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2 T. TANAKA
1. INTRODUCTION

In the present paper, we consider the Cauchy problem of higher order Benjamin-
Ono type equations and Schrodinger type equations with constant coefficients. In

particular, in Section 2, we consider third order Benjamin-Ono type equations
(3BO), which reads

O — Pu + u?Opu + 10, (uHOu) + caHOp(ud,u) =0, (t,r) € R x T,

where the unknown function u is real valued and c¢i,co € R. H is the Hilbert
transform, see Subsection 2.1 for its definition. In Section 3, we consider fourth

order Benjamin-Ono type equations (4BO), which reads
Ou = 0, K(u), (t,z) € Rx M,
where M =R (orT),

K(u) := HOu + crud?u + co(0,u)* + c3(HOpu)? + caH(uHOu)

1.1
+ esH(u?0pu) + cguH (udyu) + cru*Hou — ut (1)

with ¢, € Rfor k =1,...,7 and the unknown function w is real valued. In Section 4,
we consider higher order Schrédinger type equations (HS) with constant coefficients,

which reads

2m
Dyu=D2"u+Y (a;D2"u+b;D2" 1), (t.z) €Rx M (1.2)

j=1

where Dy = —i0;, D, = —i0,, 1 is the imaginary unit and the unknown function
u is complex valued. The constants {a;}, {b;} C C are given. Our main objects is
to prove the local-wellposedness for (3BO) and (4BO) and to classify the Cauchy
problem of (HS).

1.1. Introduction of (3BO). In Section 2, we consider the Cauchy problem of
(3BO):

Opu — Pu + u?0pu + €10, (WHIyu) + oM, (ud,u) =0, (t,z) € R x T,
u(0,z) = p(x) € H*(T).

(1.3)

Our first result is the following:

Theorem 1.1. The Cauchy problem (1.3) is locally well-posed in H*(T) for s > 5/2.



W.P. FOR HIGHER ORDER NONLINEAR DISPERSIVE EQUATIONS 3

For more precise statement of Theorem 1.1, see Theorem 2.1 in Section 2. We
make some comments on Theorem 1.1. Nonlinear terms 0, (uH0,u) and HO,(ud,u)

in (3BO) have two derivatives, and the energy estimate gives only the following:
d
lozu®lz: +C/3mU(H3§+1U)5§udfC < U+ 107ull =105 u(t)lIZ2,  (14)

where ¢ is a constant depending only on k. See (2.19) for details. It is difficult to
handle the second term in the left hand side by ||u|| z+, which is the main difficulty in
this problem. To overcome that difficulty, we add a correction term into the energy

(see Definition 3 in Section 2):
E.(u) = ||lull72 + | D°ull72 + as||ul| 357 + bs /U(HDSU)DS_23mudx,

where D := F71¢|F, following the idea from Kwon [18], who studied the local
well-posedness of the fifth order KdV equation (see also Segata [27], Kenig-Pilod
[16] and T'sugawa [33]). The correction term allows us to cancel out the worst term
in (1.4), which makes it possible to evaluate the H*-norm of the solution by that
of the initial data. It is worth pointing out that our proof refines the idea in [7].
Indeed, Feng introduced the following energy estimate in order to show the “weak”

continuous dependence (see Subsection 2.1 for details):

d 2k —3

o2z, + / (0 + 0)A S wHOEwda
dt i Je
< C(T. Nlpll e 1Lz )l () g,

on [0,T], where w = u — v and u,v € C([0, T]; H*(R)) satisty (1.3) with ¢; = ¢y =
v/3/2 and initial data ¢,¢ € H*(R), respectively. Here, we would like to have

the estimate for ||w| gx. If we simply replace k — 2 with &k in the above estimate,

the constant in the right hand side depends on ||@||gr+2 (resp. ||1]gr+2), which
cannot be handled by |||/ g+ (resp. ||¢||gx). Therefore, we need to find a different
correction term (see Definition 3 in Section 2) and estimate the difference between
two solutions in H¥(T) more carefully (see the proof of Proposition 2.21) so as to
complete the continuous dependence.

It is known that (3BO) with specific coefficients is completely integrable and has
infinitely many conservation laws. In the integrable case, we can extend the solution
obtained by Theorem 1.1 globally, using the conservation law corresponding to H?3-

norm.

Corollary 1.2. The Cauchy problem (1.3) with ¢, = ¢y = \/3/2 is globally well-
posed in H*(T) for s > 3.
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Corollary 1.2 can be shown by using the Gagliardo-Nirenberg inequality. On the
real line case, there are some much better results with respect to the regularity of

the initial data (see Subsection 2.1 for details). This is why we focus on our problem

on T. But Theorem 1.1 and Corollary 1.2 on (3BO) still hold on R.

1.2. Introduction of (4BO). In Section 3, we consider the Cauchy problem of
(4BO):

Ou = 0, K(u), (t,x) e Rx M,
u(0,z) = ¢(x) € H*(M).
Here, K(u) is defined in (1.1). Our result is the following:

Theorem 1.3. The Cauchy problem (1.5) is locally well-posed in H*(M) for s >
7/2.

Now we mention the idea of the proof of Theorem 1.3. We may have the third
order derivative loss since nonlinear terms in (4BO) have three derivatives at most.
By the symmetry, it can be reduced to the second order derivative loss (see Lemma
3.25). Our proof is based on the energy method, and the standard energy estimate

gives only the following:

o) Ju(@®)lls,  (1.6)

%HDSU(t)Hé + Li(u) + La(u) + Lz(U)] < C(1+ [|ul
where sq > 7/2, D = F~'|¢|F and
Li(u) := A\ (s) / Opu(D*0u)dw,  Lo(u) := Ao(s) / (HO*u)(HD*0,u) Do udz,
Ls(u) := As(s) / udyu(HD*dyu) D3udz

(see Definition 6 in Subsection 3.2 for definitions of A;(s)). Here, we note that

Lq(u) is the second order derivative loss, and Lo(u) and Lz(u) are the first order

derivative losses. It is impossible to handle L;(u) for j = 1,2, 3 by ||u||g=. In order to
overcome this difficulty, we modify the energy by adding correction terms. Namely,

we consider

3
1 s 1 s j
Ey(u) := 5|IU||§2(1 + Cllull 72 + Clull72) + SID ull72 + Y MP(u),

j=1
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with
MO (u) = Alis) /u(’HDSu)HDS_ludx,
MO (u) = Aiis) /(H@zu)(Ds_lu)2dx,
Ms(?;)(u) — Al(s))‘4(‘;)2+ 4)‘3(5) /uQ(DS_lu)2d.T

(see Definition 6 in Subsection 3.2). The first two terms correspond to ||u||g=, and
M§1)(u), M§2)(u) and MY (u) are correction terms. As defined in Definition 6,
we note that A;(s) for j = 1,2,3,4 is a linear polynomial in s. The coefficient of
MY (u) can be determined so that the time derivative of MY )(u) cancels out L;(u)
for j = 1,2. On the other hand, the time derivative of Ms(l)(u) also yields Ls(u),
that is,

d . a
%MS( J(u) ~ Ly (u) + Ls(u)

since L;(u) is the second order derivative loss. Therefore, we need to collect co-
efficients of Lj(u) resulting from both || D*u|| and Ms(l)(u) when we determine the
coefficient of M) (u). For this reason, the coefficient of M£3)(u) is a quadratic
polynomial in s.

It is known that (4BO) with specific coefficients is completely integrable and has
infinitely many conservation laws. As in the case of (3BO), we can extend the

solution obtained by Theorem 1.3 globally.

Corollary 1.4. The Cauchy problem (1.5) with ¢; = 3, —co = ¢5 = ¢cg = ¢7 = —2
and c3 = ¢4 = —1 is globally well-posed in H*(M) for s > 4.

1.3. Introduction of (HS). In Section 4, we consider the Cauchy problem of (HS):

Dyu = D™y + 35" (a;D2"~Iu + b;D?™Ia),  (t,x) € R x M,
u(0,x) = p(x) € LA(M).

(1.7)

We introduce A, which is used to classify (1.7) into three types.
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Definition 1. v = {v;}7" and A = {)\;}37 " are defined as

Jj=1 Jj=1

Jj—1

Y =boj— > Asmm, 1<j<m—1,
k=1
j—1
Aoj = 2Imag; — 22 Imlaz(j,k)’yk, 1< <m-1,
k=1
j-1
Agjo1 = 2Imag; | + 22 Im by )17k, 1< j <m.
k=1

Our result is the following:

Theorem 1.5.

(Dispersive type, L* well-posedness) Assume that \; =0 for 1 < j <2m—1. Then,
for any ¢ € L*(M), there exists a unique solution u(t,x) of (4.1)~(4.2) such that
u(t,r) € C((—o0,00); L2(M)).

(Parabolic type) Assume that there exists j* € N such that \; = 0 for 1 < j <
25* and Agj« > 0 (resp. Xoj» < 0). Then, for any p € L*(M), there exist a
unique solution u(t,z) of (4.1)~(4.2) on [0,00) (resp. (—o00,0]) such that u(t,x) €
C([0,00); LA(M)) N C*>((0,00) x M) (resp. C((—o0,0]; L*(M)) N C>®((—00,0) x
M) ). For any p € L*(M)\C>®(M) and § > 0, no solution u of (4.1)—(4.2) exists on
(—0,0] (resp. [0,0)) such that u(t,z) € C((—4,0]; L*(M)) (resp. C(]0,0); L*(M))).
(Twisted parabolic type) Assume that there exists j* € N such that \; = 0 for1 < j <
25* — 1 and Agj«—1 > 0 (resp. Agj-—1 < 0). Let p € L*(M) satisfy Pto & HY?(M).
Then, for any 6 > 0, there exist no solution u(t,z) of (4.1)~(4.2) on [—0,0] (resp.
0,6]) satisfying u € C([—6,0]; L2(M)) (resp. u € C([0,6]; L*(M))). Moreover, the
same result as above holds even if we replace PT, [—0,0] and [0, 6] with P~, [0,0]
and [—6,0], respectively.

Since the coefficients are constants, by the Fourier transform, the equation in (1.7)

can be rewritten into the following:

2m

D(t,€) = €u(t,€) + Y (a; €™ 7a(t, ) + b e a(t, —€)).  (1.8)

J=1

Here, we fix £ € R (or Z) and put

Uﬁ(t):<7\a(t’£)>a X0:<1 O>7 Xj:< aj— bj _)7
u(t, =€) 0 -1 (=17 (—1)"a;
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for 1 < 7 <2m. Then, by (1.8) with u(0,x) = ¢(z), it follows that

D,Ug(1) me IX;U(t),  Ug(0) = "(3(€), (=€), (1.9)

which is a system of linear ordinary differential equations. We can easily obtain the

unique solution

2m
Ue(t) = Ue(0) expit Y & X; (1.10)

=0
ont € (—oo,00) for each £ € R (or T). Therefore, our interest in Theorem 1.5 is
essentially on the regularity of the solution. Here, note that X;X; = X, X; holds
for any 0 < j, k < 2m if and only if b; = 0 holds for any 1 < j < 2m. If we assume

this assumption, (1.9) is not a system but a single ordinary differential equation and
u(t,€) = g(¢) expzt(£2m -+ Zme J%) (1.11)

for each £ € R (or Z). Since 7; = 0 and \; = 2Ima;, it follows that

(e, 6)] = Ia(e rHexp A

by which we obtain Theorem 1.5 easﬂy. On the other hand, it seems difficult to
obtain Theorem 1.5 by (1.10) for general {b;} since X; X} # XX, for some j, k.
To avoid this difficulty, we employ the energy estimate. Propositions 4.2 and 4.3
are main estimates in this paper. The first term of the left-hand side of (4.8) is the
main part of the energy. The second term is the correction term. For “Dispersive
type”, the third and the fourth terms vanish. Thus, we easily obtain the L? a

priori estimate. For “Parabolic type”,

The parabolic smoothing is caused by the term. For “Twisted parabolic type”,

the fourth term includes )\Qj*,l(ng(m’j)“

u,u). We want to show the parabolic
smoothing by making use of the term. However, the sign of the term is not definite.
That is unfavorable in our argument. Therefore, we compute the energy inequalities
of Ptu and P~ u instead of u and obtain Proposition 4.4. Note that the sign of
all terms except the correction terms in (4.11) and (4.12) are definite. Though
(4.11) is the energy inequality for ||[PTu||, it includes )\j_|||0x|m*j/2P*u||2. This is
because (4.1) is essentially coupled system of Ptu and P~u as (4.4). The term
A 1057372 P=u]|* cannot be estimated by [Jul|. This is the main difficulty in
the proof of “Twisted parabolic type” in Theorem 4.1. We analyse a property of

{A; } and use an additional correction term F to eliminate a bad effect caused by
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- m—3/2 p—,, |2 . .. . . .
A [0z 7/2P~u|* and obtain (4.9) (see also (4.10)). This is the key idea in this

paper. This is a joint work with Professor Kotaro Tsugawa.

1.4. Notations. We denote the norm in L?(M) by || - ||,. In particular, we sim-
ply write || - || := || - [l. We write D = [9,] = F1|¢|F. We denote || f|lzs =
2712(|1F1I? + | DfII>)Y? for a function f and s > 0. Let (-,-) = (-,-);,. We
also use the same symbol for (-) := (1 + |- [))Y2. Let [A,B] := AB — BA,
PH(e) == FH (& = D)), P f(2) = FH(x(E < =DN)(@), Rf(z) =
F(El < D)), Peof () - i

f A
of f:

P~ f(z) =
F 1 x(¢] = 1)f)(x). [ is the Fourier transform

F(k) = FF(k) = (27)" / F@)e*dg.

M
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2. LOCAL WELL-POSEDNESS FOR THIRD ORDER BENJAMIN-ONO TYPE
EQUATIONS ON THE TORUS

2.1. Introduction. We consider the Cauthy problem of the following third order
Benjamin-Ono type equations on the torus T(:= R/27Z):

O — O3u + u?0pu + 10, (UHOu) + caHO (udpu) =0, (t,x) ER T, (2.1)
u(0,z) = p(), (2.2)

where the initial data ¢ and the unknown function u are real valued, and ¢y, c; € R.
‘H is the Hilbert transform on the torus defined by

Hf(0)=0 and Hf(k) = —isgn(k)f(k), ke Z\{0}.
The well-known Benjamin-Ono equation
Oyu + HO2u + 2udu = 0 (2.3)

describes the behavior of long internal waves in deep stratified fluids. The equation
(2.3) also has infinitely many conservation laws, which generates a hierarchy of
Hamiltonian equations of order j. The equation (2.1) with ¢; = ¢y = v/3/2 is the
second equation in the Benjamin-Ono hierarchy [20].

There are a lot of literature on the Cauchy problem on (2.3). On the real line
case, lonescu-Kenig [10] showed the local well-posedness in H*(R) for s > 0 (see
also [23] for another proof and [11] for the local well-posedness with small complex
valued data). On the periodic case, Molinet [21, 22] showed the local well-posedness
in H*(T) for s > 0 and that this result was sharp. See [1, 2, 13, 15, 17, 25, 31] for
former results.

On the Cauchy problem of (2.1) with ¢; = ¢, = v/3/2 on the real line, Feng-Han
[6] proved the unique existence in H*(R) for 4 < s € N by using the theory of
complete integrability. They also used the energy method with a correction term
in order to show the uniqueness. Feng [7] modified the energy method used in [6]
and used an a priori bound of solutions in H*(R) to show the “weak” continuous

dependence in the following sense:
¢on — @ in H*2(R) as n — 00 = u, — u in C([0,T]; H*"*(R)) as n — oo, (2.4)

for ¢, ¢, € H*(R) and 6 < s € N. Here, u, (resp. u) denotes the corresponding
solution of (2.1) with ¢; = ¢, = v/3/2 and the initial data ¢, for n € N (resp. ¢).
Note that the topology of the convergence is weaker than H?®. Linares-Pilod-Ponce
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[19] and Molinet-Pilod [24] succeed in proving the local well-posedness in H*(R) of

the following equation
Opu + d102u — doHO?*u = dsudpu — dydy(uHOpu + H(udyu)), (2.5)

for s > 2 and s > 1, respectively. Here, coefficients satisfy d; € R, d; # 0 and
d; > 0 for j = 2,3,4. Their proof involves the gauge transform and the Kato type
smoothing estimate. Recently, Guo-Huo [9] showed the local well-posedness of (2.5)
in H*(R) for s > 3/4 without the gauge transformation. They used so called the
short-time X*® method developed by Ionescu-Kenig-Tataru [12].

On the periodic case, as far as the author knows, there are no well-posedness
results for the Cauchy problem of (2.1) available in the literature. Although proofs
in Feng-Han [6] and Feng [7] above works, and we cannot obtain the local well-
posedness, that is, the resultant continuous dependence (2.4) is weak. And their
proofs heavily depend on the complete integrability. In particular, it is very im-
portant to have ¢; = ¢y in their proofs. It should also be pointed out that in the
periodic case, we do not have the Kato type smoothing estimate, which implies that
the local well-posedness is far from trivial.

Therefore, in this article, we are interested in establishing the local well-posedness
of (2.1) in H*(T) for s less than 4 without using the theory of complete integrability.
In particular, we improve the “weak” continuous dependence (2.4) shown in [7] in
order to fulfill conditions of the local well-posedness. Moreover, thanks to Lemma
2.7, we can show the local well-posedness of the non-integrable case (2.1).

The main result is the following;:

Theorem 2.1. Let s > sg > 5/2. For any ¢ € H*(T), there exist T = T(||¢||ms0) >
0 and the unique solution w € C([=T,T]; H*(T)) to the IVP (2.1)-(2.2) on [-T,T].
Moreover, for any R > 0, the solution map ¢ — u(t) is continuous from the ball

{o € H(T); llollas < R} to C([=T,T]; H*(T)).

Now, we mention the idea of the proof of Theorem 2.1. The standard energy
method gives us the local well-posedness of (2.3) in H*(T) for s > 3/2. On the other
hand, nonlinear terms 0, (uH0,u) and H0,(ud,u) in (2.1) have two derivatives, and

the energy estimate gives only the following:

Y

IR S (1 102l P10EOIE +| [ Dot wdbuds| . (20

It is difficult to handle the last term in the right hand side by ||u|| g+, which is the

main difficulty in this problem. To overcome that difficulty, we add a correction
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term into the energy (see Definition 3):
Eu(u) = ||ullZe + | D%ul% + aJul 5™ + b, / W(HD* ) D20, udz,

where D := F~1|¢|F, following the idea from Kwon [18], who studied the local
well-posedness of the fifth order KdV equation (see also Segata [27], Kenig-Pilod
[16] and Tsugawa [33]). The correction term allows us to cancel out the worst term
in (2.6), which makes it possible to evaluate the H*-norm of the solution by that
of the initial data. It is worth pointing out that our proof refines the idea in [7].

4

Indeed, Feng introduced the following energy estimate in order to show the “weak”

continuous dependence (2.4):
% (||8f_2w||%2 + /(u + v)@’;_?’w?{@ﬁ_dex)
R

< O(T, ol 19 ) o ()| 7z

on [0, 7], where w = u — v and u,v € C([0, T]; H*(R)) satisty (2.1) with ¢; = ¢y =
v/3/2 and initial data ¢,¢ € H*(R), respectively. Here, we would like to have the

estimate for ||wl||gx. If we simply replace k — 2 with k in the above estimate, the

2k -3

constant in the right hand side depends on ||| gr+2 (resp. ||9]|gr+2), which cannot
be handled by ||@|| g+ (resp. [[1] gx). Therefore, we need to find a different correction
term (see Definition 3) and estimate the difference between two solutions in H*(T)
more carefully (see the proof of Proposition 2.21) so as to complete the continuous
dependence.

Another difficulty is the presence of the Hilbert transform H, which restricts the
possibility of using the integration by parts for some terms. Recall that for real

valued functions f, g, we have

S S 1 S
(FD*, D°0.9) ] < 50.fll| D0l
However, in our problem we cannot apply the integration by parts to
<aiﬂf7-[Ds zd Dsg>L27

which is nothing but the term which we cancel out by introducing a correction term.
We notice that the L?-norm is conserved by solutions of equations (2.1) with

c1 = ¢ thanks to the following equality:
(HOy (u0yu), u) ;o + (O (WHOLu), u) ;2 = 0,

which helps us to handle nonlinear terms. In the case ¢; # co, we use Lemma 2.7

originally proved in [4].
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Subsequently, using the conservation law corresponding to the H®-norm of the

solution, we can obtain the following result:

Corollary 2.2. The Cauchy problem (2.1)-(2.2) with ¢ = ¢y = v/3/2 is globally
well-posed in H*(T) for s > 3.

Although we focus on our problem on T, our proof still holds on R, i.e., we can
obtain the local well-posedness for (2.1)—(2.2) on R in H*(R) for s > 5/2. Thus, we
can improve the results shown in [7, 6]. There are two differences, and one is the

following:

—f(x), x € R,

H(HS)(z) = A
—f(x)+ f(0), xeT.

However, such a difference does not yield difficulties in our argument since we have
1) < 1 Fllio@ < NIfllrry S I fllz2cry. The other one is the Gagliardo-Nirenberg
inequality (Lemma 2.3), that is, we do not need to add || f||2ey on R when [ = 0.
This section is organized as follows. In Subsection 2.2, we state a number of
estimates. We also obtain a solution of the regularized equation associated to (2.1).
In Subsection 2.3, we give an a priori estimate for the solution to (2.1). In Subsection
2.4, we show the existence of the solution, uniqueness, the persistence, and the

continuous dependence.

2.2. Preliminaries and parabolic regularization. In this subsection, we col-
lect a number of estimates which will be used throughout this paper. We use the

following Gagliardo-Nirenberg inequality on the torus:

Lemma 2.3. Assume thatl € NU{0} and s > 1 satisfy | < s—1 and a real number
p satisfies 2 <p < oo. Puta = (I4+1/2—1/p)/s. Then, we have

LA ID2fl1* (when 1<1<s—1),

o, g
IAI=IDflI* + ([ fll - (when 1= 0),
for any f € H*(T).

Proof. In the case s is an integer, see Section 2 in [26]. The general case follows

from the integer case and the Holder inequality. U

The following inequality is helpful when we estimate the difference between two

solutions in L2.
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Lemma 2.4. Let k € NU{0}. Then the following inequality holds true:
|0z f + (D)0 FI| < 20| v
for any f € H*2(T).
Proof. We claim that
[sgn(8) —&(&) 7 < 2(6) (2.7)
for any € € Z. When 0 < € < 1, we have |1 — £(6) 7' < 1 < 2(6)7%. Let € > 1.

Set g(z) := (x 4 €2)'/2 for > 0. The mean value theorem shows that there exists
6 € (0,1) such that g(1) — g(0) = ¢'(6). It then follows that

¢ 1 | .
@ S SuroE =95

which shows (2.7) when £ > 0. We omit the proof of (2.7) when £ < 0 since it is
similar. Therefore, using (2.7), we obtain

IHOLf + (D)7 0 f 1l = (sgn(€) = £(6) 7 E F©)le < 20 fllan-=,
as desired. 0

Definition 2. For s > 0 and functions f, g defined on T, we define
P.(f,g) = D?0,(f0,9) — D*0,f0,g — fD*0?g — (5 + 1), f D*0,9,
Qs(f,9) == HD*0,(f0.9) — (D0, f)0rg — fHD*I2g
— (s + 1)0, fHD*d,g.

We introduce several commutator estimates. For general theory on the real line,

see [8]. We shall use extensively the following commutator estimate.

Lemma 2.5. Let s > 1 and sg > 5/2. Then there exists C = C(s,s9) > 0 such that
for any f,g € H*(T) N H*(T),

1P(f; ), Qs (f, 9l < C(II f

Proof. We show only the inequality for Ps(f,g) with s > 1. The case s = 1 follows

H*0).

weo [|gllmrs + (1 F [ |91

from Lemma 2.7. The estimate for Q,(f,g) follows from a similar argument since
D = HO,. It suffices to show that there exists C' = C(s) such that

1€[%en — 1€ = nl*(& = n)n — [nl*n? = (s + 1)(& —n)|nl*n|
< C(I€ = n’Inl> + 1€ — nl*nl*)

for any &, n € Z. We split the summation region into three regions: Ry = {3|n| <
€ —nl}, By = {In| = 3[{ —nl} and By = {|{ —n|/4 < [n] < 4|¢ —nl}. On Ry,
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the mean value theorem shows that (2.8) holds. On R,, note that |[§] ~ |n|. It
immediately follows that |€ —n|*(& —n)n < |€ —n|*|n]?. Set o(z) = z|z|* for x € R.
Note that o € C?*(R). The Taylor theorem shows that there exist 77 € (£,7) or
1 € (n,&) such that

O.// ,,,’7
#(€) = oln) + ()€ — ) + T (g )

This together with the fact that |7| ~ [£| ~ |n| implies that (2.8) holds. On R, it

is obvious. O

Lemma 2.6. Let s > 1, so > 1/2 and A, = D* or D*7'0,. Then we have the
following:
(1) There exists C(s, so) > 0 such that for any f,g € H*(T)N H*(T),

I[As; f10:91l < C(|f] e+ £
(ii) There exists C(sg) > 0 such that for any f € H*(T) and g € L*(T),

I(D) ™" As, flgll < CII]

Hso+1Hg| Hs g‘ H50+1).

o+ |lg]l-

Proof. We omit the proof of the (i) since it is identical with that of the previous
lemma. We show the case (i) with Ay = 92 only. The other case follows from
a similar argument. It suffices to show that [€2(€)™" — n2(n)~"| < |€ — ] for any
£,n € Z. Set o(x) = —x*(x)"" for € R. Note that ¢ € C'(R) and that o’(z) =
— (2% + 2x)(z) . Tt then follows that there exists C' > 0 such that |o’(z)] < C for

any € R. This together with the mean value theorem implies that we have
|0(&) —a(n)] < Cl§ =,
which completes the proof. O

The following estimate is essential for our analysis in the case ¢; # ¢ in (2.1).

For LP cases on the real line, see [4].

Lemma 2.7. Let sg > 1/2 and k € N. Then, there exists C = C(sg) > 0 such that
for any f € H*(T) and g € L*(T)

117, flozgll < Cf]

weo+e ][9]l
Proof. 1t suffices to show that
[sgn(€) —sgu(n)|[nl* < 1€ —nl* (2.9)

for any &, € Z. We split the summation region into three regions: Ry = {3|n| <
€]}, Re = {|n] > 3[¢|} and R3 = {[¢]/4 < |n| < 4]¢|}. Tt is clear that (2.9) holds
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on Ry and R,. It is also clear that (2.9) holds when £n > 0. Therefore, we consider
the region Rz N {&n < 0}. We first assume that £ > 0 and n < 0. Note that
1€ —n| > [&] > |n|/4. Similarly, in the case & < 0 and n > 0 we have [ —n| > |7].
Therefore, we have (2.9), which concludes the proof. O

Lemma 2.8. Let so > 1/2 and u,v be sufficiently smooth function defined on T.
Then there ezists C' = C(sg) > 0 such that

|(WHO2u + O, vHOpu, u)| < Ol|v]| groore ||ul]*.
Proof. This follows from the equality
2(vHO*u + O, vHOu, u) = —([H,v]0%u, u) — (*vHu, u)
together with Lemma 2.7. 0J
We shall also use extensively the following estimate.

Lemma 2.9. Let so > 1/2. Then, there exists C' = C(sg) > 0 such that for any
f € HTYT) and g € H(T)

meo [lglI*.

(f0:9,9)| < CIlf]

Proof. This follows from the density argument and the integration by parts. OJ

The following lemma helps us calculate a correction term.

Lemma 2.10. For sufficiently smooth functions f,g and h defined on T, it holds
that

(02fg.h) + (f029, h) + (fg.03h) = 3(0:.f0rg, Duh).
Proof. See Lemma 2.2 in [16]. O
We shall repeatedly use estimates of the following type:

Lemma 2.11. Let sq > 5/2.

(i) Let s > 1. There exists C(s,s9) > 0 such that for any f; € H*(T) N H*(T) and

fo € HTY(T) N H*(T),
[(AHD? fo, HD*(f10: f2))]
< C(Ifillzzeo I follZs + 1L A2

fl

fol

fol

HSO Hs HSO Hs ) .
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(ii) Let s > 2. There exists C(s,sq) > 0 such that for any fi € H**(T) N H*(T)
and fy € H2(T) N H*(T),

‘(leDsaﬂf(leafo)v DS_Zaxf2>‘
< C(|If] folls + II.f1] fi

Hso Hs Hso

2l

2l

%SO HS>.

Proof. First we show (7). Note that

[(SLHD? fo, HD?(f10: f2))]
< [(AHD* fo, [HD*, fi]0ufo)| + (FTHD" fo, HD*0u f2)|.

Lemma 2.9 together with (¢) of Lemma 2.6 shows (i). Next we show (ii). Lemma
2.5 shows that

(D (fiHOu f2), fiD* 20, f2) — Ri — Ra — Ry
S Wl L fallzrs + 1l zzso L full s || foll zrso |1 fo

Hso Hs Hso Hs,

where Ry = (D*T' fiH0, fo, 1D* 20, f2), Ro = (fiHD*"'0, fo, [1D* 20, f2) and
R3 = (s + 1)(0. iHD fo, f1 D720, f5). Tt is easy to see that

[Ral S W llasoll full sl foll o | foll s and [Ra| S [ fullFgeo ] follFs-
For R,, we have
Ry = —(f{D*0; fo, D720, f»)
= 2(f10: [1D*8y fo, D* 720, fo) — ([ D*0x fo, D f2)
= ~2(0:(/10. /1D*7?0, f2), D* fo) + {f10. f1, (D* f2)?),
which can be bounded by < || f1 %= || f2]|3s. This concludes the proof. O

Lemma 2.12. For any s > 1 and so > 5/2, there exists C(s,so) > 0 such that for
any u,v € H¥(T) N H*(T),
[(D?0,(uHO,u — vHO ), D*w) — s(O,uHD*0,w, D*w)]|
+ (HD?0,(udpu — vIv), D*w) — (s + 1){0,uH D*0,w, D*w)|
< Cllwlas{([lul
+ [Jw]

Hso

w0 + [0l o )| wllzzs + (ullzzs + (0]l o) [w]

H5072||'U| Hs+2 + ||w| H5071||’U| Hs+1},

where w = u — v.
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Proof. Adding and subtracting terms, we obtain
(D?0,(uHO,w + wHO,v), D*w) — s(0,uHD*0,w, Dw)|
< |(Ps(u, Hw) + Py(w, Hv), D*w)| + [{(D*0puHO,w, D*w)|
+ [{(uHD* 0w + O,uHD*0,w, D*w)| + %](H@gv, (D*w)?)|
+ (wHD*0?v, D*w)| + (s + 1)|(O,wHD*0,v, D*w)|,
(HD?0,(ud,w + wd,v), D°w) — (s + 1){0,uHD*Ow, D*w)|
< Qs(u,w) + Qs(w, v), D*w)| + [(WHD*G;w + yuH D Opw, D*w)|
+ {wHD*O?v, D*w)| + (s + 2)|(O,wHD*0,v, D*w)|
since we have
(0 wHD?Opu + O, vHD?0pw, D*w) = (Op,uHD?*0,w + O, wHD*0,v, Dw).
Note that
[(D?0,uHO,w, D*w)| = [(D*0,wHOI,w, D*w) + (D*0,vHO,w, D*w)|

S llwl is + [l

Hs0 w| Hs w| H5071||U| Hs+1

by Lemma 2.9. This together with Lemma 2.5 and 2.8 gives the desired inequality,
which completes the proof. O

Definition 3. Let s > 2 and a,b,c¢ > 0. Set A(s') = —2((¢1 + ¢2)s" + ¢2)/3 for ' > 0.
For f,g € H*(T) we define

Eu(f.g:a) = allf — gl> + |D°(f — g)]”
+A(s) / FHD(f — g)) D20, (f — g)d,
Eu(f:5) = Eu(£,0:1) + bl f]*+2.

For f,g € L*(T) we define
E(f.g;¢) = c|lf —gll— + If — 9l - A(O)/Tf(@)_l(f —9)(f — g)dz.

Lemma 2.13. Let s > sy > 5/2 and K > 0. Then

(i) If f,g € H*(T) and f satisfies ||f|| < K, then there ezxist C = C(s,K) and
a = a(s, K) such that

- (2.10)

If = gll5s < Es(f,g;0) < C|If — g
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(i) If f € H*(T), there exist C = C(s) and b = b(s) such that
1117 < Bo(f30) < O+ A1) (2.11)
(1ii) If f,g € L*(T) and f satisfies ||f| < K, then there exist ¢ = c¢(K) and
C = C(K) such that
1 _
I =gl < B(f.g:¢) <CIIf =gl (2.12)

Proof. We see from Lemma 2.3 and the Young inequality that

/T\f(”HDs(f — 9)D*20u(f = g)ldz < [ FIID*(f — )IID**0:(f — 9) I
< CIf = gl D°(f = g) |~
< Clf — olP + 51D - o)l
Choosing a > 0 so that a — C' > 1/2, we obtain the left hand side of (2.10). The

right hand side of (2.10) follows immediately, which shows (7).
Next we prove (2.11). A similar argument to the proof of (2.10) yields that

[ 15D 1) D520, e < YT+ S ID

Choosing b > 0 so that b — C > 1/2, we obtain (2.11). The proof of (ii7) is identical
with that of (i). O

In what follows, we simply write E(f,g) := Es(f,g;a), Es(f) := Es(f;b) and
E (f,9) := E,(f,g;c), where a,b and ¢ are defined by Lemma 2.13.

Definition 4. Let s > 0, f € H*(T) and v € (0,1). And let p € C§°(R) satisfy
suppp C [-2,2],0<p<lonRand p=1on [-1,1. We put

T f (k) = p(k) f (k).
For the proof of the following lemma, see Remark 3.5 in [5].

Lemma 2.14. Let s > 0, a« > 0, v € (0,1) and f € H*(T). Then, J,f € H*(T)

satisfies
[Jof = fllas =0 (v = 0), Ny f = fllas— S I f]ae,
[Ty e <\ fllas-es (1T f s S 77

We employ the parabolic regularization on the problem (2.1)-(2.2):

Hs-

Au — u 4 u0pu + 10, (UHOu) + coHOp(udpu) = —y D, (2.13)
u(0,z) = p(z), (2.14)
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where (t,z) € [0,00) x T and v € (0,1). In what follows, we only consider ¢ > 0. In
the case t < 0, we only need to replace —yD%/?u with yD*?y in (2.13).

Proposition 2.15. Let s > 2 and v € (0,1). For any ¢ € H*(T), there exist
T, € (0,00] and the unique solution v € C([0,T,), H*(T)) to the IVP (2.13)-(2.14)
on [0,T) such that (i) liminf, 7. ||u(t)|[z2 = 0o or (it) T, = oo holds. Moreover,

u satisfies
u e C((0,T,), H*(T)), Va > 0. (2.15)

Proof. This follows from the standard argument, for example, see Proposition 2.8 in
[33], but we reproduce the proof here for the sake of completeness. First we consider
the case s = 2. For simplicity, set F(u) = —u20,u — ¢,0,(uHOu) — coHO, (ud,u).
Let U,(t) be the linear propagator of the linear part of (2.13), i.e.,

11 —i€3t—~|E]5/2¢ A
U, (t)p = F e g

for a function . Note that

Cla)
COREE

for t > 0 and a > 0. We show the map

DU, )l < lell - and U, ()@llze < Cla)(d+ (1) 2*)[lell (2.16)

D(u(t)) = U, (1) + / U, (t — 7)F(u)dr

is a contraction on the ball

B, = {u e C(10, T H(T)): [lullx = sup [Ju(t)]lm < } ,

te[0,7)

where > 0 and 7" will be chosen later (which is sufficiently small and depends
us. We show that I" maps from B, to B,. Let

only on [|¢||z2 and 7). Set r = 2||¢]
u € B,. Obviously,

t
I (u(@) 2 < [[@lla +/0 |U (¢ = ) F (u) || rr2dt.
The Plancherel theorem implies that

|0t = )0 12 = (&) [€le I Fu
S =) gz S 7P~ )0 ol

Similarly, we have

U5 (t = Y HOL(uds) |2 S 5t =)0l e
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On the other hand,
U5 (¢ = )Du(uMDpu) [z S (14775 = ) 7P) ol e
It then follows that

sup |[[I'(u(t))]|
t€[0,T]

< llellz2 + C{llellzey T2 + ol (T + =T )@l < 2llepll e

for sufficiently small 7' = T'(||¢||z2,v) > 0 and any u € B,. By a similar argument,
we can show that |T'(u) — T'(v)|x < 27Y|u — v||x when u,v € B,. Therefore, I is
a contraction map from B, to B,, which implies that there exists u € B, such that
u=TD(u) on [0,T)]. Since ||u(T)|| g2 is finite, we can repeat the argument above with
initial data u(7") to obtain the solution on [T',T'+T"]. Iterating this process, we can
extend the solution on [0, T) where T’, = oo or liminf, 7. |lu(t)||z2 = oo holds.
Next, we consider the case s > 2. The solution obtained by the argument above

satisfies
u(t) = U, (t)p + /Ot U,(t —t')F(u)dt'. (2.17)
Note that
Ut = )0 e S 7725 =) 20|l S 77200 = )Pl e

We can estimate the other nonlinear terms in the same manner as above. It then
follows that

sup [u(t)]

Hs
te[0,7
< llellms + Cllellzy 2T + ol (T + =T %)}l e
< 2|l a-

for sufficiently small T = T'(||¢||g2,7) > 0. By using (2.17), we also obtain u €
C([0,T]; H*(T)). Since ||u(T)| - is finite, we can repeat the argument above with
initial data w(7") to obtain u € C([T,T + T']; H*(T)). We can iterate this process
as far as ||u(t)||gz < oco. Therefore, we obtain v € C([0,7,); H*(T)). We omit
the proof of the uniqueness since it follows from a standard argument. Let 0 <
§ < T,/2. We see from (2.16) and (2.17) that u € C([3,T,); H**Y4(T)). The
same argument as above with the initial data u(0) € H*"/4(T) shows that u €
C([6 + 6/2,T,); H*/2(T)). Tterating this procedure, we obtain (2.15) since § is
arbitrary, which completes the proof. 0
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2.3. Energy estimate. In this subsection, we obtain an a prior: estimate of the

solution of (2.1), which is important to have the time 7" independent of ~.

Proposition 2.16. Let s > so > 5/2, v € (0,1), ¢ € H*(T). Let T, > 0 and let
ue C([0,T,), H(T)) N C((0,T,); H3(T)) be the solution to (2.13)-(2.14), both of

which are obtained by Proposition 2.15. Then, there exist T = T(so, ||¢llm=0) > 0
and C = C(s, so, ||¢|lzs0) > 0 such that
d
T,>T, sup Es(u(t)) <CEs(p), EEs(u(t)) < CEq(u(t)) (2.18)
te[0,7)

on [0,T], where T' (resp. C') is monotone decreasing (resp. increasing) with ||¢|

Heo -
Before proving Proposition 2.16, we give the following lemma.

Lemma 2.17. Let s > so > 5/2, v € [0,1), T > 0, uw € C([0,T], H*(T)) N
C((0,T); H*(T)) satisfy (2.13) on [0,T] x T and sup,cjq Es,(u(t)) < K for
K > 0. Then, there exists C = C(s, sg, K) > 0 such that

SE(u(t) < OB, (u(t)

on [0,T].

Proof. First observe that

d

EHu(t)H2 = 2(0%u — u*Opu — 10, (uHOu) — cyHO, (udpu) — v D *u, u)

2

S lu@®llin < ()]s

||4s+2

We can estimate the time derivative of ||u(t) in a similar manner. Next we

consider

D

= 2(D*03u, D*u) — 2({D*(u*d,u), D*u) — 2¢1{D*0, (uHOu), D3u)

— 25 (H D0, (udpu), D*u) — 2y(D*+%%u, Du)

= Ri+ Ry + Rs + Ry + Rs.

It is clear that B; = 0. We have
| Ra| < 2[([D*, w*|0pu, D*u)| + 2(u*D*0pu, D*u)| < [Jullys
by (i) of Lemma 2.6 and Lemma 2.9. Lemma 2.12 with v = 0 shows that
|R3 + 2¢15(0,uH D*Opu, D°u)| 4+ | Ry + 2¢2(s + 1){0,uH D?*0,u, D*u)|

< lullf-
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Finally, we have Rs = —27||D**>/*u||2. Therefore, we have

d S
ZID%u)? < Clul

2s +3A(s) / Opu(HD?*Opu) D¥udx — 2| D¥4u?,  (2.19)
T

where A(s) is defined in Definition 3. Next we evaluate the correction term. We put

%(uHDSu, D*720,u)
= (OwuHDu, D¥20,u) + (uH D*Ou, D* 20,u) + (uHD*u, D¥20,0,u)

=: R¢ + R; + Rs.
Moreover, we set
R = (O*uHD*u, D*20,u) — (u*O,uHD*u, D*"20,u)
— ¢1(0,(uHOu)HD*u, D¥20,u) — co((HO,(ud,u))H D u, D 20,u)
— 7<D5/2u’HDsu, D*720,u) =: Rg1 + Res + Rz + Ry + Res.
And we set
Ry = (WHD*02u, D*20,u) — (uHD*(u*dyu), D¥ 20, u)
— 1 (WHD* 0, (uHO ), D¥20,u) + co(uD*0, (ud,u), D¥ 20 u)
— Y (uH D>y, D*20,u) =: Ry + Rra + Rz + Rry + Ros.
Finally, we set
R = (uHD*u, D*"20}u) — (uH D*u, D*~20,(u*0,u))
+ ci(uH D*u, D*(uHOu)) + co(uHD*u, HD®*(ud,u))
— y(uHD?u, Ds+1/28zu) =: Rg1 + Rgo + Rg3 + Rgs + Rgs.
Lemma 2.10 shows that
Re1 + Ry + Rg1 =3(0,uHD*0pu, D 202u) = —3(0,uHD*0u, D*u),

which cancels out the second term in the right hand side in (2.19) by multiplying
A(s). It is easy to see that |Rea| + |Res| + |Rea| S |lullFs- By (¢) of Lemma 2.6, we
have |Rp| + |Rsa| S ||ull%.. We see from (ii) of Lemma 2.11 that |Rys| < [Jul|%..
Lemma 2.9 and (i) of Lemma 2.6 give |Ryy| + |Rg3| < ||ul|%s. For Rgy, it follows
from (i) of Lemma 2.11 that |Rss| < [Jul

Lemma 2.3 implies that

2. Finally, we estimate Rgs, Ry5 and Rgs.

1D 20ullo0 < CIID* ||| Dl

< C|’UH1_(45_2)/(4S+5)HD5+5/4UH(45_2)/(45+5).
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Then we have
| Res| < 71| D°2ul[ | D*ul||| D* 28l o

< 70||u||1+2/(45+5)||D5+5/4u||2_2/(45+5)

1+1/4(s+1)

< C«Hu“45+7 + ’YT“DSJFSMUHZ'
A similar argument yields
4s+7 25+9/2 271+1/4(5+1) 4 12
| Rzs| + | Rss| < Cllul|**7 + Clluf| 7% + 3 | D55 |2,

Therefore, the fact that v € [0,1) shows that

d
B (u(®) < Cllu(®)z: < CE(u(t))
on [0,T]. Note that the implicit constant does not depend on 7. This completes the

proof. O
Now, we are ready to prove Proposition 2.16.

Proof of Proposition 2.16. Assume that the set F' = {t > 0; E,,(u(t)) > 2Eq,(p)}
is not empty. Set 77 = inf F. Note that 0 < Ty < T, and E, (u(t)) < 2E,,(p)
on [0,7%]. Assume that there exists #' € [0,77] such that E,(u(t')) > 2Es ().
This implies that ¢ > T by the definition of T7. Then we have ' = T. Thus,
supyefo 1] Lo (u(t)) < C([[ollm=0) by (ié) of Lemma 2.13. By Proposition 2.17, there
m#0) such that

exists C = C(s, so, ||¢|

< Bu(u(t)) < CLB(u(1)

on [0,7%]. The Gronwall inequality gives that
E(u(t)) < Ey() exp(Cit) (2.20)

on [0,T%]. Here, we put T' = min{(2C7 )~',T5}. Then (2.20) with s = 59 shows
that

Ego(u(t)) < Egy(v) eXP(Q_l) < 2E(p),

on [0,7]. By the definition of 7> and the continuity of F,(u(t)), we obtain 0 < T =
(2C7,)~" < Tr < T,. If F is empty, then we have T = T, = co. In particular, we
can take T' = (2C7 )~' < oo, which concludes the proof. O
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2.4. Uniqueness, persistence and continuous dependence. In this subsection,
we prove Theorem 2.1. We first show the existence of the solution of (2.1) by the
limiting procedure. We also prove the uniqueness and the persistence property
u € C([0,T]; H*(T)). Then we estimate difference between two solutions of (2.23)-

(2.24) in H*(T), which is essential to show the continuous dependence.

Lemma 2.18. Lets > sg > 5/2,v; € (0,1), T > 0. Assume thatu; € C([0,T]; H*(T))N

C((0,T); H*X(T)) satisfies (2.13) withy = ~; on [0, TIXT and supseo gy [[u; ()| g0 <
K for K >0, j =1,2. Then there exists C = C(K,s) such that

d - 5

%E(ulal@) < C(E(u17u2) +maX{’y%7722}) (221)

on [0,T7].
Proof. Set w := u; — uy so that w satisfies the following equation:

1
Ow — Ow + gax{(uf + uguy + uz)w}
+ 02—1&,3(11)7{8%2) + %&E(Z’H&Ew) + %H@m(waxz) + %H@x(zﬁxw) (2.22)

= —’YlDS/ZU} —(n - ’72)D5/2U2,
where z = u; + uy. By the presence of the operator <D>_1, we can easily obtain

d,
D) wl* < flwll” + max{+, 43}

Indeed, note that 9, (zHO,w) = 82(2Hw) — 9,(dxzHw). Then we have
(D) 0, (2HD,w), (D)~ w)|
< [{(D) 7182 (zHw), (D) " w)| + [((D) 0,0,z Hw), (D) 'w)| < fJw]*.
Other terms can be estimated in a similar manner. Next, we estimate the L?-norm

of w. Set

d 2
%HwH2 = 2(03w, w) — §<8x{(uf + uruy + uz)w}, w) — 1 {0, (WwHO,2), w)

— (0 (zHO,w), w) — co(HOL(wDy2), w) — c2(HO,(20,w), w)
- 271 <D5/2U), U)) - 2(71 - 72) <D5/2u27 U}>
=: Ry + Rio + Ri1 + Rz + Ri3 + Ry + Ris + Rys.
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Again, it is clear that Rg = 0. By Lemma 2.9, we have |Ryo| + |R11| < ||w|[*. Note
that

([H, 0:2]0pw, w0) + ([H, 2] 03w, w)
= (H(0,20,w), w) — (0,2 HOyw, w) + (H(202w), w) — (zHO*w, w)
= (02 (02 Hw), w) — (p2HOpw, w) — (02 (zHw), w) — (zHw, w)
= —2(0:(zH0,w), w).
Then Lemma 2.7 shows that |Rya| + [R14| < |Jw||?. We can reduce Ry3 to
Riz = —2¢9(0yus HOpw, w) — co(OpwHOw, w)

since z = 2u; — w. The last term in the right hand side can be bounded by < ||w||?
by using Lemma 2.9. Observe that Ri5 = —y||D%4w||> < 0 and that |Ris| <

|w||* + max{y?,72}. Therefore, we have
d
Gl < Cllulf +3350) | drn (o, wde -+ max{a? A3).

The correction term in £ cannot exactly cancel out the second term, but Lemma

2.4 shows that the difference is harmless. Set
%(U1<D>_lw,w> = (0 (D)~ w, w) + (ur (D)~ dyw, w) + (ur (D)~ w, dyw)
=: Ri7 + Rig + Ryy.
Moreover, we set Ry7; = (9Puy (D) 'w, w) and set
Rus = {us (D)™ 0w, w) — 3 (D) 0L + iy + ud)w), )

— 5 (D)0, (wHO,2), w) = T (wr(D) 0, (HOw), w)

Co

- §<U1<D>_1Hax(waxz)7w> - %<u1<D>_1%aw(Zaww)a w)
— 1 (ur (D)~ D> w,w) — (71 — 72) (ur (D)~ D Puy, w)
=: Ris1 + Rigo + Ris3 + Risa + Riss + Rise + Ris7 + Riss
We set Rigr for k =1,...,8 in the same manner as above. Lemma 2.10 shows that
Rim + Risi + Rig1 = —3(0,uy (D) ' 0%w, w) — 3(0%uy (D) 0w, w),

which together with Lemma 2.4 shows that |Ry3 — A(0)(Ry71 + Rig1 + Rion)| S |Jw||*.

It is easy to see that
|<(u§8$u1 + clax(ul’i-[amul) + CQ’H@x(ul@zul) + 71D5/2u1)<D>_1w, ’LU>|

< Jwl
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We have |R182| + |R183| + |R185| + |R192| + |R193| + |R195| 5 ||w||2 because of the
presence of the operator <D)_1. In order to handle Rig4, Rigs, R194 and Rigg, We see

from Lemma 2.4 and (i) of Lemma 2.6 that

| Rugs| = —%<u1<D)_1w,H8§(zw)> n %(ul(D>_1w,H8m(3zzw)>

< [ (D) " 0pw, (HO, + (D)™ 02) (zw))| + [{ur (D) ™' 8pw, (D)~ 0 ()|
+ [lwlf?
< [{ui(D) ™ 0w, [(D) 102, 2Jw)| + [(ur2(D) ™ sw, (D)~ 8w} + ]|

< Jwl”.

We can obtain |Rigs| + |Rige| + |Rioa| < ||w||?* from a similar argument. Finally, it
is easy to see that |Ris7| + |Riss| + | Rior| + |Rigs| S |lw]|? + max{~{,~3}. Summing
these estimates above and applying (ii7) of Lemma 2.13, we obtain (2.21), which

concludes the proof. O

Now we obtain the solution to (2.1)-(2.2). Let ¢ € H*(T) and let v, € (0,1).
Let u,, be the solution to (2.13)-(2.14) with v = v; for j = 1,2, obtained by
Proposition 2.15. Note that E(u.,(0),u,(0)) = E(p, ) = 0. Proposition 2.16
shows that there exists T' = T (s, ||¢||m0) such that (2.18) holds. We see from (iii)
of Lemma 2.13 and Lemma 2.18 that

SUp [|uy, (8) = upy (8)[* < sup E(uy, (£), 1y, (1)) < Cmax{r7,75} — 0
te[0,T) te[0,T]

as 71,72 — 0. This implies that there exists u € C([0, T]; L*(T)) such that
w, —u in C([0,T); L*(T)) as v — 0.

The above convergence can be verified in C([0, T]; H"(T)) for any r < s by interpo-
lating with L>°([0,T7]; H*(T)). It is clear that u satisfies (2.1)—(2.2) on [0, T].

For the proof of the following uniqueness result, see Thorem 6.22 in [14].

Lemma 2.19 (Uniqueness). Let § > 0 and ¢ > 0, u; € L=([0,d]; H>?*5(T)) satisfy
(2.1) on [0,0] with u1(0) = us(0) and satisfy

u; € C([0,6); H*(T)) N C'([0,6); H~(T))
for j =1,2. Then uy = uy on [0,0].

It remains to show the persistent property, i.e., v € C([0,T]; H*(T)) and the

continuous dependence. In what follows, we employ the Bona-Smith approximation
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argument. We consider the following initial value problem:

O — OPu+ u?Opu + 10, (WHOu) + coHd,(udpu) =0, z €T, (2.23)
u(0,z) = Jyp(x), (2.24)

where J,p is defined in Definition 4. Let s > so > 5/2, ¢ € H*(T) and € > 0.
Lemma 2.14 shows that J,p € H*®(T). Let u, € C([0,T,); H***"¢(T)) be the
solution (2.13) with the initial data .J,¢ obtained by Proposition 2.15. Lemma 2.14
me0) such that (2.18)
holds for s + 3 + €. Lemma 2.18 and the above argument show that there exists
u € C([0,T]; H™3(T)) such that @ solves (2.23)—(2.24). Therefore, we have the

following corollary:

and Proposition 2.16 imply that there exists T' = T'(so, ||¢]

Corollary 2.20. Let s > sg > 5/2, T > 0, u; € C([0,T]; H*™(T)) satisfy (2.23)
on [0,T] x T and sup,eoq) u;()||zrs < K for K >0, j = 1,2. Then there exists

C = C(K, sg,s) such that

%E(ul(t),uQ(t)) < CE(us(t), us(t)) (2.25)

on [0,T].

Proposition 2.21. Let s > sq > 5/2, T > 0, u; € C([0,T); H*"*(T)) satisfy (2.23)
on [0,T] x T and sup,eoq) u;()||zrs < K for K >0, j = 1,2. Then there exists

C = C(s,sg, K) such that

d 2 o 2 w2
S Bs(ua(t), ua(t)) <C(llur(t) — ua(®) 5 + [l () — w2 (t) [0 w2z (2.26)
+ [Jua(t) = w2 ()72l 2|l77+2)
on [0,T].

Proof. Set w = u; — ug and z = uy + us. It is easy to see that

d

el S el < ol

Set
d
EHDSwH2 = 24D*0’w, D*w) — 2(D*(uid,w), D*w) — 2(D*(zwd,us), D*w)
— 2¢1(D* 0, (u1 HOpuy — ugHOpus), D*w)
— 209 (HD? 0, (u10,u1 — us0yus), D°w)
= R1—|—R2+R3+R4+R5.
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It is easy to see that Ry = 0 and |Ry| < [jw|

have |R3| < |Jw||Fs + [|w]|30-1 |t2][3er1. Lemma 2.12 shows that

2. by (i) of Lemma 2.6. For R3, we

|Ry + R5 — 3\(s)(0zu1 HD? 0w, D*w)|

S Wl + 1wl a2 lluzllZreve + il uzll e
Therefore, the time derivative of || D%w||? yields
d
ZID"w* < Cllwllf: + Cllwlpeo-lluallzr + Cllwlg-2ua s

(2.27)
—i—3A(s)/8xu1(7{D58xw)Dswdm.
T

Next, we evaluate the time derivative of the correction term. Lemma 2.10 with
f=wui, g=HD*w and h = D20, w shows that

(O2uyHD*w, D*~20,w) + (uy HD*0>w, D*20,w) + (uy HD*w, D* *0}w)

= 3(0,u1 HD*0,w, D 202w) = —3(0,u1 HD*0,w, D*w).

Multiplying by A(s), we can cancel out the last term in the right hand side in (2.27).
On the other hand, it is easy to see that

((8tu1 - 83“1)HDsw7 DS_28¢£w> 5 le %fs’

We set

(uyHD* (Opw — O2w), D20, w)

1
= —g(ulHDsax{(u% + uguy + uz)w}, D 20,w)

— e {urHD* 0, (ur HOpw), D*~20,w) + co(uy D0, (u10,w), D¥20,w)
— 1 (uyHD* 0, (wHOuz), D~ 20,w) + cy(uy D0, (wdyus), D¥20,w)
=: Rg + Rip + R11 + Rio + Ry3
and

(uyHD*w, D*~20,(0yw — O3w))

1
= §<u1’HDsw, D¥{(u} + uyug + ud)w}) + ¢ (uy HD*w, D* (uy HO,w))

+ co(ui HD*w, HD*(u10,w)) + ¢1{us HD*w, D*(wHOuz))
+ CQ(U{HDSIU, HDS(wﬁxUQ» =: Ris + Ri5 + Rig + Ri7 + Ris.

By (i) of Lemma 2.6, we have | Rg| +|R14| < ||w||%s. We see from (i7) of Lemma 2.11
that |Rig| < ||Jwl]|%s. We also have |Ryg| < ||w]|%. by (i) of Lemma 2.11. Similarly,
we can obtain |Ry| + |Ris| < ||w]|%s. On the other hand, by (i) of Lemma 2.6 we
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have |Rio| + |Ris| + |Ruiz| + |Ris| S w3 + [Jw]

estimates above, we obtain (2.26) on [0, 7], which concludes the proof. O

%50,2||u2| Fror1. Summing these

Now, we can show the persistence property and the continuous dependence.

Proof of Theorem 2.1. In what follows, without loss of generality, we may assume

o < K is weaker than

that sg is strictly smaller than s since the assumption |||
ol ;s < K when sy < sp. First we prove the persistence property. Let 0 < v <
Y2 < 1. Let u,, € C([0,T]; H¥*3(T)) be the solution to (2.23)-(2.24) with the initial
data J,p for ¢ € H*(T) and j = 1,2. Corollary 2.20 with the Gronwall inequality
shows that
sup 1t (2) = (D)1 < CE(u, (0), 4, (0) < Cll 0 = Tl < C3°
te|0,
since 3 < 7y2. This together with the interpolation implies that
2(s—a
D[y, (1) = 1ty (1) [ < O3
te[0,7

for any 0 < o < s. On the other hand, Lemma 2.14 and 2.17 show that

2
Hs

Frora < O3l

fore < Cll el

sup ||t (t)]
te(0,t]

for « > 0. This together with the Gronwall inequality and Proposition 2.21 implies
that

et T = 0

sup s, (8) = ws, (D170 < 1950 = Tl

te[0,7)

as y2,71 — 0 since ||Jy, 0 — Jy,¢llgs — 0 as 71,72 — 0. Then, there exists @ €

C([0,T]; H*(T)) such that
uy, — @ in C([0,T); H*(T)) as v —0.

It is clear that the function @ coincides with our solution u € C([0,T]; H"(T)) for
r < s to (2.1)—(2.2), which shows the persistence property.
Finally, we prove the continuous dependence, which is the only thing left to prove.
We will claim that
Vi € H*(T),Ve > 0,386 > 0,¥y) € H*(T) :

(2.28)
I — 9|

s < 0= sup |u(t)—v(t)]
t€[0,7/2]

Hs < €],

where u, v represent the solution to (2.1) with initial data ¢, € H*(T), respectively,
which are obtained by the above argument. In (2.28) we take the interval [0,7/2]
with 7" as defined by Proposition 2.16 to guarantee that if |[¢ — || gs < 6, then the
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solution v(t) is defined in the time interval [0,7/2]. Fix ¢ € H5(T) and € > 0. Let
0 < <7 < 1. Assume that ||¢ — 9|gs < &, where § > 0 will be chosen later.
Note that by the triangle inequality we have

sup |lu(t) — v(t)|

HS
te[0,7/2]
< sup lu(t) —u(t)||gs + sup  [Ju"2(t) — 0" (1)] s (2.29)
te[0,7/2] t€[0,T/2]
+ sup |0 (t) — ()| g5,
t€[0,T/2]

where u? and v represent the solution to the IVP (2.1) with the initial data J,,¢
and J, v, respectively. First we handle the second term in the right hand side in

(2.29). Again, the triangle inequality shows that

[0 = Tl < oo — @l + o = Yllar + 1 — Ty ¥l e
for r < s. Proposition 2.21 with u; = v"* and uy, = u"? gives that

sup lu™(t) —v™ (1)]
te[0,7/2]

< Ol Jye — ¢l

Hs

e+ C6 + Clltp — Ty, )| s + Cys ™ + Cryg Hg Moo/
+ Oy [ = Ty | T O 4 Oyt

+ 072—2“1# . J71¢||1+2/s—so/s'

Therefore, we choose v > 0 so that

S—S E
sup u(t) —u(O)||zs + CllJynp — @llgs +Cy > < -,
t€[0,7/2) 3

Then we take § > 0 such that

C((S + 72—161+1/S—80/S + ,}/2—2514-2/8—50/8) < %

and finally for each ¢ € H*(T) satisfying ||¢ — ¥||gs < 0 we take 1 € (0,7,) such

that

sup |[v7(¢) — v(?)]
te[0,7/2]

+ O M| — Ty || 1 O Rl — ||l <

e+ Cll = Jy, ¢

Hs

€
3
which completes the proof of (2.28). O
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3. LOCAL WELL-POSEDNESS FOR FOURTH ORDER BENJAMIN-ONO TYPE
EQUATIONS

3.1. Introduction. We consider the Cauthy problem of the following fourth order

Benjamin-Ono type equations:
Oyu = 0, K (u), (3.1)
u(0,z) = p(x), (3.2)
where t € R, z € R or T(=: R/27Z), u = u(t,x), p = p(x) € R,
K(u) := HOu + crud?u + co(0,u)* + c3(HOpu)? + caH(uHOu)

+ esH(u?0pu) + cguH (udyu) + cru*Hou — ut (3:3)
and ¢; € Rfor j =1,...,7. H is the Hilbert transform defined by
HFO)=0 and HF(E) = —isgn() ()
for £ € R\{0} or Z\{0}. The well-known Benjamin-Ono equation
O+ HO*u + 2ud,u =0 (3.4)

describes the behavior of long internal waves in deep stratified fluids. The equation
(3.4) also has infinitely many conservation laws, which generates a hierarchy of
Hamiltonian equations of order j. The equation (3.1) with ¢; =3, —co = ¢5 = ¢ =
c; = —2 and c3 = ¢4 = —1 is integrable and the third equation in the Benjamin-Ono
hierarchy [20].

There are a lot of literature on the Cauchy problem on (3.4). On the real line
case, lonescu-Kenig [10] showed the local well-posedness in H*(R) for s > 0 (see
also [23] for another proof and [11] for the local well-posedness with small complex
valued data). On the periodic case, Molinet [21, 22] showed the local well-posedness
in H*(T) for s > 0 and that this result was sharp. See [1, 2, 13, 15, 17, 25, 31] for
former results.

In [29], we studied the local well-posedness for the equation
Oru = 0,(02u + dyuHOwu + dyH(udpu) — u®), x €T, (3.5)

where dy,dy € R. The equation (3.5) with d; = dy = 3/2 is integrable and the
second equation in the Benjamin-Ono hierarchy. The local well-posedness for (3.5)
is based on the energy method with a correction term. Namely, we employ the

energy method to

B.u) = lull + D%l + aul 57+, [ u(MD*0)D*20,uds
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(see Definition 2 in [29]) in order to eliminate the first order derivative loss. In
fact, we have the second order derivative loss resulting from nonlinear terms in the
energy inequality, but it can be reduced to the first order derivative loss because
of the symmetry (see Lemma 2.6 in [29]). For related results such as the local
well-posedness on the real line, see [6, 7, 19, 24].

On the other hand, as far as we know, there are no well-posedness results for
(3.1) either on the real line or on the torus. In particular, some of nonlinear terms
in (3.1) have three derivatives, which implies that the local well-posedness for (3.1)

is far from trivial. The main result is the following:

Theorem 3.1. We write M =R or T. Let s > sq > 7/2. For any ¢ € H*(M),
there exist T = T(||¢|lg0) > 0 and the unique solution v € C([-T,T]; H*(M)) to
the IVP (3.1)~(3.2) on [T, T|. Moreover, for any R > 0, the solution map ¢ — u(t)
is continuous from the ball {p € H*(M); |l¢llgs < R} to C([-T,T); H*(M)).

Now we mention the idea of the proof of Theorem 3.1. We may have the third
order derivative loss since nonlinear terms in (3.1) have three derivatives at most.
By the symmetry, it can be reduced to the second order derivative loss (see Lemma
3.25). Our proof is based on the energy method, and the standard energy estimate

gives only the following:

120 ) [[u(t) [ + [La(w)] + [ La(u)| + | Ls(u)],  (3.6)

d
ZND*u(Ol7: < O+ lul
where sy > 7/2, D = F1[£|F and
Lq(u) := A\ (s) /@Cu(DS@zu)de, Lo(u) := Aa(s) /(H@iu)(”HDS@xu)Dsudx,
Ls(u) := A3(s) /u@zu(HDsagcu)Dsudx

(see Definition 6 for definitions of A;(s)). Here, we note that L; (u) is the second order
derivative loss, and Lo(u) and Ls(u) are the first order derivative losses. We need to
to handle L;(u) for j =1,2,3 by ||u|

it is impossible to do that. In order to overcome this difficulty, we modify the energy

g if we use the standard argument. However,

by adding correction terms, following the idea from Kwon [18] who studied the local
well-posedness for the fifth order KdV equation (see also Segata [27], Kenig-Pilod
[16] and Tsugawa [33]). Namely, we consider

3
1 s 1 s j
Ey(u) := §|IUIIiz(1 + Cllull 72 + Clull72) + SID ull72 + Y MP(u),

j=1
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with
MO (u) = )\1i8) /u(’HDsu)HDS_ludx,
Mf)(u) = )\Qf) /(’H@Iu)(Ds_lufdx,

MP (u) := )\1(8))\4(';)2+ () /uQ(DS‘W)zdx

(see Definition 6). The first two terms correspond to ||u| gs, and Ms(l)(u), MP (u)

and Ms(3)(u) are correction terms. As defined in Definition 6, we note that A;(s) for
j =1,2,3,4is a linear polynomial in s. The coefficient of MY (u) can be determined
so that the time derivative of Ms(j)(u) cancels out L;(u) for j = 1,2. On the other
hand, the time derivative of Ms(l)(u) also yields L3(u), that is,
4

EMS (u) ~ Li(u) + L3(u)
since Lq(u) is the second order derivative loss. Therefore, we need to collect co-
efficients of L3(u) resulting from both || D*u|| and M () when we determine the
coefficient of M® (u). For this reason, the coefficient of M§3)(u) is a quadratic
polynomial in s.

Subsequently, using the conservation law corresponding to the H*-norm of the
solution, we can obtain an a priori estimate of solutions in H*. Therefore, we can
easily extend the solution obtained in Theorem 3.1 globally. Namely, we obtain the

following result:

Corollary 3.2. We write M = R or T. The Cauchy problem (3.1)—(3.2) with
1 =3, —ca=c5=c=cr=—2 and c3 = ¢4 = —1 is globally well-posed in H*(M)
for s > 4.

In what follows, we consider our problem only on M = T, and the proof on R is

alomst same as that on T. There are two differences, and one is the following:

—f(]f), S R?

H(H)(x) = .
—f(z)+ f(0), zeT.

However, such a difference does not yield difficulties in our argument since we have
1£(0)] < ||f||loo(Z) < || fllerery S | fllz2¢ry). The other one is the Gagliardo-Nirenberg
inequality (Lemma 3.3), that is, we do not need to add || f||,2ey on R when [ = 0.
This section is organized as follows. In Subsection 3.2, we prove the main result,
admitting two Propositions 3.8 and 3.9. In Subsection 3.3, we show the main esti-

mate which is Proposition 3.8, that is, the energy inequality between two solutions



34 T. TANAKA

in H*. In Subsection 3.4, we give a proof of the energy estimate in L? which is

Proposition 3.9.

3.2. Proof of Theorem 3.1. In this subsection we prove Theorem 3.1, admitting

two propositions.

Definition 5. For a function u, we define

Fi(u) == H2u, Fy(u) = ciud?u + co(0pu)? + c3(HOu)? + caH(uHI ),
Fy(u) := csH(u?0pu) + couH (udpu) + cruHopu,  Fy(u) := —u’,

Recall that K (u) = Fy(u) + Fa(u) + F3(u) + Fy(u).

Lemma 3.3. Assume thatl € NU{0} and s > 1 satisfy | < s—1 and a real number
p satisfies 2 <p <oo. Put = (I4+1/2—1/p)/s. Then, we have

LAF=IDofll™ (when 1<1<s—1),

ol 4
IAP=ID* | + 1) (when 1=0),

for any f € H*(T).
Proof. See Section 2 in [26] and Lemma 2.1 in [29]. O
We employ the parabolic regularization:
O = 0, K (u) — e0tu, (3.7)
u(0,z) = (), (3.8)

where t > 0 and € > 0. In what follows, we consider only ¢t > 0. In the case t < 0,
we only need to replace —ediu with €0u in (3.7). By the standard argument, we

can establish the local well-posedness for (3.7)—(3.8) as follows.

Proposition 3.4. Let s > 3 and ¢ € (0,1). For any ¢ € H*(T), there exist T. €
(0, 00] and the unique solution u € C([0,T), H*(T)) to the IVP (3.7)~(3.8) on [0,T)
such that (i) liminf, 7. ||u(t)||gs = oo or (ii) T. = oo holds. Moreover, we assume
) o) ¢ H3(T) satisfies || — ) ||gs — 0 as j — oo. Let ul) (resp. ul>))
€ O([0,T.); H*(T)) be the solution to (3.7)(3.8) with initial data ¢ = @) (resp.
o = (). Then, for any T € (0,1.), we have SUDye(0.7] ) (2) — ul>)(t)]

as j — o0.

H5_>0

Proof. See Proposition 2.8 in [33] or Proposition 2.13 in [29]. O
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We construct a solution to (3.1)-(3.2) by a limiting procedure for solutions ob-
tained by Proposition 3.4. In this argument, it is important to establish the time 7T’
independent of ¢, which is proved in Proposition 3.10. For that purpose, we define
the energy with correction terms in H*(T). As stated in Section 1, we note that the

coefficient of MY is a quadratic polynomial in s.
Definition 6. Let s > 1. We define

A(s) = (c1 —cq)s — % + 2¢9 + %, Aa(8) == —2c38 — ¢y,
A3(s) == =2(c5s + 6+ ¢7)s — 2¢5 — cg,  Aa(S) :=2(c1 — ¢4)$ — bey + 4eg + Hey.

For functions f,g € H*(T), we also define

1 3 .
B(f.9) 1= 5f = g+ CILAIE + CullFI®) + S1D°( = )P+ 32 MO (1, ),
where

MO(.g) = 2 [ 0D - 9D - i

Mg =222 [ o007 (s - g)a,
MS(3)(f’ g) — )\1(3>)‘4(‘;)2+ 4>‘3(8) /TfQ(Ds—l(f _ g))2de‘

and C is sufficiently large constant such that Lemma 3.6 holds. For simplicity, we
write Es(f) := Es(f,0) and Ms(j)(u) = Ms(j)(u,O) for j =1,2,3.

We define the energy with correction terms in L?(T) since there is a problem to
define D™1 at very low frequency in Fy(f,g). For that purpose, we introduce the

following.
Definition 7. Let ¢ € C*°(R) be a function satisfying 0 < <1 on R and

L k=2
0, [¢ <L

We also define the operator

for a function f.
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Lemma 3.5. It holds that

T < 20 f
for any f € H-Y(T).

Proof. This follows from the fact that (£) < 2|¢| for [£] > 1. O

Definition 8. For functions f,g € H'(T), we define

3

1 1 .
E(f,9) = 3If = 9I” + SIf = gllzi-: (L + CUFIP + CIFI") + > MY(f.g).

Jj=1

where

MO (f,g) = /T SRS — g)YHI(f — g)de,

/ (HOL)(J(f — 9))d,

T

MO(1.g) = MNP [ (s — g

W

and C is sufficiently large constant such that Lemma 3.7 holds.

Lemma 3.6. Let s > 1 and let Cy > 0 be sufficiently large. Then for any f,qg €
H#(T), it follows that

Ey(f,9) < If = gL+ CllFI* + CllF1*) + 1D°(f = 9)|I* < AE(f, 9)-

Proof. Lemma 3.3 shows that

)\2(8)

2[00 = )00, — g)da

< CIAND(f = DIIHD(f = g)ll<
< CIFIISF = gl 1D (f = 91> V2 + CIFINLS = gl D*(f = 9)

1
< Ol = glPULIP + IA) + FID(F = 91

MO (f,9)| =

S

Similarly, we can estimate M§1)(f, g) and MS(S)(f, g) as follows:
S 1 S
(M (f,9), IME(F,9)] < CIF = glPALFIP + 11LF1*) + S0 =9l
which completes the proof. O

A similar argument of the previous lemma together with Lemma 3.5 yields the

following.
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Lemma 3.7. Let C' > 0 be sufficiently large. Then for any f,g € H*(T), it follows
that

E(f,9) I = gllf- L+ CUFIP + CUFIY) + 1 = gll* < 4E(f, 9)-
Definition 9. Let s > 0. For f, g, we define

I(f.9) =1+l

HS
The main estimate in this section is the following.

Proposition 3.8. Let s > so > 7/2, 1 < s’ < s, ¢; € (0,1), ¢; € H*™(T) and
u; € C([0,T,); H**(T)) be the solution to (3.7)~(3.8) obtained by Proposition 3.4
with e = ¢ and p = @, for j =1,2. Then there exists C = C(s',s9) > 0 such that
d
KYNERORNO)

S CISO(U17UQ)2(S/+2){“UJ| 12115’ + ||w‘

(3.9)

150312 Frorss

+ [Jwl

oo (o + lluall3 )} + max{ed, ex}luzll o

on [0, min{T;,,T.,}), where w = uy — uy.

Proposition 3.9. Let sp > 7/2, T > 0 ande; € (0,1). Let u; € C([0,T]; H*(T))N
C((0,7); H*0TY(T)) satisfy (3.7) withe =¢&; on [0,T] for j = 1,2. Then there esists
C = C(sp) > 0 such that

d

ZE(un (1), us(t)) < Clyg (w1, u) E(ua(£), ua(t)) + max{er, &5} ual e+

on [0,T], where w = uy — us.

(3.10)

If we admit Propositions 3.8 and 3.9, we can show the main result. We prove

Proposition 3.8 (resp. Proposition 3.9) in Section 3 (resp. Section 4).

Proposition 3.10. Let s > so > 7/2, ¢ € (0,1), ¢ € H*(T). Let T. > 0 and let
uw € C([0,T.), H(T)) N C((0,T.); H*T4(T)) be the solution to (3.7)—(3.8), both of

which are obtained by Proposition 3.4. Then, there exist T = T(so, ||¢||ms0) > 0 and
C = C(s, 30, ||@llms0) > 0 such that
d
T.>T, sup Es(u(t)) < CEs(y), aEs(u(t)) < CE,(u(t)) (3.11)

te[0,7)

on [0,T], where T' (resp. C') is monotone decreasing (resp. increasing) with ||| o -

Proof. Assume that the set F' = {t > 0; E,,(u(t))

> 2F
T = inf . Note that 0 < T < T, and E, (u(t)) < 2E,,(¢) on [0,TF]. Assume
that there exists t' € [0,7] such that Fg, (u(t')) > 2E(¢). This implies that

s ()} is not empty. Set
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¢ 2 T2 by the defnition of T Then we have t = T Thus, supyzg 2 B (1) <
C(ll¢llz=) by (i) of Lemma 3.6. By Proposition 3.8 with ¢y = 0, there exists
ClL = C(s, so, |||l rs0) such that

SEu(t) < CLBu(t)

on [0,77]. The Gronwall inequality gives that
E(u(t)) < Ey(p)exp(Cit) (3.12)

on [0,77]. Here, we put 7 = min{(2C, )~",7*}. Then (3.12) with s = sy shows
that
Eqy(u(t)) < By () exp(27") < 2B, (),

on [0, 7). By the definition of 7* and the continuity of E,(u(t)), we obtain 0 < 7' =
(2C,)7' < Ty < T.. If F is empty, then we have T = T, = oo. In particular, we
can take T' = (2C7 )~! < oo, which concludes the proof. O

For the proof of the following uniqueness result, see Thorem 6.22 in [14].

Lemma 3.11 (Uniqueness). Let so > 7/2, § > 0 and u,v € L*([0,4]; H**(T))
satisfy (3.1) on [0, 0] with u(0) = v(0) and satisfy

u,v € C([0,6]; H*(T)) N C*([0,6]; H(T)).
Then w = v on [0, 4].

It is important to employ the Bona-Smith type argument in the energy inequality

for two solutions in H®. For that purpose, we introduce the following.

Definition 10. Let s > 0, f € H*(T) and n € (0,1). And let p € C5°(R) be
p(x) :=1—1(z) for x € R. We put

—_—

Ly f(k) := p(nk) f (k).
For the proof of the following lemma, see Remark 3.5 in [5].

Lemma 3.12. Let s > 0, a >0, n € (0,1) and f € H*(T). Then, L, f € H>(T)
satisfies
Lo f — f]
L fll s < || f]

e =0 (0 —=0), |Lyf = fllas— S 7S]
we=es | Lnfllaere S 7| /]

Hs»

HS.
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Proof of Theorem 3.1. We only need to prove Theorem 3.1 for ¢ > 0 thanks to the
transform ¢t — —t. In what follows, without loss of generality, we may assume
that sg is strictly smaller than s since the assumption ||| g0 < K is weaker than
ol oy < K when sy < s;. First we prove the existence of the solution. For
¢ € H*(T), we put ¢, := L,p € H>*(T) for n € (0,1). By Proposition 3.4, there
exists the unique solution u., € C([0,7;); H*(T)) to (3.7) with the initial data ¢,
on [0,7;). We see from Lemma 3.12 that

lenllzzs < llpllas Nenllaso < llllaso-
Then, Proposition 3.10 with Lemma 3.6 shows that there exists T' = T'(s, o, ||©]| 20 ) >
0 such that
SUp (e (t)[lmre S sup Ey(ue ()2 S Bu(uey(0)"* < oyl
te[0,7T] te[0,T
which implies that
SUP [z (t)[lzre+s < 07> oo e (3.13)
te[0,7
1/2s

Let0<51§52<1and?7j:€j
that there exists C'= C(s, so, T, ||@||grs0) > 0 such that

for j = 1,2. Proposition 3.9 with s’ = s shows

SUP |[tey iy (1) = Uepo (8[| < CE(tey 1y (0), ey 1, (0))
te[0,T

2—2/s 1/2
< C(ngm - 90772H2 T & / )1/2 < 082/ .
By interpolation, it holds that for o € [0, s,

oo < €977 (3.14)

sup ||u61,771 (t) — Ueg,mo (t)l
te(0,7)

Therefore, Proposition 3.8 together with (3.13) and (3.14) shows that

1—s0/s)/2
up ey (8) = ttey i D) |5 S o — Prallirs + 877 (3.15)
te|0,

since 0 < (1 —s9/s)/2 <1—s0/s <1—=2/s. Then, {u.y}o—ps is a Cauchy sequence
in C([0,7]; H*(T)) as € — 0 and there exists the limit u € C([0,T]; H*(T)). It is
clear that u satisfy (3.1)—(3.2) on [0,7]. We also note that letting £y — 0 in (3.15),

e + glme0/9)/2 (3.16)

sup [[u(t) — ue(t)l|as S [l = @ores|

te[0,7

for e € (0,1), where u. := u_1/2s

Finally, we show the continuous dependence. We claim that if || — ¢/gs — 0

as j — 0o, then sup, 7y |u (t) — u(t)||zs — 0 as j — oo, where ul? (resp. u) is
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the solution to (3.1) with the initial data ¢\ (resp. ) for j € N. First note that
the triangle inequality with Lemma 3.12 gives that

)

@) _ W) we + @z — ),

||SO 9061/23

He < HQO(j) - 90| Hs T ||90 — (,051/zs|

Hs

< W = @l ms + ||l — @ersas || are-

This together with (3.16) implies that

sup [[u(t) — u(t)]
te[0,7

< sup [[uD(t) = ul ()]s + sup [[u? () = we(t)[lms + sup [uc(t) — u(t)|
te[0,7] te[0,T] te[0,7

HS

HS

<C (Hso(” = el + I = ool + S [l (t) = e ()= + 8“‘50/5)/2) :
€|0,

Let § > 0. Then, there exists 5 € (0, 1) such that for any ¢ € (0, &)

o 4 2080/9/2) <

C(|le — @as2s

|

For each ¢ € (0, ¢¢), we see from Proposition 3.4 that there exists Ny € N such that
lfj > N(), then

Clle? = @lls +C sup [u(t) = uc(t)[|ms < 5.
te[0,T] 2
which completes the proof of Theorem 3.1. 0

3.3. The energy estimate in H®. In this subsection, we prove Proposition 3.8,
which is the main estimate in this section. Before proving Proposition 3.8, we in-

troduce some commutator estimates which are useful in evaluating nonlinear terms.
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Definition 11. For s > 0 and functions f, g, h we define

PO(f,g) == D0, (f039) — D*0. 029 — D09 — (s + 1)0.f D*D2g

- S(Sgl)aistamm
PA(f,g) = HD*0,(f02g) — (HD*0,f)d2g — fHD*dg
1
— (s +1)0, fHD*d%g — %agfﬂps .4,

PO(f,9) = D*0,(0,f0g) — D*0: fOrg — (s + 1) D*0, fO2g
— 0, fD*02g — (5 + 1) f D*Dag,
PO(f,9) = HD*0,(0.f0z9) — (HD 0, [)deg — (s + 1)(HD*0, )33g
— 0. f(HD*93g) — (s + 1)0; f(HD*d,g),
PO (f,g,h) = D*0,(fg0:h) — D*0,fgdsh — fD*0,g0:h — fgD*92h
— (s + 1)0, fgD*d,h — (s + 1) f0,9D* 0, h,
PO(f,g,h) = HD*0,(fg0:h) — (HD*0,f)g0sh — f(HD*0,9)0:h — fgHD*0O2h
—(s+ 10, fgHD?*0rh — (s + 1) fO,gHD?0,h,
PO (f,9,h) = D*0,(fH(g0:h)) — D*0u fH(g0:h) — f(HD*0,9)0sh — fgHD*O2h
— (s + 1)0, fgHD?0Oh — (s + 1) fO,gHD®0,.h,
P®)(f,g9) = D*0y(f0u9) — D*0,f0ug — fD*02g — (s + 1)0,f D*0,g,
PON(f,g9) = HD*0,(f0rg) — (HD*0,f)00g — [HD 029 — (s + 1)0, fHD*Oyg.
Lemma 3.13. Let so > 1/2 and s > 0. Then

1fgllas < 1 f [z lgllaso + [1f a5 llgll e
for any f,g € H™@{s0:s}(T),
Proof. This follows from the fact that (£)° < (£ —n)" + (n)® for any £, n e Z. O
For the proofs of the following three lemmas, see [29].
Lemma 3.14. Let so > 3/2 and s > 1. Then
11D, f10:91l S W f s llglleso + 11f Lzzso |l 9| -
for any f,g € H™@{s0:53(T),

Lemma 3.15. Let so > 1/2, k € N and sy, s2 > 0. Suppose that sy + so = k. Then,
there ezists C'= C(sg) > 0 such that for any f € H*"'(T) and g € H**>(T)

117, £105gll < Clf lsoer [lgll o2
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Lemma 3.16. Let so > 5/2 and s > 0. Then there exists C = C(s,s9) > 0 such
that

1P (u, o), 1P (w, )| < Ol o] lv]

ms + ||ul

we |V 120)

for any u,v € H™@{ss0}(T),

Lemma 3.17. Let so > 7/2 and s > 0. Then there exists C' = C(s,s9) > 0 such
that

1P (u, o), 122 (w, 0) | < Ol = o]

meo + [[ul| o ||v]|ms)

for any u,v € H™®{s:50}(T).

Proof. We show only the inequality for PY. The other one follows from a similar
argument. It suffices to show that

s(s+1)

1P en® — 1€ = nl*(€ —m)n® — 0’ — (s + 1) (€ = n)n|*n* — 5 (€ n)%[nl*n

< lPlg = nl* + [nl*[€ = nl,

(3.17)
for any &, € Z. We split the summation region into three regions: Ry = {3|n| <
[§=nl}, B2 = {[§—nl/4 < In| < 4|¢—n[} and Rz = {|n| = 3|[¢—n[}. On Ry, the mean
value theorem shows that (3.25) holds. On Ry, it is obvious. On Rj, it immediately
follows that [€ — n|*TYn|* < |€ — nl*|n|®. Set o(x) = x|z|* for x € R. Note that
o € C3(R) when s > 2. The Taylor theorem shows that there exist 7 € (§,n) or
n € (n,&) such that

"

(€)= ol + e —n) + T (e — 2+ T ey

This together with the fact that |7| ~ [£] ~ |n| implies that (3.25) holds. When
1 <5 <2, (3.25) holds since [£ — n?[n|**" = |£ = 97| — n*[n[*™" < [€ —nl*[nf®
on Rs. Similarly, when 0 < s < 1, (3.25) holds by the above inequality with
1€ = n|In]*™ < |€ — nl*In|® on Rz, which concludes the proof. O

Lemma 3.18. Let sy > 7/2 and s > 0. Then there exists C' = C(s, sg) > 0 such
that

1P (u, v)|, 1P (u, 0) | < C (]l

ms |[vllso + |Jull oo |[0]| 225),

for any u,v € H™@{ss0}(T),

Proof. This follows from a similar argument of the previous lemma. 0
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Lemma 3.19. Let so > 3/2 and s > 0. Then there exists C = C(s,s9) > 0 such
that
[Asir(wv) = Agpruw — ubspro]| < C(flulla

for any u,v € H™@{s50}(T) where Ay = D*0, or D!,

vl o + [ullo[v] m+)

Proof. 1t suffices to show that for any &, € Z

EPHT =€ —nl* = Il L 1EPE = 1€ —nl* (€ —n) — Inl"nl S InllE—nl® + 1€ —nlln]®.

If s = 0, then it is obvious by the triangle inequality. In the case s > 0, this follows

from a similar argument of the proof of Lemma 3.17. 0

Lemma 3.20. Let so > 5/2 and s > 0. Then there exists C = C(s,s9) > 0 such
that

| P (wy, ug, ug) ||, | P9 (us, ug, ug) |

< C(flua

s |[ua || oo [[us|| mrso + [Jua || o [|wal| s || ws| zrs0 + [[wa ] oo || w2 || o0 [|us]| s )

for any u; € H™>s50}(T) for j =1,2,3.
Proof. We show only the inequality for PP . The other one follows from a similar
argument. Aplying Lemma 3.13, 3.16 and 3.19, we have

1P (ur, s, ug) |

< |P®) (uyus, us) || + | D*0p(urus) — D*Opurus — w1 D*Opus||[|04us]| oo

5 Hul\ Hs U2’ Hs0 U3’ Hso + Hu1’ H$0 U2HH U3| Heo + HU1| H$0 sz H#o USHHa

which completes the proof. 0

Lemma 3.21. Let sg > 5/2 and s > 0. Then there exists C = C(s,sq) > 0 such
that

1P (uy, uz, us) |
< O([lua|

Hs Hs

s mso[[us| o + |[uallmso [zl s Jus|| oo + lluallmso [[uz | oo [[ws]| =)
for any u; € H™>s50}(T) for j =1,2,3.
Proof. We see from the proof of Lemma 3.16 and 3.19 that for any &,&,,& € Z

1€1°€& — € — & — &I (§ — & — &)& — [ G
— &% — (s + 1)(§ = & — &)|&l°6 — (s + D& &6
<[] — 1€ — &l (€ — &)6 — [&]°€5 — (5 +1)(§ — &2)[&]°
+[§ = &7 (€ — &) — 6176 — 1€ — & — &[7(§ — & — &)|1&] S E(E &1. &),
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where

2(6:61,62) = [€ = &6l + 1€ — &6l + (1€ — & — &Pla] + € — & — &ll&]”) &l
We see from Lemma 3.15 that
1P (un, g, us) |
< N[ D?0y(uy H(ug0,u3)) — D*Opus H(ugpug) — ui H(D*0pusdyug)
— urH (ue D*0?us) — (s + 1)0pus H(ua D*0yus) — (s + 1)uyH(Opus D*Opus)||
+ lunlloo ([, aus) D* Opuia| + ||[H, ua] D*OFus||)
+ (5 + 1) (102w || oo I[H, 2] D*Opus|| + [[u || oo [[[H, Outia] D*Opus)|)

S DD EE &, &) i (€ — & — &) |lia(&) (&)
&1,82 12
€
+ |21 || oo ||wa| oo || ws || zrs + || wa || mso || || s || ws || rso
S || s [ || mrso || us| mso + [ || oo ||we|| s ||ws|| g0 + ||wal| mso [|wz || mso ||us]| &,
which completes the proof. O

Lemma 3.22. Let so > 5/2 and s > 0. Then there exists C' = C(s,s9) > 0 such
that

1A (ud?v) — uh0*v — 50, ul O | < C(||ul| s ||v]

we + [lul

Hs U| HSO)
for any u,v € H™{s50}(T) where A, = D* or HD?®.
Proof. The proof is very similar to that of Lemma 3.17. OJ

Lemma 3.23. Let sg > 3/2 and s > 0. Then there exists C = C(s,s9) > 0 such
that

| As (g H (u0,us)) — ugusHAOpusl|

< Clluallars luellmso lusll oo + luallmso lluellmslus|| g0 4 urllmsolluzllmso [lus| )
for any u; € H™>s50}(T) for j =1,2,3, where Ay, = D* or HD?.
Proof. 1t suffices to show that
| As(ur H(ug0,us)) — ui H(ugAsOpus)||
S uall s luall oo lusl rso + |lw ]| oo |uall s [[us| o + [[wn || mso [[ua |l meo [|us || ms-
Indeed, Lemma 3.15 shows that
[Jur[H, ua] AsOpus|| S [[ullrso-r vl meo [|us| s
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The standard argument implies that

1€1°€2 — [&2]°&l, [sgn(€)[€1°& — sgn (&) &G S 1€ — &f°[&] + (€ — &[[&]°
which completes the proof by the triangle inequality. 0
Lemma 3.24. Let s > 0 and so > 5/2. Let u € H*(T) and w € H*"*(T). Then

[(uD*02w, D*w) + (u, (D*0,w)*)| < ||ull oo [|w|-

Proof. Note that
1
(uD*0?w, D*w) = 5@:%“: (D*w)?) — (u, (D*0,w)?),
which shows the claim. 0J

As stated in Section 1, by the integration by parts, the third order derivative loss

can be reduced to the second order one.

Lemma 3.25. Let s > 0 and so > 7/2. Let u € H*(T) and w € H*™3(T). Then

2
Hs

(uD*Ojw, D*w) — g(axu, (D*0yw)*)| < llull oo [[]
Proof. Note that
(uD*0Pw, D*w) = —(0,uD*d?w, D*w) + %(&,u, (D*0,w)?),
which together with Lemma 3.24 shows the claim. 0

Lemma 3.26. Let sg > 1/2 and u,v be sufficiently smooth function defined on T.
Then there ezists C' = C(sg) > 0 such that

(0 (vHOzu), w)| < Cflo]

Hso+2 ||/LL||2

Proof. See Lemma 2.6 in [29]. O
Lemma 3.27. Let s > 0 and sy > 5/2. Let u € H*(T) and w € H***(T). Then

[, (HD*0pw)*) — (u, (D*0pw)*)] < [lull o ]

2
Hs-

Proof. We have
(u, (HD*0,w)?) = (H(O,uHD*0,w), D*w) + (H(uHD*0*w), D*w) =: A+ B.
For A, note that

|A| < [([H, Opu]HD?0yw, D*w)| + |(O,uD®0yw, D°w)| < [|ul

2
Hs:

H*0 w|
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For B, we have
B = ([H,WHD*0*w, D*w) — (uD*0*w, D*w)
— ([H, uHD* 0w, D*w) — %@gu, (D*w)?) + (u, (D*Duw)?),
which concludes the proof. O]

We are ready to evaluate nonlinear terms. First, we estimate terms in Fy(u).

Lemma 3.28. Let 5o > 7/2 and s > 0. Let u,v € H™>{s+350}(T). Then
(D*0, (ud?u — vO?v), D*w) + (s — 1/2){Dpu, (D*O,w)?)|

trs+s + (lullZrs + 1[0l F) lwllZeo },

S Lo (w, 0){wllZs + lwlFso-s]lv]

where w = u — v.

Proof. Set

(D*0,(ud?u — vO?*v), D*w) = (D*0,(ud*w), D*w) + (D*0,(wd?v), D*w) =: Ry + R,.

Lemma 3.17, 3.24 and 3.25 show that

Ry + (s — 1/2)(8pu, (D*0,w)?)]

< (PO (u,w), D*w)| + (D8, (w + v)P2w, D*w)| + [(uD*Bw, D*w) — (3/2)(dpu, (D*,w)?)]
+ (s + D[{GpuD* 02w, D*w) + (Spu, (D*0,w)?)| + s(s + D|(F3u, (D*w)?)| /4

S lwllms (lwllzso-rlvllzser + lullzeollwl[ s + lwllzso lullzs + lwllzso Jwl]s).-
We see from a similar argument that

| Ral S Lo (u, 0){llwllZe + ]l Freo-s 0l Fees + (lullZrs + Jollre) lwliFeo }
which completes the proof. 0

Lemma 3.29. Let so > 7/2 and s > 0. Let u,v € H™>{st2501(T). Then
[(D*0,((0xu)* = (0sv)*), D*w) + 2(0su, (D*0zw)?)]

S Lo (u, 0){|[w] ie  [ollE)llwllZeo b,

ire + [wlggo-2llvll sz + (1l w|

where w = u — v.

Proof. Set z = u + v. Note that
(D30220,w, D*w) + (0,2D*0>w, D*w)
= (0,wD*0*w, D*w) + 2(0,wD*0?v, D*w) + (9,2D*0%w, D*w)
= 2(0,uD*0*w, D*w) + 2(0,wD*0*v, D*w).
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Lemma 3.18 and 3.24 show that
|(D?0,(0,20,w), D*w) + 2(0,u, (D*0,w)?)|
< ](PS(?’)(Z, w), D*w)| + (s + D) |(OPu, (D*w)?)| + 2(s + 1)|(0,wD*0,v, D*w)|
+ 2[{0,uD*0*w, D*w) + (Dpu, (D*0,w)*)| + 2|{0pwD* v, D*w)]|

S Lo (uw, v){|[w] i)Wl }

which completes the proof. O

fre+2 + (lullze + [lv]

frs + w302 0] w]

Lemma 3.30. Let so > 7/2 and s > 0. Let u,v € H™@{s+250}(T), Then

(D20, ((HO,u)? — (HOpv)?), D*w) — 25((HO*u)HD* 0w, D*w)|

{
S Lso(u, 0){|[w] wss2 + (lullfrs + vl lwlleo ),

i+ wllze0-2l] wl

where w = u — v.

Proof. Set z = u + v. As in the proof of Lemma 3.29, we have
(HO,w)YHD*02z, D*w) + ((HOy2)HD*0?w, D*w)
= 2{(HO,u)HD* 0w, D*w) + 2((HO,w)HD*9?v, D*w)
and
(HO2w)HD?0,2, D*w) + ((HO22)HD*0,w, D*w)
= 2((HO?u)HD* 0w, D3w) + 2((HI?w)HD*d,v, D w).
Then Lemma 3.18, 3.24 and 3.26 show that
(D0, ((HO:2)HO,w), D*w) — 25((HO;u)HD*dyw, D*w)]
< (PP (Hz, Hw), D*w)| + 2/(8: (HO,u)HD*dyw), D*w)]
+ 2[{(HO,w)HD?0%v, D*w)| + 2(s 4+ 1)|[{(HO,w)HD*Ov, D*w)|
S Lo (u, v){[[w][3gs + [Jw] ( frollwllFrso ),

which completes the proof. O

is+2 + (lullZs + [lv]

1202 1Y] wl

Lemma 3.31. Let 59 > 7/2 and s > 0. Let u,v € H™>{s+350}(T). Then
(HD?0,(uH?u — vHI?v), D*w) — (HO?u)HD*0,w, D*w) — (s — 1/2){(dyu, (D*0,w)?)|

S Lso(w, 0){|[w] s+ [0l 1wl }

s [wlggso-slvllzess + (1l wl

where w = u — v.
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Proof. Set z = u + v. Note that
((HD?*0,u)HO2w, D w) + ((HD*0,w)HO v, D*w)
= (HD?*0,w)HO*w, D*w) + ((HD*0,w)HI?v, D*w) + ((HD*0,v)HO*w, D*w)
= (HO*u)YHD*0,w, D*w) + ((HO?w)HD*0,v, D*w).
Lemma 3.17, 3.24 and 3.25 show that
(HD*0,(WHO?u — vHO?v), D*w) — ((HO*u)HD*0,w, D5w) — (s — 1/2){0,u, (D*0,w)?)|
< (PP (u, Hw) + PP (w, Ho), D*w)| + [(uD* 3w, D*w) — (3/2)(0yu, (D*0,w)?)|
+ (s + 1)(0:uD* 0w, D*w) + (Du, (D*0yw)?)| + [(wD*dzv, D*w)]
+ (s + DIu, (D*w)*)| /4 + (s + D [{Q,wD* v, D*w)| + s(s + 1)[{0;wD*d,v, D*w)| /2
+ [{(HO*w)HD*0v, D*w)|

S Lso (u, 0){|w] mo) w0}

which completes the proof. O

is+s + (lullfr + [lv]

i+ [wllzrso-slv] wl

Next, we estimate nonlinear terms in Fs(u) and Fy(u).

Lemma 3.32. Let 5o > 7/2 and s > 0. Let u,v € H™>{s+250H(T). Then
{(HD?*0,(u*0,u — v*0,v), D*w) — 2(s + 1) {(ud,uH D*0,w, D*w)|

S Lo (u,0)*{Jw] s+ [0l 1wl },

irs + [wlggo-2lvllzesz + (1l w|

where w = u — v.

Proof. Set z = u + v. Note that
2(u0,wHD*0u, D’w) + (WOWHD?*0,z, D*w) + (20,9HD*0,w, D*w)
= 2(u0,uH D*0,w, D*w) 4+ 2(ud,wHD*0,v, D*w) + 2{(wd,vHD*d,v, D*w)
and that ©20,u — v20,v = ©?0,w + zwd,v. Lemma 3.20, 3.15 and 3.26 show that
(H D0, (u*0pw + 2zwd,v), D3w) — 2(s + 1) (ud,uHD* 0w, D*w)|
< (PO (u,u,w) + PO (z,w,v), D*w)| + 2|(udywH D*dyv, D*w)|
+ 2 (wd v HD* O, v, D*w)| + |{0, (W*HD*d,w), D*w)|
+ [(zwHD*0%v, D3w)| + (s + 1) {0, (z2w)HD*0pv, D*w)|
S Ly (u,0)*{ | w] f)llwllzso b,

which completes the proof. 0

fs+2 + (lullzs + [lv]

i+ wllzeo-2lv] wl
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Lemma 3.33. Let so > 7/2 and s > 0. Let u,v € H™{s+25}(T), Then

(D0, (uH (ud,u) — vH(vO,v)), D°w) — (25 + 1) (w0, uH D0, w, Dw)|

is+2 + (||l oo b

w[z

)

ws + [[ollz

rs0-2||

we + wlly

< Loy (u,v){]|w]
where w = u — v.

Proof. Note that
(w0, wHD?0pu, D*w) + (u0,vHD*0,w, D*w)
= (W0, uHD* 0w, D*w) + (u0,wHD*0,v, D*w).

Then Lemma 3.21 and 3.26 show that

(D*8, (uH(udyw) + uH(wdv) + wH (vdyv)), D w)
(u, u, w) + PO (u, w,v) + PV (w, v, v), D*w)| + [(HO: (udyu), (D*w)?)| /2

)+ [(D*0,0H (wdypv), D*w)| + (8, (W*HD*Opw), D*w)]
., (2w)HD* 0,0, D*w)

< (P

(D?0,vH (ud,w), D*w
(uwHD*0*v, D*w)| + [(vwHD*0%v, D*w)| + (2s + 3)|(0
(u,

v){llwl; ws+2 + (lullZre + [Vl ) ]

which completes the proof.

Hso

+
_|_
I

o021l

ws + [l

<
~ TS0

Lemma 3.34. Let 5o > 7/2 and s > 0. Let u,v € H™>{s+2501(T). Then

(D*0, (v*HO,u — v*HOv), D*w) — 25(udyuM D*w, D w)|

s+ [0l 1wl }

mer2 + (lul

1502 1Y]

S Lo (uw,0)* {[[wl[Fs + [l

where w = u — v.

Proof. Set z = u 4+ v. Lemma 3.26 and 3.21 show that

(D*0, (W*HOpw + 2wHOv), D3w) — 2s5{uduHD*w, Dw)|

< (PO (u, u, Huw) + PO (2,0, Ho), D*w) + [(9: (uMd,u), (Dw)?)]

+ 2[{(u(HO,w)D*0pv, D3w)| + {9, (W*HD*O,w), D*w)|

+ {0, (wHOv), (D*w)*)|/2 + 2|{w(HO,v) D*0yv, D3w)|

|(zwHD*0*v, D*w)| + (5 + 1)[{0,(z2w)HD*0pv, D*w)|
?{50}7

wrs+2 + (lullZrs + [Vl o) ]

1502 1Y]

_l’_
S Lo (u, v){l[wl3gs + [l

which completes the proof.

— (28 + 1) {(u0,uH D* 0w, D*w)|

/2

O
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Lemma 3.35. Let so > 7/2 and s > 0. Let u,v € H™{s+L5o}(T), Then

|(D58x(u4 — 04), Déw)|

S Lo (u, 0 {[[wllFe + 1wl Fsot 10l Freen + (lullzs + 10l wllso
where w = u — v.
Proof. Lemma 3.13 and 3.14 show that
(D* (v 0w + w(u? + uv + v*)0,v), D*w)|
< {[D*, v?)0yw, D3w)| + [{[D*, w(u?® 4+ uv + v*)]0,v, Dw)|
+ {0, (v?), (D*w)?)|/2 + [{w(u® + uv + v?*) D*0,v, D*w)|
S Log (u, 0)* {lwl e + ol o [0 e + (lullzzs + [ollF) w0}
which completes the proof. O

Remark 3.1. In Lemma 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34 and 3.35 with s = 0, we
do not have terms such as ||w| 2 tlvl|%s)

in the right hand side. This can be verified by a simple caluculation. Indeed, for

?—]%*j”v‘?{éﬂr]’ fOI'j = 17273and(||u| w|%—150

example, on Lemma 3.28 with s = 0, we have

(0, (ud?u — vO2v), w) = —(ud*w, yw) — (Wv, Dyw)

= %(@Eu, (O,w)?) + %(021}, w?).

The second term in the right hand side can be estimated by < ||v| w]|?. For this

Hso

reason, we obtain the following.

Lemma 3.36. Let so > 7/2 and u,v € H*°(T). Then

Z (0x(Fj(u) = Fj(v)), w) + A1(0)(0ru, (0ow)*) + A2 (0)(HOZu) HOzw, w)

+ A3(0) (w0, uH O w, w)|

< Ly (w, 0)Jw]?,

Y

where w = u — v.

Now, we estimate the time derivatives of M§1), MP? and M§3). The following
lemma helps us to calculate correction terms. Note that Lemma 3.37 is more com-

plicated than Lemma 2.8 in [29] because of the presence of H.
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Lemma 3.37. Let f,g,h be sufficiently smooth real-valued functions defined on T.
Then,

(HOLf, gh) + (fHOzg, h) + (fg, HO3h)

= —([H.h]0rf, g) — ([0, flOsh, g) + 402 fHg, Och) — 40s fHDug, 02h) + 2(02 fHyg, O2h).
Proof. Observe that

(fg, HOGh)

= —([H, f10;h, g) = (0, fHg + 403 fHOrg + 607 fHO2g + 40, fHI g + [HOzg, h)

= —([H. f]0zh, g) + (03 fHg, h) + 402 fHg, 0:h) — 40, fHO,g, O3h)

+2(0;fHg, 0zh) — (fHOg. h).
Note that
(HO, f,gh) + (03 fHg, h) = —((H, D} [, 9),

which completes the proof. O]
Lemma 3.38. Let sg > 7/2 and s > 1. Let u,w € H™>{5+450}(T). Then

[(HOMu)HD*w, HD* w) — (uD*0w, HD* 'w) + (uHD*w, HD*0>w) — 4(0,u, (D*0,w)?)|
S lul

2
H*%o Hs-

w|

Proof. We use Lemma 3.37 with f = u, g = HD*w and h = HD* 'w. Then Lemma
3.15 shows that

[{[#, 1oz f, ) + {[H, f10:h, g)] + (02 Ha, 0:h)] < llull oo w3 (3.18)

w

Note that —4(d,fHd.g,0?h) = 4(d,u, (D*0,w)?). And finally, we see from the
integration by parts that

2107 fHg, 0zh)| = [{Ozu, (D*w)*)| < [|ul

2
Hs

oo ||w]

which concludes the proof. 0
Lemma 3.39. Let 5o > 7/2 and s > 1. Let u,w € H™>{s+45}(T). Then

(B2, (D w)?) — 2((HOwu) D*02w, D~ w) + 4((HO2u)HD* 0w, D3w)|

S [lul -

H*0 w|
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Proof. The integration by parts shows that
[(O2u, (D w)?) — 2((HOwu) D*03w, D* " w) + 4((HO*u)HD* 0w, D*w)|
= (02uD* ' 0,w, D w) — ((Hu)D*0tw, D~ 'w) + ((Hu)D*0Pw, D*~10,w)
— 2{(HO?u)HD? 0w, D*w)|,

which allows us to use Lemma 3.37 with f = Hu, g = D*"'0,w and h = D’ tw. It
is cleat that (3.18) holds in this case. Lemma 3.26 implies that

(02 fHOzg, Oh)| = [0 (HO:u)H D Opw), D*w)| < [l oo [[]

2
Hs-

On the other hand, we have 2(9%fHg,0*h) = —2((HO?*u)HD*0,w, D*w), which
completes the proof. (l

Lemma 3.40. Let 5o > 7/2 and s > 1. Let u,w € H™>{5+3:5}(T). Then

[(uHOtu, (D w)?) + (u>D* 1w, D*Pw) — 4{ud,uH D*O,w, D*w)| < ||ul

wl|s.

2
Hso

Proof. Adding and subtraction a term, we have

2/(uHIu, (D*'w)?) + (u>D*'w, D*0Pw) — 4{(ud,uH D*0,w, D*w)|
< [(HO(w?), (D w)?) + 2(uD*tw, D*03w) — 8{(ud,uH D*0,w, D*w)|
+ [(2uHu — HIL(u?), (D¥w)?)|.
Lemma 3.15 shows that the second term in the right hand side can be estimated by
< ulle Jw]/%s. We use Lemma 3.37 with f = u?, g = h = D*'w. It is clear that

(3.18) holds in this case. Note that —4(0,fH0O.g,0?h) = 8{ud,uHD*d,w, D*w).

Finally, we have

(02 Mg, 02h)| = [(0x(02(u*)YHD* " w), HD*w)| S [fullZ0[|w]

2
Hs»

which completes the proof. O
We observe the first order derivative loss resulting from MY,
Lemma 3.41. Let so > 7/2 and s > 1. Let u,v € H™{s+3:5}(T), Then
|(uHD?0,(ud?u — vO2v), HD* 'w) + (s — 3){(ud,uH D*0,w, D*w)|

S ]SO(U,U)2{||’UJ| ?“{5) %50}7

~Y

e + (|ullds + [[oll7)]Jw]

is + wllZ0-2lv]

where w = u — v.
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Proof. Lemma 3.17 and 3.26 show that

[(uHD*0, (ud?w + wdiv), HD* 'w) + (s — 3)(ud,uH D*O,w, D*w)|
< [(u(PP (u,w) + PP (w,v)), HD* " w)| + [ {9, (ud2wHD*"w), HD u)|
+ (0 (W )YHD w, HD* " w)| + [0z (u*)HD w, D*w)| + [(0, (u*HD*0,w), D*w)]
+ (5 4+ D|{(0u (02 (uP)HD* w), HD*w)| /2 + 5(s + 1)[(0p(ud?uH D> w), HD*w)| /2
+ (0, (uZvH D> w), HD*w)| + |0, (uwHD*'w), HD*02v)|
+ (s + 1) [{0, (w0, wHD* 'w), HD*0,v)| + s(s + 1)[{0, (ud2wHD* 'w), HD*v)|/2

S Loo (u, V) {lwl e + 1wl Freo-2 [0l 72 + (lullzzs + [ollF) w0}
which completes the proof. O

Lemma 3.42. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+2501(T). Then

[(uHD*w, D*(udZu — vd2v)) + (s — 2){(ud,uHD*w, D*w)|

S Lo (u,0)*{Jw] s+ [0l Il }

w2+ (J|ul

?ISO_2||U|

i+ Jw]

where w = u — v.
Proof. Lemma 3.22 together with Lemma 3.26 shows that

[(uHD*w, D*(ud?w + wdv)) + (s — 2)(udyuHD*d,w, D*w)|
< [(uHD*w, D*(udw) — uD*0*w — s9,uD*O,w)|
+ [{uHD*w, D* (wd*v) — wD*0*v — 50, wD*d,v)| + [(0*(u*)HD*w, D*w)|
+ [(0:(w*HD*0,w), D*w)]| + s[(0: (udsu) HD w, D*w)]
+ [(uHD*w, wD*02v)| + s|{uHD*w, d,wD*8,v)|
(u, 0)*{]Jw]

we + wllz irsv2 + (lullg + ol ) lwllzreo }

ss0-2||

30

which completes the proof. O
Lemma 3.43. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then

|{(uHD?0,((0pu)? — (0,v)?), HD*'w) + 2(ud,uHD* 0w, D3w)|

S Lo (w, 0) {{[wlfFs + [[wl s 0]

e+ (llul

frs + [0l Il },

)

where w = u — v.
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Proof. Set z = u + v. Lemma 3.22 shows that
|(uHD?0,(0,20,w), HD* *w) + 2{(ud,uH D*0,w, D*w)|
< [(uP (z,w), HD* "w)| + 2[{0, (udywHD*'w), HD*0,0))|
+ (5 4 D0, (u@PwH D*tw), HD*2)| + (s 4+ 1)|(0x (ud?2H D w), HD*w)|

S oo (u,0)*{Jw] i) l[wllErso }

which completes the proof. O

is + [[v]

irs + [wlggso-llvllzee + (1l wl

Lemma 3.44. Let 59 > 7/2 and s > 1. Let u,v € H™>{sTLs0o}(T). Then
[(uHD*w, D*((0yu)* — (95v)?)) + 2(udzuHD* 0w, D*w)]

S Lo (u,0)*{Jw] ie  [ollE)lwllZreo b,

ie + [wlggso- vz + (llul wl

where w = u — v.

Proof. Lemma 3.19 shows that
[(uHD*w, D*(0,20,w)) + 2{ud,uHD*0,w, D*w)|
< [(uHD*w, D*(8,20,w) — D*0p20,w — Oz D*dpw)]| + 2|(0 (udpu)HD*w, D*w)|
+ 2[{(uB,wH D w, D*0,)]
S Loy (u,v)*{ 0]

~

%{5) %I%})

which completes the proof. O

is + 0]

frs + w0 llvlZree + (luf wl

Lemma 3.45. Let 59 > 7/2 and s > 1. Let u,v € H™>{s¥2501(T). Then

|((uH D0, (HOpu)? — (HOwv)?), HD* 1w)|

< Lo (u, 0)*{Jw]

s+ [0l 1wl },

ie + [wlggo- vz + (llul

where w = u — v.

Proof. Set z = u+ v. Lemma 3.18 shows that
[(uH D, ((H.2)(HOrw)), HD* ™ w)
< |(wP (Hz, Hw), HD* " w) + 3[(D,(uHO,u), (D*w)?)|
+ 2{02 (uH ) D w, HD* ') | + 2|(0, (uw(HO,w)HD* tw), D*0,v)]|
+ (s + 1) (0: (w(HBRw)HD* " w), D*2))| + (s + 1) {0 (w(HIZ2)HD* " w), D*w))|

< Lo (u,0)*{ ] mo) w0}

S e+ (lullFs + [|v]
which completes the proof. 0

i+ w01 llv] wl
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Lemma 3.46. Let so > 7/2 and s > 1. Let u,v € H™{s+L5o}(T), Then

[(uHD*w, D*((HOu)?* — (HOv)?))|

S Lo (u,0)*{Jw] s+ [0l lwllZeo }

irs + [wlggsollvll e + (1l w|

where w = u — v.

Proof. Set z = u + v. Lemma 3.19 shows that
[(uHD*w, D*((HOx2)HOzw))|
< (uHD*w, D*((HOp2)HO,w) — (HO,w)HD*0yz — (HO2)HD 0, w)|
+ (0, (uHO?u), (HD*w)?)| + 2[{u(HO,w)H D w, HD*0,v)|
S Ly (u,0)*{Jw] f )Wz b

which completes the proof. O

fser + (lullfs + [lv]

i+ w01 llv] wl

Lemma 3.47. Let s > 7/2 and s > 1. Let u,v € H™>{s+350}(T). Then
[(uD?0, (uHO?u — vHO™), HD* *w) + (s — 3)(ud,uH D* 0w, D*w)|

trs+2 + (lullzrs + [0l Ee) lwllZeo },

S Lo (u,0)* {llwllFs + [wl3so-2lv]

where w = u — v.

Proof. We see from Lemma 3.17 and 3.26 that
[(uD?*0, (uHO?w + wHO?v), HD* 'w) + (s — 3)(ud,uHD*d,w, D*w)|
< [(u(PY (u, Hw) + PO (w, Ho)), HD* ™ w)| + (0, (w(HO;w)HD*'w), D)
+ [(0: (03 (w*)YHD* " w), HD*w)| + [{0, (w*HD*d,w), D*w)|
+ (s + D(0:(0: (u0pu)HD* ™ w), HD w)| + s(s + 1)[{0: (udsuH D* " w), HD*w)| /2
+ [(0:(u(HOZ0)HD* " w), D*w)| + [(De (wwH D>~ w), HD*0;v)|
+ (s + D0, (udwHD* *w), HD*0,0)| + 5(s + 1)[{0p(ud*wHD* w), HD*v)| /2

f§ ]SO(U,,U)2{||UJ| ?Jé) ?150}7

which completes the proof. O

ws + [l fs+2 + (lullzs + [lv]

w02l wl
Lemma 3.48. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then
[(uHD*w, D* 10, (uHO*u — vHOI?v)) + (s — 2){(ud,uH D*O,w, D*w)|

S oo (u,v){]w] s+t (lullzrs + [0l ) lwllZeo )

i+ w01 [lv]

where w = u — v.
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Proof. Lemma 3.22 and 3.26 shows that
|{(uHD*w, D*7'0,(uHO*w + wHOIIv)) + (s — 2)(ud,uH D*O,w, D3w)|
< (uHD*w, D*7'0,(uHw) — uHD* 03w — sO,uHD* ' 0?w)|
+ [{uHD*w, D¥ 10, (wHIIv) — wHD* 1920 — s0,wHD* 1 92v)|
+ [{[H, u®| D*0%w, D*w)| + (9, (w*HD*0,w), D*w)]
+ s|{[H, ud,u] D* 0w, D*w)| + [{uH D*w, wD*?v)| + s|(uHD*w, D,wD*0,v)|

< Ly (u,0)*{|w] )

irs + [0llZ) [lwlls0 }

ie  [wlgo-a vz + (luf

which completes the proof.

Lemma 3.49. Let sg > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then
|(HO,u)D* 1w, D10, (ud?u — vO2v))|

S oo (u, v)*{||w]

~

ie + [l

s+ [0l lwlleo },

oo 1Vl e + (Jlul

where w = u — v.
Proof. Note that
(HO,u) D w, uD* ' 0Pw)
= — (0, (uHOu) D* w, D 02w) — (u(HO,u)D*~ 0w, D¥ 1 0?w)

= (0,0, (uHO,u) D*w), D t0,w) + = (0, (uHOu), (D¥ 1 0,w)?).

!
2
Lemma 3.22 shows that
[{(HOwu) D* ™ w, D* 0, (udzw + wdiv))|
< {((HOpu)D*tw, D¥710, (ud*w) — uD* 0w — s0,uD*~'0%w)|
+ [{(HOu) D*tw, D*710,(wdiv) — wD* 1020 — s0,wD* 1 92v)|
+ {(HOpu) D¥ w, uD*r03w) | + s[{0,(0pu(HOyu) D¥ w), D~ 10,w)|
+ {0, (w(HOu) D¥1w), D¥71020)| + 8](0, (9pw(HO,u) D¥1w), D5710,0)|

5 ]So(uwv)2{||w| %IS) %50}7

which completes the proof. O

irs + w0l + (lullzs + [lv]

w|

Lemma 3.50. Let so > 7/2 and s > 1. Let u,v € H™{s+L5o}(T), Then
[{(HOu) D™ w, D10, ((0u)* — (00)*))]

S Lo (w, 0)* {lwllZs + (lullfs + [vllZ) lwllFe0

wl

where w = u — v.
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Proof. Lemma 3.19 shows that

[(HOpu) D> w, D*10, (0, 20,w))]
< [{((HOpu)D* tw, D¥710,(0,20,w) — D*~'0%20,w — 0,2D° ' 0%w)|
(02 (0, w(HOu) D¥ w), D¥10,2)| + [{0:(0p2(HOzu) D*'w), D10, w)|

+
5 ISO(U,U)2{||IU| %JS) %JSO}v

s+ [0ll7) o]

7+ (vl

which completes the proof. 0
Lemma 3.51. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+250H(T). Then

|((HO,u)D¥ 1w, D* (uHO*u — vHOI?v))|

< Ly (u,0)*{|w]

s+ [0l llwlleo },

ie + [wlggso-llvllzee + (llul

where w = u — v.
Proof. Note that

(HOpu)D*~tw, uH D*0?w)
= (0, (WHOLu) D* tw, HD*Opw) + (u(HOpu)HD*w, HD*0,w)

— (0, (D (wH,u) D™ ), HD w) — %(&(u?—[@xu), (HD"w)?).
We have

[(HOpu) D, D* (uHO*w + wHd )|

< [{(HOpu)D*'w, D (uHOPw) — uHD*0*w — s0,uHD*0,w)|
+ [{(HOpu) D¥ w, D*(wHO?v) — wHD*0?v — s0,wHD*0,v)|
+ [{(HOu) D* w, uHD*2w) | + s|{(HO,u) D*'w, O,uHD*O,w)|
+ [{(HOpu) D¥ w, wHD0?v)| + s|{(HOpu) D¥  w, D,wH D*0,v)|

which completes the proof by Lemma 3.22. O]
Lemma 3.52. Let so > 7/2 and s > 1. Let u,v € H™{s+25}(T), Then

|(uD*0, (u*Opu — v?0,v), HD* 1w)|

S Lo (u,0)*{Jw] e+ (lullZrs + [0l ) lwlleo )

s+ 1wl 0]

where w = u — v.
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Proof. Set z = u 4+ v. Lemma 3.14 shows that
(uD?0,(u*0pw + 2zwd,v), HD*  w)|
< {0,uD? (u*0,w + zwd,v), HD* tw)| + [(uD* (u*0,w + zwd,v), D*w)|
< (DO uHD*'w), D H(u? 0w + 2wdy))| + [(u[D?, u?]0,w, D*w)|

3
+ §]<u28xu, (D*w)?)| + [(uD*(zwd,v), D*w)],
which completes the proof.

Lemma 3.53. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+2501(T). Then
|(WHD*0, (uH (ud,u) — vH(v0,v)), HD* tw)|
< Ly (u, 0)*{[|w|

S irs + [0l 1wl }

ire + [wlggo-llvll e + (llul

where w = u — v.

Proof. Note that
|(uHD*0, (uH (ud,w) + uH(wd,v) + wH(vO,v)), HD* 'w)|
< [(D(OuuHD* w), HD* (wH (udyw)))] + | (WHD* (uH (udyw)), D*w)
+ (0, (uHD* 'w), HD* (uH (wd,v) + wH(vd,w)))].
The second term in the right hand side can be estimated as follows:
[(WHD* (uH (ud,w)), D*w)|
< (D" (D) + o2 DOy, uDu) | + ) (u20,, (D))
Then Lemma 3.23 completes the proof.
Lemma 3.54. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then
|((WH D0, (uW*HOpu — v*HOv), HD* 'w)|
oo}

S Lo (w0 {llwllFs + [l s+ (lullzr + [Vl ) w]

01 |I]
where w = u — v.
Proof. Set z = u + v. Note that
[(uHD*0, (v HOpw + 2wHOv), HD* 'w)]|
< {(D(OuH D ), HD*™ (2 HDyw))| + | (u[HD* u* D w, Do)
+ ;|(u28xu, (D*w)?)| + {0, (WHD* 'w), HD* (zwHI,v))|.

Then Lemma 3.14 completes the proof.
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Lemma 3.55. Let so > 7/2 and s > 1. Let u,v € H™{s+25}(T), Then
|(uH D*w, D510, (u*0,u — v*0,v))|

S Lo (w0 {lw][Zs + [l fee + (s + ol ) ol }

2 i o]
where w = u — v.
Proof. Note that
[(uHD*w, D* 10, (u*0,w + zwd,v))|
< {uHD*w, [D¥10,, u*]0,w)| + gl(ugaxu, (HD*w)?)|
+ |(WHD*w, D¥ 710, (2w0,v))|.
Then, Lemma 3.14 completes the proof. 0
Lemma 3.56. Let sg > 7/2 and s > 1. Let u,v € H™>{s+Ls0}(T). Then
[(uHD*w, D*(uH(ud,u) — vH(v0,v)))|

S Ly (u,0)*{|w]

we+n + (lullzrs + [0l ) lwlleo )

i+ w01 [lv]

where w = u — v.

Proof. Note that
[(uHD*w, D*(uH (u0,w) + uH(wd,v) + wH(v0,v)))|
< (uHD*w, D*(uH (ud,w)) — w*HD*O,w)| + g\(u@xu, (HD*w)?)|
+ [(uH D*w, D*(uH(wd,v) + wH(v0,v)))|.
We see that Lemma 3.23 completes the proof. O
Lemma 3.57. Let sg > 7/2 and s > 1. Let u,v € H™>{sTLs0}(T). Then
|(uHD*w, D*(v*HO,u — v*HOI,w))|
S oo (u,v){|w]

where w = u — v.

%{s—‘—l +(”u’§{‘s + ||U|§—I-5) ?{50}7

i+ Wl [lv] wl

Proof. Set z = u+ v. Note that
[(uHD*w, D*(v*HO,w + zwHI,))|
3
< [(uHD*w, [D*, v*HO,w)| + §]<u28zu, (HD*w)*)| + [(uH D*w, D*(z2wH0I,v))|.

We see that Lemma 3.14 completes the proof. O
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By the presence of HD*!, the following lemma is clear:

Lemma 3.58. Let so > 7/2 and s > 1. Let u,v € H™{s+L5o}(T), Then
|(WH D0, (u* — v*), HD* 'w)| + [(uH D*w, D*(u* — v*))|

S Lo (w, 0) {[[wlls + (lullze + ol llwlleo b

where w = u — v.

Lemma 3.59. Let 5o > 7/2 and s > 1. Let u,v € H™>{stLs0}(T). Then
|((HO,u)D* 1w, D* 10, (F3(u) — F3(v)))| + [((HO,u)D* tw, D¥710, (u* — v))|

S ISO(U’U)4{||U]| ?fs) ?{50}7

i + |0l

s+ (lul

wl
where w = u — v.
Proof. This follows from Lemma 3.13 because of the presence of D71,

Lemma 3.60. Let sg > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then
|(u?D* tw, D*710,(ud?u — vOv))|
S Lo (u, v)* {|w]

N ie  [ollEs)llwllZreo b,

ire + [wlggso- vl + (llul w|

where w = u — v.

Proof. Note that
|(u?>D* tw, D570, (udiw + wd?v))|
< [(w?D¥'w, D710, (ud?w) — uD* 12w — s0,uD* " 92w)|
+ [0, (u? D5~ w), D¥H(wd?v))| + 3|(0x (u?OpuD*~w), D' O,w)|
+ g](ﬁ@cu, (HD*w)?)| + s(0,(u*0,uD* tw), DS 10,w)|,
which completes the proof.

Lemma 3.61. Let 5o > 7/2 and s > 1. Let u,v € H™>{s+250}(T). Then
|(u? D tw, HD* 0, (uHO?u — vHO))|
< Ly (u, 0)*{|w|

~J

we+n + (lullzrs + [0l lwlleo )

i+ w01 [lv]

where w = u — v.

Proof. This follows from a similar argument to Lemma 3.60.

Cobmining Lemma 3.60 and 3.61, we obtain the following:
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Lemma 3.62. Let so > 7/2 and s > 1. Let u,v € H™{s+25}(T), Then

[(w? D" w, D10, (Fj(u) — F;(v))]

<.
|| ~
N

N

Ly (u, v)*{|w] irs + [0l 1wl }

wen + (lul

s+ 1wl 0] w

where w = u — v.

Definition 12. Let s > 0 and k € N satisfy 2(s +2) > k. We define

o) i= s ot = 22,

Note that p(k) > 1 and 1/p(k) + 1/q(k) = 1.

The following five lemmas are estimates for viscous terms —e;0%u + £,0%v in
Ms(l)(u,v).

Lemma 3.63. Let s > 1, so > 7/2 and £, € [0,1]. Then there exists C = C(sg, s) >
0 such that for any u,v € H™>{s+2s0}(T),

€1 / Oru(HD*w)HD* rwdx
T

Ep(4) s 4
< LoD + Clal 2 e + Clula o e,

where w = u — v.
Proof. We set
/T Otu(HD* w)H D wdr = — /T BuD M wH D wdr — /T O2u(HD*w) D*wdx
= A+ B.

It is clear that |B| < ||ul
that

meo||wl||%. Interpolation and the Young inequality show

et Al < exCllull g | D ||| Do

p(4)
w||4/(s+2)||Ds+2w||2—4/(5+2) < 51100 ||DS+2w||2 +Clul a(4)

< 510”u| Hs0

w|?,

Hs0
as desired. O

By a similar argument to the proof of Lemma 3.63, we can show the rest of

: . . 1
estimates for viscous terms in M¢ )(u, v).
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Lemma 3.64. Let s > 1, so > 7/2 and £, € [0,1]. Then there exists C' = C(sg,s) >
0 such that for any u,v € H™&{sT4so}(T),

23 5If(j) 3 4
e /T w(HD*O*w)HD*  wdz| < %HDS*%H%CZHM?}Q

j=1

w|?,

where w = u — v.

Lemma 3.65. Let s > 1, so > 7/2 and £, € [0,1]. Then there exists C = C(sg, s) >
0 such that for any u,v € H™>{s+3:50}(T),

22 51?1’(]) 2

s s j=1 s j

o1 [ u(HDw)D*O%wde| < S D 40 Y Jull i ol
T

j=1

where w = u — v.

Lemma 3.66. Let s > 1, so > 7/2 and 1,69 € [0,1]. Then there exists C' =
C(s0,5) > 0 such that for any u,v € H™>{s+4s0k(T),

< C’max{a%,s%}”ﬂ

froea + Cllullfpso W e,

(e1 — 52)/U(HD58§U)”H,D5_1wd:L'
T

where w = u — v.

Lemma 3.67. Let s > 1, so > 7/2 and €1,e5 € [0,1]. Then there exists C' =
C(s0,8) > 0 such that for any u,v € H™>{s+4so}(T),

< C'max{e], &3 }v| wls,

is+5 + Cllullzreo

(e1 — 62)/u(HDsw)D88§’vdx
T

where w = u — v.

The following three lemmas are estimates for viscous terms —e10%u + 2050 in
M (u,v). We omit the proofs of these lemmas since they are similar to that of
Lemma 3.63.

Lemma 3.68. Let s > 1, so > 7/2 and e, € [0,1]. Then there exists C = C(sg,s) >
0 such that for any u,v € Hmax{8+4750}(']1‘);

p(4)

IS
/ <Hazu><D8-1w>2dw\ < 2| D5 2|2 4 Cfu| S [[w])? + O] oo ]
T

2
100 He

where w = u — v.

Lemma 3.69. Let s > 1, so > 7/2 and e, € [0,1]. Then there exists C = C(sg, s) >
0 such that for any u,v € Hma"{s*:”»so}(']l‘),

23 8Ilﬂ(j) 3 ‘
. / (Hou) D w D Ghwde| < ZI2 D20 4 03 ful )
T

=2

w|?,
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where w = u — v.

Lemma 3.70. Let s > 1, so > 7/2 and 1,69 € [0,1]. Then there exists C' =
C(s0,5) > 0 such that for any u,v € H™>{sF3s0}(T),

2
Hs»

(e1 — &2) A(HaxU)Ds_les_laivdﬂf < Cmax{e}, 3} vl[3ors + Cllull s [Jw|
where w = u — v.

The following three lemmas are estimates for viscous terms —e;0iu + €294 in

M (u,v).

Lemma 3.71. Let s > 1, so > 7/2 and £, € [0,1]. Then there exists C' = C(sg,s) >
0 such that for any u,v € Hma"{s*'?’vso}(']r),

wl,

2
Hso

€1 / udiu(D* tw)?dz| < Ollul
T

where w = u — v.

Proof. This is obvious thanks to the integration by parts. 0

Lemma 3.72. Let s > 1, sg > 7/2 and £, € [0,1]. Then there exists C = C(sg, s) >
0 such that for any u,v € H™™{s+350}(T),

>, 25113(j) - 2q(j)
= 542 2 2
S 10wl + C ) ullif ],

=2

61/u2D31wD518§wdx <
T

where w = u — v.

Proof. First we set
/uQDS_leS_l(?;Lwdx
T
= -2 / ud,uD* rwD* ' OPwdr — / w?D* 0, wD* 1 OPwdr =: A+ B.
T T
The same argument as before implies that

A < Cllullfeo
|B| < Cllul

w||2/q(3) ||DS+2w||2/p(3),

wH2/q(2) HDs+2wH2/p(2)’

2
Hso

which completes the proof. O

Lemma 3.73. Let s > 1, so > 7/2 and £, € [0,1]. Then there exists C' = C(sg,s) >
0 such that for any u,v € H™>{s+350}(T),

[

irs+s + Cllullfreo

(61 — 52)/Tu2D51wD818§Ud1‘ < C'max{e?, &3}[|v|
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where w = u — v.

Proof. This follows from the Hélder inequality. O
Finally, we are ready to show the main inequality in this section.
Proof of Proposition 3.8. Let s’ € [1,s]. Put w := u; — us. Note that w satisfies
Ow = 0y (K (u1) — K (ug)) — £102w + (g1 — £2)0uy (3.19)

on [0, min{7;,,7T:,}). By Lemma 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34 and 3.35, we
have
1d

2dt
+ A3(8") (u10puy HD® Opw, D¥ w) + 2e1|| D*+2w]|?|
= [(D¥{0,(K (u1) — K (u3)) — £10%w + (61 — £2)0*us}, D¥ w)
+ M (8) (O, (D*0,w0)%) + Ao(8"){(HOZu ) HD* 8yw, D™ w) + 21 || D+
< Cly (g, up)*{||w] 1)}

D% w]|? + M\ (') (Bpur, (D% O,w)?) + Ao(s) ((HOPur ) HD* dpw, D¥ w)

oo ([l [l + 1w

wet 1wl pso-s w2l s + ]

 mas{, 3} a2

(3.20)

By Lemma 3.38, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46, 3.47, 3.48, 3.52, 3.53, 3.54, 3.55,
3.56, 3.57, 3.58, 3.63, 3.64, 3.65, 3.66 and 3.67, we also have

d , A (s (8

%Ms('l)(uh UQ) - )‘1(3/)<axu17 (Ds a?cw)2> + %

)\1(5,)

(H&u1)HD® 8w, D% w) ‘

(OuH D% w, HD* ~*w) + (wHD* dpw, HD* ~*w) + (uHD* w, HD* ~*d,w))

A1(s)Aa(s)
4

—\i(8")(B,ur, (D% B,w)%) + (H&u1)HD?® 8w, Ds/w>‘

S C]so (ula U2)2(SI+2){HM|

7o)}

oo ([l [0 + [|uz]

arer + 1wllpso-s |zl ss + ll]

3
+ 1—[1)||Ds/+2w||2 + max{e?, g3} ||uq| ?{S,H_

(3.21)

Similarly, by Lemma 3.39, 3.49, 3.50, 3.51, 3.59, 3.68, 3.69, 3.70 and 3.71, we have

d
— M
dt

< Clgy(u, U2)2(S,+2){ [|w]

 (uy, ug) — Ao (") ((HO*ur )HD® Oyw, D¥ w)

(3.22)

125{3’ + ||w| ?{so—3||u2| ?{s/-‘rf’)

o)

|Ds’+2w\|2 + max{ﬁ, 5§}||u2|

€1
+ lwllFrso (lua [ e + [Je] 0/ e
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Moreover, by Lemma 3.40, 3.62, 3.72 and 3.73, we obtain

%MS(?) (uy,us) — )\1(8/))\4(82 + (5 (ud,uH D 0w, D* w)
< Cly (ur, wn)* 2 w3+ (0] |0 3 (3.23)
+ JwllFeo lunllr + lluzllf)} + i—E)HDs/”wH2 +max{e?, &3 }H|ualfsa-
It is easy to see that
U1+ Clnll? + )} < CLy () Pl (3:2)

Therefore, collecting (3.20), (3.21), (3.22), (3.23) and (3.24), we obtain (3.9). O

3.4. The energy estimate in L2 In this subsection, we prove Proposition 3.9,
which is the only thing left to prove. We introduce some estimates for the operator
J.

Lemma 3.74. Let k € NU{0}. There exists C = C(k) > 0 such that
#0771 f = opfll < CIIf

for any f € L*(T).

Proof. 1t suffices to show that there exists C' = C'(k) > 0 such that

i sgn@)%(if)’f“ el <

for any ¢ € Z. But this is clear since the left hand side is equal to |[£[¥[4(€) — 1| and

supp(1 — ) C {[¢] < 2}. -
Lemma 3.75. Let s > 5/2. Let u € H*(T) and v € L*(T). Then
v

Hso

1702 (u0rv) + uHzv]| < [lul

Proof. Note that

J0, (ud?v) + uHO v

= (JO? +HI?)(uwv) — 2(JO? + HO,) (Opuv) + JO,(02uv) — [H, u]0?v + H(D?uw).
Lemma 3.74 shows the desired inequality. U

As a corollary, we have the following.
Corollary 3.76. Let so > 5/2. Let u € H**(T) and v € L*(T). Then

|H IO, (uHO?v) — uHv|| < ||ul v|.

H+so
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Lemma 3.77. Let sg > 5/2. Let u € H*(T) and v € L*(T). Then

| J 0 (0u0,v) + OpuHO || S ||ul v|.

H%0
Proof. This follows from the follwing equality
J O, (0,u0,v) + OpuHO v
= (JO? + HO,) (Opuv) — JO(?uv) — H(*uv) — [H, Opu)Oyv
and Lemma 3.74. 0J
As a corollary, we have the following.
Corollary 3.78. Let so > 5/2. Let u € H**(T) and v € L*(T). Then
vl

Lemma 3.79. Let so > 1/2 and A = D? or DO,. There exists C(sq) > 0 such that
for any f € H*TY(T) and g € L*(T),

(D) ™A, flgll < CIIf]

Proof. See (ii) of Lemma 2.4 in [29)]. O

|1 J 0y (HOpu)HOv) — (HOu)HO|| < |lul

Hso

ot [lgll-

We estimate the time derivative of MW (u,v) for j = 1,2, 3.
Lemma 3.80. Let sg > 7/2. Let u,w € H*V(T). Then

[((HOw) Hw, HJw) — (uditw, HJw) — (uHw, JOw) — 4(0,u, (O,w)?)| < ||ul

w||2.

Hso

Proof. We use Lemma 3.37 with f = u, ¢ = Hw and h = HJw. It is clear that
(3.18) with s = 0 holds. Set

—4(0, fHDug, D2h) + 202 fHg, D2hY = 6(D2 fHg, O2h) + 4(0, fHg, O°h) =: A+ B.
For A, Lemma 3.74 shows that
Al < 6[(wdiu, (HID; — d,)w)| + 3[(05u, w?)| + 6[w(0)(D}u, HJIDyw)|
S lull o],
Similarly, Lemma 3.25 and 3.74 show that
|B — 4(0pu, (0,w)?)|
< A (wdpu, (HJI; — 87 w)| + 4|(Opuw, OZw) + (Dpu, (Osw)?)| S [ull mo [ w]]?,

which completes the proof. 0
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Lemma 3.81. Let so > 7/2. Let u,w € H*TY(T). Then

(DPu, (Jw)?) — 2((HOpu) Jw, HIO w) + 4((HO*u)HO,w, w)| < ||ul

sz.

H*o
Proof. The integration by parts shows that
(D, (Jw)?) — 2((HOpu)Jw, HIO w) + 4((HO*u)HO,w, w)|

= |(OtuJw, JO,w) — ((Hu)JOpw, HIOw) — ((Hu)Jw, HJO>w)
— 2{(HO?u)HO,w, w)|,

which allows us to use Lemma 3.37 with f = Hu, ¢ = JO,w and h = Jw. Then
(3.18) with s = 0 holds. Lemma 3.26 shows that

(02 fHOzg, Ozh)| = [(0u(HOzu)HJO7w), JOpw)| < [lul

wHQ.

H%0
Finally, we have

2(02fHg, 02h)
= 2((HO2u)HJOpw, JO2w)
= 2((HO*u)HIOyw, (JO? + HO,)w) + 2((Hu)(HIO, — 1w, Hw)
+ 2{(HO?u)(HIOZ — 0,)w, Hw) — 2{(HO>u)HO,w, w),
which completes the proof. O

Lemma 3.82. Let so > 7/2. Let u,w € H*TY(T). Then

\(u?—[@fnu, (Jw)?) + (u* Jw, HI w) — Hud,uHO,w, w)| < |ul

w[|2.

2
Hso

Proof. Adding and subtraction a term, we have
2| (uH O u, (Jw)?) + (u® Jw, HJIOtw) — 4(ud,uHdyw, w)]
< (HOX(W?), (Jw)?) + 2(u? Jw, HIOw) — 8{udyuHOyw, w)|
+ | (QuHiu — HO(u?), (Jw)?)|.
Lemma 3.5 and 3.15 show that the second term in the right hand side can be

estimated by < ||ul|%<||w]|*. We use Lemma 3.37 with f = u? and g = h = Jw.
Note that (3.18) with s = 0 holds. It is easy to see that

(02 Hg, 02h)| = (0. (05 (u*) HIw), JOzw)| S [[ullfgso ]
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Finally, Lemma 3.74 shows that

= —8(udyuM Joyw, (JO? + HO)w) — 8(0, (udyu)(HJ0y — 1w, Hw)
— 8(ud,u(HIO? — 0,)w, Hw) + 8(ud,uHI,w, w),

which completes the proof.
Lemma 3.83. Let sg > 7/2. Let u,v € H*(T). Then
|(uHO, (ud?u — vI2v), HJw) — 3{ud,uHI,w, w)| < Ly, (u,v)?||w]|?,
where w = u — v.
Proof. First we set
A= (uHO,(udPw), HJw), B = (uH0,(wdv), HJw).

It is clear that |B| < ||lul|gs=o||v]| =

v| w||?. Note that
Op(u0?w) = 02 (uw) — 202 (Opuw) + 0, (O>uw).

Then we set

A = (UHO (uw), HJw) — 2(uHO?(Opuw), HJw) + (uH O, (0*uw), HJw)
=: A1 + Ay + A3.

It is clear that |As| < ||u]

2o |lw|>. For Ay, we have

Ay = (uw, HO? (uH Jw))
= (uw, H(OPuH Jw)) + 3{uw, H(O*uHJO,w)) + 3(uw, H(D,uH JO*w))
+ (uw, H(uHJBw)) = Ayp + -+ + Ay

It is clear that |Ay| + [A1a] < |ul w||?. For A3, we have

2
Heo
Arz = 3{uw, [H, O,u)HJ?w) — 3(uduw, JOw)
= 3(uw, [H, O,u|HJO*w) — 3{ud,uw, JO*w + Ho,w) + 3{ud,uHo,w, w).
Similarly, we have
Ay = (uw, [H, u]HIPw) — (v*w, JO? + HO*w)
+ (0, (W*HO,w), w) — 2(uduHOw, w).
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Finally, we have
Ay = 2(0uw, H(PuH Jw)) + 4{0uw, H(OpuHJOpw)) + 2(0puw, H(uH IO w))
=: Ag; + Ago + Ass.
Obviously, |Aar| + |Asz| < [Jul|%<|Jw]|?. Observe that
Aoz = 2(0,uw, [H, ulHJ?w) — 2(udyu(JO?w + HOpw), w) + 2(udyuHo,w, w).
Therefore, we have

|A+ B — 3{u0,uHo,w, w)|
< |A; — (U0 uHOw, w)| + | Ay — 2(udpuH O w, w)| + |As| + | B| < Ly, (u, v)?||w||?,

which completes the proof. O
Lemma 3.84. Let sq > 7/2. Let u,v € H*(T). Then

|(uHw, HJIO, (ud*u — v0?v)) — 2{(ud,uHI,w, w)| < Iy (u,v)?||w]|?,
where w = u — v.

Proof. First we set A := (uHw, HJO,(ud*w)) and B := (uHw, HJO,(wd*v)). Tt
is easy to see that |B| < I(u,v)?||wl|/?>. We have

A = (uHw, H{J 0, (ud*w) + uHI*w}) — (uHw, [H, u]0?w)
+ (2 (u*)Hw, w) + (0, (WP HOpw), w) + 2(udyuHIyw, w).
Lemma 3.15, 3.26 and 3.75 show that
1A = 2uduHO0, w)| S L, 0 ol
which completes the proof. O
We modify Lemma 3.43 in L*(T).
Lemma 3.85. Let so > 7/2. Let u,v € H*(T). Then
|(uHO, ((0,u)? — (0,0)%), HJw) + 2(ud,uHIyw, w)| < Iy (u, v)*|Jw|)?,
where w = u — v.
Proof. Set z = u+v. First we set

(uH O, (0, 20,w), HJw) = (WHO(0pzw), HJw) — (uHO(0?2w), HJw)
= A+ B.
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It is clear that |B| < I(u,v)?||lw||*>. Moreover, we set

A= —{(0,2w, HO? (uH Jw))
= —(Op2w, H(OPuHJw)) — 2(0p 2w, H(OpuH JOpw)) — (02w, H(uHIO?w))

=1 A+ Ay + As.
It is also clear that |A;| + |Ag]| < I(u,v)?||w||?. For Az, we have
Az = — (02w, [H,u]HJO*w) + (02w, u] 0w + HOpw) — 2{udyuHO,w, w)
— (0. (HOw) 0,

from which follows that

| A+ B + 2(u0,uHo,w, w)|
< A+ |As| + |As + 2(ud,uHO,w, w)| + |B| < L, (u,v)?||lw]|?,

which completes the proof.
Lemma 3.86. Let sg > 7/2. Let u,v € H*(T). Then
[(uHw, HI0:((05u)* — (9,v)*)) + 2(udeuHOzw, w)| S Ly (u,v)*|Jw]]?,
where w = u — .
Proof. Set z = u+ v. Note that

(vHw, HJ 0, (0,20, w))
= (WHw, H{J0,(0,20,w) + OpzHO,w}) — (WHw, [H, Opz| HOzw)
— (0p(u0p2) Hw, w) — (O (uHIpw), w?) /2 — 2(udyuHOpw, w).

Then, Lemma 3.15 together with Lemma 3.77 completes the proof.

Lemma 3.87. Let so > 7/2. Let u,v € H*(T). Then
[(uHO:(HOzu)* — (HOzv)*), HIw)| S Loy (u, v)*[|w]?,

where w = u — v.

Proof. Set z = u + v and set

(UHO((HO2)HO,w), HJw)
= (UHO((HOp2)Hw), HIw) — (uHO,(HO?2)Hw), HJw) =: A + B.



W.P. FOR HIGHER ORDER NONLINEAR DISPERSIVE EQUATIONS 71

It is clear that |B| < I, (u,v)?||w||*. Observe that

A= —((HO.2)Hw, HOZ(uH Jw))
= —((HOp2)Hw, H(OPuH Jw)) — 2((HO2)Hw, H(O,uHJOpw))
— (HO2) Hw, H(uHJO?w)) =: A; + Ay + As.

Again, |A;] + |As| S Iy, (u,v)?||w]]?. And we note that

Az = —((HOp2)Hw, [H, ulHJ?w) + ((HO,2)Hw, uJ0?w)
= —((HOp2)Hw, [H, u)HJO?w) + (u(HOp2) Hw, JO?w + Hopw)

+ ~ (0, (uHO,2), (Hw)?),

!
2
which completes the proof. 0
Lemma 3.88. Let sg > 7/2. Let u,v € H*(T). Then
[(uHw, HIO0:(HOxu)* — (HO0)*))| S Lo (u, v)* ],

where w = u — v.
Proof. Set z = u 4+ v. Note that

(uHw, HJO,((HOr2)HO,w))

= (uHw, HJO0,(HO2)HO,w) — (HOp2)HO,w) — %(&(u?—l@mz), (Hw)?).
Corollary 3.78 completes the proof. O
Lemma 3.89. Let so > 7/2. Let u,v € H*(T). Then

|(u0, (uHOZu — vHOv), HIw) — 3{ud,uHyw, w)| < Ly (u, v)*|Jw]]?,
where w = u — v.
Proof. First we set
A= (u0,(uH*w), HJw), B = (ud,(wHI*v), HJw).

It is clear that |B| < I, (u, v)?||w||*>. We also set

A = (u0? (uHw), HJw) — 2(ud?(OpuHw), HJw) + (ud, (0 uHw), HJw)
= Al + AQ -+ Ag.
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Again, it is clear that |Az| < I, (u,v)?||w]||*. Note that

Ay = —(uHw, O (uHJw))
= —(uHw, PuHJw) — 3(uHw, OPuHJO,w) — 3{(uHw, OyuH JO*w)
— <u27-[w, HJ&,%U)) = AH + A12 + A13 + A14.

It is easy to see that |Ajq| + |Are| S Iy, (u,v)?||w]|?>. We have
Az = =3(udyuHw, (HJ0? — 0,)w) + 3(0, (udpu) Hw, w) + 3(ud,uHI,w, w)
and

Ay = —(WPHw, (HJO? — 0*)w) — (9?(u*)Hw, w) — (0, (W*HO,w), w)
— 2(u0, uHO, w, w).

Similarly, we have

Ay = —2(0,uHw, 2uH Jw + 20,uHJOw) — 2{(udyuHw, HJIO>w)
= —2(0,uHw, O2uH Jw + 20,uHJOyw) — 2{ud,uHw, (HJO? — d,)w)
+ 2(0, (u0u) Hw, w) + 2{(ud, uHO,w, w).

Therefore, we see that

|A+ B — 3{ud,uHd,w, w)|
< |An |+ |As] + |A1z — 3(ud,uHOw, w)| + | A1y + 2(ud,uHO w, w)|
+ | A — 2w uHO,w, w)| + |As| + |B| < Iy, (u,v)?|w]?,

which completes the proof. O
Lemma 3.90. Let sg > 7/2. Let u,v € H*(T). Then

[(uHw, JO,(uHOzu — vHOw)) — 2ud,uHOpw, w)| < Ly (u, v)*|Jw]]?,
where w = u — v.

Proof. First we set A = (vHw, JO,(uHO?*w)) and B := (uHw, JO,(wd?v)). Tt is
clear that |B| < I(u,v)?||w||?. On the other hand, we have

A = (uHw, JO(uHIw) — udZw) + (02 (u*) Hw, w) + (0 (W*HI,w), w)
+ 2(u0, uHOw, w).

Then, Lemma 3.75 completes the proof. 0
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Lemma 3.91. Let so > 7/2. Let u,v € H*°(T). Then
[{(HOwu) Jw, JOs(udu — vI7v))| S I (u, v)*[Jw]?,
where w = u — v.

Proof. First we set A = ((HO,u)Jw, JO,(ud?w)) and B = ((HO,u)Jw, JO,(wd?v)).
It is easy to see that |B| < I, (u,v)?|Jw]]?. We also set A’ = ((HO,u)Jw, uHI*w).
Lemma 3.75 shows that |A + A'| < I, (u, v)?||w||*. So we consider A’. Note that

A = (02 (uHOu) Jw, Hw) + 2(0, (uHOyu) JOpw, Hw) + (u(HO,u)JO*w, Hw)
= A} + Ay + A
It is clear that |A}| + | 45| < I, (v, v)?||w]|*. Lemma 3.74 shows that
Al = (u(HO,u)(JO? + HOp)w, Hw) + %(&C(UH@U), (Hu)?),

which completes the proof. 0
Lemma 3.92. Let so > 7/2. Let u,v € H*(T). Then

[{(HOwu) Jw, JO:((9su)* — (0:0) N S Ly (w,v)* ][,
where w = u — v.
Proof. Set z = u + v. Note that

(HOwu) Jw, JO:((05u)* — (0:0)*)) = —(02(002J 0o (HOzu) Jw)), w),
which shows the desired inequality. O
Lemma 3.93. Let sq > 7/2. Let u,v € H*"%(T). Then
[{(HOpu) Jw, JO,(HOzu)* — (HOw0)*)| S Ly (u, v)* w] [,

where w = u — v.
Proof. The proof is identical with that of the previous lemma. O

A similar argument to the proof of Lemma 3.91 with using Corollary 3.76, we can

show the following:

Lemma 3.94. Let sy > 7/2. Let u,v € H*(T). Then
[{(HOzu) Jw, HI O (uHOzu — vHOZv))| S Ly (u, v)* w]|?,

where w = u — v.

By the integration by parts with Lemma 3.15 and 3.74, we obtain the following:
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Lemma 3.95. Let s > 7/2. Let u,v € H*°(T). Then

((uH o (Fj(u) — Fj(v), HJw)| + (uHw, HJIO0:(Fj(u) — F;(v)))])

.
Il ~
w

N

Ly (u, )],
where w = u — v.
By the presence of J, we can easily obtain the following two lemmas:

Lemma 3.96. Let so > 7/2. Let u,v € H*(T). Then

Z [{(Hzu) Jw, JO(Fj(u) — Fi(0))] < Ly (u,v)"Jw]?,

Jj=3

where w = u — v.

Lemma 3.97. Let sg > 7/2. Let u,v € H*(T). Then

4

> P Jw, JO,(Fy(u) = Fy(0)))] S Lo (u, )],

Jj=2

where w = u — v.

Proof of Proposition 3.9. The proof is similar to that of Proposition 3.10. Put w :=
uy — ug. Then w satisfies (3.19) on [0,7]. By Lemma 3.36, we have

1d
IEEHUJHQ + A1(0){0puy, (0,w)?) + Ao (0){((HO?uy ) HOpw, w) + A3(0)(uyOpruy HO,w, w>’

< Clyy(ur, ug)?||w|

2+ max(2, 3} ual B

(3.25)

By Lemma 3.80, 3.83, 3.84, 3.85, 3.86, 3.87, 3.88, 3.89, 3.90, 3.95, we also have

d A1(0)A4(0

’—M(l)(ul, uy) — A (0)(0,ur, (0,w)?) + M((’H@gul)?—[@xw, w)'

dt 4 (3.26)

< CISO (ulv U2)5||w| %{5 + maX{E%? 53}“1@”%{30“

Similarly, by Lemma 3.81, 3.91, 3.92, 3.93, 3.94, 3.96, we have

d
— M (uy, ug) — Ay (0)((HOPuy ) HO,w, w}‘
dt (3.27)

< Clyy (u1, ua)”||w] oo

%—[s +max{5%,5§}\|uﬂ
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Moreover, by Lemma 3.82 and 3.97, we obtain

d A1 (0)A4(0) 4 425(0)
dt 4

< C[80<u17 u2>5||w‘

M®) (Ub uQ) _

(U0 uHO,w, w)

%{S + max{e%, 83}”u2| ?—ISO+1'

It is easy to see that
d
Zr Ul (U4 Cllu | + Cllua [} < Clg (un, u2) el
Indeed, we have
<<D>_18x<ula§u1 - U2agu2)a (D)_1w>

= (D)3, ), (D) 0u) = 3 (Buur, (D) Oy ))

+2((D) ' 0, (Oyuqw), (D) O,w) — (D) H(Puw), (D) o,w)

+ <<D>71806(w8§u2)7 <D>71w>7
which together with Lemma 3.79 implies that

|((D) ™0, (w1021 — u202us), (D) " w)| S Lo (ur, uz)||w]*.

75

(3.28)

(3.29)

Other terms can be estimated in a simiar way, and then we obtain (3.29). Therefore,

collecting (3.25), (3.26), (3.27), (3.28) and (3.29), we obtain (3.10).

O
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4. WELL-POSEDNESS AND PARABOLIC SMOOTHING EFFECT FOR HIGHER ORDER
SCHRODINGER TYPE EQUATIONS WITH CONSTANT COEFFICIENTS

4.1. Introduction. We consider the Cauchy problem of the following:

Du(t,z) = D*™u(t,r) + Zm (a; D" u(t,x) + b;D2"u(t, x)), (4.1)
u(0,2) = ¢(x), (4.2)

where 1 <m € N, M =R(orT), (t,z) € (—o00,00) x M, D; = —i0;, D, = —i0,
and i is the imaginary unit. The constants {a;},{b;} C C and the initial data
o(r) : M — C are given and u(t,z) : (—o0,00) x M — C is unknown. We are
interested in the Cauchy problem of the following higher order nonlinear Schrodinger

type equations:
i0u(t, ) — 02 u(t, v) = F(O* tu, 0>, 0™ 2u, 02" 24, .. . u, ), (4.3)

with (4.2), where F' is a polynomial. As important examples, this class of equa-
tions includes the nonlinear Schrodinger hierarchy and the derivative nonlinear
Schrodinger hierarchy, which are integrable systems appearing in the soliton the-
ory. In [3], Chihara studied the well-posedness and the ill-posedness of (4.3) for
m = 1 with (4.2) on T. Recently, in [32], Tsugawa has studied similar problem and
shown a non-existence result of solutions of (4.3) for some nonlinearity and m = 1
with (4.2) on T by employing the twisted parabolic smoothing. In their proofs,
the so called “energy inequality” of (4.1) with variable coefficients {a;(t,2)} and
{b;(t, )} plays an important role. Our plan is to extend this result to m > 2. How-
ever, the energy inequality for higher m is much complicated. Therefore, we assume
{a;} and {b;} are constants to make the problem simple in the present paper and
will study the variable coefficients case in the forthcoming paper. A defined below

is used to classify (4.1) into three types.

Definition 13. v = {;}75" and A = {\;}22 " are defined as

Jj=1

Jj—1
v = by — Z%(g‘—kﬂk, 1<7<m~—1,
k=1

j—1
)\2]' = 2Im Q25 — 22 Imlag(],k)’yk, 1 S j S m — 1,

k=1
j—1

Agjo1 = 2Imag; 1 + 22 Im byj_gy—1y, 1< 5 <m.
k=1
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Our main result is the following.

Theorem 4.1.

(Dispersive type, L* well-posedness) Assume that \j =0 for 1 < j < 2m—1. Then,
for any o € L*(M), there exists a unique solution u(t,x) of (4.1)~(4.2) such that
u(t,z) € C((—o0,0); L*(M)).

(Parabolic type) Assume that there exists j* € N such that \; = 0 for 1 < j <
25* and Agj- > 0 (resp. Xoj» < 0). Then, for any ¢ € L*(M), there exist a
unique solution u(t,z) of (4.1)~(4.2) on [0,00) (resp. (—o0,0]) such that u(t,x) €
C([0,00); LA(M)) N C>=((0,00) x M) (resp. C((—o0,0]; L2(M)) N C>®((—o0,0) x
M) ). For any p € L*(M)\C>®(M) and § > 0, no solution u of (4.1)—(4.2) exists on
(—0,0] (resp. [0,0)) such that u(t,z) € C((—4,0]; L*(M)) (resp. C(]0,6); L*(M))).
(Twisted parabolic type) Assume that there exists 7* € N such that \; =0 for1 < j <
25* —1 and Agj«_1 > 0 (resp. Agj-_1 < 0). Let p € L*(M) satisfy Pto & HY?(M).
Then, for any 6 > 0, there exist no solution u(t,x) of (4.1)—(4.2) on [=6,0] (resp.
0,4]) satisfying u € C([—6,0]; L2(M)) (resp. u € C([0,0]; L*(M))). Moreover, the
same result as above holds even if we replace PT, [—0,0] and [0,0] with P, [0,0]
and [—6,0], respectively.

Remark 4.1. Put v(t) = (9;) “u(t). Then v satisfies (4.1) if u is the solution of
(4.1) and u(t) € L*(M) < v(t) € H*(M). Therefore, Theorem 4.1 holds even if we
replace L*(M) with H*(M) and H'/2(M) with H**1/2(M) for any s € R.

Remark 4.2. Tn “Dispersive type”, the persistence of regularity holds on both (—oo, 0]
and [0, 00). In “Parabolic type”, the equations have the parabolic smoothing effect
on either (—oo, 0] or [0,00), which means the persistence of regularity breaks down
on either [0, 00) or (—oo, 0]. Non-existence results in “Parabolic type” and “Twisted

parabolic type” is by the breakdown of the persistence of regularity.

Since the coefficients are constants, by the Fourier transform, (4.1) can be rewrit-

ten into the following:

2m

Dyi(t,&) = &, &) + > (a7t €) + 0,8t =€) (4.4)

j=1

Here, we fix £ € R (or Z) and put

Uﬁ(t):<7\a(t’£)>a X0:<1 O>7 Xj:< aj— bj _)7
u(t, =€) 0 -1 (=17 (—1)"a;
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for 1 < j <2m. Then, by (4.4) with (4.2), it follows that

DUg(1) me IXGU(t),  Ug(0) = “(3(€), (=€), (4.5)

which is a system of linear ordinary differential equations. We can easily obtain the

unique solution

Ue(t) = Ue(0) expit Y & X; (4.6)

=0
ont € (—oo,00) for each £ € R (or T). Therefore, our interest in Theorem 4.1 is
essentially on the regularity of the solution. Here, note that X;X; = X, X; holds
for any 0 < j, k < 2m if and only if b; = 0 holds for any 1 < j < 2m. If we assume

this assumption, (4.5) is not a system but a single ordinary differential equation and

W(t,€) = B(E) expit (€7 + Z £ ia;) (4.7)

for each £ € R (or Z). Since 7; = 0 and \; = 2Ima;, it follows that

(e, 6)] = Ia(e rHexp A

by which we obtain Theorem 4.1 easﬂy. On the other hand, it seems difficult to
obtain Theorem 4.1 by (4.6) for general {b;} since X; X}, # X;X; for some j, k. To
avoid this difficulty, we employ the energy estimate. Propositions 4.2 and 4.3 are
main estimates in this paper. The first term of the left-hand side of (4.8) is the
main part of the energy. The second term is the correction term. For “Dispersive
type”, the third and the fourth terms vanish. Thus, we easily obtain the L? a

priori estimate. For “Parabolic type”,

The parabolic smoothing is caused by the term. For “Twisted parabolic type”,
the fourth term includes Azj*,l(Di(mfj)Hu, u). We want to show the parabolic
smoothing by making use of the term. However, the sign of the term is not definite.
That is unfavorable in our argument. Therefore, we compute the energy inequalities
of Ptu and P~ u instead of u and obtain Proposition 4.4. Note that the sign of
all terms except the correction terms in (4.11) and (4.12) are definite. Though
(4.11) is the energy inequality for ||[PTu||, it includes )\j_|||0x|m*j/2P*u||2. This is
because (4.1) is essentially coupled system of Ptu and P~u as (4.4). The term
A 1057372 P=u]|* cannot be estimated by [Jul|. This is the main difficulty in
the proof of “Twisted parabolic type” in Theorem 4.1. We analyse a property of

{A; } and use an additional correction term F~ to eliminate a bad effect caused by
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A [0z 7/2P~u|* and obtain (4.9) (see also (4.10)). This is the key idea in this
paper.

4.2. The energy estimates. Our purpose in this subsection is to show Propo-

sitions 4.2 and 4.3. Proposition 4.2 below is used to show “Dispersive type” and

“Parabolic type” in Theorem 4.1.

Proposition 4.2. Let u satisfy (4.1). Then, there exists C = C({a;},{b;j}) > 0
such that

d m—1 .
E <||U||2 + Z Re’7j<D;2JP¢(ﬂTL7 P#(]U))

s (4.8)
+ D Aol10:™ jul\”ZAz] (D2, u)| < Clful?.
Jj=1 j=1

Definition 14. « = {og }370 AT = {AF 0N AT = {1200 are defined as

1 .
g 1+ ( aj o, 1< 5<2m—1,
=1

Af=2Ima; + Z(—1)j—k+1 Imb;_pap, 1<j<2m—1,
j—1
Ay == Imbjgey, 1<j<2m—1,

k=1

and BT = {ﬁ,j} (=" and B~ = {ﬁk’}g(ﬁ*jtl) for 1 < j* < m — 2 are defined as

k

Agjr bkt = Z< )k j)‘+*+k —j— B, 1<k<2(m-—j"-1),
j=1
k

>\2_]*+k’+1 Z( )k 1)‘;_] * 16k7 1<EkE<L 2(m - = 1),
7j=1

Remark 4.3. Tt is easy to see that v; = ay; for 1 < j <m — 1. Then, we have
>‘ = A;] + )‘23’ Agg—1 = /\;kq - >‘2_k71
forl1<j<m-—1land1<k<m.

Proposition 4.3 below is used to show “Twisted parabolic type” in Theorem 4.1.
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Proposition 4.3. Let u satisfy (4.1). Assume that there ezists j* € N such that
N =0 for1<j<2(j*—1) and Agj«—1 # 0. Put
2m—1
Fi (u) = [[[0:]"*72P~u|> + Y Rea;(D,7|0,|**PFu, Pu),
j=1
2m—1
Fif (u) = [[|0:" "2 PFu|” + ) Reay (D70, *P~u, Ptu).

J=1

Then, there exists C' = C({a;},{b;}) > 0 such that

2m—1 2(m—j*-1)
<|yP+u\|2+ > Reay(D;7Pu, PTu) + Z BFF (u ))

Jj=1 =

(4.9)
+ A3 10 HEP P < Cllul)® + Cl0: ™ Pl
and
2m—1 2(m—j*—1)
<HP ul|® + Z Re (D7 Ptu, P~u) + Z By Fif (u ))
=t k=t (4.10)

= A3 alllOa|" PP < Cllul? + CJllOu|™ T Pl .

To prove Propositions 4.2 and 4.3, we use the following lemma.

Lemma 4.4. Let u satisfy (4.1). Then, there exists C = C({a;},{b;}) > 0 such

that
d 2m—1
£<HP+UH2 + Z Re (D7 P~u, P*u))
j=1
" (4.11)
+ 3 TGP+ AT 10: 2P u?)| < Clul?
j=1
and
2m—1
<||P ul* + Z Re (D, Ptu, P~ u))
" s (4.12)
+ Z Y A 10" 2Pl 4+ X7 [[10:" 2 P ul?) | < Cllul.

Proof of Lemma 4.4. First, we show (4.11). For simplicity, we set v := P*u and
v~ := P~u. Note that P*4 = P—u = v~ and P~a = Pty = vT. Then, vt and v~
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satisfy
2m
D" = D2+ (D2 ot 4 b, D2 Ry (4.13)
k=1
and
2m
Dy~ = =D2"v~ =Y (=D*@D" v~ + b D2 Fot). (4.14)
k=1

By (4.13), we have

d
%HUJFHQ =2Re (T, vT) = —2Im (D", vT)

2m

= -2 Z(Im a; (DXt o) + Tm by (D2 Ty vT))
j=1
2m

= =23 (ma, |02 P ull? + Tmby (D207, ).
j=1

Here, we consider the time derivative of correction terms to cancel out the second
term. Fix 1 < j <2m — 1. We see from (4.13) and (4.14) that
d

7 Rea;(D,"P~u,vt) = —Ima;(D,? Dyv=,v*) + Im a;(D;7v=, Diw™)

=Im aj<D;j(Dimv_—), vt) +Im ozj<D;jv_—, Dimvﬂ

2m
- Z((—l)k Im v;ax (D2 F Ty~ o) + (=1)" Im a;b (D2 0T 0 T)
k=1

+ Im ajag (DX 9y~ o) + Im ;b (DX v v7))
= Al + B+ (A}, + AL, + B, +B},).
k=1
Observe that
Al + Bl = 2Ima; (D> = v"),
Agk + B;k = (1 + (=D)F) Im aja,, (D™ *~Iv= vt),
ALy = (1) Tmagby||0n "~ FH2 P ?,

ngk = Tm a;by|[|0,| ™~ * /2 P~ 2.

We collect coefficients of derivative losses with rearranging the summation order.
Note that for any sequences c;, it holds that

p p—J p—1p—1—j

Z Z Cik = Z Z Cik+1 = Z Z Chj—k+1- (4.15)

Jj=1 k=1 j=1 k=0 j=1 k=1
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It is easy to see that

2m 2m
Z Z (A;k + Ag),,k + Bg,k + ng) S ||U||2

j=1 k=2m—j

Then, by (4.15), we have

2m—12m-1-j . 2(m-1) j
Yoo (M Bl = Y Y (A B )
j=1 k=1 j=1 k=1
2(m—1) j ‘ -
= (1+ (=17 Im aga; gy (D2 0= 0.
j=1 k=1

Similarly, we obtain

2m—12m—1—j . 2(m—1) j
Ay = (=1 Tm g || [0 OT2 Pr
j=1 k=1 j=1 k=1
2m—12m—1—j A 2(m—1) 7
Biy= > > Imoydj |0, UHV2P 2
7j=1 k=1 j=1 k=1

This concludes the proof of (4.11). For the proof of (4.12), we set v := P~u and
v~ := PTu. Then, they satisfy (4.13) and (4.14). Therefore, the exactly same proof

works. 0

Now we are ready to prove Proposition 4.2. Though we can prove it directly

without using Lemma 4.4, we give the proof of it by the lemma.

Proof of Proposition 4.2. Note that (PTf, P~g) = (P~ f,Ptg) = 0 for any func-
tions f, g. This implies that (P f, Psog) = (P~ f, PTg) + (P*f, P~g). So, collect-
ing (4.11) and (4.12), we obtain

d — L
a (HP;&OU’F + Z ReOégj<Dx QJP;A()U, P#QU))

j=1

m—1 m
3 N0 Prgul® + 37 Aoyt (D2 P, P

J=1 Jj=1

< Cllull*.

We also note that v, = ag,. Finally, it is easy to see that

d m—1 ' m '
EHIDOUH2 + ) Nogll10n]™ 7 Poul* + Y Aoy 1 (DI Pyu, Pyu)
j=1

Jj=1

< Clul*.

Therefore, we have (4.8). O
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The terms A |||0,[™ /2P~ u||* with 1 < j < 2j*—1 in Lemma 4.4 are unfavorable
in our argument to prove Proposition 4.3. Therefore, we analyse the coefficients A~

below.

Lemma 4.5. It holds that

) 1 -
At = =5 S0+ (FD)(Rea)s,,
=1
1 j—1 5-1
+ 3 Z (14 ( Imal)Reb] I—k4+10
=1 k=1

for1<j<2(m-—1).
Proof. By the definitions of A;” and aj, we have
1J
)\;_,'_IZ—ZIHIZJZJ l+1+22 Imbj 1+10— O = A+ B.

It is easy to see that A = 0. Observe that

p 1-1 p—1 p—l1
Z Z c—rdiey, = Z Z cidpy ker, (4.16)
=1 k=1 =1 k=1

for any sequences {c;},{d;} and {e;}. This implies that
—1 j—1

(1+ (=) Imb; g0y,

.
<.

B—

N | —

—

Il
-
NS
L

Il
<.
|

N | —

(1 -+ (—1)1)((Re al) Im Ej,l,kJrlOék — (IHI al) Re l_)j,l,kJrlOék).
l

Here we used the fact that Imed = (Rec) Imd + (Imc¢) Red for any ¢,d € C. This
completes the proof. O

1

=
—_

Lemma 4.6. Assume that there exists j* € N such that Ay; = 0 for 1 < j < j*.
Then, it holds that Im ay; = )\;j =0for1<7<7* and >\j’ =0 forl1<j<25"+3.

Proof. The proof proceeds by the induction on j. We prove the following: assume
that there exists j7* € N such that Ay; = 0 for 1 < j < j*. Then it holds that
j—1
Im Qg5 = )\;’_] = )\2_] )\2_] ] — )\Z_j*+2 = )\2_]*+3 = Z Im bg(j_k)agk =0
k=1
for 1 < j < j*. It is easy to see that the claim above with j* = 1 follows. Assume

that Agj-y2 = 0. By the hypothesis, it holds that Ay, = 0for 1 <n < 3. Then we
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+ o . . . . . o + —
have Ay, = 0. Now, we claim that Im agj-y2 = 0. Since Agjry2 = Ay o + Agiia,
we have

3

Im A5+ 42 — Z Im Eg(j*_l+1)a2l = 0.
=1

Since v, = agy, we see from the definition of v that

j* j*
Z Im by 1)y = Z Im bo(j-—41)bor — Z Z Im by —g41)a2a-1 7k =: A+ B.
=1

=1 k=1

It is easy to see that A = 0. We have

Jjr—=1j"—l1
B = — E E Im by (jx —1— k1)@ Yk
=1 k=1
-1 il -1 I

= — Z (Re GQZ) Z Im 62(j*—l—k+1)7k + Z (III] agl) Z Im BQ(j*—l—k—&-l)'Yk = 0
=1 k=1 =1 k=1

by (4.16) and the hypothesis, which shows that Im agj-yo = 0. Using Lemma 4.5
again, we obtain Ay, = Ay 5 = 0. Then we obtain )\;j* 4o = 0, which completes
the proof. O

Remark 4.4. From the proof of the above lemma, we also see that
Aojeqo = 2Imagjeto, Agjria = 2Imagj14
when Ag; =0 for 1 < j < 5%,
Now, we prove Proposition 4.3.

Proof of Proposition 4.3. We give only the proof of (4.9) since we can show (4.10)
in the same manner. When j* = 1, we see from the definition that A\, = 0 for
n=1,2,3. When j* > 2, Lemma 4.6 implies that A} = A} = 0 for 1 < j < 2(j*—1).
Moreover, it holds that A\,..., = 0 for n = —1,0,1 and )\J“j*_l # 0. By (4.11), we

have

*+n

2m—1 2m—1
d i — _ e 12 1o
a("m”” ZReaj<DﬁP—uaP+u>> S D

j=1 J=25*42

+ A _alllOal™ T 2P U] S Ml + (110s Pl
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Thus, we only need to show

2(m—j*—1) 2m—1

d
i X A= 3 Kl

J=27*42

(4.17)
S Ml 4 (1107 P2,

Put v = |0,|~**?/2Pu. Since v satisfies (4.1), by (4.12), we have

2m—1 2m—1
7 <||P v||* + Z Re o, (D, P+v, P~ v>> Z (_1)3/\;-|||ax|m—3/2p vl12

Jj=1 Jj=2j*-1

S Noll? + [[10:™77" Pro] .
Thus, we obtain

2(m—j*—1) 2m—k—3

d__ - o .
O DR SRE Y e

k=1 j=2j%—1

S Null® + 11107 Prul |,
By (4.15), we have

2(m—j3*—1) 2m—k—3

Z Z B}j)\JrH’a |- (G+k+2)/2 p— u||2

= 7j=25*—1
2(m—j*—1) &k
_ Z k ]+15+)\2] N 1H|aaz|m_j —(k+1)/2p—u”2.
k=1 j=1
Therefore, by the definition of 8,7, we conclude (4.17). O

4.3. Proof of main theorem. In this subsection, we show Theorem 4.1.

Definition 15. For f € L*(M) and N > 0, we define

m—1

E(f;N) = |l fI?+ N0, ™ ProfII* + Y Re;(D;¥ Psof, Paof).

j=1
We choose N sufficiently large so that Lemma 4.7 holds. If there is no confusion,

we write E(f) := E(f;N).

Lemma 4.7. Let N > 0 be sufficiently large. Then, for any f € L*(M) it holds
that

%EU) < I£IP + N0, Peof |I* < 2E().
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Proof. The Gagliardo-Nirenberg inequality and the Young inequality show that

m—1
i a 1 —m
S [Rey (D Poof, Paol)l < oI+ CIO" Prof 2. (418)
j=1
So, it suffices to choose N = 2C. O

We prove the first part of Theorem 4.1.

Proof of “Dispersive type” in Theorem 4.1. We consider our problem only on [0, 00)
since the result on (—o0, 0] follows from the same argument. Let 7' > 0, which can
be arbitrary large. We first show the a priori estimate sup,¢o 7y [[u(?)|| < Cllel|. We
assume that u satisfies (4.1) and (4.2). Then, it is easy to see that 2|0, ™Pul|* <
2/(D;0;*™ Pyou, Psou)| < C|lul|*. This together with (4.8), Lemma 4.7 and \; = 0
for 1 < j < 2m — 1 implies that $E(u(t)) < CE(u(t)) on [0,T). Thus, by the
Gronwall inequality and Lemma 4.7, we obtain the a priori estimate. Next, we
show the existence. Let ¢, = F'x(|¢] < n)Fp for n € N. Then, we have the
solution u,, of (4.1) with u,(0) = ¢,, by (4.6). Moreover, u,, € C([0,T]; L*(M)) since
|Z§ZO &m=iX;| < C({a;},{b;j},n) for |¢] < n. Since {p,} is a Cauchy sequence
in L?(M), by the a priori estimate, we conclude {u,} is also a Cauchy sequence
in C([0,T]; L*(M)). Thus, we obtain the solution u € C([0,T]; L?(M)) of (4.1)-
(4.2) as the limit of u,. Finally, the uniqueness easily follows from the a priori

estimate. O

Proof of “Parabolic type” in Theorem 4.1. We use the argument from the proof of
Theorem 1.2 in [33]. We consider only the case Agj» > 0 since the other case
follows from the same argument. Let T" > 0, which can be arbitrary large. By the
Gagliardo-Nirenberg inequality and the Young inequality, we have

1
< _/\2j*

m—1 m
D AlllOe Tl 4 30 Aoy (DI )| <5

J=Jjx+1 j=j«+1

0ol ull* + Clull*.

Recall that \; =0 for 1 < j <25* — 1. Therefore, in the same manner as the proof

of “Dispersive type”, we obtain the a priori estimate:

A % t m—j*
sup}<nu<t>u2+% | e Ju<7>n2dr> < Cllol

t€[0,T
It then follows that we have the unique existence of the solution v € C([0, T]; L*(M))N
L*([0,T); H™"(M)), which implies that u(t) € H™" (M) for a.e. t € [0,T]. Let
0 < e < T. Then there exists t, € (0,£/2) such that u(ty) € H™ 7 (M). Since
(8,)™ 7" u satisfies (4.1)-(4.2) with initial data ¢ = (9,)™ 7 u(ty) € L*(M), ap-
plying the same argument as above, we conclude (9,)™ 7w € C([ty, T); L2(M)) N
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L*([to, T); H™ " (M)). Thatis, u € C([ty, T]; H™ 7" (M))NL3([te, T); H* ™) (M)).
We can choose t; so that £/2 < t; < £/2 + /4 and u(t;) € H* ™) (M). Again,
applying the same argument as above with the initial data ¢ := (9,)*™ 7 u(ty) €
L3(M), we conclude u € C([ty, T]; H*™=7)(M)) N L2([ty, T); H3 ™) (M)). By re-
peating this process, we conclude u € C([e, T]; H*™=7)(M)) for any k € N, which
implies u € C*([e, T]; H*m=3")=2m¢( M) for any k,¢ € N by (4.1). By the Sobolev
embedding, we obtain u € C*([¢,T] x M). Since we can take ¢ > 0 arbitrary
small and T > 0 arbitrary large, we conclude u € C*°((0,00) x M). Finally, we
show the nonexistence result by contradiction. Assume that there exists a solution
u € C((=06,0]; LA(M)) of (4.1)-(4.2) with ¢ € L*(M) \ C®(M). We take t, such
that —0 < ¢ty < 0. Then, as we proved above, we have u € C*((to,0] x M), which
contradicts to the assumption ¢ = u(0) & C*°(M). O

The following proposition is the main tool to show the result for “T'wisted para-

bolic type” in Theorem 4.1.

Proposition 4.8 (the twisted parabolic smoothing). Let u € C([to,t1]; L*(M))
satisfy (4.1). Assume that there exists j* € N such that \; =0 for 1 < j < 2j* —1
and Agj«—1 > 0 (resp. < 0). Then, it follows that

Ptu (resp. P~u) € C((to, t1]; HY*(M))  (forward smoothing), (4.19)
P~u (resp. PTu) € C([t, t1); HY*(M))  (backward smoothing). (4.20)

In particular, it holds that uw € C*((to,t1) X M).

Proof. We consider only the case )‘;j*q > ( since the same proof works for the case

A;rj*_l < 0. For simplicity, set

2m—1 2(m—j*—1)
G*(u) ==Y _ Reaj(DPu,Ptuy+ Y BIF (u),
j=1 k=1

where F)~ is defined in Proposition 4.3 and {«;} and {5} are defined in Definiton 14.
Set 2 = supyci 0 (). Note that supyci ) (G (u(t))] + | G0, u(n)]) <
CM and G*(|0,|"?u(t)) is continuous on [tg,t;] by the presence of D;7 in the
definition of G (u) above. By the Gagliardo-Nirenberg inequality and the Young

inequality, we have

10:1™ " Qull* < 6][10,]"™ 712 Qul]* + C6~|[ul|?
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for 6 >0, Q = P™ or P~. Take 0 > 0 sufficiently small. Then, this together with
(4.9) and (4.10) yields

t1 .,
Meor [ 11007 V2 Quir) P < CONQ + 1~ ),

to

for @ = P* or P~. By the interpolation, we also have

t1
| lesutrypar

to
t1
= [0l PP + ol ) P + o Prur) a2

to

< C(M, Agje_y) (L + [t — to)

for 0 < s < m + j* —1/2. Tt then follows that |||0,|™ 7" */2u(t)| < oo for
a.e. t € [to,t1]. Then, for any € > 0 there exists t, € (tg,to + €) such that
11047 +1/2u(t,)|| < co. Note that (4.9) holds even if we replace u with |0,|"/?u
since |0,|'/?u satisfies (4.1). Thus,

d o
L ol PHl? + G (10:210) + A [10a" 1Pl
t (4.22)

< Ol10:]2ull? + Cl10: ™ +/2P ] ?,

By the Gagliardo-Nirenberg inequality and the Young inequality, we have
11052 Prul|? < 6|0, PRl + CH[8, ] 2ul?

for 0 > 0. Taking 6 > 0 sufficiently small and integrating (4.22) on [t., t](C [to, t1])
with (4.21), we obtain

Aoy [ )
11822 P+ u() || + ﬂ/ 10"~ Pru(r)|*dr
2 /. (4.23)

< C(M, My, tr = to]) + [[10:V2 PHu(t.)||? < oo
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since u(t,) € H™ 7 +Y2(M). Therefore, by (4.22) again, it follows that for any
<t <t<t

10: 2P ()| = 110,12 P ue) 1

<[22 P + G020+ g /t on 5 P ()|
IR N Ry oa Pl e

<o [N euar + ¢ [ o et

T=t

t
ey [0 P P + |6 020
t/

T=t'

(4.21), (4.23) and the dominated convergence theorem imply that the right-hand
side goes to 0 as |t — t/| — 0, which shows that |||0,|'/?P*u(t)|| is continuous on
[t.,t1]. The fact P*u € C([to, t1]; L2(M)) with Ptu € L>®([t.,t1]; H/*(M)) yields
Ptu € Oy([t.,t1]; H/*(M)). Combining the continuity of [||0,|"/2P*u(t)| and
the weak continuity of Ptu(t) in HY2(M), we obtain Ptu € C([t.,t1]; HY2(M)).
Since we can take ¢ > 0 arbitrary small, we get Ptu € C((to,t1]; H/*(M)). We
also obtain P~u € C([to,t1); H/?(M)) in the same manner. Therefore, u = P~u +
Pyu + Ptu € C((to,t1); HY?(M)). By repeating this process, we also obtain u €
C((to,t1); H*?(M)) for any k € N, which yields u € C®((to,t;) x M)) since u
satisfies (4.1). O

Proof of “Twisted parabolic type” in Theorem 4.1. We use the argument from the
proof of Theorem 1.2 in [32]. We consider only the case Agj~_; > 0 since the
case Agj«_1 < 0 follows from the same argument. Let ¢ € L?*(M) satisfy Pty ¢
H'Y2(M). We prove Theorem 4.1 by contradiction. We assume that there exists
u € C([-9,0]; L>(M)) satisfying (4.1)—(4.2) on [—4,0]. By Proposition 4.8, we have
Ptu € C((—0,0]; H/?(M)), which contradicts to P ¢ HY?(M). This proof
works even if we replace Pt and [—0,0] with P~ and [0, §], respectively. O
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