5.5. If d = 1, then A is an ordinary self-injective k-algebra and the assertion
is known. We only prove it for d > 1. By Lemma 2.5.6 and Proposition 0.3.7, we have

HomCMA(Si, Sj) = HomCMA(Si, Sj) = HomH0(A)(Si, Sj),

where 1 ≤ i, j ≤ r. So the condition (1) in Definition 2.5.1 holds. Since CMA = Db
≤0∩Db

≥−d+1 and

HomDb(A)(Si[> 0], Sj) = 0, then we have Si[t] ∈ CMA for 1 ≤ t ≤ d−1 and HomCMA(Si[t], Sj) = 0.
Thus HomCMA(Si[t], Sj) = 0 and the condition (2) in Definition 2.5.1 is true. Now we show the
condition (3′) holds. By Propositions 2.2.3 and 0.3.7, we have

CMA = FiltS[d− 1] ∗ FiltS[d− 2] ∗ · · · ∗ FiltS,

where S =
⊕n

i=1 Si. Thus CMA = add Filt{S, S[1], · · · , S[d− 1]} and (3′) is true. Then the set of
simples forms a d-SMS of CMA. �

To recover the AR quiver A(CMA) of CMA from A(CMA), we need the following result.

Proposition 2.5.7. Let A be a d-self-injective dg k-algebra. Let P ∈ addA be an indecomposable
dg A-module. Then radP is an indecomposable object in CMA and it does not belong to addA.

Proof. Since A is d-self-injective, then CMA = Db
≤0(A) ∩ Db

≥−d+1(A). So radP ∈ CMA. We

have a natural functor H : D(A) → ModH(A) by taking cohomology, where ModH(A) is the
category of graded H(A)-modules. Notice that H(A) is a self-injective graded algebra and H(P )
is an indecomposable projective-injective graded H(A)-module. So H(radP ) = rad(H(P )) is an
indecomposable graded H(A)-module and it does not belong to addH(A). Then the assertion is
true. �
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2.5.3. Combinatorial configurations. We give a combinatorial interpretation of Calabi-Yau
configurations of Dynkin type in our combinatorial framework.

Let ∆ be a Dynkin diagram. Recall from [Ga] that a slice of Z∆ (see Section 0.5 for the definition
of Z∆) is a connected full subquiver which contains a unique representatives of the vertices (r, q),
r ∈ Z for each q ∈ ∆0. For each vertex x = (p, q) of Z∆, there is a unique slice admitting x as
its unique source. We call this slice the slice starting at x. An integer-valued function f on the
vertices of Z∆ is additive if it satisfies the equation f(x) + f(τx) =

∑
y→x∈(Z∆)1

f(y). It is easy to

see that f is determined by its value on a slice. Now we define fx as the additive function which
has value 1 on the slice starting at x for each vertex x. Let Qx be the connected component of the
full subquiver {y ∈ (Z∆)0 | fx(y) > 0} of Z∆ containing x. We define a map hx by

hx(y) =

{
fx(y) if y ∈ (Qx)0;

0 otherwise.

Notice that hx is no longer an additive map. Let us see an example of type D.

Example 2.5.8. Let x be the marked vertex in (ZD4)0. Then the value of hx is given as follows

. . . . . .1 1 2 1 1 000 0

1 1 00

1 1 00

. . . . . .1 1 1 0 0 000 0

1 0 00

0 1 01

Let φ be a weakly admissible automorphism (see Section 0.5) of Z∆. Let π : Z∆ → Z∆/φ be
the natural projection. For x ∈ Z∆, we define hφx as follows

hφx(y) =
∑

π(z)=y

hx(z) for y ∈ (Z∆/φ)0

If φ is identity, then hφ is exactly h. Recall we have defined the “shift permutation” [1] in section
0.5. Now we use hφx and [1] to define combinatorial configurations.

Definition 2.5.9. Let ∆ be a Dynkin diagram and let φ be a weakly admissible group. Let C be
a subset of (Z∆/φ)0. For d ≥ 1, if the following conditions hold

• hφx(y) = δx,y for x, y ∈ C;
• hφx(y[−j]) = 0 for x, y ∈ C and 0 < j ≤ d− 1;
• For any vertex z in (Z∆/φ)0, there exists x ∈ C and 0 ≤ j ≤ d− 1, such that hφx(z[−j]) 6= 0.

we call C a (−d)-combinatorial configuration.

The connection between configurations of Z∆ and configurations of Z∆/φ is given as follows.

Proposition 2.5.10. Let C be a subset of (Z∆/φ)0. Then C is a (−d)-combinatorial configuration
of Z∆/φ if and only if π−1(C) is a (−d)-combinatorial configuration of Z∆.

Proof. Using the definition hGx (y) =
∑
π(z)=y hx(z), it is easy to show the statement. �

Here is a simple example:

Example 2.5.11. We consider the quiver ZA2/S[2],

. . . . . .

(2,2) (0, 1) (1,1) (2,1) (3, 1) (0, 2)

(3, 1) (0, 2) (1,2) (2,2) (0, 1)
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One can check that there only exist seven (−2)-combinatorial configurations. We give all of
them

. . . . . .
. . . . .

. . . . . .
. . . . .

. . . . . .
. . . . .

. . . . . .
. . . . .

. . . . . .
. . . . .

. . . . . .
. . . . .

. . . . . .
. . . . .

2.5.4. Calabi-Yau configurations VS. combinatorial configurations. In this section we
study the connection between Calabi-Yau configurations and combinatorial configurations. Let
T be a Hom-finite Krull-Schmidt triangulated category with AR quiver isomorphic to Z∆/S[d].
We identify the elements in ind T as the vertices in Z∆/S[d]. Let π : Z∆→ Z∆/S[d] be the natural
surjection. We denote by h̄ for the map hS[d]. We first show that

Proposition 2.5.12. For any X,Y ∈ ind T , we have dimHomT (X,Y ) = h̄X(Y ).

To prove this, we consider the free Abelian monoid N≥0(Z∆) generated by (Z∆)0. For any
n ∈ N≥0 and x ∈ (Z∆)0, we define a map fn(x) : N≥0(Z∆)→ N≥0(Z∆) by

fn(x) =


x if n = 0;∑
x→y∈(Z∆)0

y if n = 1;

f1(fn−1(x))− τ−1(fn−2(x)) if n ≥ 2.

By the definition, we have the following lemma immediately.

Lemma 2.5.13. For any vertices x, y in (Z∆)0, the multiplicity of y in
⋃
i≥0 suppfi(x) is hx(y).

For any module M ∼=
⊕l

i=1M
ti
i in T , we identify it as the element

∑l
i=1 tiMi in N≥0Z∆, and

vice versa.

Proposition 2.5.14. [I1, Theorems 4.1 and 7.1] Let X ∈ ind T , then we have a surjective mor-
phism

HomT (fn(X), ?)→ radnT (X, ?)

of functors which induces an isomorphism

HomT (fn(X), ?)/radT (fn(X), ?) ∼= radnT (X, ?)/radn+1
T (X, ?).

Proof of Proposition 2.5.12. Since T is representation-finite, then radnT (X, ?) = 0 for n large
enough. For any X,Y ∈ ind T , we have

dimkHomT (X,Y ) =
∑
i≥0

dimk(radiT (X,Y )/radi+1
T (X,Y ))

=
∑
i≥0

dimk(HomT (fi(X), Y )/radT (fi(X), Y ))

=
∑

π(y)=Y

∑
i≥0

(multiplicity of y in fi(X)) =
∑

π(y)=Y

hX(y) = h̄X(Y )

So the assertion is true. �

The following theorem shows that Calabi-Yau configurations in T coincide with combinatorial
configurations.

Theorem 2.5.15. Let C ⊂ ind T be a subset. Then the following are equivalent:
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(1) C is a (−d)-CY configuration in T ;
(2) C is a (−d)-combinatorial configuration in Z∆/S[d+ 1].

Proof. It directly follows from Proposition 2.5.12. �

Thanks to the theorem above, by abuse of notation, we may use the name “Calabi-Yau config-
uration” even in the combinatorial context.

2.6. Trivial extension dg algebras

In this section, we consider a class of self-injective dg algebras given by trivial extension. Some
results here will be used to prove a certain converse of Theorem 2.5.5 (see Theorem 2.7.1). Let B
be a non-positive proper dg k-algebra. Let inf(B) be the smallest integer i such that Hi(B) 6= 0.
Clearly, inf(B) ≤ 0. For d ∈ Z, we consider the complex A := B ⊕DB[d]. We regard A as a dg
k-algebra whose multiplication is given by

(a, f)(b, g) := (ab, ag + fb)

where a, b ∈ B and f, g ∈ DB, and the differential of A inherits from B and DB. If d ≥ − inf(B),
then A is non-positive. Moreover, we have an isomorphism DA ' A[−d] in DAe. If inf(B) = 0
and d = 0, A is the usual trivial extension.

We give a result analogies to [Ric1, Theorem 3.1].

Proposition 2.6.1. Let B be a non-positive proper dg k-algebra and let X be a silting object
in perB. Let B′ := EndB(X). Consider the trivial extension dg algebras A = B ⊕ DB[d] and
A′ = B′ ⊕DB′[d], then perA is triangle equivalent to perA′.

Proof. We may regard A as a dg B-module through the injection B ↪→ A. Consider the functor

?⊗L
B A : perB −→ perA.

It sends B to A. Since thickB(X) = perB, then thickA(X ⊗B A) = perA. Then X ⊗B A is a
compact generator of DA and we have a triangle equivalence between per End(X ⊗B A) and perA

(see for example [K1, Lemma 4.2]) . Next we consider the dg algebra End(X ⊗B A). Notice that,
as k-complexes, we have the following isomorphisms.

H omA(X ⊗B A,X ⊗B A) 'H omB(X,X ⊕ (X ⊗B DB[d])) ' EndB(X)⊕DEndB(X)[d].

In fact these isomorphisms also induce an isomorphism between dg algebras End(X ⊗B A) and

EndB(X) ⊕DEndB(X)[d]. Then EndA(X ⊗B A) is isomorphic to A′ = B′ ⊕DB′[d]. So perA is
triangle equivalent to perA′. �

In the sequel, we only consider the special case that inf(B) = 0 and B has finite global dimension.
In this case, A is a Gorenstein proper dg k-algebra. If A′ considered in Proposition 2.6.1 is also
Gorenstein proper, then we have CMA ' CMA′ by the result above. We show CMA is a cluster
category in the following sense. For the details of orbit category, we refer to [K2].

Definition 2.6.2. Let B be a finite dimensional hereditary k- algebra. The (−d)-cluster category
C−d(B) is defined as the orbit category Db(modB)/ν[d], where ν is the Nakayama functor.

Keller proved the following result.

Proposition 2.6.3. [K2, Theorem 2][K4] Let B be a finite-dimensional hereditary k-algebra. Let
A = B ⊕DB[d− 1] be the trivial extension dg algebra. Then

(1) C−d(B) has a structure of triangulated category;
(2) C−d(B) is triangle equivalent to Dsg(A).

Notice that in this case Dsg(A) = thickA(B)/ perA holds by the fact thickA(B) = Db(A) (see
Lemma 0.3.5). By using this proposition, we have a useful observation, where we denote by
A(CMA) the AR quiver of CMA.
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Corollary 2.6.4. Let B be a finite-dimensional hereditary k-algebra and let A = B ⊕DB[d − 1]
for d ≥ 1. Then

(1) The stable category CMA is triangle equivalent to C−d(B);
(2) We have A(CMA) = A(Db(modB)/ν[d]) = Z∆/ν[d]. In particular, A(modB) is a full sub-

quiver of A(CMA).

We end this section with a concrete example.

Example 2.6.5. Let B be the k-algebra given by the quiver 1 → 2 ← 3. Let A = B ⊕ DB[1]
be the trivial extension dg k-algebra. Then we may regard A as the dg k-algebra given by

1
α1

88 2

β2

&&
α2

xx
3

β1

ff , with relations {α1α2α1, β1β2β1, α1β2, β1α2, α2α1 − β2β1} and 0 differential.

Further, the degrees of A are induced by degα1 = 0 = deg β1, degα2 = −1 = deg β2. By Corollary
2.6.4, we know the CMA is triangle equivalent to Db(modB)/ν[2]. We describe A(CMA) as follows.

2 1 3
2 2′ 1′ 3′

2′
2

1′ 3′
. . . . . .

1 1′

2′ 3′
2
1′

3
2

2
3′

2
1′

1
2 3 3′

2′ 1′
2
3′

where the arrows are omitted and a fundamental domain is outlined in dotted line. Notice that
the shaded part is exactly the AR quiver of modB.

2.7. CY configurations and symmetric dg algebras

The aim of this section is to show the following theorem, which is the converse of Theorem 2.5.5.

Theorem 2.7.1. Let ∆ be a Dynkin diagram and d ≥ 1. Let C be a subset of vertices of Z∆/S[d].
The following are equivalent.

(1) C is a (−d)-CY configuration;
(2) There exists a d-symmetric dg k-algebra A with the AR quiver of CMA is (Z∆)C/S[d].

To prove this, we need some preparations. We first study the connection between simple-minded
collections (SMCs) in Db(A) and (−d)-CY configurations in CMA.

2.7.1. (−d)-CY configurations are given by SMCs. In this subsection, our aim is to show the
following result, which plays a key role in the proof of Theorem 2.7.1.

Theorem 2.7.2. Let ∆ be a Dynkin diagram. Let A = k∆⊕D(k∆)[d− 1] be the trivial extension
dg k-algebra. Then the quotient functor Db(A)→ Dsg(A) ∼= CMA induces a surjective map

{SMCs in Db(A)} −→ {(−d)-CY configurations in CMA}.

Notice that in this setting, the notion ‘d-SMS’ coincides with ‘(−d)-CY configuration’ by [CSP,
Proposition 2.13], since CMA has only finitely many indecomposable objects. So we may regard
(−d)-CY configuration and d-SMS as the same notion later in this section.

Let R be a pre-SMC of Db(A). Recall the SMC reduction U of Db(A) with respect to R is defined
as the Verdier quotient (see Section 1.2.1)

U := Db(A)/ thick(R).

Let E be a pre-d-SMS of Dsg(A). The SMS reduction (Dsg(A))E of Dsg(A) with respect to E is
defined as the subcategory (see [CSP, Section 6])

(Dsg(A))E := {X ∈ Dsg | HomDsg(A)(X,Y [−i]) = 0 for any i = 0, 1, · · · , d and Y ∈ E}.

Let us recall some important properties of SMC and SMS reduction for later use.
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Proposition 2.7.3. (1) (Theorem 1.2.1) Let R be a pre-SMC of Db(A). Assume Filt(R) is func-
torially finite in Db(A). Then the natural functor Db(A)→ U induces a bijection

{SMCs in Db(A) containing R} ←→ {SMCs in U};

(2) [CSP, Theorem 6.6] Let E be a pre-d-SMS of Dsg(A). Assume Filt(E) is functorially finite in
Dsg(A). Then the SMS reduction (Dsg(A))E has a structure of triangulated category and there
is a bijection

{d-SMSs in Dsg(A) containing E} ←→ {d-SMSs in (Dsg(A))E};

(3) (Corollary 1.3.15 and Proposition 1.4.1) Let A be a representation finite d-self-injective dg
algebra. Then the quotient functor Db(A)→ Dsg(A) ∼= CMA induces a well-defined map

{SMCs in Db(A)} −→ {d-SMSs in CMA}.

Now we are ready to show Theorem 2.7.2.

Proof of Theorem 2.7.2. We first mention that CMA is triangle equivalent to the orbit category
Db(mod k∆)/ν[d] and the AR quiver of CMA is Z∆/S[d] by Corollary 2.6.4. Moreover, we may
assume ∆ has an alternating orientation (that is, each vertex in ∆ is either sink or source). We
apply induction on the number n of vertices of ∆. If n = 1, then ∆ = A1. In this case, any
indecomposable object in CMA is a shift of the simple object and the argument is clearly true.

For the general case, let C be a (−d)-CY configuration in CMA. Since the quiver ∆ has an
alternating orientation, each τ -orbit in the AR quiver of mod k∆ contains a simple k∆-module.
Then by Corollary 2.6.4 (2), there exists a simple dg A-module S and an integer s, such that
τsS ∈ C in CMA. Notice that τ = S[−1] and S = [−d], so we have S[t] ∈ C, where t = −sd.
Without loss of generality, in the following we may assume S ∈ C.

It is clear that {S} is a pre-SMC in Db(A), and the SMC reduction Db(A)/ thick(S) is triangle
equivalent to Db(eAe) by [Ji2, Proposition 3.9], where e ∈ k∆ is an idempotent such that top(1−
e)A = S. Considering the SMS reduction (Dsg(A))S of Dsg(A) with respect to S, then by [Ji2,
Theorem 6.4], we have a triangle equivalence Dsg(eAe) ' (Dsg(A))S and the following commutative
diagram.

{SMCs in Db(A) containing S} //

'

��

{d-SMSs in Dsg(A) containing S}

'

��
{SMCs in Db(eAe)} // {d-SMSs in Dsg(eAe)}

.

Notice that eAe ∼= k∆′⊕D(k∆′)[d−1], where ∆′ is obtained from ∆ by deleting the vertex i, which
corresponds to S, and the arrows connected to i. Then ∆′ also has an alternating orientation and
has n−1 vertices. By induction, we may assume the lower map is surjective. Since C is a (−d)-CY
configuration in Dsg(A) containing S, then C\{S} is a (−d)-CY configuration in (Dsg(A))S by
Proposition 2.7.3 (2). So there is a SMC H of Db(eAe) such that H ∼= C\{S} in Dsg(eAe). We
may regard H as a subset of Db(A)/ thick(S) through Db(eAe) ' Db(A)/ thick(S). Then H ∪ {S}
is a SMC of Db(A) by Proposition 2.7.3 (1). By the diagram above, we have that H ∪ {S} sends
to C in Dsg(A). By induction, the assertion is true. �

2.7.2. Proof of Theorem 2.7.1. To prove our main theorem, we need the following generalization
of SMC-silting bijection [KoY, Theorem 6.1] due to [SY].

Proposition 2.7.4. [SY, Theorem 1.1] Let A be a non-positive proper dg k-algebra. Then

(1) There is a bijection

{SMCs of Db(A)} ←→ {silting objects of perA};
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(2) Let {X1, · · · , Xn} be a SMC of Db(A) which corresponds to a silting P ∈ perA. Let B :=
EndA(P ) be the endmoprhism dg k-algebra. Then the natural equivalence ? ⊗L

B P : Db(B) →
Db(A) sends simple B-modules to {X1, · · · , Xn}.

We also need the following observation.

Lemma 2.7.5. Let A be a proper dg k-algebra and let P be a silting dg A-modules. Let B :=
EndA(P ). Then if A is d-symmetric, so is B.

Proof. Let A be a d-symmetric dg k-algebra, that is addA[−d+ 1] = addDA in D(Aop ⊗k A). We
may assume DA ∼= A[−d + 1] in D(Aop ⊗k A). We may also assume DA and A have property
(P) as (Aop ⊗k A)-modules and P has property (P) as (Bop ⊗k A)-module (see [K1, Section 3.1]).
Then there is a quasi-isomorphim f : A → DA[d − 1] of (Aop ⊗k A)-modules, which induces a
quasi-isomorphism 1⊗ f : P → P ⊗A DA[d− 1] of (Bop ⊗k A)-modules.

Applying the functor H omA(P, ?), we have a quasi-isomorphism B →H omA(P, P⊗ADA[d−1])
of Bop ⊗k B-modules. Notice that we have an isomorphism

H omA(P, P ⊗A DA[d− 1]) ∼= DH omA(P, P )[d− 1] = DB[d− 1]

of (Bop ⊗k B)-modules, then B ∼= DB[d− 1] in D(B). Thus B is also d-symmetric. �

Now we are ready to prove Theorem 2.7.1.

Proof of Theorem 2.7.1. Let C be a (−d)-CY configuration of Z∆/S[d]. Let A = k∆⊕D(k∆)[d−1]
be the trivial extension dg algebra. We may regard C as a (−d)-CY configuration in CMA. There
is a SMC {X1, · · · , Xn} in Db(A) which is sent to C in CMA by Theorem 2.7.2 and there exists
a silting object P in perA corresponds to {X1, · · · , Xn} by Proposition 2.7.4. Let B = EndA(P ).
Then B is a d-symmetric dg k-algebra by Lemma 2.7.5 and moreover, CMB is triangle equivalent
to CMA. By Proposition 2.7.4, the simple modules of B corresponds to {X1, · · · , Xn}. Then the
AR quiver of CMB is isomorphic to (Z∆)C/S[d]. �

2.8. Maximal d-Brauer relations and Brauer tree dg algebras

In the section, we give a combinatorial proof of Theorem 2.7.1 for the case ∆ = An. We will
see in An case, there is a very nice description of (−d)-CY configurations by maximal d-Brauer
relations. We develop some technical concepts and results on them. Then we introduce Brauer
tree dg algebras from maximal d-Brauer relations and we show the simples of such dg algebras
correspond to the given CY configurations.

2.8.1. Maximal d-Brauer relations. We start with the following definition.

Definition 2.8.1. Let d ≥ 1 and n > 0 be two integers and let N := (d+ 1)n+ d− 1. Let Π be
an N -gon with vertices numbered clockwise from 1 to N .

(1) A diagonal in Π is a straight line segment that joins two of the vertices and goes through the
interior of Π. The diagonal which joins two vertices i and j is denoted by (i, j) = (j, i).

(2) A d-diagonal in Π is a diagonal of the form (i, i+ d+ j(d+ 1)), where 0 ≤ j ≤ n− 1.

The definition of maximal d-Brauer relation is as follows. It is some special kind of 2-Brauer
relation in the sense of [L, Definition 6.1].

Definition 2.8.2. Let B be a set of d-diagonals in Π. We call B a d-Brauer relation of Π if any
two d-diagonals in B are disjoint. We call a d-Brauer relation B maximal, if it is maximal with
respect to inclusions.

We denote by B the set of maximal d-Brauer relations on Π. Let θ be the clockwise rotation
by 2π/N . If I = (i1, i2) is a diagonal, then θt(I) = (i1 + t, i2 + t) gives us a new diagonal. For
any B,B′ ∈ B, if there exists n ∈ Z such that B = θn(B′), we say B and B′ are equivalent up to
rotation, denoting by B ∼ B′. It gives rise to an equivalence relation on B. We denote by B the
set of equivalence classes of B. We give two simple examples to show what the maximal d-Brauer
relations look like.
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Example 2.8.3. Let d = 2 and n = 2. Then N = 7 and B consists of the following and #B = 1.

1

2
3

4

5

6
7

1

2
3

4

5

6
7

1

2
3

4

5

6
7

1

2
3

4

5

6
7

1

2
3

4

5

6
7

1

2
3

4

5

6
7

1

2
3

4

5

6
7

Example 2.8.4. Let d = 2 and n = 3. Then N = 10, #B = 30 and B consists of the following.

1

2

34

5

6

7

8 9

10

1

2

34

5

6

7

8 9

10

1

2

34

5

6

7

8 9

10

1

2

34

5

6

7

8 9

10

Now we give a description of (−d)-Calabi-Yau configurations of type An by using maximal
d-Brauer relations. To each vertex in ZAn, we associate a label in Z× Z as follows.

· · ·· · · · · · · · ·

(1, d + 1)

(1, 2d + 2)

(1, 3d + 3)

(1, (n− 1)(d + 1))

(1, n(d + 1))

(d + 2, 2d + 2)

(d + 2, 3d + 3)

(d + 2, 4d + 4)

(d + 2, n(d + 1))

(d + 2, (n + 1)(d + 1))

(2d + 3, 3d + 3)

(2d + 3, 4d + 4)

(2d + 3, 5d + 5)

(2d + 3, (n + 1)(d + 1))

(2d + 3, (n + 2)(d + 1))

Let ZAn,d be the stable translation quiver ZAn/S[d]. Since by the labelling above, S[d] sends
(i, j) to (i+N, j +N) if d is even, and to (j +N, i+N) if d is odd, then we may label ZAn,d by
taking the labelling in Z/NZ×Z/NZ, where we identify (i, j) and (j, i). Let us see some examples.

Example 2.8.5. (1) Let d = 1 and n = 4. In this case, the labelling on Z4,0 is as follows.

(1, 2) (3, 4) (5, 6) (7, 8) (1, 2)

(7, 2) (1, 4) (3, 6) (5, 8) (7, 2)

(7, 4) (1, 6) (3, 8) (5, 2) (7, 4)

(5, 4) (7, 6) (1, 8) (3, 2) (5, 4)

(2) Let d = 2 and n = 4. Then the labelling on Z4,1 is as follows.

(11, 13) (1, 3) (4, 6) (7, 9) (10, 12) (13, 2) (3, 5) (6, 8)

(11, 3) (1, 6) (4, 9) (7, 12) (10, 2) (13, 5) (3, 8)

(8, 3) (11, 6) (1, 9) (4, 12) (7, 2) (10, 5) (13, 8) (3, 11)

(8, 6) (11, 9) (1, 12) (4, 2) (7, 5) (10, 8) (13, 11)

By the labelling above, we have the following theorem. This result has been show in [CS2],
we put a new proof in Appendix by using concepts developed here. Let C be the set of (−d)-CY
configurations in ZAn,d.

Theorem 2.8.6. [CS2, Theorem 6.5]

(1) There is a bijection between the vertices of ZAn,d and the d-diagonals in Π sending the vertex
(i, j) of ZAn,d to the diagonal (i, j) of Π.
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(2) The bijection in (1) gives a bijection between C and B;
(3) Any (−d)-CY configuration in ZAn,d contains exactly n elements.

We give an example to show how the bijection works.

Example 2.8.7. Let n = 2 and d = 2. We associate to each vertex of ZA2,1 a label in Z/7Z×Z/7Z
as following:

(1, 6) (4, 2) (7, 5) .(5, 3).

(5, 7) (1, 3) (4, 6) (7, 2) (3, 5)

It is easy to check the set {(4, 6), (7, 2)} is a (−2)-CY configuration of ZA2,1 and it gives rise to
a maximal d-Brauer relation of 7-gon as follows (left part):

2
1

7

6

5
4

3

2
1

7

6

5
4

3

On the other hand, any maximal d-Brauer relation, for example {(2, 4), (7, 5)}, gives us a (−2)-
CY configuration in ZA2,1.

The following lemma is immediately from the definition.

Lemma 2.8.8. Let X ∈ ZAn,d with labelling (x1, x2). Then X[1] = (x1 + 1, x2 + 1) and X[1] =
θ(X) as d-diagonals.

In the rest of this subsection, we introduce some technical concepts and results. They give us a
better understanding of maximal d-Brauer relations and in particular, Proposition 2.8.16 will play
a crucial role in the proof of Theorem 2.8.32.

Definition 2.8.9. (1) Let C be a set of diagonals in Π. We call C a cycle if C is contained in the
closure of some connect component (denoted by ΠC) of the subset Π\

⋃
X∈C X of Π. In this

case, elements in C has a anti-clockwise ordering C = {X1, · · · , Xs} given as follows.

X1

X2

Xs−1
Xs

(2) Let B ∈ B and C ⊂ B. We call C a B-cycle if C is a cycle and {X ∈ B | X ∈ ΠC} = C.

Example 2.8.10. Let d = 2 and n = 4. Let B be the following maximal d-Brauer relation.

1

2

3
45

6

7

8

9
10 11

12

13

By the definition above, C = {(2, 4), (5, 7), (10, 12)} is a cycle but not a B-cycle and C ′ =
{(2, 4), (5, 7), (1, 9)} is a B-cycle.

Here are some elementary properties of these concepts. The proof is left to the reader.

Proposition 2.8.11. Let B ∈ B, then

(1) B is the union of B-cycles;
(2) Any two B-cycles have at most one common diagonal;
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(3) Let C := {X1, . . . , Xs} be a set of diagonals in Π. Let Xs+1 := X1. Then C is a cycle if and
only if for any i, 2 ≤ i ≤ s, Xi−1 and Xi+1 are in the same connect component of Π\Xi

(4) Let X,Y ∈ B. Then X and Y are in the same B-cycle if and only if for any Z 6= X,Y in B,
X and Y are in the same connected component part of Π\Z

(5) Let X,Y, Z ∈ B. X and Y are in the same connected component of Π\Z if and only if there
is a sequence X = X1, X2, · · · , Xt = Y of B, such that Y 6= Xi, 1 ≤ i ≤ t and Xj , Xj+1 are
in the same B-cycle for 1 ≤ j ≤ t− 1.

We give an easy observation.

Lemma 2.8.12. Let B ∈ B and X ∈ B. Let Π1 and Π2 be two connect components of Π\X.
Then

(1) B ∩Πi := {Y ∈ B | Y ⊂ Πi} is a maximal d-Brauer relation of Πi for i = 1, 2;
(2) If X has the form (i, i+ d+ 1 + (d+ 2)j), then {#B ∩Π1,#B ∩Π2} = {j, n− j − 1}.

Let X and Y be two disjoint d-diagonals. We denote by δ(X,Y ) the smallest positive integer
m such that θ−m(X) ∩ Y 6= ∅.

Remark 2.8.13. Let X,Y ∈ ZAn,d. If X and Y are disjoint as d-diagonals, then δ(X,Y ) =
min{i > 0 | h̄X(Y [i]) 6= 0} by Lemma 2.8.8.

We will give a description of B-cycles by δ. Before this, we show a lemma. Let Ss be the
permutation group.

Lemma 2.8.14. Let B ∈ B and let C ⊂ B be a cycle with anti-clockwise ordering {X1, · · · , Xs}.
Let ΠC be the connect component of Π\C given in Definition 2.8.9. Let Xs+1 = X1. Then the
following statement holds.

(1) Let m = #(B ∩ΠC), then
∑s
l=1 δ(Xl, Xl+1) = d+ s+ (d+ 1)m− 1;

(2) For any τ ∈ Ss, we have
∑s
l=1 δ(Xτ(l), Xτ(l+1)) ≥ d+ s+ (d+ 1)m−1. Moreover, the equality

holds if and only if τ(l + 1) = τ(l) + 1 for all 1 ≤ l ≤ s;
(3) C is a B-cycle if and only if

∑s
l=1 δ(Xl, Xl+1) = d+ s− 1.

Proof. (1) AssumeXi has the form (xi, yi) as follows, where yi = xi+d+(d+1)ji with 0 ≤ ji ≤ n−1.

ΠC

X1

y1

x1

y2

x2

X2

ys−1

xs−1 ys

xs

Xs−1
Xs

Since by definition, δ(Xi, Xi+1) = 1+ the number of vertices between Xi and Xi+1 (anti-clockwise),
then

∑s
l=1 δ(Xl, Xl+1) = s + #ΠC . We count Π\ΠC first. By our labelling, it is easy to see the

number of vertices in Π\ΠC is
∑s
i=1(d+ 1)(ji + 1). Then

∑s
l=1 δ(Xl, Xl+1) = s+ d+ (d+ 1)(n−∑s

i (ji + 1)) − 1. By Lemma 2.8.12 (2), #B ∩ (Π\ΠC) =
∑s
i=1(ji + 1). Then by Theorem 2.8.6

(3), m = #B ∩ΠC = n−
∑s
i (ji + 1). Thus

∑s
l=1 δ(Xl, Xl+1) = d+ s+ (d+ 1)m− 1.

(2) For any τ ∈ Sn, we have δ(Xτ(l), Xτ(l+1)) ≥ δ(Xτ(l), Xτ(l)+1) and the equality holds if and
only if τ(l + 1) = τ(l) + 1. Then by (1),

s∑
l=1

δ(Xτ(l), Xτ(l+1)) ≥
s∑
l=1

δ(Xτ(l), Xτ(l)+1) = d+ s+ (d+ 1)m− 1.

(3) By Definition 2.8.9, C is a B-cycle if and only if m = 0, then by (1), it holds if and only if∑s
l=1 δ(Xl, Xl+1) = d+ s− 1. �

The following proposition gives us a useful criterion for being B-cycle.
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Proposition 2.8.15. Let B ∈ B and let C be a subset of B. Then C is a B-cycle if and only if
there is a numbering C = {X1, . . . , Xs} such that

∑s
l=1 δ(Xl, Xl+1) = d+s−1, where Xs+1 = X1.

In this case, {X1, . . . , Xs} is an anti-clockwise ordering or C.

Proof. The “only if” part. Assume C is a B-cycle with anti-clockwise ordering {X1, · · · , Xl}, then
by Lemma 2.8.14 (1),

∑s
l=1 δ(Xl, Xl+1) = d+ s− 1.

The “if” part. To prove C is a B-cycle, it suffices to show C is a cycle by Lemma 2.8.14 (2)
and (3). If it is not true, then by Proposition 2.8.11 (3), there exists some i, 2 ≤ i ≤ s, such that
Xi−1 and Xi+1 are in different connect components of Π\Xi as follows.

Xi+1

Xi

Xi−1

In this case, we have

δ(Xi−1, Xi) + δ(Xi, Xi+1) = δ(Xi−1, Xi+1). (2.8.1)

Now consider the new set C ′ := C\Xi. If it is a cycle, then it is clear that Xi ∈ B ∩ ΠC′ , where
ΠC′ is the connected component given in Definition 2.8.9 (1). Then #B ∩ΠC′ ≥ 1 and by Lemma
2.8.14 (2), the following inequality holds.

i−2∑
l=1

δ(Xl, Xl+1) + δ(Xi−1, Xi+1) +

s∑
l=i+1

δ(Xl, Xl+1) ≥ 2d+ s− 1. (2.8.2)

Notice that by equation (2.8.1), the left hand of (2.8.2) equals d+s−1. Then d+s−1 ≥ 2d+s−1,
a contradiction. If C ′ is not a cycle, we do the same thing on C ′ as on C, and after finite steps,
we get a contradiction. Thus C is a cycle, therefore a B-cycle. �

Let B ∈ B. Then B is determined by B-cycles in the following sense.

Proposition 2.8.16. Let B,B′ ∈ B and let φ : B → B′ be a bijective map. If for any B-cycle C
with anti-clockwise ordering C = {X1, · · · , Xs}, we have δ(Xi, Xi+1) = δ(φ(Xi), φ(Xi+1)). Then
φ is the restriction of θn for some integer n, that is, B is isomorphic to B′ up to rotation.

To prove this proposition, we need prepare several lemmas.

Lemma 2.8.17. Let B,B′ and φ as above. Let C = {X1, · · · , Xs} be a subset of B. The following
are equiavlent.

(1) C = {X1, · · · , Xs} is a B-cycle with anti-clockwise ordering;
(2) φ(C) = {φ(X1), · · · , φ(Xs)} is a B′-cycle with anti-clockwise ordering.

Proof. (1) to (2). If C = {X1, · · · , Xs} is a B-cycle with anti-clockwise ordering, then

s∑
i=1

δ(φ(Xi), φ(Xi+1)) =

s∑
i=1

δ(Xi, Xi+1) = d+ s− 1.

Then by Proposition 2.8.15, φ(C) = {φ(X1), · · · , φ(Xs)} is a B′-cycle with anti-clockwise ordering.
(2) to (1). It is suffices to show if φ(Xi) and φ(Xj) are in the same B′-cycle, then so are Xi

and Xj . If it is not true, then by Proposition 2.8.11, there exists Y ∈ B, such that Xi and Xj are
in different connected component of Π\Y , which is contradict to Lemma 2.8.18 below. �

Lemma 2.8.18. Let X,Y, Z ∈ B. Then X,Y are in the same connected component of Π\Z if and
only if φ(X) and φ(Y ) are in the same connected component of Π\φ(Z).

Proof. It is immediately from Proposition 2.8.11 (5) and Lemma 2.8.17 (1) to (2) part. �
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Proof of Proposition 2.8.16. We first show for any X in B, X and φ(X) have the same length. Let
X = (x, x + d + (d + 1)j) ∈ B, 1 ≤ j ≤ n − 1. Let Π1 and Π2 be the connected components of
Π\X. By Lemma 2.8.12, j is determined by the set {#B ∩Π1,#B ∩Π2}. Since by Lemma 2.8.18,
{#B ∩ Π1,#B ∩ Π2} = {#B′ ∩ Π′1,#B

′ ∩ Π′2}, then φ(X) has the form (x′, x′ + d + (d + 1)j),
where Π′1 and Π′2 are the connected components of B′\φ(X). So there is an integer n, such that
φ(X) = θn(X).

We claim θn(B) = B′. Let C = {X = X1, · · · , Xs} be a B-cycle. Since δ(Xi, Xi+1) =
δ(φ(Xi), φ(Xi+1)), then φ(C) = θn(C). For any Y ∈ B, Y and X are connected by a series of
B-cycles, thus θn(B) = φ(B) holds. �

2.8.2. The cardinality of maximal d-Brauer relations. In this section, we compute the cardi-
nality of maximal Brauer relations. Let d ≥ 1 and n > 0 be two integers. Let Π be a ((d+1)n+d−1)-
gon. Recall we denote by B the set of maximal d-Brauer relations on Π. We have the following
theorem.

Theorem 2.8.19. #B = 1
n+1

(
(d+1)n+d−1

n

)
.

Corollary 2.8.20. There are 1
n+1

(
(d+1)n+d−1

n

)
different (−d)-CY configurations in ZAn,d.

Remark 2.8.21. For the classical case d = 1, the cardinality of Riedtmann’s configurations in
ZAn,d is given by the positive Fuss-Catalan number (see [CS1, Corollary 5.8]).

Let V := { subset V of vertices of Π such that #V = n }. Then the cardinality of V is
(

(d+1)n+d−1
n

)
.

The main idea of the proof of Theorem 2.8.19 is to construct a surjective map from V to B. For
any V ∈ V, to construct a maximal d-Brauer relation corresponds to V , we need the following
observation.

Lemma 2.8.22. Let V = {v1, . . . , vn} ∈ V. Then for any vi ∈ V , there exists a d-diagonal with
the form (vi, vi + d+ (d+ 1)ai), 0 ≤ ai ≤ n− 1, such that

#{v ∈ V | vi < v < vi + d+ (d+ 1)ai} = ai

and vi + d+ (d+ 1)ai 6∈ V .

Proof. Let bi ∈ {0, 1, 2, . . . , n− 1} be the biggest number such that vi + d + (d + 1)bi 6∈ V . Since
#V = n, then

#{v ∈ V | vi < v < vi + d+ (d+ 1)bi} ≤ bi.
On the other hand, we have

#{v ∈ V | vi < v < vi + d} ≥ 0.

So there exists 0 ≤ ai ≤ bi satisfies our conditions. �

For any vi ∈ V , let Jvi = (vi, wi := vi + d + (d + 1)ai) be the d-diagonal such that ai is the
smallest number satisfies the conditions in Lemma 2.8.22. We have the following result.

Proposition 2.8.23. Let V = {v1, . . . , vn} ∈ V. Then {Jv1
, . . . , Jvn} defined above is a maximal

d-Brauer relation on Π.

Before prove this proposition, we give some basic properties of Jvi first.

Lemma 2.8.24. Let Jvi = (vi, wi = vi + d+ (d+ 1)ai) defined as above, then

(1) For any 0 ≤ ci < ai, we have

#{v ∈ V | vi < v ≤ vi + d+ (d+ 1)ci} > ci.

(2)

#{v ∈ V | vi + d+ (d+ 1)(ai − 1) < v < vi + d+ (d+ 1)ai} = 0.
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Proof. (1) If #{v ∈ V | vi < v ≤ vi + d+ (d+ 1)ci} ≤ ci, then we can find 0 ≤ di ≤ ci, such that
di satisfies the conditions in Lemma 2.8.22, it contradicts the minimality of ai. Then the assertion
is true.

(2) By (1), we have #{v ∈ V | vi < v ≤ vi + d+ (d+ 1)(ai − 1)} > ai − 1. On the other hand,
#{v ∈ V | vi < v < vi + d+ (d+ 1)ai} = ai, then the statement holds clearly. �

Proof of Proposition 2.8.23. By Theorem 2.8.6, we only need to show that any two diagonals in
{Jv1 , . . . , Jvn} are disjoint. Let vi, vj ∈ V . If neither vj < vi < wj nor vi < vj < wi holds, then
it is clear Jvi and Jvj are disjoint. Otherwise, we may assume vj < vi < wj . It suffices to show
vj < ui < wj . We consider the following two cases.

If vj + d+ (d+ 1)bj < vi ≤ vj + d+ (d+ 1)(bj + 1), for some 0 ≤ bj < aj . By Lemma 2.8.24 (2),
we know that bj + 1 ≤ aj − 1. Consider the diagonal (vi, vi + d + (d + 1)(aj − bj − 2)), we claim
that

#{v ∈ V | vi < v ≤ vi + d+ (d+ 1)(aj − bj − 2)} ≤ aj − bj − 2.

Indeed by Lemma 2.8.24 (1),

#{v ∈ V | vj < v ≤ vj + d+ (d+ 1)bj} > bj ,

and by the definition of wj ,

#{v ∈ V | vj < v < vj + d+ (d+ 1)ai} = ai.

Then #{v ∈ V | v 6= vi and vj + d+ (d+ 1)bj < v < wj} ≤ aj − bj − 2. So the claim is true and
ai ≤ aj − bj − 2 < aj . Then wi < wj and Jvi and Jvj are disjoint.

If vj < vi ≤ vj + d. Consider the diagonal (vi, vi + d + (d + 1)(aj − 1)). It is clear that
#{v ∈ V | vi < v ≤ vi + d + (d + 1)(aj − 1)} ≤ aj − 1. Then ai ≤ aj − 1 < aj . So wi < wj .
Moreover, Yvi and Yvj are disjoint.

Thus {Jv1
, . . . , Jvn} is a maximal d-Brauer relation. �

Now we can construct a map Θ : V −→ B by sending V ∈ V to Θ(V ) := {Jv | v ∈ V }. By
Proposition 2.8.23, it is well defined. Next for B ∈ B, we need to determine the preimage of B.

Lemma 2.8.25. Let Θ be defined as above. Then Θ is surjective. More precisely, for any B ∈ B,
we have #{V ∈ V | Θ(V ) = B} = n+ 1.

Proof. Let B = {X1, . . . , Xn} be a maximal d-Brauer relation. Assume Xt has the form (xt, yt)
for 1 ≤ t ≤ n. Given any xt, we construct a set Vxt

∈ V as follows.

(1) For any 1 ≤ s ≤ n, one of xs and ys belongs to Vxt
;

(2) is ∈ Vit if and only if it ≤ is < js by clockwise ordering.

We construct Vyt in a similar way. It is easy to show Θ(Vxt
) = Θ(Vyt) = B. Then Θ is surjective.

We claim that #{Vxt
, Vyt | 1 ≤ t ≤ n} = n+ 1. We show this by induction. If n = 1, it is clear.

Assume the claim holds for n ≤ m − 1. For the case n = m. Let Π1 and Π2 be the two connect
components of Π\Xi. Assume yi = xi+d+(d+1)j, where 0 ≤ j ≤ n−1. By Lemma 2.8.12, B∩Πl

is a maximal d-Brauer relation on Πl, 1 ≤ l ≤ 2 and moreover {#B∩Π1,#B∩Π2} = {m−j−1, j}.
Then by induction, #{Vxt

, Vyt | 1 ≤ t ≤ n} = (m− j − 1 + 1) + (j + 1) = m+ 1. So the claim is
true.

For V ∈ Θ−1(B), by our construction of {Jv | v ∈ V }, one can show that V is given by some
Vxt or Vyt . Thus by the claim above #{V ∈ V | Θ(V ) = B} = n+ 1. �

Theorem 2.8.19 is deduced by the Lemma 2.8.25 directly.

Proof of Theorem 2.8.19. By Lemma 2.8.25, we know #B = 1
n+1#V = 1

n+1

(
(d+1)n+d−1

n

)
. �



SIMPLE-MINDED OBJECTS AND CM DG MODULES 57

2.8.3. Brauer tree dg algebras. We first introduce a graded quiver from given maximal d-Brauer
relation in the following way.

Definition 2.8.26. Let B ∈ B. The graded quiver QB associated to B is defined as follows.

(1) The vertices of QB are given by the d-diagonals in B;
(2) For any B-cycle C with anti-clockwise ordering {X1, · · · , Xs}, we draw arrows Xi → Xi+1

with degree 1− δ(Xi, Xi+1), where 1 ≤ i ≤ s and Xs+1 = X1.

We say a cycle in QB is minimal, if it is given by some B-cycle.

In Example 2.8.4, we give the maximal d-Brauer relations for the case d = 2 and n = 3. Now
we draw the d-Brauer quivers associate to them.

Example 2.8.27. Let d = 2 and n = 3. The graded quivers associate to the maximal d-Brauer
relations are as follows.

1
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•
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•
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where the quivers are drawn by red lines and the numbers with red color are degrees correspond
to the arrows near them.

We give some basic properties on QB , which are induced by Proposition 2.8.11 and Lemma
2.8.14 (2).

Proposition 2.8.28. Let B ∈ B. Then QB satisfies the following

(1) Every vertex of Q belongs to one or two minimal cycles;
(2) Any two minimal cycles meet in one vertex at most;
(3) There are no loops in Q;
(4) Every arrow is equipped with a non-positive degree and the sum of degrees of each minimal

cycle is −d+ 1.

Remark 2.8.29. The above properties (1), (2), (3) imply that QB a Brauer quiver in the sense
of Gabriel and Riedtmann (see [GR]).

Now we introduce the following main object in this section.

Definition 2.8.30. Let B ∈ B. The Brauer tree dg algebra AQB
is defined as kQB/IB with zero

differential and grading given by that of QB , where the admissible ideal IB is generated by the
following relations.

(1) For any minimal cycle

X1
α1−→ X2 −→ · · · −→ Xm−1

αm−1−−−−→ Xm
αm−−→ X1,

αiαi+1 · · ·αmα1 · · ·αi ∈ I for each 1 ≤ i ≤ m;
(2) If X is the common d-diagonal of two B-cycles

X = X1
α1−→ X2 −→ · · · −→ Xm−1

αm−1−−−−→ Xm
αm−−→ X1

X = Y1
β1−→ Y2 −→ · · · −→ Ys−1

βm−1−−−→ Ys
βs−→ Y1,

then βsα1 ∈ I and αmβ1 ∈ I and α1α2 · · ·αm − β1β2 · · ·βs ∈ I.
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The following proposition is an easy generalization of well-known result for ungraded case.

Proposition 2.8.31. The dg algebra AQB
is d-symmetric.

Now we are ready to state the following main result, which implies Theorem 2.7.1 for the case
∆ = An. Recall from Definition 0.5.1 the definition of (ZAn,d)C .

Theorem 2.8.32. Let B be a maximal d-Brauer relation on ((d+ 1)n+ d− 1)-gon and let C be
the (−d)-CY configuration in ZAn,d corresponding to B. Then for the Brauer tree dg algebra AQB

,
the AR quiver of CMAQB

is isomorphic to (ZAn,d)C .

The outline of our proof is the following. Consider the (−d)-CY configuration CA given by the
simples of AQB

. Then the AR quiver of CMAQB
is isomorphic to (ZAn,d)CA

. So we only need to
show C = CA. To show this, let BA be the maximal d-Brauer relation corresponds to CA.

C ←→ B −→ AQB

simples−−−−→ CA ←→ BA

Then it suffices to prove B is isomorphic to BA up to rotation.
We first describe the AR quiver of the stable category CMAQB

.

Proposition 2.8.33. The AR quiver of CMAQB
is ZAn,d.

To prove this proposition, we need some observations. Let Y ∈ (QB)0 be a vertex and a ∈ Z.
We construct a new graded quiver QY,a. It is isomorphic to QB as ungraded quiver. The degrees
of arrows ending at Y and starting at Y are changed as follows.

Y

b1

b2

c1

c2

QB

Y

b1 + a

b2 − a

c1 + a

c2 − a

QY,a

And other degrees of arrows are the same as in QB . Let TY,a := PY [a]
⊕

(
⊕

Y ′∈B,Y ′ 6=Y PY ′) be
a dg AQB

-module, where PY is the indecomposable projective module corresponds to the vertex
Y . Consider the Brauer tree dg algebra AQY,a

. Then one can show that AQY,a
is isomorphic to

the endmorphism dg algebra End(TY,a). Immediately, we have

Lemma 2.8.34. The functor RH om(TY,a, ?) induces a triangle equivalence Db(AQB
)/ perAQB

→
Db(AQY,a

)/ perAQY,a
.

Proof. It is clear that TY,a is a compact generator of perAQB
. Then RH om(TY,a, ?) : perAQB

→
perAQY,a

is an equivalence, which induces a triangle equivalence Db(AQB
) → Db(AQY,a

). Thus
the assertion is true. �

Now we prove Proposition 2.8.33 by adjusting degrees of QB to some special case.

Proof of Proposition 2.8.33. Let B ∈ B. We say QB is admissible if each minimal cycle in QB has
an arrow with degree −d+ 1 and other arrows with degree 0. We consider the following two cases.

(1) If QB is admissible. Let D be the set of arrows in QB with degree −d + 1. It is an
admissible cutting set in the sense of [FP, Schr]. Therefore AQB

is isomorphic to the trivial
extension Λ ⊕ DΛ[d − 1] by [Schr, Theorem 1.3], where Λ is the factor algebra AQB

/(D). By
Corollary 2.6.4, CM(AQB

) is triangle equivalent to Db(modΛ)/ν[d]. By [H1, Theorem 6.7], Λ is an
iterated titled algebra of type An. So the AR-quiver of CM(AQB

) is given by ZAn,d.
(2) For general QB . We claim there exists B′ ∈ B, such that QB′ is admissible and there is

a triangle equivalence CM(AQB
)
∼−→ CM(AQB′ ). In fact, we can start from any minimal cycle.

Under a suitable ordering, we may change the degrees of QB to obtain an admissible quiver
QB′ step by step by our discussion above. Then by Theorem 2.2.4 (3) and by Lemma 2.8.34,
CMAQB

= Db(AQB
)/ perAQB

is triangle equivalence to CMAQB′ = Db(AQB′ )/ perAQB′ . Then by
(1), the AR quiver of CM(AQB

) is ZAn,d. �
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Let B = {Y1, · · · , Yn} be a maximal d-Brauer relation on ((d+ 1)n+d−1)-gon. Recall that the
vertices of QB are given by {Y1, · · · , Yn}. By Theorem 2.5.5, the set CA := {S1, · · · , Sn} of simple
dg AQB

-modules is a (−d)-CY configuration, where Si is the simple module corresponds to vertex
Yi. And by Proposition 2.8.33, the AR quiver of CMAQB

is ZAn,d. Thus we can also regard CA
as the subset of ZAn,d. Let BA be the maximal d-Brauer relation corresponds to CA. By abuse of
notation, the d-diagonals in BA are also denoted by {S1, · · · , Sn}.

Let {Yj1 , Yj2 , · · · , Yjs} be a B-cycle with anti-clockwise ordering. Then it gives a minimal cycle
in QB .

Yj1
α1−→ Yj2

α2−→ · · · αs−1−−−→ Yjs
αs−→ Yj1

where degαi = 1 − δ(Yji , Yji+1) by Definition 2.8.26. The following proposition gives us some
information which determines B uniquely.

Proposition 2.8.35. Assume αi : Yji → Yji+1
is an arrow in QB. Then δ(Sji , Sji+1

) = δ(Yji , Yji+1
),

where we regard Sji and Yji as d-diagonals in BA and B respectively.

Proof. By Remark 2.8.13, δ(Sji , Sji+1
) = min{t > 0 | h̄Sji

(Sji+1
[t]) 6= 0} and by Proposition 2.5.12,

we have h̄Sji
(Sji+1 [t]) = HomCMAQB

(Sji , Sji+1
[t]). Thus

δ(Sji , Sji+1) = min{t > 0 | HomCMAQB
(Sji , Sji+1 [t]) 6= 0}

= min{t > 0 | HomDb(AQB
)(Sji , Sji+1

[t]) 6= 0}

where the second equality holds by the fact that HomDb(AQB
)(Sji , A) = H−d+1(Sji) = 0. Let

l = −degαi. By our construction of QB , it is clear that every path from Yji to Yji+1
has degree no

more than −l. Then HomDb(AQB
)(Sji , Sji+1 [t]) = 0 for any 0 ≤ t ≤ l and HomDb(AQB

)(Sji , Sji+1 [l+

1]) 6= 0 by Proposition 0.3.8. Thus δ(Sji , Sji+1
) = l + 1 = 1− degαi = δ(Yji , Yji+1

). �

Now we are ready to prove Theorem 2.8.32.

Proof of Theorem 2.8.32. Consider the map φ : B → BA sending Yj to Sj . It is clearly bijective
and for any B cycle C with anti-clockwise ordering {Yj1 , Yj2 , · · · , Yjm}, we have δ(Yji , Yji+1) =
δ(Sji , Sji+1) by Proposition 2.8.35. Then by Proposition 2.8.16, B is isomorphic to BA up to
rotation. Then the AR quiver of CMAQB

is isomorphic to (ZAn,d)C . �

Appendix B. A new proof of Theorem 2.8.6

In this part, we give a new proof of Theorem 2.8.6 by using the results developed in Section
2.8.1. We first point out the following property.

Proposition 2.8.36. For any B ∈ B, we have #B = n.

Proof. Let B ∈ B. We apply the induction on n.
If n = 1, then Π is a (2d+ 2)-gon and every d-diagonal has the form (i, i+ d+ 1). In this case,

any two d-diagonals intersect, which implies that B contains only one d-diagonal.
Assume our argument is true for n ≤ m, where m ≥ 1. Now consider the case n = m + 1.

Assume I ∈ B has the form (i1, i1 + d+ 1 + (d+ 2)j). Then Π\I has two connect components Π1

and Π2, where Π1 is a ((d + 2)j + d)-gon and Π2 is a ((d + 2)(n − j − 1) + d)-gon. By Lemma
2.8.12, B ∩ Π1 (resp. B ∩ Π2) is a maximal d-Brauer relation of Π1 (resp. Π2). By induction,
#(B∩Π1) = j and #(B∩Π2) = n−j−1. Then #B = #(B∩Π1)+#(B∩Π2)+1 = n. Therefore
the statement holds for any n ≥ 1. �

The following lemma is immediately from our labelling on ZAn.

Lemma 2.8.37. Let X,Y ∈ Z(An)0, where X = (x, x+ d+ 1 + (d+ 2)m), 0 ≤ m ≤ n− 1. Then
hX(Y ) 6= 0 if and only if Y = (x+ (d+ 2)i, x+ d+ 1 + (d+ 2)j), where 0 ≤ i ≤ m ≤ j ≤ n− 1.

The following lemma gives us a way to read h̄X(Y ) from the relative position of X and Y in Π.

Lemma 2.8.38. Let X,Y ∈ ZAn,d. We also regard them as d-diagonals in Π. Then
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(1) If X and Y are disjoint, then h̄X(Y ) = 0;
(2) If X and Y are joint, then h̄X(Y ) 6= 0 if and only if X and Y are connected by d-diagonals as

follows

x1

x2

y1y2

X

Y

that is, if and only if (y1, x2) (or equivalently, (y2, x1)) is a d-diagonal.

Then by the description above, we have the following result.

Proposition 2.8.39. Let X,Y ∈ ZAn,d. Then the following are equivalent

(1) h̄X(Y [−s]) = 0 and h̄Y (X[−s]) = 0 for 0 ≤ s ≤ d;
(2) X and Y are disjoint as d-diagonals.

Proof. From (1) to (2). If X ∩ Y 6= ∅. We may assume X = (x1, x2 = x1 + d + 1 + (d + 2)i) and
x1 ≤ y1 < x2 ≤ y2, where 0 ≤ i ≤ n− 1. We consider the following cases.

• If x2 ≤ y2 ≤ x2 + d and y1 − x1 > y2 − x2, then h̄X(Y [x2 − y2]) 6= 0;
• If x2 ≤ y2 ≤ x2 + d and y1 − x1 ≤ y2 − x2, then h̄X(Y [x1 − y1]) 6= 0;
• If x2 + d < y2 and y1 = x1 + d+ 1 + (d+ 2)i′, 0 ≤ i′ ≤ i, then (x1, y1) is a d-diagonal. Then by

our discussion above, h̄Y (X) 6= 0;
• If x2 + d < y2 and y1 6= x1 + d+ 1 + (d+ 2)i′ for any 0 ≤ i′ ≤ i. Then there exist 0 ≤ t ≤ d, such

that Y [−t] has the form (x1 + (d+ 2)j, y2 − t) for some 0 ≤ j < i. In this case, h̄X(Y [−t]) 6= 0.

All the cases above are contradictory to the condition (1). So we know X and Y are disjoint.
From (2) to (1). Assume X and Y are disjoint as follows

x1

x2

y1

y2
X

Y

For 0 ≤ s ≤ d, Y [−s] = (y1 − s, y2 − s). If X ∩ Y [−s] = ∅, it is clear h̄X(Y [−s]) = 0. If
X ∩Y [−s] 6= ∅, i.e. y2− s ≤ x2. Then (y2− s, x2) can not be a d-diagonal (it is possible only when
s > d+ 1). So we still have h̄X(Y [−s]) = 0. Similarly, h̄YX[−s] = 0 for 0 ≤ s ≤ d. �

Remark 2.8.40. Let X = (x1, x2) and Y = (y1, y2) be two d-diagonals. Assume x1 < y1 < x2 <
y2. Then by the proof of Proposition 2.8.39, if y1 6= x1 + d + 1 + (d + 2)i′ for any 0 ≤ i′ ≤ i, in
other words, if (x1, y1) is not a d-diagonal, then there exists 0 ≤ s ≤ d such that h̄X(Y [−s]) 6= 0.

To prove Theorem 2.8.6, we need another lemma.

Lemma 2.8.41. Let B ∈ B and let M be a d-diagonal. Then there exists X ∈ B and 0 ≤ i ≤ d
such that h̄X(M [−i]) 6= 0.

Proof. Since B is maximal, there exists X ∈ B such that X ∩M 6= ∅. Up to rotation, there are
three types of positional relationships between M and X as follows.

m1

x1 = m2

x2

MX

type 1

m1

x2 = m2 x1

M

X

type 2

m1

m2 x1

x2 M

X

type 3
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We show the statement case by case. For type 1, it is clear h̄X(M) 6= 0 by Lemma 2.8.38. For
type 2, if there is m1 < t < x1, such that T = (m1, t) is a d-diagonal in B, then h̄T (M) 6= 0. If
there is no such a T , we claim that ∃ Y ∈ B such that Y and M are of type 3.

To prove this claim, let us consider the B-cycle BX containing X such that BX and M are on
the same side of X. If the claim is not true, then for any X ′ ∈ BX , M and X ′ are disjoint or of type
2 (Notice that by our assumption, type 1 never happens). Labelling BX anti-clockwise starting
from X. Let Xs+1 = X = X1 (see figure (a) below). We may write x1 = x2 + d+ 1 + (d+ 2)i′ and
m1 = m2 + d+ 1 + (d+ 2)i′′, where 0 ≤ i′′ < i′ ≤ n− 1, then x1 −m1 = (d+ 2)(i′ − i′′) and the
number of vertices between m1 and x1 is (d+2)(i′−i′′)−1 = d+1+(d+2)(i′−i′′−1). Let j be the
smallest number such that Xj and X1 are on the different sides of M . Then the sum of number of
vertices between Xi and Xi+1 for 1 ≤ i ≤ j−1 is at least d+1. Then

∑s
i=1 δ(Xi, Xi+1) ≥ d+s+1.

It is contradictory to Proposition 2.8.15, which says
∑s
i=1 δ(Xi, Xi+1) = d+ s. So the claim holds.

Then we only need to consider type 3.

m1

x2 = m2

x1

M

X2

Xs

Xj

X1

(a)

m1

m2 x1

x2 M X2

Xs

X = X1

(b)

Assume X and M are of type 3. We may assume there is no X ′ ∈ B, such that X ′ and the
vertex m1 are on the same side of X, and X ′, M are of type 3 (if such X ′ exists, replace X by X ′).
Now we show (x2,m1) is not a d-diagonal. If (x2,m1) is a d-diagonal, consider the B-cycle BX
containing X, BX and the vertex m1 are on the same side of X. Labelling BX anti-clockwise (see
figure (b) above). Since (x2,m1) is a d-diagonal, then (d+ 2)|(x1 −m1). Similar to our discussion
for type 2, we have

∑s
i=1 δ(Xi, Xi+1) ≥ d+ s+ 1, which is contradictory to Proposition 2.8.15. So

we know (x2,m1) is not a d-diagonal. Then by Remark 2.8.40, there exists 0 ≤ i ≤ d such that
h̄X(M [−i]) 6= 0. Therefore the assertion is true. �

We are ready to prove Theorem 2.8.6 now.

The proof of Theorem 2.8.6. Given a (−d− 1)-CY configuration C in ZAn,d. By Definition 2.5.9,
for any two different objects X and Y in C, we have h̄X(Y [−s]) = 0 and h̄Y (X[−s]) = 0 for
0 ≤ s ≤ d. Then by Proposition 2.8.39, X and Y are disjoint. So the set {X|X ∈ C} gives rise to
a d-Brauer relation B. We claim B is maximal. If not, there exists a d-diagonal M such that for
any X ∈ C, X and M are disjoint. Then by Proposition 2.8.39, h̄X(M [−s]) = 0 for 0 ≤ s ≤ d. It
is contradictory to that C is a (−d− 1)-CY configuration (see Definition 2.5.9).

On the other hand, given a maximal d-Brauer relation B. Let C be the set of vertices of ZAn,d
corresponds to the d-diagonals in B. By Proposition 2.8.39, for any two different objects X and
Y in C, we have h̄X(Y [−j]) = 0, where 0 ≤ j ≤ d. Let M be any vertex in ZAn,d. Since B is
maximal, then by Lemma 2.8.41, there exists X ∈ C and 0 ≤ i ≤ d such that h̄X(M [−i]) 6= 0. So
C is a (−d− 1)-CY configuration. �
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Part 3. Positive Fuss-Catalan numbers and Simple-minded systems in negative
Calabi-Yau categories

3.1. Introduction

Fomin and Zelevinsky [FZ1] showed that cluster algebras of finite type correspond bijectively
with finite root systems Φ. As a generalization of their combinatorial structure, Fomin and Reading
[FR] introduced generalized cluster complex ∆d(Φ) for each positive integer d. It is a simplicial
complex whose ground set is the disjoint union of d copies of the set Φ+ of positive roots and the
set of negative simple roots, and studied actively in combinatorics [Ar, STW]. It is known that
∆d(Φ) is categorified by (d + 1)-Calabi-Yau ((d + 1)-CY) cluster categories Cd+1(kQ) 2 for the
corresponding Dynkin quiver Q [K2, T]. The category Cd+1(kQ) has special objects called cluster
tilting objects, which correspond bijectively with maximal simplices in ∆d(Φ) [Z] and with silting
objects contained in some subcategory of Db(kQ) [BRT1]. Culster tilting objects also play a key
role in Cohen-Macaulay representations [I2].

Recently there is increasing interest in negative CY triangulated categories (see [CS1, CS2, CS3,
CSP, HJY, Ji1, Ji2, Jo1, KYZ]), including (−d)-CY cluster categories C−d(kQ). These categories
often contain special objects called d-simple-minded systems (or d-SMS) [CS2] (see Definition
0.2.7). It plays a key role in the study of Cohen-Macaulay dg modules [Ji1], see Part 2.

Projective-like objects

Derived categories Silting objects

CY triangulated categories Cluster-tilting objects

Simple-like objects

Simple-minded collections

Simple-minded systems
�� ��

In some important cases, cluster tilting objects and d-SMSs are shadows of more fundamental
objects, namely, silting objects and simple-minded collections (SMCs) respectively [KN, IYa1, Ji2].

The aim of this chapter is to show that there is a bijection between d-SMSs and maximal
simplices in ∆d(Φ) without negative simple roots. In particular, the number of d-SMSs in C−d(kQ)
is precisely the positive Fuss-Catalan number. Our method is based on a refined version of silting-
t-structure correspondence.

3.1.1. Counting d-simple-minded systems. Let Φ be a simply-laced finite root system, and
W the corresponding Weyl group. The Fuss-Catalan number is given by the formula

Cd(W ) :=

n∏
i=1

dh+ ei + 1

ei + 1

where n is the rank of W , h is its Coxeter number, and e1, . . . , en are its exponents (see Figure
1). It is well-known that Cd(W ) equals the number of maximal simplices in ∆d(Φ) and also equals
the number of d-noncrossing partitions for W (see [Ar, FR]). There is a variant of Cd(W ), called
the positive Fuss-Catalan number, denoted by C+

d (W ) and given by the formula

C+
d (W ) :=

n∏
i=1

dh+ ei − 1

ei + 1
,

see Figure 1 for the explicit value.
Let k be a field and Q a Dynkin quiver. The (−d)-CY cluster category C−d(kQ) is defined as

the orbit category C−d(kQ) := Db(kQ)/ν[d], where ν is the Nakayama functor of Db(kQ). This
is a triangulated category by [K2] and has AR quiver ZQ/ν[d]. We denote by d -SMS C−d(kQ)
the set of d-SMSs in C−d(kQ), and by max-sim∆d(Φ) (resp. max-sim+ ∆d(Φ)) the set of maximal

2(d + 1)-CY cluster categories are usually called d-cluster categories in hereditary setting, and (d + 1)-cluster

categories in non-hereditary setting.
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Q h e1, . . . , en C+
d (W ) = # d -SMS C−d(kQ)

An n+ 1 1, 2, . . . , n 1
n+1

(
(d+1)n+d−1

n

)
Dn 2(n− 1) 1, 3, . . . , 2n− 3, n− 1 (2d+1)n−2d−2

n

(
(n−1)(d+1)−1

n−1

)
E6 12 1, 4, 5, 7, 8, 11 d(2d+1)(3d+1)(4d+1)(6d+5)(12d+7)

30

E7 18 1, 5, 7, 9, 11, 13, 17 d(3d+1)(3d+2)(9d+2)(9d+4)(9d+5)(9d+8)
280

E8 30 1, 7, 11, 13, 17, 19, 23, 29 d(3d+1)(5d+1)(5d+2)(5d+3)(15d+8)(15d+11)(15d+14)
1344

Figure 1. Positive Fuss-Catalan numbers

simplices (resp. maximal simplices without negative simple roots) in ∆d(Φ). We will prove the
following result.

Theorem 3.1.1. Let Q be a Dynkin quiver and let d ≥ 1.

(1) There is a bijection

d -SMS C−d(kQ)
1:1←→ max-sim+ ∆d(Φ).

(2) We have # d -SMS C−d(kQ) = C+
d (W ), where W is the Weyl group of kQ.

The result (2) is known for the case d = 1 by [CS1] and for the case Q = An by [Ji1]. Figure 1
gives us concrete formulas for type A,D and E.

To prove Theorem 3.1.1, we need to introduce some categorical notions. We have a standard
t-structure (D≤0,D≥0) on Db(kQ), where D≤0 := {X ∈ Db(kQ) | H>0(X) = 0} and D≥0 := {X ∈
Db(kQ) | H<0(X) = 0}. Notice that

D≤−1 ⊂ νD≤0 ⊂ D≤0 and D≥1 ⊂ ν−1D≥0 ⊂ D≥0. (3.1.1)

For m ≤ n, we consider three subcategories

D
[m,n]
− := D≤n ∩ νD≥m+1 ⊂ D[m,n] := D≤n ∩ D≥m ⊂ D

[m,n]
+ := D≤n ∩ ν−1D≥m−1.

We denote by silt Db(kQ) the set of silting objects in Db(kQ) and by SMCDb(kQ) the set of SMCs
in Db(kQ) (see Definition 0.2.4). The following is a main result of Part 3.

Theorem 3.1.2. Let Q be a Dynkin quiver and d ≥ 1. Then there are bijections

(siltDb(kQ)) ∩ D[1−d,0] 1:1←→ (SMCDb(kQ)) ∩ D
[−d,0]
− , (3.1.2)

1:1←→ d -SMS C−d(kQ), (3.1.3)

where the map (1.3) is induced by the natural functor Db(kQ)
π−→ Db(kQ)/ν[d].

The bijection (1.2) holds for any finite-dimensional Iwanaga-Gorenstein algebras (see Corollary
3.1.10). The bijection (1.3) holds for acyclic quiver Q, see the recent paper [CSPP].

Our theorems and the results in [BRT1, Z] mentioned above are summarized as follows, where
we denote by ctilt Cd+1(kQ) the set of cluster tilting objects in Cd+1(kQ).

d -SMS C−d(kQ) oo ∼
Thm.3.1.2 // (SMCDb(kQ)) ∩ D

[−d,0]
−OO

oThm.3.1.2

��
max-sim+ ∆d(Φ) oo ∼

//
� _

��

��
oThm.3.1.1

OO

(silt Db(kQ)) ∩ D[1−d,0]
� _

��
max-sim∆d(Φ) oo ∼

[Z] // ctilt Cd+1(kQ) oo
[BRT1]

∼
// (silt Db(kQ)) ∩ D

[1−d,0]
+ .
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Example 3.1.3. (1) Let Q = A3 and d = 1, then the bijection between silting objects of Db(kA3)
contained in mod kA3 and (−1)-SMS of C−1(kA3) is as follows.

••
•
◦ ◦◦

◦•
•
• ◦◦ ◦◦

•
• ◦•

◦◦
•
◦ •••◦

•
◦ •◦ • • • •◦ ◦ ◦◦ ◦ ◦ ◦

◦ ◦ • ◦• ◦ ◦◦ ◦ • ◦
◦ • ◦ ◦◦ ◦ •◦ • ◦ ◦

◦ ◦ ◦ ◦◦ ◦ ◦• • • •
• ◦ ◦ •◦ • ◦• ◦ ◦ •

⇐⇒

(2) Let Q = A2 and d = 2. Then the bijection is as follows.

• ◦ ◦• ◦ ◦

◦ • ◦• ◦ ◦

◦ ◦ ◦• ◦ •

• ◦ •◦ ◦ ◦

◦ ◦ •◦ • ◦

◦ ◦ •◦ ◦ •

◦ • ◦◦ • ◦

• • ◦ ◦◦ ◦ ◦ •

◦ ◦ ◦ ◦• • ◦ ◦

◦ ◦ ◦ •• ◦ ◦ ◦

• ◦ ◦ ◦◦ ◦ • •

◦ ◦ ◦ ◦◦ • • ◦

◦ ◦ • •◦ ◦ ◦ ◦

◦ • • ◦◦ ◦ ◦ ◦⇐⇒

3.1.2. Silting-t-structure correspondence. The bijection (1.2) above is similar to the bijection
between silting objects and d-Hom≤0-configurations in [BRT2]. Our approach here is more direct
and based on silting-t-structure correspondence. Let us recall it first.

Theorem 3.1.4. [KaY1] Let A be a finite-dimensional k-algebra. Then there are bijections

silt perA
1:1←→ {bounded t-structures of Db(A) with length hearts} 1:1←→ SMCDb(A).

In this subsection, we give two refined versions of silting-t-structure correspondence in trian-
gulated categories, both of which imply the bijection (1.2) above. Our common assumption is
the following, which is satisfied for T = Db(A) and the perfect derived category U = perA for a
finite-dimensional k-algebra A.

Assumption 3.1.5. Let T be a triangulated category and U a thick subcategories of T . Assume
that for any P ∈ siltU , we have a bounded t-structure

T = T ≤0
P ⊥ T >0

P , where T ≤0
P := P [<0]⊥ and T >0

P := P [≥0]⊥. (3.1.4)

See Section 0.1 for the definition of ( )⊥.

We call (3.1.4) the silting t-structure associated with P , and call its heart HP := T ≤0
P ∩T ≥0

P the
silting heart. Then P can be recovered from the subcategory HP (see Lemma 3.2.1). Denote by
silt-heart T the set of silting hearts of T . Notice that siltU and silt-heart T have canonical partial
orders (see Section 0.2).

Theorem 3.1.6. Under Assumption 3.1.5, let T = X ⊥ X⊥ = Y ⊥ Y⊥ be two silting t-structures.
Then there is a poset isomorphism

{P ∈ siltU | P ∈ X ∩ ⊥Y}
∼=←→ {H ∈ silt-heart T | H ⊂ X ∩ Y⊥}.

Let us see an example, which is well-known for the case d = 2 [BY].

Corollary 3.1.7. Let A be a finite-dimensional k-algebra and d ≥ 1. Assume that P ∈ silt perA
is d-term silting, that is, HomDb(A)(A[< 0], P ) = 0 = HomDb(A)(P,A[≥ d]). We have a poset
isomorphism.

{d-term silting objects in perA}
∼=←→ (SMCDb(A)) ∩ D[1−d,0].

When T has relative Serre functor in the following sense, we can improve Theorem 3.1.6 by
dropping the assumption that two t-structures are silting.
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Assumption 3.1.8. Keep Assumption 3.1.5. Assume that T is a k-linear triangulated category
and we have a relative Serre functor ν. That is, there is an auto-equivalence ν : T ' T which
restricts to an auto-equivalence ν : U ' U , such that there exists a functorial isomorphism

DHomT (X,Y ) ∼= HomT (Y, νX),

for any X ∈ U and Y ∈ T , where D is the k dual.

Then there is a poset isomorphism as follows.

Theorem 3.1.9. Under Assumption 3.1.8, let T = X ⊥ X⊥ = ⊥Z ⊥ Z be any two t-structures.
There is a poset isomorphism

{P ∈ siltU | P ∈ X ∩ Z}
∼=←→ {H ∈ silt-heart T | H ⊂ X ∩ νZ}.

The following result plays a key role to prove Theorem 3.1.2.

Corollary 3.1.10. Let A be a finite-dimensional k-algebra and d ≥ 1. If A is Iwanaga-Gorenstein
(that is, the A-module A has finite injective dimension both sides), then there is a poset isomorphism

(silt perA) ∩ D[1−d,0] ∼=←→ (SMCDb(A)) ∩ D
[−d,0]
− .

3.2. Proof of main Theorems

3.2.1. Silting-t-structure correspondence. We first show Theorem 3.1.6. The following obser-
vation is useful.

Lemma 3.2.1. Under Assumption 3.1.5, there is a poset isomorphism siltU
∼=←→ silt-heart T .

Proof. The map siltU → silt-heart T is clearly surjective. For P,Q ∈ siltU , we have

Q ≥ P (0.2.3)⇐⇒ P [≥0] ∈ Q[<0]⊥
(3.1.4)⇐⇒ P [≥0] ∈ T ≤0

Q

(3.1.4)⇐⇒ T >0
Q ⊃ T >0

P

(0.2.1)⇐⇒ HQ ≥ HP .

Thus the map is a poset isomorphism. �

Proposition 3.2.2. Under Assumption 3.1.5, let Q,R ∈ siltU . Then there is a poset isomorphism

(siltU) ∩ UQ≤0 ∩ U
R
≥0

∼=←→ {H ∈ silt-heart T | H ⊂ T ≤0
Q ∩ T ≥0

R }.

Proof. Let P ∈ siltU . Then

P ∈ UQ≤0 ∩ U
R
≥0

(0.2.3)⇐⇒Q ≥ P ≥ R Lem. 3.2.1⇐⇒ HQ ≥ HP ≥ HR
(0.2.1)⇐⇒ HP ⊂ T ≤0

Q ∩ T ≥0
R .

Thus the assertion holds. �

Now we are ready to prove Theorem 3.1.6.

Proof of Theorem 3.1.6. There exists Q,R ∈ siltU such that X = Q[<0]⊥ and Y = R[≤0]⊥. Since

X ∩ Y⊥ = T ≤0
Q ∩ T ≥0

R and X ∩ ⊥Y ∩ U = UQ≤0 ∩ UR≥0 hold, the assertion follows from Proposition
3.2.2. �

Proof of Corollary 3.1.7. Let T = Db(A) and U = perA. Let X = D≤0 and Y = D≤−d. Then
Y⊥ = D≥1−d and perA ∩ ⊥Y = Filt(A[<d]). By Theorem 3.1.6, we have a poset isomorphism

{P ∈ perA | P ∈ D≤0 ∩ FiltA[<d]}
∼=←→ {H ∈ silt-heart Db(A) | H ⊂ D[1−d,0]}. Using the bijection

silt-heart Db(A)
∼=←→ SMCDb(A) in Theorem 3.1.4, we obtain the assertion. �

Next we prove Theorem 3.1.9.
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Proof of Theorem 3.1.9. Let P ∈ siltU . Thanks to Lemma 3.2.1, it suffices to show that P ∈ X if
and only if HP ⊂ X , and P ∈ Z if and only if HP ⊂ νZ.
(a) By (3.1.4) and (0.2.2), we have ⊥(UP≤0

⊥) = ⊥T >0
P = T ≤0

P . Thus

P ∈ X ⇐⇒ UP≤0 ⊂ X
⊥(X⊥)=X⇐⇒ ⊥(UP≤0

⊥) ⊂ X ⇐⇒ T ≤0
P ⊂ X ⇐⇒ HP ⊂ X .

(b) By (3.1.4) and (0.2.2), we have (⊥ν UP≥0)⊥ = (UP≥0
⊥)⊥ = T <0

P
⊥ = T ≥0

P . Thus

P ∈ Z ⇐⇒ UP≥0 ⊂ Z ⇐⇒ ν UP≥0 ⊂ νZ
(⊥νZ)⊥=νZ⇐⇒ (⊥ν UP≥0)⊥ ⊂ νZ ⇐⇒ T ≥0

P ⊂ νZ ⇐⇒ HP ⊂ νZ.
So the assertion is true. �

Proof of Corollary 3.1.10. Let T = Db(A) and U = perA. Let X = D≤0 and Z = D≥1−d. Since
A is Iwanaga-Gorenstein, then the Nakayama functor ν is the relative Serre functor. By Theorem
3.1.9, we have a poset isomorphism

(silt perA) ∩ D[1−d,0] ∼=←→ {H ∈ silt-heart Db(A) | H ⊂ D
[−d,0]
− }.

By Theorem 3.1.4, we obtain the assertion. �

3.2.2. Proof of Theorems 3.1.1 and 3.1.2. In this subsection, we will write A = kQ, D (resp.
C) for Db(A) (resp. C−d(A)) for simplicity, and H = modA. Let S be an SMC of D. Then

HS := FiltS is the heart of a t-structure (D≤0
S ,D≥0

S ) given by

D≤0
S := Filt(S[≥0]) and D≥0

S := Filt(S[≤0]).

We need the following observation.

Lemma 3.2.3. Let S, T be two SMCs of D. Then the following are equivalent.

(1) HS ⊂ D≤0
T ∩ νD

≥1−d
T ;

(2) HT ⊂ ν−1D≤d−1
S ∩ D≥0

S ;

(3) D≤0
S ⊂ D≤0

T and D≥0
S ⊂ νD

≥1−d
T ;

(4) D≤0
T ⊂ ν−1D≤d−1

S and D≥0
T ⊂ D≥0

S .

Proof. One can check (1)⇔ (3)⇔ (4)⇔ (2) easily. �

Recall that π : D→ C is the natural functor. Then π gives a bijection

indD
[−d,0]
−

'−−→ ind C. (3.2.1)

In the rest, we write π(X) as X for any X ∈ D. We give a lemma which plays an important role
in the sequel.

Lemma 3.2.4. Let X,Y ∈ D
[−d,0]
− and 0 ≤ i ≤ d. Then we have

HomC(X,Y [−i]) = HomD(X,Y [−i])⊕DHomD(Y,X[i− d]).

Proof. By the definition of C, we have

HomC(X,Y [−i]) =
⊕
n∈Z

HomD(X, νnY [nd− i]).

If n < 0, then nd− i ≤ −d and νnY [nd− i] ∈ νn+1D≥1 ⊂ D≥1 by (3.1.1). So HomD(X, νnY [nd−
i]) = 0. If n > 1, then m := 1− n < 0 and

HomD(X, νnY [nd− i]) = DHomD(νn−1Y [nd− i], X) = DHomD(Y, νmX[md− (d− i)]) = 0,

by the first case. Thus the assertion follows. �

For m ≥ n, we denote by D
[m,n]
S the intersection D≤nS ∩ D≥mS . The following lemma is useful.

Lemma 3.2.5. Let Q be an acyclic quiver, S ⊂ SMCD ∩D≤0 ∩ νD≥1−d and N ∈ D≤0 ∩ νD≥1−d.
For 1 ≤ i ≤ d, if HomD(S[i], N) = 0 = HomD(N,S[i− d]), then N = 0.
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Proof. By (3.1.1) and Lemma 3.2.3, we have

H = modA ⊂ νD≤1 ∩ D≥0 ⊂ D≤dS ∩ D≥0
S . (3.2.2)

Since DA ∈ νD≤0 and S[−d] ∈ νD≥1, then HomD(DA,S[−d]) = 0 and DA ∈ D
[0,d−1]
S by Lemma

3.2.3 and (3.2.2). Thus HomD(N,DA) = 0 (that is H0(N) = 0) and moreover, N ∈ D≤−1 ∩
νD≥1−d ⊂ D[−d,−1] ⊂ D

[−d,d−1]
S by (3.2.2). Thus N = 0. �

We denote by (−d)-CY-conf C the set of (−d)-Calabi-Yau configurations of C.

Proposition 3.2.6. Let Q be an acyclic quiver. Then the map

(SMCD) ∩ D
[−d,0]
−

π−−→ (−d)-CY-conf C. (3.2.3)

is well-defined.

Proof. Let S be an SMC contained in D[−d,0]. We show S is a (−d)-CY configuration in C. Let
X,Y ∈ S and 0 ≤ i < d. By Lemma 3.2.4, we have

HomC(X,Y [−i]) = HomD(X,Y [−i])⊕DHomD(Y,X[i− d]) = HomD(X,Y [−i]).
Immediately S satisfies the conditions (1) and (2) in Definition 2.5.1.

It remains to check that
d−1⋂
j=0

⊥S[−j] = 0. Let M ∈ C be an indecomposable object satisfying

HomC(M,S[−j]) = 0 for any 0 ≤ j ≤ d − 1. By (3.2.1), there exists an indecomposable object

N ∈ D
[−d,0]
− , such that π(N) = M . By Lemma 3.2.4, we have HomD(N,S[i − d]) = 0 and

HomD(S[i], N) = 0 for any 1 ≤ i ≤ d. Then N = 0 by Lemma 3.2.5. �

We are ready to prove Theorem 3.1.2 now.

Proof of Theorem 3.1.2. The bijection (1.2) follows directly from Corollary 3.1.10. The map (1.3)
is well-defined by Proposition 3.2.6. Since this is injective by (3.2.1), it suffices to show that (1.3)
is surjective.

Let S be any d-SMS of C. We also denote by S the preimage π−1(S) of S via the bijection
(3.2.1). We claim S is an SMC of D. Let X,Y ∈ S. We know

dimkHomC(X,Y [−i]) ≥ dimkHomD(X,Y [−i]),
for any i ∈ Z. For 0 ≤ i ≤ d − 1, the left hand side is δXY δ0i for the Kronecker delta, so is the
right hand side. We show HomD(X,Y [−d]) = 0. This is clear if X = Y . If X 6= Y , then

0 = HomC(Y,X) = HomD(Y,X)⊕DHomD(X,Y [−d]),

and hence HomD(X,Y [−d]) = 0. For i > d, we have

Y [−i] ∈ νD≥1−d+i ⊂ νD>1 ⊂ D≥1

by (3.1.1). Thus HomD(X,Y [<−d]) = 0.
It remains to show D = thickS. Since D is locally finite, S = thickS is functorially finite in

D. Thus we have a torsion pair D = ⊥S ⊥ S by [IYo, Proposition 2.3]. Thus it suffices to show
⊥S = 0. Let X ∈ ⊥S be an indecomposable object. Since kQ is hereditary, D = add(H[i] | i ∈ Z).
We may assume X ∈ H. Then HomD(X,S[−i]) = 0 for all i ∈ Z. Moreover, for any 0 ≤ i < d,

we have X[i − d] ∈ D≥1, and hence HomD(S,X[i − d]) = 0. Since X,S ∈ D
[−d,0]
− , we have

HomC(X,S[−i]) = 0 by Lemma 3.2.4. Since S is a d-SMS, X = 0. Thus ⊥S = 0 as desired. �

Theorem 3.1.1 is clear now.

Proof of Theorem 3.1.1. (1) follows form Theorem 3.1.2, [BRT1, Proposition 2.4] and [Z, Theorem
5.7]. (2) follows from (1) and [FR, Proposition 12.4]. �
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1982.

[BGS] Alexander Beilinson, Victor Ginzburg, Wolfgang Soergel, Koszul duality patterns in representation theory,
J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

[BK] Alexey Bondal, Mikhail Kapranov, Enhanced triangulated categories, Mat. Sb. 181 (1990), no. 5, 669–683;
translation in Math. USSR-Sb. 70 (1991), no.1, 93–107.

[BH] Winfried Bruns, Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39.

Cambridge University Press, Cambridge, 1993.
[BMRRT] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and

cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618.

[Bo] Mikhail V. Bondarko, Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes
(for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504.

[BRT1] Aslak Bakke Buan, Idun Reiten, Hugh Thomas, Three kinds of mutation, J. Algebra 339 (2011), 97–113.

[BRT2] Aslak Bakke Buan, Idun Reiten, Hugh Thomas, From m-clusters to m-noncrossing partitions via exceptional
sequences, Math. Z. 271 (2012), no. 3-4, 1117–1139.
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[C1] Xiao-Wu Chen, On extensions of covariantly finite subcategories, arXiv:0809.3387.

[C2] Xiao-Wu Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory

12 (2009), no. 2-5, 181–191.
[C3] Xiao-Wu Chen, Gorenstein Homological Algebra of Artin Algebras, arXiv:1712.04587.

[CR] Charles W. Curtis, Irving Reiner, Methods of representation theory. Vol. I. With applications to finite groups
and orders, Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New

York, 1981.

[CS1] Raquel Coelho Simões, Hom-configurations and noncrossing partitions, J. Algebraic Combin. 35 (2012), no.
2, 313–343.

[CS2] Raquel Coelho Simões, Hom-configurations in triangulated categories generated by spherical objects, J. Pure
Appl. Algebra 219 (2015), no. 8, 3322–3336.

[CS3] Raquel Coelho Simões, Mutations of simple-minded systems in Calabi-Yau categories generated by a spherical

object, Forum Math. 29 (2017), no. 5, 1065–1081.

[CSP] Raquel Coelho Simões, David Pauksztello, Simple-minded systems and reduction for negative Calabi-Yau
triangulated categories, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2463–2498.

[CSPP] Raquel Coelho Simões, David Pauksztello, David Ploog, Functorially finite hearts, simple-minded systems
in negative cluster categories, and noncrossing partitions, arXiv:2004.00604.

[D] Alex Dugas, Torsion pairs and simple-minded systems in triangulated categories, Appl. Categ. Structures 23

(2015), no. 3, 507–526.



SIMPLE-MINDED OBJECTS AND CM DG MODULES 69

[EJ] Edgar E. Enochs, Overtoun M. G. Jenda, Relative homological algebra, Volume 1. Second revised and extended

edition. De Gruyter Expositions in Mathematics, 30. Walter de Gruyter GmbH & Co. KG, Berlin, 2011.

[FP] Elsa A. Fernández, Maŕıa Inés Platzeck, Isomorphic trivial extensions of finite dimensional algebras, J. Pure
Appl. Algebra 204 (2006), no. 1, 9–20.

[FR] Sergey Fomin, Nathan Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res.
Not. 2005, no. 44, 2709–2757.

[FZ1] Sergey Fomin, Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2,

497–529.
[FZ2] Sergey Fomin, Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003),

no. 1, 63–121.

[Ga] Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc.
Workshop, Carleton Univ., Ottawa, Ont., 1979), pp. 1–71, Lecture Notes in Math., 831, Springer, Berlin, 1980.

[Gu] Lingyan Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra 215 (2011),

no. 9, 2055–2071.
[GR] Peter Gabriel, Christine Riedtmann, Group representations without groups, Comment. Math. Helv. 54 (1979),

no. 2, 240–287.

[H1] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London
Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.

[H2] Dieter Happel, On Gorenstein algebras, Representation theory of finite groups and finite-dimensional algebras
(Bielefeld, 1991), 389–404, Progr. Math., 95, Birkhäuser, Basel, 1991.
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