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2 T. TANAKA

1. Introduction

In the present paper, we consider the Cauchy problem of higher order Benjamin-

Ono type equations and Schrödinger type equations with constant coefficients. In

particular, in Section 2, we consider third order Benjamin-Ono type equations

(3BO), which reads

∂tu− ∂3xu+ u2∂xu+ c1∂x(uH∂xu) + c2H∂x(u∂xu) = 0, (t, x) ∈ R× T,

where the unknown function u is real valued and c1, c2 ∈ R. H is the Hilbert

transform, see Subsection 2.1 for its definition. In Section 3, we consider fourth

order Benjamin-Ono type equations (4BO), which reads

∂tu = ∂xK(u), (t, x) ∈ R×M,

where M = R (orT),

K(u) := H∂3xu+ c1u∂
2
xu+ c2(∂xu)

2 + c3(H∂xu)2 + c4H(uH∂2xu)

+ c5H(u2∂xu) + c6uH(u∂xu) + c7u
2H∂xu− u4

(1.1)

with ck ∈ R for k = 1, . . . , 7 and the unknown function u is real valued. In Section 4,

we consider higher order Schrödinger type equations (HS) with constant coefficients,

which reads

Dtu = D2m
x u+

2m∑
j=1

(
ajD

2m−j
x u+ bjD

2m−j
x ū

)
, (t, x) ∈ R×M (1.2)

where Dt = −i∂t, Dx = −i∂x, i is the imaginary unit and the unknown function

u is complex valued. The constants {aj}, {bj} ⊂ C are given. Our main objects is

to prove the local-wellposedness for (3BO) and (4BO) and to classify the Cauchy

problem of (HS).

1.1. Introduction of (3BO). In Section 2, we consider the Cauchy problem of

(3BO):∂tu− ∂3xu+ u2∂xu+ c1∂x(uH∂xu) + c2H∂x(u∂xu) = 0, (t, x) ∈ R× T,

u(0, x) = φ(x) ∈ Hs(T).
(1.3)

Our first result is the following:

Theorem 1.1. The Cauchy problem (1.3) is locally well-posed in Hs(T) for s > 5/2.
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For more precise statement of Theorem 1.1, see Theorem 2.1 in Section 2. We

make some comments on Theorem 1.1. Nonlinear terms ∂x(uH∂xu) and H∂x(u∂xu)
in (3BO) have two derivatives, and the energy estimate gives only the following:∣∣∣ d

dt
∥∂kxu(t)∥2L2 + c

∫
∂xu(H∂k+1

x u)∂kxudx
∣∣∣ ≲ (1 + ∥∂2xu∥L∞)2∥∂kxu(t)∥2L2 , (1.4)

where c is a constant depending only on k. See (2.19) for details. It is difficult to

handle the second term in the left hand side by ∥u∥Hk , which is the main difficulty in

this problem. To overcome that difficulty, we add a correction term into the energy

(see Definition 3 in Section 2):

E∗(u) := ∥u∥2L2 + ∥Dsu∥2L2 + as∥u∥4s+2
L2 + bs

∫
u(HDsu)Ds−2∂xudx,

where D := F−1|ξ|F , following the idea from Kwon [18], who studied the local

well-posedness of the fifth order KdV equation (see also Segata [27], Kenig-Pilod

[16] and Tsugawa [33]). The correction term allows us to cancel out the worst term

in (1.4), which makes it possible to evaluate the Hs-norm of the solution by that

of the initial data. It is worth pointing out that our proof refines the idea in [7].

Indeed, Feng introduced the following energy estimate in order to show the “weak”

continuous dependence (see Subsection 2.1 for details):

d

dt

(
∥∂k−2

x w∥2L2 +
2k − 3

4

∫
R
(u+ v)∂k−3

x wH∂k−2
x wdx

)
≤ C(T, ∥φ∥Hk , ∥ψ∥Hk)∥w(t)∥2Hk−2 ,

on [0, T ], where w = u− v and u, v ∈ C([0, T ];Hk(R)) satisty (1.3) with c1 = c2 =√
3/2 and initial data φ, ψ ∈ Hk(R), respectively. Here, we would like to have

the estimate for ∥w∥Hk . If we simply replace k − 2 with k in the above estimate,

the constant in the right hand side depends on ∥φ∥Hk+2 (resp. ∥ψ∥Hk+2), which

cannot be handled by ∥φ∥Hk (resp. ∥ψ∥Hk). Therefore, we need to find a different

correction term (see Definition 3 in Section 2) and estimate the difference between

two solutions in Hk(T) more carefully (see the proof of Proposition 2.21) so as to

complete the continuous dependence.

It is known that (3BO) with specific coefficients is completely integrable and has

infinitely many conservation laws. In the integrable case, we can extend the solution

obtained by Theorem 1.1 globally, using the conservation law corresponding to H3-

norm.

Corollary 1.2. The Cauchy problem (1.3) with c1 = c2 =
√
3/2 is globally well-

posed in Hs(T) for s ≥ 3.
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Corollary 1.2 can be shown by using the Gagliardo-Nirenberg inequality. On the

real line case, there are some much better results with respect to the regularity of

the initial data (see Subsection 2.1 for details). This is why we focus on our problem

on T. But Theorem 1.1 and Corollary 1.2 on (3BO) still hold on R.

1.2. Introduction of (4BO). In Section 3, we consider the Cauchy problem of

(4BO): ∂tu = ∂xK(u), (t, x) ∈ R×M,

u(0, x) = φ(x) ∈ Hs(M).
(1.5)

Here, K(u) is defined in (1.1). Our result is the following:

Theorem 1.3. The Cauchy problem (1.5) is locally well-posed in Hs(M) for s >

7/2.

Now we mention the idea of the proof of Theorem 1.3. We may have the third

order derivative loss since nonlinear terms in (4BO) have three derivatives at most.

By the symmetry, it can be reduced to the second order derivative loss (see Lemma

3.25). Our proof is based on the energy method, and the standard energy estimate

gives only the following:∣∣∣ d
dt
∥Dsu(t)∥2L2 + L1(u) + L2(u) + L3(u)

∣∣∣ ≤ C(1 + ∥u∥Hs0 )3∥u(t)∥2Hs , (1.6)

where s0 > 7/2, D = F−1|ξ|F and

L1(u) := λ1(s)

∫
∂xu(D

s∂xu)
2dx, L2(u) := λ2(s)

∫
(H∂2xu)(HDs∂xu)D

sudx,

L3(u) := λ3(s)

∫
u∂xu(HDs∂xu)D

sudx

(see Definition 6 in Subsection 3.2 for definitions of λj(s)). Here, we note that

L1(u) is the second order derivative loss, and L2(u) and L3(u) are the first order

derivative losses. It is impossible to handle Lj(u) for j = 1, 2, 3 by ∥u∥Hs . In order to

overcome this difficulty, we modify the energy by adding correction terms. Namely,

we consider

Es(u) :=
1

2
∥u∥2L2(1 + Cs∥u∥2L2 + Cs∥u∥4sL2) +

1

2
∥Dsu∥2L2 +

3∑
j=1

M (j)
s (u),
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with

M (1)
s (u) :=

λ1(s)

4

∫
u(HDsu)HDs−1udx,

M (2)
s (u) :=

λ2(s)

4

∫
(H∂xu)(Ds−1u)2dx,

M (3)
s (u) :=

λ1(s)λ4(s) + 4λ3(s)

32

∫
u2(Ds−1u)2dx

(see Definition 6 in Subsection 3.2). The first two terms correspond to ∥u∥Hs , and

M
(1)
s (u), M

(2)
s (u) and M

(3)
s (u) are correction terms. As defined in Definition 6,

we note that λj(s) for j = 1, 2, 3, 4 is a linear polynomial in s. The coefficient of

M
(j)
s (u) can be determined so that the time derivative of M

(j)
s (u) cancels out Lj(u)

for j = 1, 2. On the other hand, the time derivative of M
(1)
s (u) also yields L3(u),

that is,

d

dt
M (1)

s (u) ∼ L1(u) + L3(u)

since L1(u) is the second order derivative loss. Therefore, we need to collect co-

efficients of L3(u) resulting from both ∥Dsu∥ and M
(1)
s (u) when we determine the

coefficient of M
(3)
s (u). For this reason, the coefficient of M

(3)
s (u) is a quadratic

polynomial in s.

It is known that (4BO) with specific coefficients is completely integrable and has

infinitely many conservation laws. As in the case of (3BO), we can extend the

solution obtained by Theorem 1.3 globally.

Corollary 1.4. The Cauchy problem (1.5) with c1 = 3, −c2 = c5 = c6 = c7 = −2

and c3 = c4 = −1 is globally well-posed in Hs(M) for s ≥ 4.

1.3. Introduction of (HS). In Section 4, we consider the Cauchy problem of (HS):

Dtu = D2m
x u+

∑2m
j=1

(
ajD

2m−j
x u+ bjD

2m−j
x ū

)
, (t, x) ∈ R×M,

u(0, x) = φ(x) ∈ L2(M).
(1.7)

We introduce λ, which is used to classify (1.7) into three types.
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Definition 1. γ = {γj}m−1
j=1 and λ = {λj}2m−1

j=1 are defined as

γj = b2j −
j−1∑
k=1

ā2(j−k)γk, 1 ≤ j ≤ m− 1,
λ2j = 2 Im a2j − 2

j−1∑
k=1

Im b̄2(j−k)γk, 1 ≤ j ≤ m− 1,

λ2j−1 = 2 Im a2j−1 + 2

j−1∑
k=1

Im b̄2(j−k)−1γk, 1 ≤ j ≤ m.

Our result is the following:

Theorem 1.5.

(Dispersive type, L2 well-posedness) Assume that λj = 0 for 1 ≤ j ≤ 2m− 1. Then,

for any φ ∈ L2(M), there exists a unique solution u(t, x) of (4.1)–(4.2) such that

u(t, x) ∈ C((−∞,∞);L2(M)).

(Parabolic type) Assume that there exists j∗ ∈ N such that λj = 0 for 1 ≤ j <

2j∗ and λ2j∗ > 0 (resp. λ2j∗ < 0). Then, for any φ ∈ L2(M), there exist a

unique solution u(t, x) of (4.1)–(4.2) on [0,∞) (resp. (−∞, 0]) such that u(t, x) ∈
C([0,∞);L2(M)) ∩ C∞((0,∞) × M) (resp. C((−∞, 0];L2(M)) ∩ C∞((−∞, 0) ×
M)). For any φ ∈ L2(M)\C∞(M) and δ > 0, no solution u of (4.1)–(4.2) exists on

(−δ, 0] (resp. [0, δ)) such that u(t, x) ∈ C((−δ, 0];L2(M)) (resp. C([0, δ);L2(M))).

(Twisted parabolic type) Assume that there exists j∗ ∈ N such that λj = 0 for 1 ≤ j <

2j∗− 1 and λ2j∗−1 > 0 (resp. λ2j∗−1 < 0). Let φ ∈ L2(M) satisfy P+φ ̸∈ H1/2(M).

Then, for any δ > 0, there exist no solution u(t, x) of (4.1)–(4.2) on [−δ, 0] (resp.
[0, δ]) satisfying u ∈ C([−δ, 0];L2(M)) (resp. u ∈ C([0, δ];L2(M))). Moreover, the

same result as above holds even if we replace P+, [−δ, 0] and [0, δ] with P−, [0, δ]

and [−δ, 0], respectively.

Since the coefficients are constants, by the Fourier transform, the equation in (1.7)

can be rewritten into the following:

Dtû(t, ξ) = ξ2mû(t, ξ) +
2m∑
j=1

(
ajξ

2m−jû(t, ξ) + bjξ
2m−jû(t,−ξ)

)
. (1.8)

Here, we fix ξ ∈ R (or Z) and put

Uξ(t) =

(
û(t, ξ)

û(t,−ξ)

)
, X0 =

(
1 0

0 −1

)
, Xj =

(
aj bj

(−1)j+1bj (−1)j+1aj

)
,
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for 1 ≤ j ≤ 2m. Then, by (1.8) with u(0, x) = φ(x), it follows that

DtUξ(t) =
2m∑
j=0

ξ2m−jXjUξ(t), Uξ(0) =
t(φ̂(ξ), φ̂(−ξ)), (1.9)

which is a system of linear ordinary differential equations. We can easily obtain the

unique solution

Uξ(t) = Uξ(0) exp it
2m∑
j=0

ξ2m−jXj (1.10)

on t ∈ (−∞,∞) for each ξ ∈ R (or T). Therefore, our interest in Theorem 1.5 is

essentially on the regularity of the solution. Here, note that XjXk = XkXj holds

for any 0 ≤ j, k ≤ 2m if and only if bj = 0 holds for any 1 ≤ j ≤ 2m. If we assume

this assumption, (1.9) is not a system but a single ordinary differential equation and

û(t, ξ) = φ̂(ξ) exp it
(
ξ2m +

2m∑
j=1

ξ2m−jaj

)
(1.11)

for each ξ ∈ R (or Z). Since γj = 0 and λj = 2Im aj, it follows that

|û(t, ξ)| = |φ̂(ξ)|
2m∏
j=1

exp
−tξ2m−jλj

2
,

by which we obtain Theorem 1.5 easily. On the other hand, it seems difficult to

obtain Theorem 1.5 by (1.10) for general {bj} since XjXk ̸= XkXj for some j, k.

To avoid this difficulty, we employ the energy estimate. Propositions 4.2 and 4.3

are main estimates in this paper. The first term of the left-hand side of (4.8) is the

main part of the energy. The second term is the correction term. For “Dispersive

type”, the third and the fourth terms vanish. Thus, we easily obtain the L2 a

priori estimate. For “Parabolic type”, the third term includes λ2j∗∥|∂x|m−j∗u∥2.
The parabolic smoothing is caused by the term. For “Twisted parabolic type”,

the fourth term includes λ2j∗−1⟨D2(m−j)+1
x u, u⟩. We want to show the parabolic

smoothing by making use of the term. However, the sign of the term is not definite.

That is unfavorable in our argument. Therefore, we compute the energy inequalities

of P+u and P−u instead of u and obtain Proposition 4.4. Note that the sign of

all terms except the correction terms in (4.11) and (4.12) are definite. Though

(4.11) is the energy inequality for ∥P+u∥, it includes λ−j ∥|∂x|m−j/2P−u∥2. This is

because (4.1) is essentially coupled system of P+u and P−u as (4.4). The term

λ−j ∥|∂x|m−j/2P−u∥2 cannot be estimated by ∥u∥. This is the main difficulty in

the proof of “Twisted parabolic type” in Theorem 4.1. We analyse a property of

{λ−j } and use an additional correction term F−
k to eliminate a bad effect caused by
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λ−j ∥|∂x|m−j/2P−u∥2 and obtain (4.9) (see also (4.10)). This is the key idea in this

paper. This is a joint work with Professor Kotaro Tsugawa.

1.4. Notations. We denote the norm in Lp(M) by ∥ · ∥p. In particular, we sim-

ply write ∥ · ∥ := ∥ · ∥2. We write D = |∂x| = F−1|ξ|F . We denote ∥f∥Hs :=

2−1/2(∥f∥2 + ∥Dsf∥2)1/2 for a function f and s ≥ 0. Let ⟨·, ·⟩ := ⟨·, ·⟩L2 . We

also use the same symbol for ⟨·⟩ := (1 + | · |2)1/2. Let [A,B] := AB − BA,

P+f(x) := F−1(χ(ξ ≥ 1)f̂)(x), P−f(x) := F−1(χ(ξ ≤ −1)f̂)(x), P0f(x) :=

F−1(χ(|ξ| < 1)f̂)(x), P ̸=0f(x) := F−1(χ(|ξ| ≥ 1)f̂)(x). f̂ is the Fourier transform

of f :

f̂(k) = Ff(k) = (2π)−1

∫
M
f(x)e−ixkdx.
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2. Local well-posedness for third order Benjamin-Ono type

equations on the torus

2.1. Introduction. We consider the Cauthy problem of the following third order

Benjamin-Ono type equations on the torus T(:= R/2πZ):

∂tu− ∂3xu+ u2∂xu+ c1∂x(uH∂xu) + c2H∂x(u∂xu) = 0, (t, x) ∈ R× T, (2.1)

u(0, x) = φ(x), (2.2)

where the initial data φ and the unknown function u are real valued, and c1, c2 ∈ R.
H is the Hilbert transform on the torus defined by

Ĥf(0) = 0 and Ĥf(k) = −i sgn(k)f̂(k), k ∈ Z\{0}.

The well-known Benjamin-Ono equation

∂tu+H∂2xu+ 2u∂xu = 0 (2.3)

describes the behavior of long internal waves in deep stratified fluids. The equation

(2.3) also has infinitely many conservation laws, which generates a hierarchy of

Hamiltonian equations of order j. The equation (2.1) with c1 = c2 =
√
3/2 is the

second equation in the Benjamin-Ono hierarchy [20].

There are a lot of literature on the Cauchy problem on (2.3). On the real line

case, Ionescu-Kenig [10] showed the local well-posedness in Hs(R) for s ≥ 0 (see

also [23] for another proof and [11] for the local well-posedness with small complex

valued data). On the periodic case, Molinet [21, 22] showed the local well-posedness

in Hs(T) for s ≥ 0 and that this result was sharp. See [1, 2, 13, 15, 17, 25, 31] for

former results.

On the Cauchy problem of (2.1) with c1 = c2 =
√
3/2 on the real line, Feng-Han

[6] proved the unique existence in Hs(R) for 4 ≤ s ∈ N by using the theory of

complete integrability. They also used the energy method with a correction term

in order to show the uniqueness. Feng [7] modified the energy method used in [6]

and used an a priori bound of solutions in Hs(R) to show the “weak” continuous

dependence in the following sense:

φn → φ in Hs−2(R) as n→ ∞ ⇒ un → u in C([0, T ];Hs−2(R)) as n→ ∞, (2.4)

for φ, φn ∈ Hs(R) and 6 ≤ s ∈ N. Here, un (resp. u) denotes the corresponding

solution of (2.1) with c1 = c2 =
√
3/2 and the initial data φn for n ∈ N (resp. φ).

Note that the topology of the convergence is weaker than Hs. Linares-Pilod-Ponce
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[19] and Molinet-Pilod [24] succeed in proving the local well-posedness in Hs(R) of
the following equation

∂tu+ d1∂
3
xu− d2H∂2xu = d3u∂xu− d4∂x(uH∂xu+H(u∂xu)), (2.5)

for s ≥ 2 and s ≥ 1, respectively. Here, coefficients satisfy d1 ∈ R, d1 ̸= 0 and

dj > 0 for j = 2, 3, 4. Their proof involves the gauge transform and the Kato type

smoothing estimate. Recently, Guo-Huo [9] showed the local well-posedness of (2.5)

in Hs(R) for s ≥ 3/4 without the gauge transformation. They used so called the

short-time Xs,b method developed by Ionescu-Kenig-Tataru [12].

On the periodic case, as far as the author knows, there are no well-posedness

results for the Cauchy problem of (2.1) available in the literature. Although proofs

in Feng-Han [6] and Feng [7] above works, and we cannot obtain the local well-

posedness, that is, the resultant continuous dependence (2.4) is weak. And their

proofs heavily depend on the complete integrability. In particular, it is very im-

portant to have c1 = c2 in their proofs. It should also be pointed out that in the

periodic case, we do not have the Kato type smoothing estimate, which implies that

the local well-posedness is far from trivial.

Therefore, in this article, we are interested in establishing the local well-posedness

of (2.1) in Hs(T) for s less than 4 without using the theory of complete integrability.

In particular, we improve the “weak” continuous dependence (2.4) shown in [7] in

order to fulfill conditions of the local well-posedness. Moreover, thanks to Lemma

2.7, we can show the local well-posedness of the non-integrable case (2.1).

The main result is the following:

Theorem 2.1. Let s ≥ s0 > 5/2. For any φ ∈ Hs(T), there exist T = T (∥φ∥Hs0 ) >

0 and the unique solution u ∈ C([−T, T ];Hs(T)) to the IVP (2.1)–(2.2) on [−T, T ].
Moreover, for any R > 0, the solution map φ 7→ u(t) is continuous from the ball

{φ ∈ Hs(T); ∥φ∥Hs ≤ R} to C([−T, T ];Hs(T)).

Now, we mention the idea of the proof of Theorem 2.1. The standard energy

method gives us the local well-posedness of (2.3) in Hs(T) for s > 3/2. On the other

hand, nonlinear terms ∂x(uH∂xu) and H∂x(u∂xu) in (2.1) have two derivatives, and

the energy estimate gives only the following:

d

dt
∥∂kxu(t)∥2L2 ≲ (1 + ∥∂2xu∥L∞)2∥∂kxu(t)∥2L2 +

∣∣∣∣∫ ∂xu(H∂k+1
x u)∂kxudx

∣∣∣∣ . (2.6)

It is difficult to handle the last term in the right hand side by ∥u∥Hk , which is the

main difficulty in this problem. To overcome that difficulty, we add a correction
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term into the energy (see Definition 3):

E∗(u) := ∥u∥2L2 + ∥Dsu∥2L2 + as∥u∥4s+2
L2 + bs

∫
u(HDsu)Ds−2∂xudx,

where D := F−1|ξ|F , following the idea from Kwon [18], who studied the local

well-posedness of the fifth order KdV equation (see also Segata [27], Kenig-Pilod

[16] and Tsugawa [33]). The correction term allows us to cancel out the worst term

in (2.6), which makes it possible to evaluate the Hs-norm of the solution by that

of the initial data. It is worth pointing out that our proof refines the idea in [7].

Indeed, Feng introduced the following energy estimate in order to show the “weak”

continuous dependence (2.4):

d

dt

(
∥∂k−2

x w∥2L2 +
2k − 3

4

∫
R
(u+ v)∂k−3

x wH∂k−2
x wdx

)
≤ C(T, ∥φ∥Hk , ∥ψ∥Hk)∥w(t)∥2Hk−2 ,

on [0, T ], where w = u− v and u, v ∈ C([0, T ];Hk(R)) satisty (2.1) with c1 = c2 =√
3/2 and initial data φ, ψ ∈ Hk(R), respectively. Here, we would like to have the

estimate for ∥w∥Hk . If we simply replace k − 2 with k in the above estimate, the

constant in the right hand side depends on ∥φ∥Hk+2 (resp. ∥ψ∥Hk+2), which cannot

be handled by ∥φ∥Hk (resp. ∥ψ∥Hk). Therefore, we need to find a different correction

term (see Definition 3) and estimate the difference between two solutions in Hk(T)
more carefully (see the proof of Proposition 2.21) so as to complete the continuous

dependence.

Another difficulty is the presence of the Hilbert transform H, which restricts the

possibility of using the integration by parts for some terms. Recall that for real

valued functions f, g, we have

|⟨fDsg,Ds∂xg⟩L2 | ≤
1

2
∥∂xf∥∞∥Dsg∥2L2 .

However, in our problem we cannot apply the integration by parts to

⟨∂xfHDs∂xg,D
sg⟩L2 ,

which is nothing but the term which we cancel out by introducing a correction term.

We notice that the L2-norm is conserved by solutions of equations (2.1) with

c1 = c2 thanks to the following equality:

⟨H∂x(u∂xu), u⟩L2 + ⟨∂x(uH∂xu), u⟩L2 = 0,

which helps us to handle nonlinear terms. In the case c1 ̸= c2, we use Lemma 2.7

originally proved in [4].
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Subsequently, using the conservation law corresponding to the H3-norm of the

solution, we can obtain the following result:

Corollary 2.2. The Cauchy problem (2.1)–(2.2) with c1 = c2 =
√
3/2 is globally

well-posed in Hs(T) for s ≥ 3.

Although we focus on our problem on T, our proof still holds on R, i.e., we can

obtain the local well-posedness for (2.1)–(2.2) on R in Hs(R) for s > 5/2. Thus, we

can improve the results shown in [7, 6]. There are two differences, and one is the

following:

H(Hf)(x) =

−f(x), x ∈ R,

−f(x) + f̂(0), x ∈ T.

However, such a difference does not yield difficulties in our argument since we have

|f̂(0)| ≤ ∥f̂∥l∞(Z) ≤ ∥f∥L1(T) ≲ ∥f∥L2(T). The other one is the Gagliardo-Nirenberg

inequality (Lemma 2.3), that is, we do not need to add ∥f∥L2(R) on R when l = 0.

This section is organized as follows. In Subsection 2.2, we state a number of

estimates. We also obtain a solution of the regularized equation associated to (2.1).

In Subsection 2.3, we give an a priori estimate for the solution to (2.1). In Subsection

2.4, we show the existence of the solution, uniqueness, the persistence, and the

continuous dependence.

2.2. Preliminaries and parabolic regularization. In this subsection, we col-

lect a number of estimates which will be used throughout this paper. We use the

following Gagliardo-Nirenberg inequality on the torus:

Lemma 2.3. Assume that l ∈ N∪{0} and s ≥ 1 satisfy l ≤ s−1 and a real number

p satisfies 2 ≤ p ≤ ∞. Put α = (l + 1/2− 1/p)/s. Then, we have

∥∂lxf∥p ≲

∥f∥1−α∥Dsf∥α (when 1 ≤ l ≤ s− 1),

∥f∥1−α∥Dsf∥α + ∥f∥ (when l = 0),

for any f ∈ Hs(T).

Proof. In the case s is an integer, see Section 2 in [26]. The general case follows

from the integer case and the Hölder inequality. □

The following inequality is helpful when we estimate the difference between two

solutions in L2.
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Lemma 2.4. Let k ∈ N ∪ {0}. Then the following inequality holds true:

∥H∂kxf + ⟨D⟩−1∂k+1
x f∥ ≤ 2∥f∥Hk−2

for any f ∈ Hk−2(T).

Proof. We claim that

| sgn(ξ)− ξ⟨ξ⟩−1| ≤ 2⟨ξ⟩−2 (2.7)

for any ξ ∈ Z. When 0 ≤ ξ ≤ 1, we have |1 − ξ⟨ξ⟩−1| ≤ 1 ≤ 2⟨ξ⟩−2. Let ξ > 1.

Set g(x) := (x + ξ2)1/2 for x ≥ 0. The mean value theorem shows that there exists

θ ∈ (0, 1) such that g(1)− g(0) = g′(θ). It then follows that

|⟨ξ⟩ − ξ|
⟨ξ⟩

≤ 1

2ξ⟨ξ⟩
≤ 1

(1 + ξ)⟨ξ⟩
≤ ⟨ξ⟩−2,

which shows (2.7) when ξ ≥ 0. We omit the proof of (2.7) when ξ < 0 since it is

similar. Therefore, using (2.7), we obtain

∥H∂kxf + ⟨D⟩−1∂k+1
x f∥ = ∥(sgn(ξ)− ξ⟨ξ⟩−1)ξkf̂(ξ)∥l2 ≤ 2∥f∥Hk−2 ,

as desired. □

Definition 2. For s ≥ 0 and functions f, g defined on T, we define

Ps(f, g) := Ds∂x(f∂xg)−Ds∂xf∂xg − fDs∂2xg − (s+ 1)∂xfD
s∂xg,

Qs(f, g) := HDs∂x(f∂xg)− (HDs∂xf)∂xg − fHDs∂2xg

− (s+ 1)∂xfHDs∂xg.

We introduce several commutator estimates. For general theory on the real line,

see [8]. We shall use extensively the following commutator estimate.

Lemma 2.5. Let s ≥ 1 and s0 > 5/2. Then there exists C = C(s, s0) > 0 such that

for any f, g ∈ Hs(T) ∩Hs0(T),

∥Ps(f, g)∥, ∥Qs(f, g)∥ ≤ C(∥f∥Hs0∥g∥Hs + ∥f∥Hs∥g∥Hs0 ).

Proof. We show only the inequality for Ps(f, g) with s > 1. The case s = 1 follows

from Lemma 2.7. The estimate for Qs(f, g) follows from a similar argument since

D = H∂x. It suffices to show that there exists C = C(s) such that

||ξ|sξη − |ξ − η|s(ξ − η)η − |η|sη2 − (s+ 1)(ξ − η)|η|sη|

≤ C(|ξ − η|s|η|2 + |ξ − η|2|η|s)
(2.8)

for any ξ, η ∈ Z. We split the summation region into three regions: R1 = {3|η| ≤
|ξ − η|}, R2 = {|η| ≥ 3|ξ − η|} and R3 = {|ξ − η|/4 ≤ |η| ≤ 4|ξ − η|}. On R1,
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the mean value theorem shows that (2.8) holds. On R2, note that |ξ| ∼ |η|. It

immediately follows that |ξ − η|s(ξ − η)η ≲ |ξ − η|s|η|2. Set σ(x) = x|x|s for x ∈ R.
Note that σ ∈ C2(R). The Taylor theorem shows that there exist η̃ ∈ (ξ, η) or

η̃ ∈ (η, ξ) such that

σ(ξ) = σ(η) + σ′(η)(ξ − η) +
σ′′(η̃)

2
(ξ − η)2.

This together with the fact that |η̃| ∼ |ξ| ∼ |η| implies that (2.8) holds. On R3, it

is obvious. □

Lemma 2.6. Let s ≥ 1, s0 > 1/2 and Λs = Ds or Ds−1∂x. Then we have the

following:

(i) There exists C(s, s0) > 0 such that for any f, g ∈ Hs0+1(T) ∩Hs(T),

∥[Λs, f ]∂xg∥ ≤ C(∥f∥Hs0+1∥g∥Hs + ∥f∥Hs∥g∥Hs0+1).

(ii) There exists C(s0) > 0 such that for any f ∈ Hs0+1(T) and g ∈ L2(T),

∥[⟨D⟩−1Λ2, f ]g∥ ≤ C∥f∥Hs0+1∥g∥.

Proof. We omit the proof of the (i) since it is identical with that of the previous

lemma. We show the case (ii) with Λ2 = ∂2x only. The other case follows from

a similar argument. It suffices to show that |ξ2⟨ξ⟩−1 − η2⟨η⟩−1| ≲ |ξ − η| for any

ξ, η ∈ Z. Set σ(x) = −x2⟨x⟩−1 for x ∈ R. Note that σ ∈ C1(R) and that σ′(x) =

−(x3 + 2x)⟨x⟩−3. It then follows that there exists C > 0 such that |σ′(x)| ≤ C for

any x ∈ R. This together with the mean value theorem implies that we have

|σ(ξ)− σ(η)| ≤ C|ξ − η|,

which completes the proof. □

The following estimate is essential for our analysis in the case c1 ̸= c2 in (2.1).

For Lp cases on the real line, see [4].

Lemma 2.7. Let s0 > 1/2 and k ∈ N. Then, there exists C = C(s0) > 0 such that

for any f ∈ Hs0(T) and g ∈ L2(T)

∥[H, f ]∂kxg∥ ≤ C∥f∥Hs0+k∥g∥.

Proof. It suffices to show that

| sgn(ξ)− sgn(η)||η|k ≲ |ξ − η|k (2.9)

for any ξ, η ∈ Z. We split the summation region into three regions: R1 = {3|η| ≤
|ξ|}, R2 = {|η| ≥ 3|ξ|} and R3 = {|ξ|/4 ≤ |η| ≤ 4|ξ|}. It is clear that (2.9) holds
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on R1 and R2. It is also clear that (2.9) holds when ξη > 0. Therefore, we consider

the region R3 ∩ {ξη ≤ 0}. We first assume that ξ ≥ 0 and η ≤ 0. Note that

|ξ − η| ≥ |ξ| ≥ |η|/4. Similarly, in the case ξ ≤ 0 and η ≥ 0 we have |ξ − η| ≥ |η|.
Therefore, we have (2.9), which concludes the proof. □

Lemma 2.8. Let s0 > 1/2 and u, v be sufficiently smooth function defined on T.
Then there exists C = C(s0) > 0 such that

|⟨vH∂2xu+ ∂xvH∂xu, u⟩| ≤ C∥v∥Hs0+2∥u∥2.

Proof. This follows from the equality

2⟨vH∂2xu+ ∂xvH∂xu, u⟩ = −⟨[H, v]∂2xu, u⟩ − ⟨∂2xvHu, u⟩

together with Lemma 2.7. □

We shall also use extensively the following estimate.

Lemma 2.9. Let s0 > 1/2. Then, there exists C = C(s0) > 0 such that for any

f ∈ Hs0+1(T) and g ∈ H1(T)

|⟨f∂xg, g⟩| ≤ C∥f∥Hs0+1∥g∥2.

Proof. This follows from the density argument and the integration by parts. □

The following lemma helps us calculate a correction term.

Lemma 2.10. For sufficiently smooth functions f, g and h defined on T, it holds
that

⟨∂3xfg, h⟩+ ⟨f∂3xg, h⟩+ ⟨fg, ∂3xh⟩ = 3⟨∂xf∂xg, ∂xh⟩.

Proof. See Lemma 2.2 in [16]. □

We shall repeatedly use estimates of the following type:

Lemma 2.11. Let s0 > 5/2.

(i) Let s ≥ 1. There exists C(s, s0) > 0 such that for any f1 ∈ Hs(T) ∩Hs0(T) and
f2 ∈ Hs+1(T) ∩Hs0(T),

|⟨f1HDsf2,HDs(f1∂xf2)⟩|

≤ C(∥f1∥2Hs0∥f2∥2Hs + ∥f1∥Hs0∥f1∥Hs∥f2∥Hs0∥f2∥Hs).
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(ii) Let s ≥ 2. There exists C(s, s0) > 0 such that for any f1 ∈ Hs+1(T) ∩Hs0(T)
and f2 ∈ Hs+2(T) ∩Hs0(T),

|⟨f1HDs∂x(f1H∂xf2), Ds−2∂xf2⟩|

≤ C(∥f1∥2Hs0∥f2∥2Hs + ∥f1∥Hs0∥f1∥Hs∥f2∥Hs0∥f2∥Hs).

Proof. First we show (i). Note that

|⟨f1HDsf2,HDs(f1∂xf2)⟩|

≤ |⟨f1HDsf2, [HDs, f1]∂xf2⟩|+ |⟨f 2
1HDsf2,HDs∂xf2⟩|.

Lemma 2.9 together with (i) of Lemma 2.6 shows (i). Next we show (ii). Lemma

2.5 shows that

|⟨Ds+1(f1H∂xf2), f1Ds−2∂xf2⟩ −R1 −R2 −R3|

≲ ∥f1∥2Hs0∥f2∥2Hs + ∥f1∥Hs0∥f1∥Hs∥f2∥Hs0∥f2∥Hs ,

where R1 = ⟨Ds+1f1H∂xf2, f1Ds−2∂xf2⟩, R2 = ⟨f1HDs+1∂xf2, f1D
s−2∂xf2⟩ and

R3 = (s+ 1)⟨∂xf1HDs+1f2, f1D
s−2∂xf2⟩. It is easy to see that

|R1| ≲ ∥f1∥Hs0∥f1∥Hs∥f2∥Hs0∥f2∥Hs and |R3| ≲ ∥f1∥2Hs0∥f2∥2Hs .

For R2, we have

R2 = −⟨f 2
1D

s∂2xf2, D
s−2∂xf2⟩

= 2⟨f1∂xf1Ds∂xf2, D
s−2∂xf2⟩ − ⟨f 2

1D
s∂xf2, D

sf2⟩

= −2⟨∂x(f1∂xf1Ds−2∂xf2), D
sf2⟩+ ⟨f1∂xf1, (Dsf2)

2⟩,

which can be bounded by ≲ ∥f1∥2Hs0∥f2∥2Hs . This concludes the proof. □

Lemma 2.12. For any s ≥ 1 and s0 > 5/2, there exists C(s, s0) > 0 such that for

any u, v ∈ Hs+2(T) ∩Hs0(T),

|⟨Ds∂x(uH∂xu− vH∂xv), Dsw⟩ − s⟨∂xuHDs∂xw,D
sw⟩|

+ |⟨HDs∂x(u∂xu− v∂xv), D
sw⟩ − (s+ 1)⟨∂xuHDs∂xw,D

sw⟩|

≤ C∥w∥Hs{(∥u∥Hs0 + ∥v∥Hs0 )∥w∥Hs + (∥u∥Hs + ∥v∥Hs)∥w∥Hs0

+ ∥w∥Hs0−2∥v∥Hs+2 + ∥w∥Hs0−1∥v∥Hs+1},

where w = u− v.
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Proof. Adding and subtracting terms, we obtain

|⟨Ds∂x(uH∂xw + wH∂xv), Dsw⟩ − s⟨∂xuHDs∂xw,D
sw⟩|

≤ |⟨Ps(u,Hw) + Ps(w,Hv), Dsw⟩|+ |⟨Ds∂xuH∂xw,Dsw⟩|

+ |⟨uHDs∂2xw + ∂xuHDs∂xw,D
sw⟩|+ 1

2
|⟨H∂2xv, (Dsw)2⟩|

+ |⟨wHDs∂2xv,D
sw⟩|+ (s+ 1)|⟨∂xwHDs∂xv,D

sw⟩|,

|⟨HDs∂x(u∂xw + w∂xv), D
sw⟩ − (s+ 1)⟨∂xuHDs∂xw,D

sw⟩|

≤ |⟨Qs(u,w) +Qs(w, v), D
sw⟩|+ |⟨uHDs∂2xw + ∂xuHDs∂xw,D

sw⟩|

+ |⟨wHDs∂2xv,D
sw⟩|+ (s+ 2)|⟨∂xwHDs∂xv,D

sw⟩|

since we have

⟨∂xwHDs∂xu+ ∂xvHDs∂xw,D
sw⟩ = ⟨∂xuHDs∂xw + ∂xwHDs∂xv,D

sw⟩.

Note that

|⟨Ds∂xuH∂xw,Dsw⟩| = |⟨Ds∂xwH∂xw,Dsw⟩+ ⟨Ds∂xvH∂xw,Dsw⟩|

≲ ∥w∥Hs0∥w∥2Hs + ∥w∥Hs∥w∥Hs0−1∥v∥Hs+1

by Lemma 2.9. This together with Lemma 2.5 and 2.8 gives the desired inequality,

which completes the proof. □

Definition 3. Let s ≥ 2 and a, b, c ≥ 0. Set λ(s′) = −2((c1 + c2)s
′ + c2)/3 for s′ ≥ 0.

For f, g ∈ Hs(T) we define

Es(f, g; a) := a∥f − g∥2 + ∥Ds(f − g)∥2

+ λ(s)

∫
T
f(HDs(f − g))Ds−2∂x(f − g)dx,

Es(f ; b) := Es(f, 0; 1) + b∥f∥4s+2.

For f, g ∈ L2(T) we define

Ẽ(f, g; c) := c∥f − g∥2H−1 + ∥f − g∥2 − λ(0)

∫
T
f(⟨D⟩−1(f − g))(f − g)dx.

Lemma 2.13. Let s ≥ s0 > 5/2 and K > 0. Then

(i) If f, g ∈ Hs(T) and f satisfies ∥f∥ ≤ K, then there exist C = C(s,K) and

a = a(s,K) such that

∥f − g∥2Hs ≤ Es(f, g; a) ≤ C∥f − g∥2Hs . (2.10)
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(ii) If f ∈ Hs(T), there exist C = C(s) and b = b(s) such that

∥f∥2Hs ≤ Es(f ; b) ≤ C(1 + ∥f∥4s)∥f∥2Hs (2.11)

(iii) If f, g ∈ L2(T) and f satisfies ∥f∥ ≤ K, then there exist c = c(K) and

C = C(K) such that

1

2
∥f − g∥2 ≤ Ẽ(f, g; c) ≤ C∥f − g∥2. (2.12)

Proof. We see from Lemma 2.3 and the Young inequality that∫
T
|f(HDs(f − g))Ds−2∂x(f − g)|dx ≤ ∥f∥∥Ds(f − g)∥∥Ds−2∂x(f − g)∥∞

≤ C∥f − g∥1/2s∥Ds(f − g)∥2−1/2s

≤ C∥f − g∥2 + 1

2
∥Ds(f − g)∥2.

Choosing a > 0 so that a − C ≥ 1/2, we obtain the left hand side of (2.10). The

right hand side of (2.10) follows immediately, which shows (i).

Next we prove (2.11). A similar argument to the proof of (2.10) yields that∫
T
|f(HDsf)Ds−2∂xf |dx ≤ C∥f∥4s+2 +

1

2
∥Dsf∥2.

Choosing b > 0 so that b−C > 1/2, we obtain (2.11). The proof of (iii) is identical

with that of (i). □

In what follows, we simply write Es(f, g) := Es(f, g; a), Es(f) := Es(f ; b) and

Ẽs(f, g) := Ẽs(f, g; c), where a, b and c are defined by Lemma 2.13.

Definition 4. Let s ≥ 0, f ∈ Hs(T) and γ ∈ (0, 1). And let ρ ∈ C∞
0 (R) satisfy

supp ρ ⊂ [−2, 2], 0 ≤ ρ ≤ 1 on R and ρ ≡ 1 on [−1, 1]. We put

Ĵγf(k) := ρ(γk)f̂(k).

For the proof of the following lemma, see Remark 3.5 in [5].

Lemma 2.14. Let s ≥ 0, α ≥ 0, γ ∈ (0, 1) and f ∈ Hs(T). Then, Jγf ∈ H∞(T)
satisfies

∥Jγf − f∥Hs → 0 (γ → 0), ∥Jγf − f∥Hs−α ≲ γα∥f∥Hs ,

∥Jγf∥Hs−α ≤ ∥f∥Hs−α , ∥Jγf∥Hs+α ≲ γ−α∥f∥Hs .

We employ the parabolic regularization on the problem (2.1)-(2.2):

∂tu− ∂3xu+ u2∂xu+ c1∂x(uH∂xu) + c2H∂x(u∂xu) = −γD5/2u, (2.13)

u(0, x) = φ(x), (2.14)
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where (t, x) ∈ [0,∞)×T and γ ∈ (0, 1). In what follows, we only consider t ≥ 0. In

the case t ≤ 0, we only need to replace −γD5/2u with γD5/2u in (2.13).

Proposition 2.15. Let s ≥ 2 and γ ∈ (0, 1). For any φ ∈ Hs(T), there exist

Tγ ∈ (0,∞] and the unique solution u ∈ C([0, Tγ), H
s(T)) to the IVP (2.13)–(2.14)

on [0, Tγ) such that (i) lim inft→Tγ ∥u(t)∥H2 = ∞ or (ii) Tγ = ∞ holds. Moreover,

u satisfies

u ∈ C((0, Tγ), H
s+α(T)), ∀α > 0. (2.15)

Proof. This follows from the standard argument, for example, see Proposition 2.8 in

[33], but we reproduce the proof here for the sake of completeness. First we consider

the case s = 2. For simplicity, set F (u) = −u2∂xu − c1∂x(uH∂xu) − c2H∂x(u∂xu).
Let Uγ(t) be the linear propagator of the linear part of (2.13), i.e.,

Uγ(t)φ = F−1[e−iξ3t−γ|ξ|5/2tφ̂]

for a function φ. Note that

∥DαUγ(t)φ∥ ≤ C(α)

(γt)2α/5
∥φ∥ and ∥Uγ(t)φ∥Hα ≤ C(α)(1 + (γt)−2α/5)∥φ∥ (2.16)

for t > 0 and α > 0. We show the map

Γ(u(t)) = Uγ(t)φ+

∫ t

0

Uγ(t− τ)F (u)dτ

is a contraction on the ball

Br =

{
u ∈ C([0, T ];H2(T)); ∥u∥X := sup

t∈[0,T ]

∥u(t)∥H2 ≤ r

}
,

where r > 0 and T will be chosen later (which is sufficiently small and depends

only on ∥φ∥H2 and γ). Set r = 2∥φ∥Hs . We show that Γ maps from Br to Br. Let

u ∈ Br. Obviously,

∥Γ(u(t))∥H2 ≤ ∥φ∥H2 +

∫ t

0

∥Uγ(t− t′)F (u)∥H2dt′.

The Plancherel theorem implies that

∥Uγ(t− t′)∂xu
3∥H2 = ∥⟨ξ⟩2|ξ|e−γ(t−t′)|ξ|5/2Fu3∥l2

≲ γ−2/5(t− t′)−2/5∥u3∥H2 ≲ γ−2/5(t− t′)−2/5∥φ∥3H2 .

Similarly, we have

∥Uγ(t− t′)H∂x(u∂xu)∥H2 ≲ γ−4/5(t− t′)−4/5∥φ∥2H2 .
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On the other hand,

∥Uγ(t− t′)∂x(uH∂xu)∥H2 ≲ (1 + γ−4/5(t− t′)−4/5)∥φ∥2H2 .

It then follows that

sup
t∈[0,T ]

∥Γ(u(t))∥H2

≤ ∥φ∥H2 + C{∥φ∥2H2γ−2/5T 3/5 + ∥φ∥H2(T + γ−4/5T 1/5)}∥φ∥H2 ≤ 2∥φ∥H2

for sufficiently small T = T (∥φ∥H2 , γ) > 0 and any u ∈ Br. By a similar argument,

we can show that ∥Γ(u) − Γ(v)∥X ≤ 2−1∥u − v∥X when u, v ∈ Br. Therefore, Γ is

a contraction map from Br to Br, which implies that there exists u ∈ Br such that

u = Γ(u) on [0, T ]. Since ∥u(T )∥H2 is finite, we can repeat the argument above with

initial data u(T ) to obtain the solution on [T, T +T ′]. Iterating this process, we can

extend the solution on [0, Tγ) where Tγ = ∞ or lim inft→Tγ ∥u(t)∥H2 = ∞ holds.

Next, we consider the case s > 2. The solution obtained by the argument above

satisfies

u(t) = Uγ(t)φ+

∫ t

0

Uγ(t− t′)F (u)dt′. (2.17)

Note that

∥Uγ(t− t′)∂xu
3∥Hs ≲ γ−2/5(t− t′)−2/5∥u3∥Hs ≲ γ−2/5(t− t′)−2/5∥φ∥2H2∥φ∥Hs .

We can estimate the other nonlinear terms in the same manner as above. It then

follows that

sup
t∈[0,T ]

∥u(t)∥Hs

≤ ∥φ∥Hs + C{∥φ∥2H2γ−2/5T 3/5 + ∥φ∥H2(T + γ−4/5T 1/5)}∥φ∥Hs

≤ 2∥φ∥Hs

for sufficiently small T = T (∥φ∥H2 , γ) > 0. By using (2.17), we also obtain u ∈
C([0, T ];Hs(T)). Since ∥u(T )∥Hs is finite, we can repeat the argument above with

initial data u(T ) to obtain u ∈ C([T, T + T ′];Hs(T)). We can iterate this process

as far as ∥u(t)∥H2 < ∞. Therefore, we obtain u ∈ C([0, Tγ);H
s(T)). We omit

the proof of the uniqueness since it follows from a standard argument. Let 0 <

δ < Tγ/2. We see from (2.16) and (2.17) that u ∈ C([δ, Tγ);H
s+1/4(T)). The

same argument as above with the initial data u(δ) ∈ Hs+1/4(T) shows that u ∈
C([δ + δ/2, Tγ);H

s+1/2(T)). Iterating this procedure, we obtain (2.15) since δ is

arbitrary, which completes the proof. □
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2.3. Energy estimate. In this subsection, we obtain an a priori estimate of the

solution of (2.1), which is important to have the time T independent of γ.

Proposition 2.16. Let s ≥ s0 > 5/2, γ ∈ (0, 1), φ ∈ Hs(T). Let Tγ > 0 and let

u ∈ C([0, Tγ), H
s(T))∩C((0, Tγ);Hs+3(T)) be the solution to (2.13)–(2.14), both of

which are obtained by Proposition 2.15. Then, there exist T = T (s0, ∥φ∥Hs0 ) > 0

and C = C(s, s0, ∥φ∥Hs0 ) > 0 such that

Tγ ≥ T, sup
t∈[0,T ]

Es(u(t)) ≤ CEs(φ),
d

dt
Es(u(t)) ≤ CEs(u(t)) (2.18)

on [0, T ], where T (resp. C) is monotone decreasing (resp. increasing) with ∥φ∥Hs0 .

Before proving Proposition 2.16, we give the following lemma.

Lemma 2.17. Let s ≥ s0 > 5/2, γ ∈ [0, 1), T > 0, u ∈ C([0, T ], Hs(T)) ∩
C((0, T ];Hs+3(T)) satisfy (2.13) on [0, T ] × T and supt∈[0,T ]Es0(u(t)) ≤ K for

K > 0. Then, there exists C = C(s, s0, K) > 0 such that

d

dt
Es(u(t)) ≤ CEs(u(t))

on [0, T ].

Proof. First observe that

d

dt
∥u(t)∥2 = 2⟨∂3xu− u2∂xu− c1∂x(uH∂xu)− c2H∂x(u∂xu)− γD5/2u, u⟩

≲ ∥u(t)∥2H1 ≤ ∥u(t)∥2Hs .

We can estimate the time derivative of ∥u(t)∥4s+2 in a similar manner. Next we

consider

d

dt
∥Dsu∥2

= 2⟨Ds∂3xu,D
su⟩ − 2⟨Ds(u2∂xu), D

su⟩ − 2c1⟨Ds∂x(uH∂xu), Dsu⟩

− 2c2⟨HDs∂x(u∂xu), D
su⟩ − 2γ⟨Ds+5/2u,Dsu⟩

=: R1 +R2 +R3 +R4 +R5.

It is clear that R1 = 0. We have

|R2| ≤ 2|⟨[Ds, u2]∂xu,D
su⟩|+ 2|⟨u2Ds∂xu,D

su⟩| ≲ ∥u∥2Hs

by (i) of Lemma 2.6 and Lemma 2.9. Lemma 2.12 with v = 0 shows that

|R3 + 2c1s⟨∂xuHDs∂xu,D
su⟩|+ |R4 + 2c2(s+ 1)⟨∂xuHDs∂xu,D

su⟩|

≲ ∥u∥2Hs
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Finally, we have R5 = −2γ∥Ds+5/4u∥2. Therefore, we have

d

dt
∥Dsu∥2 ≤ C∥u∥2Hs + 3λ(s)

∫
T
∂xu(HDs∂xu)D

sudx− 2γ∥Ds+5/4u∥2, (2.19)

where λ(s) is defined in Definition 3. Next we evaluate the correction term. We put

d

dt
⟨uHDsu,Ds−2∂xu⟩

= ⟨∂tuHDsu,Ds−2∂xu⟩+ ⟨uHDs∂tu,D
s−2∂xu⟩+ ⟨uHDsu,Ds−2∂x∂tu⟩

=: R6 +R7 +R8.

Moreover, we set

R6 = ⟨∂3xuHDsu,Ds−2∂xu⟩ − ⟨u2∂xuHDsu,Ds−2∂xu⟩

− c1⟨∂x(uH∂xu)HDsu,Ds−2∂xu⟩ − c2⟨(H∂x(u∂xu))HDsu,Ds−2∂xu⟩

− γ⟨D5/2uHDsu,Ds−2∂xu⟩ =: R61 +R62 +R63 +R64 +R65.

And we set

R7 = ⟨uHDs∂3xu,D
s−2∂xu⟩ − ⟨uHDs(u2∂xu), D

s−2∂xu⟩

− c1⟨uHDs∂x(uH∂xu), Ds−2∂xu⟩+ c2⟨uDs∂x(u∂xu), D
s−2∂xu⟩

− γ⟨uHDs+5/2u,Ds−2∂xu⟩ =: R71 +R72 +R73 +R74 +R75.

Finally, we set

R8 = ⟨uHDsu,Ds−2∂4xu⟩ − ⟨uHDsu,Ds−2∂x(u
2∂xu)⟩

+ c1⟨uHDsu,Ds(uH∂xu)⟩+ c2⟨uHDsu,HDs(u∂xu)⟩

− γ⟨uHDsu,Ds+1/2∂xu⟩ =: R81 +R82 +R83 +R84 +R85.

Lemma 2.10 shows that

R61 +R71 +R81 =3⟨∂xuHDs∂xu,D
s−2∂2xu⟩ = −3⟨∂xuHDs∂xu,D

su⟩,

which cancels out the second term in the right hand side in (2.19) by multiplying

λ(s). It is easy to see that |R62| + |R63| + |R64| ≲ ∥u∥2Hs . By (i) of Lemma 2.6, we

have |R72| + |R82| ≲ ∥u∥2Hs . We see from (ii) of Lemma 2.11 that |R73| ≲ ∥u∥2Hs .

Lemma 2.9 and (i) of Lemma 2.6 give |R74| + |R83| ≲ ∥u∥2Hs . For R84, it follows

from (i) of Lemma 2.11 that |R84| ≲ ∥u∥2Hs . Finally, we estimate R65, R75 and R85.

Lemma 2.3 implies that

∥Ds−2∂xu∥∞ ≤ C∥Ds−2u∥1/4∥Dsu∥3/4

≤ C∥u∥1−(4s−2)/(4s+5)∥Ds+5/4u∥(4s−2)/(4s+5).
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Then we have

|R65| ≤ γ∥D5/2u∥∥Dsu∥∥Ds−2∂xu∥∞

≤ γC∥u∥1+2/(4s+5)∥Ds+5/4u∥2−2/(4s+5)

≤ C∥u∥4s+7 +
γ1+1/4(s+1)

3
∥Ds+5/4u∥2.

A similar argument yields

|R75|+ |R85| ≤ C∥u∥4s+7 + C∥u∥2s+9/2 +
2γ1+1/4(s+1)

3
∥Ds+5/4u∥2.

Therefore, the fact that γ ∈ [0, 1) shows that

d

dt
Es(u(t)) ≤ C∥u(t)∥2Hs ≤ CEs(u(t))

on [0, T ]. Note that the implicit constant does not depend on γ. This completes the

proof. □

Now, we are ready to prove Proposition 2.16.

Proof of Proposition 2.16. Assume that the set F = {t ≥ 0;Es0(u(t)) > 2Es0(φ)}
is not empty. Set T ∗

γ = inf F . Note that 0 < T ∗
γ ≤ Tγ and Es0(u(t)) ≤ 2Es0(φ)

on [0, T ∗
γ ]. Assume that there exists t′ ∈ [0, T ∗

γ ] such that Es0(u(t
′)) > 2Es0(φ).

This implies that t′ ≥ T ∗
γ by the definition of T ∗

γ . Then we have t′ = T ∗
γ . Thus,

supt∈[0,T ∗
γ ]
Es0(u(t)) ≤ C(∥φ∥Hs0 ) by (ii) of Lemma 2.13. By Proposition 2.17, there

exists C ′
s = C(s, s0, ∥φ∥Hs0 ) such that

d

dt
Es(u(t)) ≤ C ′

sE(u(t))

on [0, T ∗
γ ]. The Gronwall inequality gives that

Es(u(t)) ≤ Es(φ) exp(C
′
st) (2.20)

on [0, T ∗
γ ]. Here, we put T = min{(2C ′

s0
)−1, T ∗

γ }. Then (2.20) with s = s0 shows

that

Es0(u(t)) ≤ Es0(φ) exp(2
−1) < 2Es0(φ),

on [0, T ]. By the definition of T ∗
γ and the continuity of Es0(u(t)), we obtain 0 < T =

(2C ′
s0
)−1 < T ∗

γ ≤ Tγ . If F is empty, then we have T ∗
γ = Tγ = ∞. In particular, we

can take T = (2C ′
s0
)−1 <∞, which concludes the proof. □
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2.4. Uniqueness, persistence and continuous dependence. In this subsection,

we prove Theorem 2.1. We first show the existence of the solution of (2.1) by the

limiting procedure. We also prove the uniqueness and the persistence property

u ∈ C([0, T ];Hs(T)). Then we estimate difference between two solutions of (2.23)–

(2.24) in Hs(T), which is essential to show the continuous dependence.

Lemma 2.18. Let s ≥ s0 > 5/2, γj ∈ (0, 1), T > 0. Assume that uj ∈ C([0, T ];Hs(T))∩
C((0, T ];Hs+1(T)) satisfies (2.13) with γ = γj on [0, T ]×T and supt∈[0,T ] ∥uj(t)∥Hs0 ≤
K for K > 0, j = 1, 2. Then there exists C = C(K, s) such that

d

dt
Ẽ(u1, u2) ≤ C(Ẽ(u1, u2) + max{γ21 , γ22}) (2.21)

on [0, T ].

Proof. Set w := u1 − u2 so that w satisfies the following equation:

∂tw − ∂3xw +
1

3
∂x{(u21 + u1u2 + u22)w}

+
c1
2
∂x(wH∂xz) +

c1
2
∂x(zH∂xw) +

c2
2
H∂x(w∂xz) +

c2
2
H∂x(z∂xw)

= −γ1D5/2w − (γ1 − γ2)D
5/2u2,

(2.22)

where z = u1 + u2. By the presence of the operator ⟨D⟩−1, we can easily obtain

d

dt
∥⟨D⟩−1w∥2 ≲ ∥w∥2 +max{γ21 , γ22}.

Indeed, note that ∂x(zH∂xw) = ∂2x(zHw)− ∂x(∂xzHw). Then we have

|⟨⟨D⟩−1∂x(zH∂xw), ⟨D⟩−1w⟩|

≤ |⟨⟨D⟩−1∂2x(zHw), ⟨D⟩−1w⟩|+ |⟨⟨D⟩−1∂x(∂xzHw), ⟨D⟩−1w⟩| ≲ ∥w∥2.

Other terms can be estimated in a similar manner. Next, we estimate the L2-norm

of w. Set

d

dt
∥w∥2 = 2⟨∂3xw,w⟩ −

2

3
⟨∂x{(u21 + u1u2 + u22)w}, w⟩ − c1⟨∂x(wH∂xz), w⟩

− c1⟨∂x(zH∂xw), w⟩ − c2⟨H∂x(w∂xz), w⟩ − c2⟨H∂x(z∂xw), w⟩

− 2γ1⟨D5/2w,w⟩ − 2(γ1 − γ2)⟨D5/2u2, w⟩

=: R9 +R10 +R11 +R12 +R13 +R14 +R15 +R16.
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Again, it is clear that R9 = 0. By Lemma 2.9, we have |R10| + |R11| ≲ ∥w∥2. Note
that

⟨[H, ∂xz]∂xw,w⟩+ ⟨[H, z]∂2xw,w⟩

= ⟨H(∂xz∂xw), w⟩ − ⟨∂xzH∂xw,w⟩+ ⟨H(z∂2xw), w⟩ − ⟨zH∂2xw,w⟩

= ⟨∂x(∂xzHw), w⟩ − ⟨∂xzH∂xw,w⟩ − ⟨∂2x(zHw), w⟩ − ⟨zH∂2xw,w⟩

= −2⟨∂x(zH∂xw), w⟩.

Then Lemma 2.7 shows that |R12|+ |R14| ≲ ∥w∥2. We can reduce R13 to

R13 = −2c2⟨∂xu1H∂xw,w⟩ − c2⟨∂xwH∂xw,w⟩

since z = 2u1 −w. The last term in the right hand side can be bounded by ≲ ∥w∥2

by using Lemma 2.9. Observe that R15 = −γ1∥D5/4w∥2 ≤ 0 and that |R16| ≲
∥w∥2 +max{γ21 , γ22}. Therefore, we have

d

dt
∥w∥2 ≤ C∥w∥2 + 3λ(0)

∫
T
∂xu1(H∂xw)wdx+max{γ21 , γ22}.

The correction term in Ẽ cannot exactly cancel out the second term, but Lemma

2.4 shows that the difference is harmless. Set

d

dt
⟨u1⟨D⟩−1w,w⟩ = ⟨∂tu1⟨D⟩−1w,w⟩+ ⟨u1⟨D⟩−1∂tw,w⟩+ ⟨u1⟨D⟩−1w, ∂tw⟩

=: R17 +R18 +R19.

Moreover, we set R171 = ⟨∂3xu1⟨D⟩−1w,w⟩ and set

R18 = ⟨u1⟨D⟩−1∂3xw,w⟩ −
1

3
⟨u1⟨D⟩−1∂x{(u21 + u1u2 + u22)w}, w⟩

− c1
2
⟨u1⟨D⟩−1∂x(wH∂xz), w⟩ −

c1
2
⟨u1⟨D⟩−1∂x(zH∂xw), w⟩

− c2
2
⟨u1⟨D⟩−1H∂x(w∂xz), w⟩ −

c2
2
⟨u1⟨D⟩−1H∂x(z∂xw), w⟩

− γ1⟨u1⟨D⟩−1D5/2w,w⟩ − (γ1 − γ2)⟨u1⟨D⟩−1D5/2u2, w⟩

=: R181 +R182 +R183 +R184 +R185 +R186 +R187 +R188

We set R19k for k = 1, . . . , 8 in the same manner as above. Lemma 2.10 shows that

R171 +R181 +R191 = −3⟨∂xu1⟨D⟩−1∂2xw,w⟩ − 3⟨∂2xu1⟨D⟩−1∂xw,w⟩,

which together with Lemma 2.4 shows that |R13−λ(0)(R171+R181+R191)| ≲ ∥w∥2.
It is easy to see that

|⟨(u21∂xu1 + c1∂x(u1H∂xu1) + c2H∂x(u1∂xu1) + γ1D
5/2u1)⟨D⟩−1w,w⟩|

≲ ∥w∥2.
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We have |R182| + |R183| + |R185| + |R192| + |R193| + |R195| ≲ ∥w∥2 because of the

presence of the operator ⟨D⟩−1. In order to handle R184, R186, R194 and R196, we see

from Lemma 2.4 and (i) of Lemma 2.6 that

|R196| =
∣∣∣−c2

2
⟨u1⟨D⟩−1w,H∂2x(zw)⟩+

c2
2
⟨u1⟨D⟩−1w,H∂x(∂xzw)⟩

∣∣∣
≲ |⟨u1⟨D⟩−1∂xw, (H∂x + ⟨D⟩−1∂2x)(zw)⟩|+ |⟨u1⟨D⟩−1∂xw, ⟨D⟩−1∂2x(zw)⟩|

+ ∥w∥2

≲ |⟨u1⟨D⟩−1∂xw, [⟨D⟩−1∂2x, z]w⟩|+ |⟨u1z⟨D⟩−1∂xw, ⟨D⟩−1∂2xw⟩|+ ∥w∥2

≲ ∥w∥2.

We can obtain |R184| + |R186| + |R194| ≲ ∥w∥2 from a similar argument. Finally, it

is easy to see that |R187|+ |R188|+ |R197|+ |R198| ≲ ∥w∥2 +max{γ21 , γ22}. Summing

these estimates above and applying (iii) of Lemma 2.13, we obtain (2.21), which

concludes the proof. □

Now we obtain the solution to (2.1)–(2.2). Let φ ∈ Hs(T) and let γ1, γ2 ∈ (0, 1).

Let uγj be the solution to (2.13)–(2.14) with γ = γj for j = 1, 2, obtained by

Proposition 2.15. Note that Ẽ(uγ1(0), uγ2(0)) = Ẽ(φ, φ) = 0. Proposition 2.16

shows that there exists T = T (s0, ∥φ∥Hs0 ) such that (2.18) holds. We see from (iii)

of Lemma 2.13 and Lemma 2.18 that

sup
t∈[0,T ]

∥uγ1(t)− uγ2(t)∥2 ≤ sup
t∈[0,T ]

Ẽ(uγ1(t), uγ2(t)) ≤ Cmax{γ21 , γ22} → 0

as γ1, γ2 → 0. This implies that there exists u ∈ C([0, T ];L2(T)) such that

uγ → u in C([0, T ];L2(T)) as γ → 0.

The above convergence can be verified in C([0, T ];Hr(T)) for any r < s by interpo-

lating with L∞([0, T ];Hs(T)). It is clear that u satisfies (2.1)–(2.2) on [0, T ].

For the proof of the following uniqueness result, see Thorem 6.22 in [14].

Lemma 2.19 (Uniqueness). Let δ > 0 and ε > 0, uj ∈ L∞([0, δ];H5/2+ε(T)) satisfy
(2.1) on [0, δ] with u1(0) = u2(0) and satisfy

uj ∈ C([0, δ];H2(T)) ∩ C1([0, δ];H−1(T))

for j = 1, 2. Then u1 ≡ u2 on [0, δ].

It remains to show the persistent property, i.e., u ∈ C([0, T ];Hs(T)) and the

continuous dependence. In what follows, we employ the Bona-Smith approximation
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argument. We consider the following initial value problem:

∂tu− ∂3xu+ u2∂xu+ c1∂x(uH∂xu) + c2H∂x(u∂xu) = 0, x ∈ T, (2.23)

u(0, x) = Jγφ(x), (2.24)

where Jγφ is defined in Definition 4. Let s ≥ s0 > 5/2, φ ∈ Hs(T) and ϵ > 0.

Lemma 2.14 shows that Jγφ ∈ H∞(T). Let uγ ∈ C([0, Tγ);H
s+3+ϵ(T)) be the

solution (2.13) with the initial data Jγφ obtained by Proposition 2.15. Lemma 2.14

and Proposition 2.16 imply that there exists T = T (s0, ∥φ∥Hs0 ) such that (2.18)

holds for s + 3 + ϵ. Lemma 2.18 and the above argument show that there exists

ũ ∈ C([0, T ];Hs+3(T)) such that ũ solves (2.23)–(2.24). Therefore, we have the

following corollary:

Corollary 2.20. Let s ≥ s0 > 5/2, T > 0, uj ∈ C([0, T ];Hs+1(T)) satisfy (2.23)

on [0, T ] × T and supt∈[0,T ] ∥uj(t)∥Hs ≤ K for K > 0, j = 1, 2. Then there exists

C = C(K, s0, s) such that

d

dt
Ẽ(u1(t), u2(t)) ≤ CẼ(u1(t), u2(t)) (2.25)

on [0, T ].

Proposition 2.21. Let s ≥ s0 > 5/2, T > 0, uj ∈ C([0, T ];Hs+3(T)) satisfy (2.23)

on [0, T ] × T and supt∈[0,T ] ∥uj(t)∥Hs ≤ K for K > 0, j = 1, 2. Then there exists

C = C(s, s0, K) such that

d

dt
Es(u1(t), u2(t)) ≤C(∥u1(t)− u2(t)∥2Hs + ∥u1(t)− u2(t)∥2Hs0−1∥u2∥2Hs+1

+ ∥u1(t)− u2(t)∥2Hs0−2∥u2∥2Hs+2)
(2.26)

on [0, T ].

Proof. Set w = u1 − u2 and z = u1 + u2. It is easy to see that

d

dt
∥w∥2 ≲ ∥w∥2H1 ≤ ∥w∥2Hs .

Set

d

dt
∥Dsw∥2 = 2⟨Ds∂3xw,D

sw⟩ − 2⟨Ds(u21∂xw), D
sw⟩ − 2⟨Ds(zw∂xu2), D

sw⟩

− 2c1⟨Ds∂x(u1H∂xu1 − u2H∂xu2), Dsw⟩

− 2c2⟨HDs∂x(u1∂xu1 − u2∂xu2), D
sw⟩

=: R1 +R2 +R3 +R4 +R5.
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It is easy to see that R1 = 0 and |R2| ≲ ∥w∥2Hs by (i) of Lemma 2.6. For R3, we

have |R3| ≲ ∥w∥2Hs + ∥w∥2
Hs0−1∥u2∥2Hs+1 . Lemma 2.12 shows that

|R4 +R5 − 3λ(s)⟨∂xu1HDs∂xw,D
sw⟩|

≲ ∥w∥2Hs + ∥w∥2Hs0−2∥u2∥2Hs+2 + ∥w∥2Hs0−1∥u2∥2Hs+1 .

Therefore, the time derivative of ∥Dsw∥2 yields

d

dt
∥Dsw∥2 ≤ C∥w∥2Hs + C∥w∥2Hs0−1∥u2∥2Hs+1 + C∥w∥2Hs0−2∥u2∥2Hs+2

+ 3λ(s)

∫
T
∂xu1(HDs∂xw)D

swdx.
(2.27)

Next, we evaluate the time derivative of the correction term. Lemma 2.10 with

f = u1, g = HDsw and h = Ds−2∂xw shows that

⟨∂3xu1HDsw,Ds−2∂xw⟩+ ⟨u1HDs∂3xw,D
s−2∂xw⟩+ ⟨u1HDsw,Ds−2∂4xw⟩

= 3⟨∂xu1HDs∂xw,D
s−2∂2xw⟩ = −3⟨∂xu1HDs∂xw,D

sw⟩.

Multiplying by λ(s), we can cancel out the last term in the right hand side in (2.27).

On the other hand, it is easy to see that

⟨(∂tu1 − ∂3xu1)HDsw,Ds−2∂xw⟩ ≲ ∥w∥2Hs .

We set

⟨u1HDs(∂tw − ∂3xw), D
s−2∂xw⟩

= −1

3
⟨u1HDs∂x{(u21 + u1u2 + u22)w}, Ds−2∂xw⟩

− c1⟨u1HDs∂x(u1H∂xw), Ds−2∂xw⟩+ c2⟨u1Ds∂x(u1∂xw), D
s−2∂xw⟩

− c1⟨u1HDs∂x(wH∂xu2), Ds−2∂xw⟩+ c2⟨u1Ds∂x(w∂xu2), D
s−2∂xw⟩

=: R9 +R10 +R11 +R12 +R13

and

⟨u1HDsw,Ds−2∂x(∂tw − ∂3xw)⟩

=
1

3
⟨u1HDsw,Ds{(u21 + u1u2 + u22)w}⟩+ c1⟨u1HDsw,Ds(u1H∂xw)⟩

+ c2⟨u1HDsw,HDs(u1∂xw)⟩+ c1⟨u1HDsw,Ds(wH∂xu2)⟩

+ c2⟨u1HDsw,HDs(w∂xu2)⟩ =: R14 +R15 +R16 +R17 +R18.

By (i) of Lemma 2.6, we have |R9|+ |R14| ≲ ∥w∥2Hs . We see from (ii) of Lemma 2.11

that |R10| ≲ ∥w∥2Hs . We also have |R16| ≲ ∥w∥2Hs by (i) of Lemma 2.11. Similarly,

we can obtain |R11| + |R15| ≲ ∥w∥2Hs . On the other hand, by (i) of Lemma 2.6 we
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have |R12| + |R13| + |R17| + |R18| ≲ ∥w∥2Hs + ∥w∥2
Hs0−2∥u2∥2Hs+1 . Summing these

estimates above, we obtain (2.26) on [0, T ], which concludes the proof. □

Now, we can show the persistence property and the continuous dependence.

Proof of Theorem 2.1. In what follows, without loss of generality, we may assume

that s0 is strictly smaller than s since the assumption ∥φ∥Hs0 ≤ K is weaker than

∥φ∥
Hs′0

≤ K when s0 < s′0. First we prove the persistence property. Let 0 < γ1 <

γ2 < 1. Let uγj ∈ C([0, T ];Hs+3(T)) be the solution to (2.23)–(2.24) with the initial

data Jγφ for φ ∈ Hs(T) and j = 1, 2. Corollary 2.20 with the Gronwall inequality

shows that

sup
t∈[0,T ]

∥uγ1(t)− uγ2(t)∥2 ≤ CẼ(uγ1(0), uγ2(0)) ≤ C∥Jγ1φ− Jγ2φ∥2 ≤ Cγ2s2

since γ1 < γ2. This together with the interpolation implies that

sup
t∈[0,T ]

∥uγ1(t)− uγ2(t)∥2Hα ≤ Cγ
2(s−α)
2

for any 0 ≤ α < s. On the other hand, Lemma 2.14 and 2.17 show that

sup
t∈[0,t]

∥uγ2(t)∥2Hs+α ≤ C∥Jγ2φ∥2Hs+α ≤ Cγ−2α
2 ∥φ∥2Hs

for α ≥ 0. This together with the Gronwall inequality and Proposition 2.21 implies

that

sup
t∈[0,T ]

∥uγ1(t)− uγ2(t)∥2Hs ≲ ∥Jγ1φ− Jγ2φ∥2Hs + γ
2(s−s0)
2 → 0

as γ2, γ1 → 0 since ∥Jγ1φ − Jγ2φ∥Hs → 0 as γ1, γ2 → 0. Then, there exists ũ ∈
C([0, T ];Hs(T)) such that

uγ → ũ in C([0, T ];Hs(T)) as γ → 0.

It is clear that the function ũ coincides with our solution u ∈ C([0, T ];Hr(T)) for

r < s to (2.1)–(2.2), which shows the persistence property.

Finally, we prove the continuous dependence, which is the only thing left to prove.

We will claim that

∀φ ∈ Hs(T), ∀ϵ > 0, ∃δ > 0, ∀ψ ∈ Hs(T) :[
∥φ− ψ∥Hs < δ ⇒ sup

t∈[0,T/2]
∥u(t)− v(t)∥Hs < ϵ

]
,

(2.28)

where u, v represent the solution to (2.1) with initial data φ, ψ ∈ Hs(T), respectively,
which are obtained by the above argument. In (2.28) we take the interval [0, T/2]

with T as defined by Proposition 2.16 to guarantee that if ∥φ− ψ∥Hs < δ, then the
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solution v(t) is defined in the time interval [0, T/2]. Fix φ ∈ Hs(T) and ϵ > 0. Let

0 < γ1 < γ2 < 1. Assume that ∥φ − ψ∥Hs < δ, where δ > 0 will be chosen later.

Note that by the triangle inequality we have

sup
t∈[0,T/2]

∥u(t)− v(t)∥Hs

≤ sup
t∈[0,T/2]

∥u(t)− uγ2(t)∥Hs + sup
t∈[0,T/2]

∥uγ2(t)− vγ1(t)∥Hs

+ sup
t∈[0,T/2]

∥vγ1(t)− v(t)∥Hs ,

(2.29)

where uγ2 and vγ1 represent the solution to the IVP (2.1) with the initial data Jγ2φ

and Jγ1ψ, respectively. First we handle the second term in the right hand side in

(2.29). Again, the triangle inequality shows that

∥Jγ2φ− Jγ1ψ∥Hr ≤ ∥Jγ2φ− φ∥Hr + ∥φ− ψ∥Hr + ∥ψ − Jγ1ψ∥Hr

for r ≤ s. Proposition 2.21 with u1 = vγ1 and u2 = uγ2 gives that

sup
t∈[0,T/2]

∥uγ2(t)− vγ1(t)∥Hs

≤ C∥Jγ2φ− φ∥Hs + Cδ + C∥ψ − Jγ1ψ∥Hs + Cγs−s0
2 + Cγ−1

2 δ1+1/s−s0/s

+ Cγ−1
2 ∥ψ − Jγ1ψ∥1+1/s−s0/s + Cγs−s0

2 + Cγ−2
2 δ1+2/s−s0/s

+ Cγ−2
2 ∥ψ − Jγ1ψ∥1+2/s−s0/s.

Therefore, we choose γ2 > 0 so that

sup
t∈[0,T/2]

∥u(t)− uγ2(t)∥Hs + C∥Jγ2φ− φ∥Hs + Cγs−s0
2 <

ϵ

3
,

Then we take δ > 0 such that

C(δ + γ−1
2 δ1+1/s−s0/s + γ−2

2 δ1+2/s−s0/s) <
ϵ

3

and finally for each ψ ∈ Hs(T) satisfying ∥φ − ψ∥Hs < δ we take γ1 ∈ (0, γ2) such

that

sup
t∈[0,T/2]

∥vγ1(t)− v(t)∥Hs + C∥ψ − Jγ1ψ∥Hs

+ Cγ−1
2 ∥ψ − Jγ1ψ∥1+1/s−s0/s + Cγ−2

2 ∥ψ − Jγ1ψ∥1+2/s−s0/s <
ϵ

3
.

which completes the proof of (2.28). □
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3. Local well-posedness for fourth order Benjamin-Ono type

equations

3.1. Introduction. We consider the Cauthy problem of the following fourth order

Benjamin-Ono type equations:

∂tu = ∂xK(u), (3.1)

u(0, x) = φ(x), (3.2)

where t ∈ R, x ∈ R or T(=: R/2πZ), u = u(t, x), φ = φ(x) ∈ R,

K(u) := H∂3xu+ c1u∂
2
xu+ c2(∂xu)

2 + c3(H∂xu)2 + c4H(uH∂2xu)

+ c5H(u2∂xu) + c6uH(u∂xu) + c7u
2H∂xu− u4

(3.3)

and cj ∈ R for j = 1, . . . , 7. H is the Hilbert transform defined by

Ĥf(0) = 0 and Ĥf(ξ) = −i sgn(ξ)f̂(ξ)

for ξ ∈ R\{0} or Z\{0}. The well-known Benjamin-Ono equation

∂tu+H∂2xu+ 2u∂xu = 0 (3.4)

describes the behavior of long internal waves in deep stratified fluids. The equation

(3.4) also has infinitely many conservation laws, which generates a hierarchy of

Hamiltonian equations of order j. The equation (3.1) with c1 = 3, −c2 = c5 = c6 =

c7 = −2 and c3 = c4 = −1 is integrable and the third equation in the Benjamin-Ono

hierarchy [20].

There are a lot of literature on the Cauchy problem on (3.4). On the real line

case, Ionescu-Kenig [10] showed the local well-posedness in Hs(R) for s ≥ 0 (see

also [23] for another proof and [11] for the local well-posedness with small complex

valued data). On the periodic case, Molinet [21, 22] showed the local well-posedness

in Hs(T) for s ≥ 0 and that this result was sharp. See [1, 2, 13, 15, 17, 25, 31] for

former results.

In [29], we studied the local well-posedness for the equation

∂tu = ∂x(∂
2
xu+ d1uH∂xu+ d2H(u∂xu)− u3), x ∈ T, (3.5)

where d1, d2 ∈ R. The equation (3.5) with d1 = d2 = 3/2 is integrable and the

second equation in the Benjamin-Ono hierarchy. The local well-posedness for (3.5)

is based on the energy method with a correction term. Namely, we employ the

energy method to

E∗(u) := ∥u∥2L2 + ∥Dsu∥2L2 + as∥u∥4s+2
L2 + bs

∫
u(HDsu)Ds−2∂xudx
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(see Definition 2 in [29]) in order to eliminate the first order derivative loss. In

fact, we have the second order derivative loss resulting from nonlinear terms in the

energy inequality, but it can be reduced to the first order derivative loss because

of the symmetry (see Lemma 2.6 in [29]). For related results such as the local

well-posedness on the real line, see [6, 7, 19, 24].

On the other hand, as far as we know, there are no well-posedness results for

(3.1) either on the real line or on the torus. In particular, some of nonlinear terms

in (3.1) have three derivatives, which implies that the local well-posedness for (3.1)

is far from trivial. The main result is the following:

Theorem 3.1. We write M = R or T. Let s ≥ s0 > 7/2. For any φ ∈ Hs(M),

there exist T = T (∥φ∥Hs0 ) > 0 and the unique solution u ∈ C([−T, T ];Hs(M)) to

the IVP (3.1)–(3.2) on [−T, T ]. Moreover, for any R > 0, the solution map φ 7→ u(t)

is continuous from the ball {φ ∈ Hs(M); ∥φ∥Hs ≤ R} to C([−T, T ];Hs(M)).

Now we mention the idea of the proof of Theorem 3.1. We may have the third

order derivative loss since nonlinear terms in (3.1) have three derivatives at most.

By the symmetry, it can be reduced to the second order derivative loss (see Lemma

3.25). Our proof is based on the energy method, and the standard energy estimate

gives only the following:

d

dt
∥Dsu(t)∥2L2 ≤ C(1 + ∥u∥Hs0 )3∥u(t)∥2Hs + |L1(u)|+ |L2(u)|+ |L3(u)|, (3.6)

where s0 > 7/2, D = F−1|ξ|F and

L1(u) := λ1(s)

∫
∂xu(D

s∂xu)
2dx, L2(u) := λ2(s)

∫
(H∂2xu)(HDs∂xu)D

sudx,

L3(u) := λ3(s)

∫
u∂xu(HDs∂xu)D

sudx

(see Definition 6 for definitions of λj(s)). Here, we note that L1(u) is the second order

derivative loss, and L2(u) and L3(u) are the first order derivative losses. We need to

to handle Lj(u) for j = 1, 2, 3 by ∥u∥Hs if we use the standard argument. However,

it is impossible to do that. In order to overcome this difficulty, we modify the energy

by adding correction terms, following the idea from Kwon [18] who studied the local

well-posedness for the fifth order KdV equation (see also Segata [27], Kenig-Pilod

[16] and Tsugawa [33]). Namely, we consider

Es(u) :=
1

2
∥u∥2L2(1 + Cs∥u∥2L2 + Cs∥u∥4sL2) +

1

2
∥Dsu∥2L2 +

3∑
j=1

M (j)
s (u),
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with

M (1)
s (u) :=

λ1(s)

4

∫
u(HDsu)HDs−1udx,

M (2)
s (u) :=

λ2(s)

4

∫
(H∂xu)(Ds−1u)2dx,

M (3)
s (u) :=

λ1(s)λ4(s) + 4λ3(s)

32

∫
u2(Ds−1u)2dx

(see Definition 6). The first two terms correspond to ∥u∥Hs , and M
(1)
s (u), M

(2)
s (u)

and M
(3)
s (u) are correction terms. As defined in Definition 6, we note that λj(s) for

j = 1, 2, 3, 4 is a linear polynomial in s. The coefficient ofM
(j)
s (u) can be determined

so that the time derivative of M
(j)
s (u) cancels out Lj(u) for j = 1, 2. On the other

hand, the time derivative of M
(1)
s (u) also yields L3(u), that is,

d

dt
M (1)

s (u) ∼ L1(u) + L3(u)

since L1(u) is the second order derivative loss. Therefore, we need to collect co-

efficients of L3(u) resulting from both ∥Dsu∥ and M
(1)
s (u) when we determine the

coefficient of M
(3)
s (u). For this reason, the coefficient of M

(3)
s (u) is a quadratic

polynomial in s.

Subsequently, using the conservation law corresponding to the H4-norm of the

solution, we can obtain an a priori estimate of solutions in H4. Therefore, we can

easily extend the solution obtained in Theorem 3.1 globally. Namely, we obtain the

following result:

Corollary 3.2. We write M = R or T. The Cauchy problem (3.1)–(3.2) with

c1 = 3, −c2 = c5 = c6 = c7 = −2 and c3 = c4 = −1 is globally well-posed in Hs(M)

for s ≥ 4.

In what follows, we consider our problem only on M = T, and the proof on R is

alomst same as that on T. There are two differences, and one is the following:

H(Hf)(x) =

−f(x), x ∈ R,

−f(x) + f̂(0), x ∈ T.

However, such a difference does not yield difficulties in our argument since we have

|f̂(0)| ≤ ∥f̂∥l∞(Z) ≤ ∥f∥L1(T) ≲ ∥f∥L2(T). The other one is the Gagliardo-Nirenberg

inequality (Lemma 3.3), that is, we do not need to add ∥f∥L2(R) on R when l = 0.

This section is organized as follows. In Subsection 3.2, we prove the main result,

admitting two Propositions 3.8 and 3.9. In Subsection 3.3, we show the main esti-

mate which is Proposition 3.8, that is, the energy inequality between two solutions
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in Hs. In Subsection 3.4, we give a proof of the energy estimate in L2 which is

Proposition 3.9.

3.2. Proof of Theorem 3.1. In this subsection we prove Theorem 3.1, admitting

two propositions.

Definition 5. For a function u, we define

F1(u) := H∂3xu, F2(u) := c1u∂
2
xu+ c2(∂xu)

2 + c3(H∂xu)2 + c4H(uH∂2xu),

F3(u) := c5H(u2∂xu) + c6uH(u∂xu) + c7u
2H∂xu, F4(u) := −u4.

Recall that K(u) = F1(u) + F2(u) + F3(u) + F4(u).

Lemma 3.3. Assume that l ∈ N∪{0} and s ≥ 1 satisfy l ≤ s−1 and a real number

p satisfies 2 ≤ p ≤ ∞. Put α = (l + 1/2− 1/p)/s. Then, we have

∥∂lxf∥p ≲

∥f∥1−α∥Dsf∥α (when 1 ≤ l ≤ s− 1),

∥f∥1−α∥Dsf∥α + ∥f∥ (when l = 0),

for any f ∈ Hs(T).

Proof. See Section 2 in [26] and Lemma 2.1 in [29]. □

We employ the parabolic regularization:

∂tu = ∂xK(u)− ε∂4xu, (3.7)

u(0, x) = φ(x), (3.8)

where t ≥ 0 and ε > 0. In what follows, we consider only t ≥ 0. In the case t ≤ 0,

we only need to replace −ε∂4xu with ε∂4xu in (3.7). By the standard argument, we

can establish the local well-posedness for (3.7)–(3.8) as follows.

Proposition 3.4. Let s ≥ 3 and ε ∈ (0, 1). For any φ ∈ Hs(T), there exist Tε ∈
(0,∞] and the unique solution u ∈ C([0, Tε), H

s(T)) to the IVP (3.7)–(3.8) on [0, Tε)

such that (i) lim inft→Tε ∥u(t)∥H3 = ∞ or (ii) Tε = ∞ holds. Moreover, we assume

φ(j), φ(∞) ∈ Hs(T) satisfies ∥φ(j) − φ(∞)∥Hs → 0 as j → ∞. Let u(j) (resp. u(∞))

∈ C([0, Tε);H
s(T)) be the solution to (3.7)–(3.8) with initial data φ = φ(j) (resp.

φ = φ(∞)). Then, for any T ∈ (0, Tε), we have supt∈[0,T ] ∥u(j)(t) − u(∞)(t)∥Hs → 0

as j → ∞.

Proof. See Proposition 2.8 in [33] or Proposition 2.13 in [29]. □
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We construct a solution to (3.1)–(3.2) by a limiting procedure for solutions ob-

tained by Proposition 3.4. In this argument, it is important to establish the time T

independent of ε, which is proved in Proposition 3.10. For that purpose, we define

the energy with correction terms in Hs(T). As stated in Section 1, we note that the

coefficient of M
(3)
s is a quadratic polynomial in s.

Definition 6. Let s ≥ 1. We define

λ1(s) := (c1 − c4)s−
c1
2
+ 2c2 +

c4
2
, λ2(s) := −2c3s− c4,

λ3(s) := −2(c5 + c6 + c7)s− 2c5 − c6, λ4(s) := 2(c1 − c4)s− 5c1 + 4c2 + 5c4.

For functions f, g ∈ Hs(T), we also define

Es(f, g) :=
1

2
∥f − g∥2(1 + Cs∥f∥2 + Cs∥f∥4s) +

1

2
∥Ds(f − g)∥2 +

3∑
j=1

M (j)
s (f, g),

where

M (1)
s (f, g) :=

λ1(s)

4

∫
T
f(HDs(f − g))HDs−1(f − g)dx,

M (2)
s (f, g) :=

λ2(s)

4

∫
T
(H∂xf)(Ds−1(f − g))2dx,

M (3)
s (f, g) :=

λ1(s)λ4(s) + 4λ3(s)

32

∫
T
f 2(Ds−1(f − g))2dx

and Cs is sufficiently large constant such that Lemma 3.6 holds. For simplicity, we

write Es(f) := Es(f, 0) and M
(j)
s (u) :=M

(j)
s (u, 0) for j = 1, 2, 3.

We define the energy with correction terms in L2(T) since there is a problem to

define D−1 at very low frequency in E0(f, g). For that purpose, we introduce the

following.

Definition 7. Let ψ ∈ C∞(R) be a function satisfying 0 ≤ ψ ≤ 1 on R and

ψ(ξ) =

1, |ξ| ≥ 2,

0, |ξ| ≤ 1.

We also define the operator

Jf(x) := F−1

(
ψ(ξ)

|ξ|
f̂(ξ)

)
(x)

for a function f .
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Lemma 3.5. It holds that

∥Jf∥ ≤ 2∥f∥H−1

for any f ∈ H−1(T).

Proof. This follows from the fact that ⟨ξ⟩ ≤ 2|ξ| for |ξ| ≥ 1. □

Definition 8. For functions f, g ∈ H1(T), we define

E(f, g) :=
1

2
∥f − g∥2 + 1

2
∥f − g∥2H−1(1 + C∥f∥2 + C∥f∥4) +

3∑
j=1

M (j)(f, g),

where

M (1)(f, g) :=
λ1(0)

4

∫
T
f(H(f − g))HJ(f − g)dx,

M (2)(f, g) :=
λ2(0)

4

∫
T
(H∂xf)(J(f − g))2dx,

M (3)(f, g) :=
λ1(0)λ4(0) + 4λ3(0)

32

∫
T
f 2(J(f − g))2dx

and C is sufficiently large constant such that Lemma 3.7 holds.

Lemma 3.6. Let s ≥ 1 and let Cs > 0 be sufficiently large. Then for any f, g ∈
Hs(T), it follows that

Es(f, g) ≤ ∥f − g∥2(1 + Cs∥f∥2 + Cs∥f∥4s) + ∥Ds(f − g)∥2 ≤ 4Es(f, g).

Proof. Lemma 3.3 shows that

|M (2)
s (f, g)| =

∣∣∣∣λ2(s)4

∫
T
(Hf)(Ds−1(f − g))Ds−1∂x(f − g)dx

∣∣∣∣
≤ C∥f∥∥Ds(f − g)∥∥HDs−1(f − g)∥∞

≤ C∥f∥∥f − g∥1/2s∥Ds(f − g)∥2−1/2s + C∥f∥∥f − g∥∥Ds(f − g)∥

≤ C∥f − g∥2(∥f∥2 + ∥f∥4s) + 1

12
∥Ds(f − g)∥2.

Similarly, we can estimate M
(1)
s (f, g) and M

(3)
s (f, g) as follows:

|M (1)
s (f, g)|, |M (3)

s (f, g)| ≤ C∥f − g∥2(∥f∥2 + ∥f∥4s) + 1

12
∥Ds(f − g)∥2,

which completes the proof. □

A similar argument of the previous lemma together with Lemma 3.5 yields the

following.
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Lemma 3.7. Let C > 0 be sufficiently large. Then for any f, g ∈ H1(T), it follows
that

E(f, g) ≤ ∥f − g∥2H−1(1 + C∥f∥2 + C∥f∥4) + ∥f − g∥2 ≤ 4E(f, g).

Definition 9. Let s ≥ 0. For f, g, we define

Is(f, g) := 1 + ∥f∥Hs + ∥g∥Hs .

The main estimate in this section is the following.

Proposition 3.8. Let s ≥ s0 > 7/2, 1 ≤ s′ ≤ s, εj ∈ (0, 1), φj ∈ Hs+4(T) and

uj ∈ C([0, Tεj);H
s+4(T)) be the solution to (3.7)–(3.8) obtained by Proposition 3.4

with ε = εj and φ = φj for j = 1, 2. Then there exists C = C(s′, s0) > 0 such that

d

dt
Es′(u1(t), u2(t))

≤ CIs0(u1, u2)
2(s′+2){∥w∥2

Hs′ + ∥w∥2Hs0−3∥u2∥2Hs′+3

+ ∥w∥2Hs0 (∥u1∥2Hs′ + ∥u2∥2Hs′ )}+max{ε21, ε22}∥u2∥2Hs′+4

(3.9)

on [0,min{Tε1 , Tε2}), where w = u1 − u2.

Proposition 3.9. Let s0 > 7/2, T > 0 and εj ∈ (0, 1). Let uj ∈ C([0, T ];Hs0(T))∩
C((0, T );Hs0+1(T)) satisfy (3.7) with ε = εj on [0, T ] for j = 1, 2. Then there esists

C = C(s0) > 0 such that

d

dt
E(u1(t), u2(t)) ≤ CIs0(u1, u2)

7E(u1(t), u2(t)) + max{ε21, ε22}∥u2∥2Hs0+1 (3.10)

on [0, T ], where w = u1 − u2.

If we admit Propositions 3.8 and 3.9, we can show the main result. We prove

Proposition 3.8 (resp. Proposition 3.9) in Section 3 (resp. Section 4).

Proposition 3.10. Let s ≥ s0 > 7/2, ε ∈ (0, 1), φ ∈ Hs(T). Let Tε > 0 and let

u ∈ C([0, Tε), H
s(T)) ∩ C((0, Tε);H

s+4(T)) be the solution to (3.7)–(3.8), both of

which are obtained by Proposition 3.4. Then, there exist T = T (s0, ∥φ∥Hs0 ) > 0 and

C = C(s, s0, ∥φ∥Hs0 ) > 0 such that

Tε ≥ T, sup
t∈[0,T ]

Es(u(t)) ≤ CEs(φ),
d

dt
Es(u(t)) ≤ CEs(u(t)) (3.11)

on [0, T ], where T (resp. C) is monotone decreasing (resp. increasing) with ∥φ∥Hs0 .

Proof. Assume that the set F = {t ≥ 0;Es0(u(t)) > 2Es0(φ)} is not empty. Set

T ∗
ε = inf F . Note that 0 < T ∗

ε ≤ Tε and Es0(u(t)) ≤ 2Es0(φ) on [0, T ∗
ε ]. Assume

that there exists t′ ∈ [0, T ∗
ε ] such that Es0(u(t

′)) > 2Es0(φ). This implies that
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t′ ≥ T ∗
ε by the definition of T ∗

ε . Then we have t′ = T ∗
ε . Thus, supt∈[0,T ∗

ε ]
Es0(u(t)) ≤

C(∥φ∥Hs0 ) by (ii) of Lemma 3.6. By Proposition 3.8 with φ2 = 0, there exists

C ′
s = C(s, s0, ∥φ∥Hs0 ) such that

d

dt
Es(u(t)) ≤ C ′

sE(u(t))

on [0, T ∗
ε ]. The Gronwall inequality gives that

Es(u(t)) ≤ Es(φ) exp(C
′
st) (3.12)

on [0, T ∗
ε ]. Here, we put T = min{(2C ′

s0
)−1, T ∗

ε }. Then (3.12) with s = s0 shows

that

Es0(u(t)) ≤ Es0(φ) exp(2
−1) < 2Es0(φ),

on [0, T ]. By the definition of T ∗
ε and the continuity of Es0(u(t)), we obtain 0 < T =

(2C ′
s0
)−1 < T ∗

ε ≤ Tε. If F is empty, then we have T ∗
ε = Tε = ∞. In particular, we

can take T = (2C ′
s0
)−1 <∞, which concludes the proof. □

For the proof of the following uniqueness result, see Thorem 6.22 in [14].

Lemma 3.11 (Uniqueness). Let s0 > 7/2, δ > 0 and u, v ∈ L∞([0, δ];Hs0(T))
satisfy (3.1) on [0, δ] with u(0) = v(0) and satisfy

u, v ∈ C([0, δ];H3(T)) ∩ C1([0, δ];H−1(T)).

Then u ≡ v on [0, δ].

It is important to employ the Bona-Smith type argument in the energy inequality

for two solutions in Hs. For that purpose, we introduce the following.

Definition 10. Let s ≥ 0, f ∈ Hs(T) and η ∈ (0, 1). And let ρ ∈ C∞
0 (R) be

ρ(x) := 1− ψ(x) for x ∈ R. We put

L̂ηf(k) := ρ(ηk)f̂(k).

For the proof of the following lemma, see Remark 3.5 in [5].

Lemma 3.12. Let s ≥ 0, α ≥ 0, η ∈ (0, 1) and f ∈ Hs(T). Then, Lηf ∈ H∞(T)
satisfies

∥Lηf − f∥Hs → 0 (η → 0), ∥Lηf − f∥Hs−α ≲ γα∥f∥Hs ,

∥Lηf∥Hs−α ≤ ∥f∥Hs−α , ∥Lηf∥Hs+α ≲ γ−α∥f∥Hs .
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Proof of Theorem 3.1. We only need to prove Theorem 3.1 for t ≥ 0 thanks to the

transform t → −t. In what follows, without loss of generality, we may assume

that s0 is strictly smaller than s since the assumption ∥φ∥Hs0 ≤ K is weaker than

∥φ∥
Hs′0

≤ K when s0 < s′0. First we prove the existence of the solution. For

φ ∈ Hs(T), we put φη := Lηφ ∈ H∞(T) for η ∈ (0, 1). By Proposition 3.4, there

exists the unique solution uϵ,η ∈ C([0, Tε);H
s(T)) to (3.7) with the initial data φη

on [0, Tε). We see from Lemma 3.12 that

∥φη∥Hs ≤ ∥φ∥Hs , ∥φη∥Hs0 ≤ ∥φ∥Hs0 .

Then, Proposition 3.10 with Lemma 3.6 shows that there exists T = T (s, s0, ∥φ∥Hs0 ) >

0 such that

sup
t∈[0,T ]

∥uε,η(t)∥Hs ≲ sup
t∈[0,T ]

Es(uε,η(t))
1/2 ≲ Es(uε,η(0))

1/2 ≲ ∥φη∥Hs ,

which implies that

sup
t∈[0,T ]

∥uε,η(t)∥Hs+3 ≲ η−3∥φ∥Hs . (3.13)

Let 0 < ε1 ≤ ε2 < 1 and ηj = ε
1/2s
j for j = 1, 2. Proposition 3.9 with s′ = s shows

that there exists C = C(s, s0, T, ∥φ∥Hs0 ) > 0 such that

sup
t∈[0,T ]

∥uε1,η1(t)− uε2,η2(t)∥ ≤ CE(uε1,η1(0), uε2,η2(0))

≤ C(∥φη1 − φη2∥2 + ε
2−2/s
2 )1/2 ≤ Cε

1/2
2 .

By interpolation, it holds that for α ∈ [0, s],

sup
t∈[0,T ]

∥uε1,η1(t)− uε2,η2(t)∥Hs−α ≲ ε
α/2s
2 . (3.14)

Therefore, Proposition 3.8 together with (3.13) and (3.14) shows that

sup
t∈[0,T ]

∥uε1,η1(t)− uε2,η2(t)∥Hs ≲ ∥φη1 − φη2∥Hs + ε
(1−s0/s)/2
2 (3.15)

since 0 < (1− s0/s)/2 < 1− s0/s < 1− 2/s. Then, {uε,η}ε=η2s is a Cauchy sequence

in C([0, T ];Hs(T)) as ε → 0 and there exists the limit u ∈ C([0, T ];Hs(T)). It is

clear that u satisfy (3.1)–(3.2) on [0, T ]. We also note that letting ε1 → 0 in (3.15),

sup
t∈[0,T ]

∥u(t)− uε(t)∥Hs ≲ ∥φ− φε1/2s∥Hs + ε(1−s0/s)/2 (3.16)

for ε ∈ (0, 1), where uε := uε,ε1/2s

Finally, we show the continuous dependence. We claim that if ∥φ(j) − φ∥Hs → 0

as j → ∞, then supt∈[0,T ] ∥u(j)(t) − u(t)∥Hs → 0 as j → ∞, where u(j) (resp. u) is
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the solution to (3.1) with the initial data φ(j) (resp. φ) for j ∈ N. First note that

the triangle inequality with Lemma 3.12 gives that

∥φ(j) − φ
(j)

ε1/2s
∥Hs ≤ ∥φ(j) − φ∥Hs + ∥φ− φε1/2s∥Hs + ∥φε1/2s − φ

(j)

ε1/2s
∥Hs

≲ ∥φ(j) − φ∥Hs + ∥φ− φε1/2s∥Hs .

This together with (3.16) implies that

sup
t∈[0,T ]

∥u(j)(t)− u(t)∥Hs

≤ sup
t∈[0,T ]

∥u(j)(t)− u(j)ε (t)∥Hs + sup
t∈[0,T ]

∥u(j)ε (t)− uε(t)∥Hs + sup
t∈[0,T ]

∥uε(t)− u(t)∥Hs

≤ C

(
∥φ(j) − φ∥Hs + ∥φ− φε1/2s∥Hs + sup

t∈[0,T ]

∥u(j)ε (t)− uε(t)∥Hs + ε(1−s0/s)/2

)
.

Let δ > 0. Then, there exists ε0 ∈ (0, 1) such that for any ε ∈ (0, ε0)

C(∥φ− φε1/2s∥Hs + ε(1−s0/s)/2) <
δ

2
.

For each ε ∈ (0, ε0), we see from Proposition 3.4 that there exists N0 ∈ N such that

if j > N0, then

C∥φ(j) − φ∥Hs + C sup
t∈[0,T ]

∥u(j)ε (t)− uε(t)∥Hs <
δ

2
,

which completes the proof of Theorem 3.1. □

3.3. The energy estimate in Hs. In this subsection, we prove Proposition 3.8,

which is the main estimate in this section. Before proving Proposition 3.8, we in-

troduce some commutator estimates which are useful in evaluating nonlinear terms.
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Definition 11. For s ≥ 0 and functions f, g, h we define

P (1)
s (f, g) := Ds∂x(f∂

2
xg)−Ds∂xf∂

2
xg − fDs∂3xg − (s+ 1)∂xfD

s∂2xg

− s(s+ 1)

2
∂2xfD

s∂xg,

P (2)
s (f, g) := HDs∂x(f∂

2
xg)− (HDs∂xf)∂

2
xg − fHDs∂3xg

− (s+ 1)∂xfHDs∂2xg −
s(s+ 1)

2
∂2xfHDs∂xg,

P (3)
s (f, g) := Ds∂x(∂xf∂xg)−Ds∂2xf∂xg − (s+ 1)Ds∂xf∂

2
xg

− ∂xfD
s∂2xg − (s+ 1)∂2xfD

s∂xg,

P (4)
s (f, g) := HDs∂x(∂xf∂xg)− (HDs∂2xf)∂xg − (s+ 1)(HDs∂xf)∂

2
xg

− ∂xf(HDs∂2xg)− (s+ 1)∂2xf(HDs∂xg),

P (5)
s (f, g, h) := Ds∂x(fg∂xh)−Ds∂xfg∂xh− fDs∂xg∂xh− fgDs∂2xh

− (s+ 1)∂xfgD
s∂xh− (s+ 1)f∂xgD

s∂xh,

P (6)
s (f, g, h) := HDs∂x(fg∂xh)− (HDs∂xf)g∂xh− f(HDs∂xg)∂xh− fgHDs∂2xh

− (s+ 1)∂xfgHDs∂xh− (s+ 1)f∂xgHDs∂xh,

P (7)
s (f, g, h) := Ds∂x(fH(g∂xh))−Ds∂xfH(g∂xh)− f(HDs∂xg)∂xh− fgHDs∂2xh

− (s+ 1)∂xfgHDs∂xh− (s+ 1)f∂xgHDs∂xh,

P (8)
s (f, g) := Ds∂x(f∂xg)−Ds∂xf∂xg − fDs∂2xg − (s+ 1)∂xfD

s∂xg,

P (9)
s (f, g) := HDs∂x(f∂xg)− (HDs∂xf)∂xg − fHDs∂2xg − (s+ 1)∂xfHDs∂xg.

Lemma 3.13. Let s0 > 1/2 and s ≥ 0. Then

∥fg∥Hs ≲ ∥f∥Hs∥g∥Hs0 + ∥f∥Hs0∥g∥Hs

for any f, g ∈ Hmax{s0,s}(T).

Proof. This follows from the fact that ⟨ξ⟩s ≲ ⟨ξ − η⟩s + ⟨η⟩s for any ξ, η ∈ Z. □

For the proofs of the following three lemmas, see [29].

Lemma 3.14. Let s0 > 3/2 and s ≥ 1. Then

∥[Ds, f ]∂xg∥ ≲ ∥f∥Hs∥g∥Hs0 + ∥f∥Hs0∥g∥Hs

for any f, g ∈ Hmax{s0,s}(T).

Lemma 3.15. Let s0 > 1/2, k ∈ N and s1, s2 ≥ 0. Suppose that s1+ s2 = k. Then,

there exists C = C(s0) > 0 such that for any f ∈ Hs0+s1(T) and g ∈ Hs2(T)

∥[H, f ]∂kxg∥ ≤ C∥f∥Hs0+s1∥g∥Hs2 .
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Lemma 3.16. Let s0 > 5/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥P (8)
s (u, v)∥, ∥P (9)

s (u, v)∥ ≤ C(∥u∥Hs0∥v∥Hs + ∥u∥Hs∥v∥Hs0 )

for any u, v ∈ Hmax{s,s0}(T).

Lemma 3.17. Let s0 > 7/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥P (1)
s (u, v)∥, ∥P (2)

s (u, v)∥ ≤ C(∥u∥Hs∥v∥Hs0 + ∥u∥Hs0∥v∥Hs)

for any u, v ∈ Hmax{s,s0}(T).

Proof. We show only the inequality for P
(1)
s . The other one follows from a similar

argument. It suffices to show that∣∣∣∣|ξ|sξη2 − |ξ − η|s(ξ − η)η2 − |η|sη3 − (s+ 1)(ξ − η)|η|sη2 − s(s+ 1)

2
(ξ − η)2|η|sη

∣∣∣∣
≲ |η|3|ξ − η|s + |η|s|ξ − η|3,

(3.17)

for any ξ, η ∈ Z. We split the summation region into three regions: R1 = {3|η| ≤
|ξ−η|}, R2 = {|ξ−η|/4 ≤ |η| ≤ 4|ξ−η|} and R3 = {|η| ≥ 3|ξ−η|}. On R1, the mean

value theorem shows that (3.25) holds. On R2, it is obvious. On R3, it immediately

follows that |ξ − η|s+1|η|2 ≲ |ξ − η|s|η|3. Set σ(x) = x|x|s for x ∈ R. Note that

σ ∈ C3(R) when s > 2. The Taylor theorem shows that there exist η̃ ∈ (ξ, η) or

η̃ ∈ (η, ξ) such that

σ(ξ) = σ(η) + σ′(η)(ξ − η) +
σ′′(η)

2
(ξ − η)2 +

σ′′′(η̃)

6
(ξ − η)3.

This together with the fact that |η̃| ∼ |ξ| ∼ |η| implies that (3.25) holds. When

1 < s ≤ 2, (3.25) holds since |ξ − η|2|η|s+1 = |ξ − η|2−s|ξ − η|s|η|s+1 ≲ |ξ − η|s|η|3

on R3. Similarly, when 0 ≤ s ≤ 1, (3.25) holds by the above inequality with

|ξ − η||η|s+2 ≲ |ξ − η|s|η|3 on R3, which concludes the proof. □

Lemma 3.18. Let s0 > 7/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥P (3)
s (u, v)∥, ∥P (4)

s (u, v)∥ ≤ C(∥u∥Hs∥v∥Hs0 + ∥u∥Hs0∥v∥Hs),

for any u, v ∈ Hmax{s,s0}(T).

Proof. This follows from a similar argument of the previous lemma. □
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Lemma 3.19. Let s0 > 3/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥Λs+1(uv)− Λs+1uv − uΛs+1v∥ ≤ C(∥u∥Hs∥v∥Hs0 + ∥u∥Hs0∥v∥Hs)

for any u, v ∈ Hmax{s,s0}(T), where Λs+1 = Ds∂x or Ds+1.

Proof. It suffices to show that for any ξ, η ∈ Z

||ξ|s+1 − |ξ− η|s+1 − |η|s+1|, ||ξ|sξ− |ξ− η|s(ξ− η)− |η|sη| ≲ |η||ξ− η|s + |ξ− η||η|s.

If s = 0, then it is obvious by the triangle inequality. In the case s > 0, this follows

from a similar argument of the proof of Lemma 3.17. □

Lemma 3.20. Let s0 > 5/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥P (5)
s (u1, u2, u3)∥, ∥P (6)

s (u1, u2, u3)∥

≤ C(∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs)

for any uj ∈ Hmax{s,s0}(T) for j = 1, 2, 3.

Proof. We show only the inequality for P
(5)
s . The other one follows from a similar

argument. Aplying Lemma 3.13, 3.16 and 3.19, we have

∥P (5)
s (u1, u2, u3)∥

≤ ∥P (8)
s (u1u2, u3)∥+ ∥Ds∂x(u1u2)−Ds∂xu1u2 − u1D

s∂xu2∥∥∂xu3∥∞,

≲ ∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs ,

which completes the proof. □

Lemma 3.21. Let s0 > 5/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥P (7)
s (u1, u2, u3)∥

≤ C(∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs)

for any uj ∈ Hmax{s,s0}(T) for j = 1, 2, 3.

Proof. We see from the proof of Lemma 3.16 and 3.19 that for any ξ, ξ1, ξ2 ∈ Z

||ξ|sξξ2 − |ξ − ξ1 − ξ2|s(ξ − ξ1 − ξ2)ξ2 − |ξ1|sξ1ξ2

− |ξ2|sξ22 − (s+ 1)(ξ − ξ1 − ξ2)|ξ2|sξ2 − (s+ 1)ξ1|ξ2|sξ2|

≤ ||ξ|sξξ2 − |ξ − ξ2|s(ξ − ξ2)ξ2 − |ξ2|sξ22 − (s+ 1)(ξ − ξ2)|ξ2|sξ2|

+ ||ξ − ξ2|s(ξ − ξ2)− |ξ1|sξ1 − |ξ − ξ1 − ξ2|s(ξ − ξ1 − ξ2)||ξ2| ≲ Ξ(ξ, ξ1, ξ2),
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where

Ξ(ξ, ξ1, ξ2) := |ξ − ξ2|2|ξ2|s + |ξ − ξ2|s|ξ2|2 + (|ξ − ξ1 − ξ2|s|ξ1|+ |ξ − ξ1 − ξ2||ξ1|s)|ξ2|.

We see from Lemma 3.15 that

∥P (7)
s (u1, u2, u3)∥

≤ ∥Ds∂x(u1H(u2∂xu3))−Ds∂xu1H(u2∂xu3)− u1H(Ds∂xu2∂xu3)

− u1H(u2D
s∂2xu3)− (s+ 1)∂xu1H(u2D

s∂xu3)− (s+ 1)u1H(∂xu2D
s∂xu3)∥

+ ∥u1∥∞(∥[H, ∂xu3]Ds∂xu2∥+ ∥[H, u2]Ds∂2xu3∥)

+ (s+ 1)(∥∂xu1∥∞∥[H, u2]Ds∂xu3∥+ ∥u1∥∞∥[H, ∂xu2]Ds∂xu3∥)

≲
∥∥∥∥∥∑
ξ1,ξ2

Ξ(ξ, ξ1, ξ2)|û1(ξ − ξ1 − ξ2)||û2(ξ1)||û3(ξ2)|

∥∥∥∥∥
l2ξ

+ ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0

≲ ∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs ,

which completes the proof. □

Lemma 3.22. Let s0 > 5/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥Λs(u∂
2
xv)− uΛs∂

2
xv − s∂xuΛs∂xv∥ ≤ C(∥u∥Hs0∥v∥Hs + ∥u∥Hs∥v∥Hs0 )

for any u, v ∈ Hmax{s,s0}(T), where Λs = Ds or HDs.

Proof. The proof is very similar to that of Lemma 3.17. □

Lemma 3.23. Let s0 > 3/2 and s ≥ 0. Then there exists C = C(s, s0) > 0 such

that

∥Λs(u1H(u2∂xu3))− u1u2HΛs∂xu3∥

≤ C(∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs)

for any uj ∈ Hmax{s,s0}(T) for j = 1, 2, 3, where Λs = Ds or HDs.

Proof. It suffices to show that

∥Λs(u1H(u2∂xu3))− u1H(u2Λs∂xu3)∥

≲ ∥u1∥Hs∥u2∥Hs0∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs∥u3∥Hs0 + ∥u1∥Hs0∥u2∥Hs0∥u3∥Hs .

Indeed, Lemma 3.15 shows that

∥u1[H, u2]Λs∂xu3∥ ≲ ∥u1∥Hs0−1∥u2∥Hs0∥u3∥Hs .
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The standard argument implies that

||ξ|sξ2 − |ξ2|sξ2|, | sgn(ξ)|ξ|sξ2 − sgn(ξ2)|ξ2|sξ2| ≲ |ξ − ξ2|s|ξ2|+ |ξ − ξ2||ξs|s,

which completes the proof by the triangle inequality. □

Lemma 3.24. Let s ≥ 0 and s0 > 5/2. Let u ∈ Hs0(T) and w ∈ Hs+2(T). Then

|⟨uDs∂2xw,D
sw⟩+ ⟨u, (Ds∂xw)

2⟩| ≲ ∥u∥Hs0∥w∥2Hs

Proof. Note that

⟨uDs∂2xw,D
sw⟩ = 1

2
⟨∂2xu, (Dsw)2⟩ − ⟨u, (Ds∂xw)

2⟩,

which shows the claim. □

As stated in Section 1, by the integration by parts, the third order derivative loss

can be reduced to the second order one.

Lemma 3.25. Let s ≥ 0 and s0 > 7/2. Let u ∈ Hs0(T) and w ∈ Hs+3(T). Then∣∣∣∣⟨uDs∂3xw,D
sw⟩ − 3

2
⟨∂xu, (Ds∂xw)

2⟩
∣∣∣∣ ≲ ∥u∥Hs0∥w∥2Hs

Proof. Note that

⟨uDs∂3xw,D
sw⟩ = −⟨∂xuDs∂2xw,D

sw⟩+ 1

2
⟨∂xu, (Ds∂xw)

2⟩,

which together with Lemma 3.24 shows the claim. □

Lemma 3.26. Let s0 > 1/2 and u, v be sufficiently smooth function defined on T.
Then there exists C = C(s0) > 0 such that

|⟨∂x(vH∂xu), u⟩| ≤ C∥v∥Hs0+2∥u∥2.

Proof. See Lemma 2.6 in [29]. □

Lemma 3.27. Let s ≥ 0 and s0 > 5/2. Let u ∈ Hs0(T) and w ∈ Hs+2(T). Then

|⟨u, (HDs∂xw)
2⟩ − ⟨u, (Ds∂xw)

2⟩| ≲ ∥u∥Hs0∥w∥2Hs .

Proof. We have

⟨u, (HDs∂xw)
2⟩ = ⟨H(∂xuHDs∂xw), D

sw⟩+ ⟨H(uHDs∂2xw), D
sw⟩ =: A+B.

For A, note that

|A| ≤ |⟨[H, ∂xu]HDs∂xw,D
sw⟩|+ |⟨∂xuDs∂xw,D

sw⟩| ≲ ∥u∥Hs0∥w∥2Hs .
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For B, we have

B = ⟨[H, u]HDs∂2xw,D
sw⟩ − ⟨uDs∂2xw,D

sw⟩

= ⟨[H, u]HDs∂2xw,D
sw⟩ − 1

2
⟨∂2xu, (Dsw)2⟩+ ⟨u, (Ds∂xw)

2⟩,

which concludes the proof. □

We are ready to evaluate nonlinear terms. First, we estimate terms in F2(u).

Lemma 3.28. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+3,s0}(T). Then

|⟨Ds∂x(u∂
2
xu− v∂2xv), D

sw⟩+ (s− 1/2)⟨∂xu, (Ds∂xw)
2⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−3∥v∥2Hs+3 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set

⟨Ds∂x(u∂
2
xu− v∂2xv), D

sw⟩ = ⟨Ds∂x(u∂
2
xw), D

sw⟩+ ⟨Ds∂x(w∂
2
xv), D

sw⟩ =: R1+R2.

Lemma 3.17, 3.24 and 3.25 show that

|R1 + (s− 1/2)⟨∂xu, (Ds∂xw)
2⟩|

≤ |⟨P (1)
s (u,w), Dsw⟩|+ |⟨Ds∂x(w + v)∂2xw,D

sw⟩|+ |⟨uDs∂3xw,D
sw⟩ − (3/2)⟨∂xu, (Ds∂xw)

2⟩|

+ (s+ 1)|⟨∂xuDs∂2xw,D
sw⟩+ ⟨∂xu, (Ds∂xw)

2⟩|+ s(s+ 1)|⟨∂3xu, (Dsw)2⟩|/4

≲ ∥w∥Hs(∥w∥Hs0−1∥v∥Hs+1 + ∥u∥Hs0∥w∥Hs + ∥w∥Hs0∥u∥Hs + ∥w∥Hs0∥w∥Hs).

We see from a similar argument that

|R2| ≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−3∥v∥2Hs+3 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.29. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨Ds∂x((∂xu)
2 − (∂xv)

2), Dsw⟩+ 2⟨∂xu, (Ds∂xw)
2⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Note that

⟨Ds∂2xz∂xw,D
sw⟩+ ⟨∂xzDs∂2xw,D

sw⟩

= ⟨∂xwDs∂2xw,D
sw⟩+ 2⟨∂xwDs∂2xv,D

sw⟩+ ⟨∂xzDs∂2xw,D
sw⟩

= 2⟨∂xuDs∂2xw,D
sw⟩+ 2⟨∂xwDs∂2xv,D

sw⟩.
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Lemma 3.18 and 3.24 show that

|⟨Ds∂x(∂xz∂xw), D
sw⟩+ 2⟨∂xu, (Ds∂xw)

2⟩|

≤ |⟨P (3)
s (z, w), Dsw⟩|+ (s+ 1)|⟨∂3xu, (Dsw)2⟩|+ 2(s+ 1)|⟨∂xwDs∂xv,D

sw⟩|

+ 2|⟨∂xuDs∂2xw,D
sw⟩+ ⟨∂xu, (Ds∂xw)

2⟩|+ 2|⟨∂xwDs∂2xv,D
sw⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.30. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨Ds∂x((H∂xu)2 − (H∂xv)2), Dsw⟩ − 2s⟨(H∂2xu)HDs∂xw,D
sw⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. As in the proof of Lemma 3.29, we have

⟨(H∂xw)HDs∂2xz,D
sw⟩+ ⟨(H∂xz)HDs∂2xw,D

sw⟩

= 2⟨(H∂xu)HDs∂2xw,D
sw⟩+ 2⟨(H∂xw)HDs∂2xv,D

sw⟩

and

⟨(H∂2xw)HDs∂xz,D
sw⟩+ ⟨(H∂2xz)HDs∂xw,D

sw⟩

= 2⟨(H∂2xu)HDs∂xw,D
sw⟩+ 2⟨(H∂2xw)HDs∂xv,D

sw⟩.

Then Lemma 3.18, 3.24 and 3.26 show that

|⟨Ds∂x((H∂xz)H∂xw), Dsw⟩ − 2s⟨(H∂2xu)HDs∂xw,D
sw⟩|

≤ |⟨P (3)
s (Hz,Hw), Dsw⟩|+ 2|⟨∂x((H∂xu)HDs∂xw), D

sw⟩|

+ 2|⟨(H∂xw)HDs∂2xv,D
sw⟩|+ 2(s+ 1)|⟨(H∂xw)HDs∂xv,D

sw⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.31. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+3,s0}(T). Then

|⟨HDs∂x(uH∂2xu− vH∂2xv), Dsw⟩ − ⟨(H∂2xu)HDs∂xw,D
sw⟩ − (s− 1/2)⟨∂xu, (Ds∂xw)

2⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−3∥v∥2Hs+3 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Set z = u+ v. Note that

⟨(HDs∂xu)H∂2xw,Dsw⟩+ ⟨(HDs∂xw)H∂2xv,Dsw⟩

= ⟨(HDs∂xw)H∂2xw,Dsw⟩+ ⟨(HDs∂xw)H∂2xv,Dsw⟩+ ⟨(HDs∂xv)H∂2xw,Dsw⟩

= ⟨(H∂2xu)HDs∂xw,D
sw⟩+ ⟨(H∂2xw)HDs∂xv,D

sw⟩.

Lemma 3.17, 3.24 and 3.25 show that

|⟨HDs∂x(uH∂2xu− vH∂2xv), Dsw⟩ − ⟨(H∂2xu)HDs∂xw,D
sw⟩ − (s− 1/2)⟨∂xu, (Ds∂xw)

2⟩|

≤ |⟨P (2)
s (u,Hw) + P (2)

s (w,Hv), Dsw⟩|+ |⟨uDs∂3xw,D
sw⟩ − (3/2)⟨∂xu, (Ds∂xw)

2⟩|

+ (s+ 1)|⟨∂xuDs∂2xw,D
sw⟩+ ⟨∂xu, (Ds∂xw)

2⟩|+ |⟨wDs∂3xv,D
sw⟩|

+ s(s+ 1)|⟨∂3xu, (Dsw)2⟩|/4 + (s+ 1)|⟨∂xwDs∂2xv,D
sw⟩|+ s(s+ 1)|⟨∂2xwDs∂xv,D

sw⟩|/2

+ |⟨(H∂2xw)HDs∂xv,D
sw⟩|

≲ Is0(u, v){∥w∥2Hs + ∥w∥2Hs0−3∥v∥2Hs+3 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Next, we estimate nonlinear terms in F3(u) and F4(u).

Lemma 3.32. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨HDs∂x(u
2∂xu− v2∂xv), D

sw⟩ − 2(s+ 1)⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Note that

2⟨u∂xwHDs∂xu,D
sw⟩+ ⟨w∂xvHDs∂xz,D

sw⟩+ ⟨z∂xvHDs∂xw,D
sw⟩

= 2⟨u∂xuHDs∂xw,D
sw⟩+ 2⟨u∂xwHDs∂xv,D

sw⟩+ 2⟨w∂xvHDs∂xv,D
sw⟩

and that u2∂xu− v2∂xv = u2∂xw + zw∂xv. Lemma 3.20, 3.15 and 3.26 show that

|⟨HDs∂x(u
2∂xw + zw∂xv), D

sw⟩ − 2(s+ 1)⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨P (6)
s (u, u, w) + P (6)

s (z, w, v), Dsw⟩|+ 2|⟨u∂xwHDs∂xv,D
sw⟩|

+ 2|⟨w∂xvHDs∂xv,D
sw⟩|+ |⟨∂x(u2HDs∂xw), D

sw⟩|

+ |⟨zwHDs∂2xv,D
sw⟩|+ (s+ 1)|⟨∂x(zw)HDs∂xv,D

sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □
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Lemma 3.33. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨Ds∂x(uH(u∂xu)− vH(v∂xv)), D
sw⟩ − (2s+ 1)⟨u∂xuHDs∂xw,D

sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

⟨u∂xwHDs∂xu,D
sw⟩+ ⟨u∂xvHDs∂xw,D

sw⟩

= ⟨u∂xuHDs∂xw,D
sw⟩+ ⟨u∂xwHDs∂xv,D

sw⟩.

Then Lemma 3.21 and 3.26 show that

|⟨Ds∂x(uH(u∂xw) + uH(w∂xv) + wH(v∂xv)), D
sw⟩ − (2s+ 1)⟨u∂xuHDs∂xw,D

sw⟩|

≤ |⟨P (7)
s (u, u, w) + P (7)

s (u,w, v) + P (7)
s (w, v, v), Dsw⟩|+ |⟨H∂x(u∂xu), (Dsw)2⟩|/2

+ |⟨Ds∂xvH(u∂xw), D
sw⟩|+ |⟨Ds∂xvH(w∂xv), D

sw⟩|+ |⟨∂x(u2HDs∂xw), D
sw⟩|

+ |⟨uwHDs∂2xv,D
sw⟩|+ |⟨vwHDs∂2xv,D

sw⟩|+ (2s+ 3)|⟨∂x(zw)HDs∂xv,D
sw⟩|/2

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.34. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨Ds∂x(u
2H∂xu− v2H∂xv), Dsw⟩ − 2s⟨u∂xuHDsw,Dsw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Lemma 3.26 and 3.21 show that

|⟨Ds∂x(u
2H∂xw + zwH∂xv), Dsw⟩ − 2s⟨u∂xuHDsw,Dsw⟩|

≤ |⟨P (6)
s (u, u,Hw) + P (6)

s (z, w,Hv), Dsw⟩+ |⟨∂x(uH∂xu), (Dsw)2⟩|

+ 2|⟨u(H∂xw)Ds∂xv,D
sw⟩|+ |⟨∂x(u2HDs∂xw), D

sw⟩|

+ |⟨∂x(wH∂xv), (Dsw)2⟩|/2 + 2|⟨w(H∂xv)Ds∂xv,D
sw⟩|

+ |⟨zwHDs∂2xv,D
sw⟩|+ (s+ 1)|⟨∂x(zw)HDs∂xv,D

sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □
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Lemma 3.35. Let s0 > 7/2 and s ≥ 0. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨Ds∂x(u
4 − v4), Dsw⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Lemma 3.13 and 3.14 show that

|⟨Ds(u3∂xw + w(u2 + uv + v2)∂xv), D
sw⟩|

≤ |⟨[Ds, u3]∂xw,D
sw⟩|+ |⟨[Ds, w(u2 + uv + v2)]∂xv,D

sw⟩|

+ |⟨∂x(u3), (Dsw)2⟩|/2 + |⟨w(u2 + uv + v2)Ds∂xv,D
sw⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Remark 3.1. In Lemma 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34 and 3.35 with s = 0, we

do not have terms such as ∥w∥2
Hs0−j∥v∥2Hs+j for j = 1, 2, 3 and (∥u∥2Hs+∥v∥2Hs)∥w∥2Hs0

in the right hand side. This can be verified by a simple caluculation. Indeed, for

example, on Lemma 3.28 with s = 0, we have

⟨∂x(u∂2xu− v∂2xv), w⟩ = −⟨u∂2xw, ∂xw⟩ − ⟨w∂2xv, ∂xw⟩

=
1

2
⟨∂xu, (∂xw)2⟩+

1

2
⟨∂3xv, w2⟩.

The second term in the right hand side can be estimated by ≲ ∥v∥Hs0∥w∥2. For this
reason, we obtain the following.

Lemma 3.36. Let s0 > 7/2 and u, v ∈ Hs0(T). Then∣∣∣∣∣
4∑

j=2

⟨∂x(Fj(u)− Fj(v)), w⟩+ λ1(0)⟨∂xu, (∂xw)2⟩+ λ2(0)⟨(H∂2xu)H∂xw,w⟩

+ λ3(0)⟨u∂xuH∂xw,w⟩|

≲ Is0(u, v)
3∥w∥2,

where w = u− v.

Now, we estimate the time derivatives of M
(1)
s , M

(2)
s and M

(3)
s . The following

lemma helps us to calculate correction terms. Note that Lemma 3.37 is more com-

plicated than Lemma 2.8 in [29] because of the presence of H.
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Lemma 3.37. Let f, g, h be sufficiently smooth real-valued functions defined on T.
Then,

⟨H∂4xf, gh⟩+ ⟨fH∂4xg, h⟩+ ⟨fg,H∂4xh⟩

= −⟨[H, h]∂4xf, g⟩ − ⟨[H, f ]∂4xh, g⟩+ 4⟨∂3xfHg, ∂xh⟩ − 4⟨∂xfH∂xg, ∂2xh⟩+ 2⟨∂2xfHg, ∂2xh⟩.

Proof. Observe that

⟨fg,H∂4xh⟩

= −⟨[H, f ]∂4xh, g⟩ − ⟨∂4xfHg + 4∂3xfH∂xg + 6∂2xfH∂2xg + 4∂xfH∂3xg + fH∂4xg, h⟩

= −⟨[H, f ]∂4xh, g⟩ − ⟨∂4xfHg, h⟩ − 4⟨∂xfH∂xg, ∂2xh⟩+ 2⟨∂2xfH∂2xg, h⟩ − ⟨fH∂4xg, h⟩

= −⟨[H, f ]∂4xh, g⟩+ ⟨∂4xfHg, h⟩+ 4⟨∂3xfHg, ∂xh⟩ − 4⟨∂xfH∂xg, ∂2xh⟩

+ 2⟨∂2xfHg, ∂2xh⟩ − ⟨fH∂4xg, h⟩.

Note that

⟨H∂4xf, gh⟩+ ⟨∂4xfHg, h⟩ = −⟨[H, h]∂4xf, g⟩,

which completes the proof. □

Lemma 3.38. Let s0 > 7/2 and s ≥ 1. Let u,w ∈ Hmax{s+4,s0}(T). Then

|⟨(H∂4xu)HDsw,HDs−1w⟩ − ⟨uDs∂4xw,HDs−1w⟩+ ⟨uHDsw,HDs∂3xw⟩ − 4⟨∂xu, (Ds∂xw)
2⟩|

≲ ∥u∥Hs0∥w∥2Hs .

Proof. We use Lemma 3.37 with f = u, g = HDsw and h = HDs−1w. Then Lemma

3.15 shows that

|⟨[H, h]∂4xf, g⟩|+ |⟨[H, f ]∂4xh, g⟩|+ |⟨∂3xfHg, ∂xh⟩| ≲ ∥u∥Hs0∥w∥2Hs . (3.18)

Note that −4⟨∂xfH∂xg, ∂2xh⟩ = 4⟨∂xu, (Ds∂xw)
2⟩. And finally, we see from the

integration by parts that

2|⟨∂2xfHg, ∂2xh⟩| = |⟨∂3xu, (Dsw)2⟩| ≲ ∥u∥Hs0∥w∥2Hs

which concludes the proof. □

Lemma 3.39. Let s0 > 7/2 and s ≥ 1. Let u,w ∈ Hmax{s+4,s0}(T). Then

|⟨∂5xu, (Ds−1w)2⟩ − 2⟨(H∂xu)Ds∂3xw,D
s−1w⟩+ 4⟨(H∂2xu)HDs∂xw,D

sw⟩|

≲ ∥u∥Hs0∥w∥2Hs .
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Proof. The integration by parts shows that

|⟨∂5xu, (Ds−1w)2⟩ − 2⟨(H∂xu)Ds∂3xw,D
s−1w⟩+ 4⟨(H∂2xu)HDs∂xw,D

sw⟩|

= |⟨∂4xuDs−1∂xw,D
s−1w⟩ − ⟨(Hu)Ds∂4xw,D

s−1w⟩+ ⟨(Hu)Ds∂3xw,D
s−1∂xw⟩

− 2⟨(H∂2xu)HDs∂xw,D
sw⟩|,

which allows us to use Lemma 3.37 with f = Hu, g = Ds−1∂xw and h = Ds−1w. It

is cleat that (3.18) holds in this case. Lemma 3.26 implies that

|⟨∂xfH∂xg, ∂2xh⟩| = |⟨∂x((H∂xu)HDs∂xw), D
sw⟩| ≲ ∥u∥Hs0∥w∥2Hs .

On the other hand, we have 2⟨∂2xfHg, ∂2xh⟩ = −2⟨(H∂2xu)HDs∂xw,D
sw⟩, which

completes the proof. □

Lemma 3.40. Let s0 > 7/2 and s ≥ 1. Let u,w ∈ Hmax{s+3,s0}(T). Then

|⟨uH∂4xu, (Ds−1w)2⟩+ ⟨u2Ds−1w,Ds∂3xw⟩ − 4⟨u∂xuHDs∂xw,D
sw⟩| ≲ ∥u∥2Hs0∥w∥2Hs .

Proof. Adding and subtraction a term, we have

2|⟨uH∂4xu, (Ds−1w)2⟩+ ⟨u2Ds−1w,Ds∂3xw⟩ − 4⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨H∂4x(u2), (Ds−1w)2⟩+ 2⟨u2Ds−1w,Ds∂3xw⟩ − 8⟨u∂xuHDs∂xw,D
sw⟩|

+ |⟨2uH∂4xu−H∂4x(u2), (Ds−1w)2⟩|.

Lemma 3.15 shows that the second term in the right hand side can be estimated by

≲ ∥u∥2Hs0∥w∥2Hs . We use Lemma 3.37 with f = u2, g = h = Ds−1w. It is clear that

(3.18) holds in this case. Note that −4⟨∂xfH∂xg, ∂2xh⟩ = 8⟨u∂xuHDs∂xw,D
sw⟩.

Finally, we have

|⟨∂2xfHg, ∂2xh⟩| = |⟨∂x(∂2x(u2)HDs−1w),HDsw⟩| ≲ ∥u∥2Hs0∥w∥2Hs ,

which completes the proof. □

We observe the first order derivative loss resulting from M
(1)
s .

Lemma 3.41. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+3,s0}(T). Then

|⟨uHDs∂x(u∂
2
xu− v∂2xv),HDs−1w⟩+ (s− 3)⟨u∂xuHDs∂xw,D

sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Lemma 3.17 and 3.26 show that

|⟨uHDs∂x(u∂
2
xw + w∂2xv),HDs−1w⟩+ (s− 3)⟨u∂xuHDs∂xw,D

sw⟩|

≤ |⟨u(P (2)
s (u,w) + P (2)

s (w, v)),HDs−1w⟩|+ |⟨∂x(u∂2xwHDs−1w),HDsu⟩|

+ |⟨∂3x(u2)HDsw,HDs−1w⟩|+ |⟨∂2x(u2)HDsw,Dsw⟩|+ |⟨∂x(u2HDs∂xw), D
sw⟩|

+ (s+ 1)|⟨∂x(∂2x(u2)HDs−1w),HDsw⟩|/2 + s(s+ 1)|⟨∂x(u∂2xuHDs−1w),HDsw⟩|/2

+ |⟨∂x(u∂2xvHDs−1w),HDsw⟩|+ |⟨∂x(uwHDs−1w),HDs∂2xv⟩|

+ (s+ 1)|⟨∂x(u∂xwHDs−1w),HDs∂xv⟩|+ s(s+ 1)|⟨∂x(u∂2xwHDs−1w),HDsv⟩|/2

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.42. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDsw,Ds(u∂2xu− v∂2xv)⟩+ (s− 2)⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Lemma 3.22 together with Lemma 3.26 shows that

|⟨uHDsw,Ds(u∂2xw + w∂2xv)⟩+ (s− 2)⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨uHDsw,Ds(u∂2xw)− uDs∂2xw − s∂xuD
s∂xw⟩|

+ |⟨uHDsw,Ds(w∂2xv)− wDs∂2xv − s∂xwD
s∂xv⟩|+ |⟨∂2x(u2)HDsw,Dsw⟩|

+ |⟨∂x(u2HDs∂xw), D
sw⟩|+ s|⟨∂x(u∂xu)HDsw,Dsw⟩|

+ |⟨uHDsw,wDs∂2xv⟩|+ s|⟨uHDsw, ∂xwD
s∂xv⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.43. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDs∂x((∂xu)
2 − (∂xv)

2),HDs−1w⟩+ 2⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Set z = u+ v. Lemma 3.22 shows that

|⟨uHDs∂x(∂xz∂xw),HDs−1w⟩+ 2⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨uP (4)
s (z, w),HDs−1w⟩|+ 2|⟨∂x(u∂xwHDs−1w),HDs∂xv⟩|

+ (s+ 1)|⟨∂x(u∂2xwHDs−1w),HDsz⟩|+ (s+ 1)|⟨∂x(u∂2xzHDs−1w),HDsw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.44. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨uHDsw,Ds((∂xu)
2 − (∂xv)

2)⟩+ 2⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Lemma 3.19 shows that

|⟨uHDsw,Ds(∂xz∂xw)⟩+ 2⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨uHDsw,Ds(∂xz∂xw)−Ds∂xz∂xw − ∂xzD
s∂xw⟩|+ 2|⟨∂x(u∂xu)HDsw,Dsw⟩|

+ 2|⟨u∂xwHDsw,Ds∂xv⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.45. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDs∂x((H∂xu)2 − (H∂xv)2),HDs−1w⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Lemma 3.18 shows that

|⟨uHDs∂x((H∂xz)(H∂xw)),HDs−1w⟩|

≤ |⟨uP (4)
s (Hz,Hw),HDs−1w⟩+ 3|⟨∂x(uH∂xu), (Dsw)2⟩|

+ 2|⟨∂2x(uH∂xu)Dsw,HDs−1w⟩|+ 2|⟨∂x(u(H∂xw)HDs−1w), Ds∂xv⟩|

+ (s+ 1)|⟨∂x(u(H∂2xw)HDs−1w), Dsz)⟩|+ (s+ 1)|⟨∂x(u(H∂2xz)HDs−1w), Dsw)⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □
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Lemma 3.46. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨uHDsw,Ds((H∂xu)2 − (H∂xv)2)⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Lemma 3.19 shows that

|⟨uHDsw,Ds((H∂xz)H∂xw)⟩|

≤ |⟨uHDsw,Ds((H∂xz)H∂xw)− (H∂xw)HDs∂xz − (H∂xz)HDs∂xw⟩|

+ |⟨∂x(uH∂2xu), (HDsw)2⟩|+ 2|⟨u(H∂xw)HDsw,HDs∂xv⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.47. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+3,s0}(T). Then

|⟨uDs∂x(uH∂2xu− vH∂2xv),HDs−1w⟩+ (s− 3)⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. We see from Lemma 3.17 and 3.26 that

|⟨uDs∂x(uH∂2xw + wH∂2xv),HDs−1w⟩+ (s− 3)⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨u(P (1)
s (u,Hw) + P (1)

s (w,Hv)),HDs−1w⟩|+ |⟨∂x(u(H∂2xw)HDs−1w), Dsu⟩|

+ |⟨∂x(∂2x(u2)HDs−1w),HDsw⟩|+ |⟨∂x(u2HDs∂xw), D
sw⟩|

+ (s+ 1)|⟨∂x(∂x(u∂xu)HDs−1w),HDsw⟩|+ s(s+ 1)|⟨∂x(u∂2xuHDs−1w),HDsw⟩|/2

+ |⟨∂x(u(H∂2xv)HDs−1w), Dsw⟩|+ |⟨∂x(uwHDs−1w),HDs∂2xv⟩|

+ (s+ 1)|⟨∂x(u∂xwHDs−1w),HDs∂xv⟩|+ s(s+ 1)|⟨∂x(u∂2xwHDs−1w),HDsv⟩|/2

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−2∥v∥2Hs+2 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.48. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDsw,Ds−1∂x(uH∂2xu− vH∂2xv)⟩+ (s− 2)⟨u∂xuHDs∂xw,D
sw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Lemma 3.22 and 3.26 shows that

|⟨uHDsw,Ds−1∂x(uH∂2xw + wH∂2xv)⟩+ (s− 2)⟨u∂xuHDs∂xw,D
sw⟩|

≤ |⟨uHDsw,Ds−1∂x(uH∂2xw)− uHDs−1∂3xw − s∂xuHDs−1∂2xw⟩|

+ |⟨uHDsw,Ds−1∂x(wH∂2xv)− wHDs−1∂3xv − s∂xwHDs−1∂2xv⟩|

+ |⟨[H, u2]Ds∂2xw,D
sw⟩|+ |⟨∂x(u2HDs∂xw), D

sw⟩|

+ s|⟨[H, u∂xu]Ds∂xw,D
sw⟩|+ |⟨uHDsw,wDs+2v⟩|+ s|⟨uHDsw, ∂xwD

s∂xv⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.49. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨(H∂xu)Ds−1w,Ds−1∂x(u∂
2
xu− v∂2xv)⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

⟨(H∂xu)Ds−1w, uDs−1∂3xw⟩

= −⟨∂x(uH∂xu)Ds−1w,Ds−1∂2xw⟩ − ⟨u(H∂xu)Ds−1∂xw,D
s−1∂2xw⟩

= ⟨∂x(∂x(uH∂xu)Ds−1w), Ds−1∂xw⟩+
1

2
⟨∂x(uH∂xu), (Ds−1∂xw)

2⟩.

Lemma 3.22 shows that

|⟨(H∂xu)Ds−1w,Ds−1∂x(u∂
2
xw + w∂2xv)⟩|

≤ |⟨(H∂xu)Ds−1w,Ds−1∂x(u∂
2
xw)− uDs∂3xw − s∂xuD

s−1∂2xw⟩|

+ |⟨(H∂xu)Ds−1w,Ds−1∂x(w∂
2
xv)− wDs−1∂3xv − s∂xwD

s−1∂2xv⟩|

+ |⟨(H∂xu)Ds−1w, uDs−1∂3xw⟩|+ s|⟨∂x(∂xu(H∂xu)Ds−1w), Ds−1∂xw⟩|

+ |⟨∂x(w(H∂xu)Ds−1w), Ds−1∂2xv⟩|+ s|⟨∂x(∂xw(H∂xu)Ds−1w), Ds−1∂xv⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.50. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨(H∂xu)Ds−1w,Ds−1∂x((∂xu)
2 − (∂xv)

2)⟩|

≲ Is0(u, v)
2{∥w∥2Hs + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Lemma 3.19 shows that

|⟨(H∂xu)Ds−1w,Ds−1∂x(∂xz∂xw)⟩|

≤ |⟨(H∂xu)Ds−1w,Ds−1∂x(∂xz∂xw)−Ds−1∂2xz∂xw − ∂xzD
s−1∂2xw⟩|

+ |⟨∂x(∂xw(H∂xu)Ds−1w), Ds−1∂xz⟩|+ |⟨∂x(∂xz(H∂xu)Ds−1w), Ds−1∂xw⟩|

≲ Is0(u, v)
2{∥w∥2Hs + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

which completes the proof. □

Lemma 3.51. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨(H∂xu)Ds−1w,Ds(uH∂2xu− vH∂2xv)⟩|

≲ Is0(u, v)
2{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

⟨(H∂xu)Ds−1w, uHDs∂2xw⟩

= −⟨∂x(uH∂xu)Ds−1w,HDs∂xw⟩+ ⟨u(H∂xu)HDsw,HDs∂xw⟩

= ⟨∂x(∂x(uH∂xu)Ds−1w),HDsw⟩ − 1

2
⟨∂x(uH∂xu), (HDsw)2⟩.

We have

|⟨(H∂xu)Ds−1w,Ds(uH∂2xw + wH∂2xv)⟩|

≤ |⟨(H∂xu)Ds−1w,Ds(uH∂2xw)− uHDs∂2xw − s∂xuHDs∂xw⟩|

+ |⟨(H∂xu)Ds−1w,Ds(wH∂2xv)− wHDs∂2xv − s∂xwHDs∂xv⟩|

+ |⟨(H∂xu)Ds−1w, uHDs∂2xw⟩|+ s|⟨(H∂xu)Ds−1w, ∂xuHDs∂xw⟩|

+ |⟨(H∂xu)Ds−1w,wHDs∂2xv⟩|+ s|⟨(H∂xu)Ds−1w, ∂xwHDs∂xv⟩|

which completes the proof by Lemma 3.22. □

Lemma 3.52. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uDs∂x(u
2∂xu− v2∂xv),HDs−1w⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.
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Proof. Set z = u+ v. Lemma 3.14 shows that

|⟨uDs∂x(u
2∂xw + zw∂xv),HDs−1w⟩|

≤ |⟨∂xuDs(u2∂xw + zw∂xv),HDs−1w⟩|+ |⟨uDs(u2∂xw + zw∂xv), D
sw⟩|

≤ |⟨D(∂xuHDs−1w), Ds−1(u2∂xw + zw∂xv)⟩|+ |⟨u[Ds, u2]∂xw,D
sw⟩|

+
3

2
|⟨u2∂xu, (Dsw)2⟩|+ |⟨uDs(zw∂xv), D

sw⟩|,

which completes the proof. □

Lemma 3.53. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDs∂x(uH(u∂xu)− vH(v∂xv)),HDs−1w⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

|⟨uHDs∂x(uH(u∂xw) + uH(w∂xv) + wH(v∂xv)),HDs−1w⟩|

≤ |⟨D(∂xuHDs−1w),HDs−1(uH(u∂xw))⟩|+ |⟨uHDs(uH(u∂xw)), D
sw⟩|

+ |⟨∂x(uHDs−1w),HDs(uH(w∂xv) + wH(v∂xv))⟩|.

The second term in the right hand side can be estimated as follows:

|⟨uHDs(uH(u∂xw)), D
sw⟩|

≤ |⟨HDs(uH(u∂xw)) + u2Ds∂xw, uD
sw⟩|+ 3

2
|⟨u2∂xu, (Dsw)2⟩|.

Then Lemma 3.23 completes the proof. □

Lemma 3.54. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDs∂x(u
2H∂xu− v2H∂xv),HDs−1w⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Note that

|⟨uHDs∂x(u
2H∂xw + zwH∂xv),HDs−1w⟩|

≤ |⟨D(∂xuHDs−1w),HDs−1(u2H∂xw)⟩|+ |⟨u[HDs, u2]H∂xw,Dsw⟩|

+
3

2
|⟨u2∂xu, (Dsw)2⟩|+ |⟨∂x(uHDs−1w),HDs(zwH∂xv)⟩|.

Then Lemma 3.14 completes the proof. □
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Lemma 3.55. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨uHDsw,Ds−1∂x(u
2∂xu− v2∂xv)⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

|⟨uHDsw,Ds−1∂x(u
2∂xw + zw∂xv)⟩|

≤ |⟨uHDsw, [Ds−1∂x, u
2]∂xw⟩|+

3

2
|⟨u2∂xu, (HDsw)2⟩|

+ |⟨uHDsw,Ds−1∂x(zw∂xv)⟩|.

Then, Lemma 3.14 completes the proof. □

Lemma 3.56. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨uHDsw,Ds(uH(u∂xu)− vH(v∂xv))⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

|⟨uHDsw,Ds(uH(u∂xw) + uH(w∂xv) + wH(v∂xv))⟩|

≤ |⟨uHDsw,Ds(uH(u∂xw))− u2HDs∂xw⟩|+
3

2
|⟨u2∂xu, (HDsw)2⟩|

+ |⟨uHDsw,Ds(uH(w∂xv) + wH(v∂xv))⟩|.

We see that Lemma 3.23 completes the proof. □

Lemma 3.57. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨uHDsw,Ds(u2H∂xu− v2H∂xv)⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Set z = u+ v. Note that

|⟨uHDsw,Ds(u2H∂xw + zwH∂xv)⟩|

≤ |⟨uHDsw, [Ds, u2]H∂xw⟩|+
3

2
|⟨u2∂xu, (HDsw)2⟩|+ |⟨uHDsw,Ds(zwH∂xv)⟩|.

We see that Lemma 3.14 completes the proof. □
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By the presence of HDs−1, the following lemma is clear:

Lemma 3.58. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨uHDs∂x(u
4 − v4),HDs−1w⟩|+ |⟨uHDsw,Ds(u4 − v4)⟩|

≲ Is0(u, v)
3{∥w∥2Hs + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Lemma 3.59. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+1,s0}(T). Then

|⟨(H∂xu)Ds−1w,Ds−1∂x(F3(u)− F3(v))⟩|+ |⟨(H∂xu)Ds−1w,Ds−1∂x(u
4 − v4)⟩|

≲ Is0(u, v)
4{∥w∥2Hs + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. This follows from Lemma 3.13 because of the presence of Ds−1. □

Lemma 3.60. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨u2Ds−1w,Ds−1∂x(u∂
2
xu− v∂2xv)⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. Note that

|⟨u2Ds−1w,Ds−1∂x(u∂
2
xw + w∂2xv)⟩|

≤ |⟨u2Ds−1w,Ds−1∂x(u∂
2
xw)− uDs−1∂3xw − s∂xuD

s−1∂2xw⟩|

+ |⟨∂x(u2Ds−1w), Ds−1(w∂2xv)⟩|+ 3|⟨∂x(u2∂xuDs−1w), Ds−1∂xw⟩|

+
3

2
|⟨u2∂xu, (HDsw)2⟩|+ s|⟨∂x(u2∂xuDs−1w), Ds−1∂xw⟩|,

which completes the proof. □

Lemma 3.61. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then

|⟨u2Ds−1w,HDs−1∂x(uH∂2xu− vH∂2xv)⟩|

≲ Is0(u, v)
3{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Proof. This follows from a similar argument to Lemma 3.60. □

Cobmining Lemma 3.60 and 3.61, we obtain the following:
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Lemma 3.62. Let s0 > 7/2 and s ≥ 1. Let u, v ∈ Hmax{s+2,s0}(T). Then
4∑

j=2

|⟨u2Ds−1w,Ds−1∂x(Fj(u)− Fj(v))⟩|

≲ Is0(u, v)
5{∥w∥2Hs + ∥w∥2Hs0−1∥v∥2Hs+1 + (∥u∥2Hs + ∥v∥2Hs)∥w∥2Hs0},

where w = u− v.

Definition 12. Let s ≥ 0 and k ∈ N satisfy 2(s+ 2) > k. We define

p(k) :=
2(s+ 2)

2(s+ 2)− k
, q(k) :=

2(s+ 2)

k
.

Note that p(k) > 1 and 1/p(k) + 1/q(k) = 1.

The following five lemmas are estimates for viscous terms −ε1∂4xu + ε2∂
4
xv in

M
(1)
s (u, v).

Lemma 3.63. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+2,s0}(T),∣∣∣∣ε1 ∫
T
∂4xu(HDsw)HDs−1wdx

∣∣∣∣
≤ ε

p(4)
1

100
∥Ds+2w∥2 + C∥u∥q(4)Hs0∥w∥2 + C∥u∥Hs0∥w∥2Hs ,

where w = u− v.

Proof. We set∫
T
∂4xu(HDsw)HDs−1wdx = −

∫
T
∂3xuD

s+1wHDs−1wdx−
∫
T
∂3xu(HDsw)Dswdx

=: A+B.

It is clear that |B| ≲ ∥u∥Hs0∥w∥2Hs Interpolation and the Young inequality show

that

ε1|A| ≤ ε1C∥u∥Hs0∥Ds+1w∥∥Ds−1w∥

≤ ε1C∥u∥Hs0∥w∥4/(s+2)∥Ds+2w∥2−4/(s+2) ≤ ε
p(4)
1

100
∥Ds+2w∥2 + C∥u∥q(4)Hs0∥w∥2,

as desired. □

By a similar argument to the proof of Lemma 3.63, we can show the rest of

estimates for viscous terms in M
(1)
s (u, v).
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Lemma 3.64. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+4,s0}(T),∣∣∣∣ε1 ∫
T
u(HDs∂4xw)HDs−1wdx

∣∣∣∣ ≤
∑3

j=1 ε
p(j)
1

100
∥Ds+2w∥2 + C

3∑
j=1

∥u∥q(j)Hs0∥w∥2,

where w = u− v.

Lemma 3.65. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣ε1 ∫
T
u(HDsw)Ds∂3xwdx

∣∣∣∣ ≤
∑2

j=1 ε
p(j)
1

100
∥Ds+2w∥2 + C

2∑
j=1

∥u∥q(j)Hs0∥w∥2,

where w = u− v.

Lemma 3.66. Let s ≥ 1, s0 > 7/2 and ε1, ε2 ∈ [0, 1]. Then there exists C =

C(s0, s) > 0 such that for any u, v ∈ Hmax{s+4,s0}(T),∣∣∣∣(ε1 − ε2)

∫
T
u(HDs∂4xv)HDs−1wdx

∣∣∣∣ ≤ Cmax{ε21, ε22}∥v∥2Hs+4 + C∥u∥2Hs0∥w∥2Hs ,

where w = u− v.

Lemma 3.67. Let s ≥ 1, s0 > 7/2 and ε1, ε2 ∈ [0, 1]. Then there exists C =

C(s0, s) > 0 such that for any u, v ∈ Hmax{s+4,s0}(T),∣∣∣∣(ε1 − ε2)

∫
T
u(HDsw)Ds∂3xvdx

∣∣∣∣ ≤ Cmax{ε21, ε22}∥v∥2Hs+3 + C∥u∥2Hs0∥w∥2Hs ,

where w = u− v.

The following three lemmas are estimates for viscous terms −ε1∂4xu + ε2∂
4
xv in

M
(2)
s (u, v). We omit the proofs of these lemmas since they are similar to that of

Lemma 3.63.

Lemma 3.68. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+4,s0}(T),∣∣∣∣ε1 ∫
T
(H∂5xu)(Ds−1w)2dx

∣∣∣∣ ≤ ε
p(4)
1

100
∥Ds+2w∥2 + C∥u∥q(4)Hs0∥w∥2 + C∥u∥Hs0∥w∥2Hs ,

where w = u− v.

Lemma 3.69. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣ε1 ∫
T
(H∂xu)Ds−1wDs−1∂4xwdx

∣∣∣∣ ≤
∑3

j=2 ε
p(j)
1

100
∥Ds+2w∥2 + C

3∑
j=2

∥u∥q(j)Hs0∥w∥2,
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where w = u− v.

Lemma 3.70. Let s ≥ 1, s0 > 7/2 and ε1, ε2 ∈ [0, 1]. Then there exists C =

C(s0, s) > 0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣(ε1 − ε2)

∫
T
(H∂xu)Ds−1wDs−1∂4xvdx

∣∣∣∣ ≤ Cmax{ε21, ε22}∥v∥2Hs+3 + C∥u∥2Hs0∥w∥2Hs ,

where w = u− v.

The following three lemmas are estimates for viscous terms −ε1∂4xu + ε2∂
4
xv in

M
(3)
s (u, v).

Lemma 3.71. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣ε1 ∫
T
u∂4xu(D

s−1w)2dx

∣∣∣∣ ≤ C∥u∥2Hs0∥w∥2Hs ,

where w = u− v.

Proof. This is obvious thanks to the integration by parts. □

Lemma 3.72. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣ε1 ∫
T
u2Ds−1wDs−1∂4xwdx

∣∣∣∣ ≤
∑3

j=2 ε
p(j)
1

100
∥Ds+2w∥2 + C

3∑
j=2

∥u∥2q(j)Hs0 ∥w∥2,

where w = u− v.

Proof. First we set∫
T
u2Ds−1wDs−1∂4xwdx

= −2

∫
T
u∂xuD

s−1wDs−1∂3xwdx−
∫
T
u2Ds−1∂xwD

s−1∂3xwdx =: A+B.

The same argument as before implies that

|A| ≤ C∥u∥2Hs0∥w∥2/q(3)∥Ds+2w∥2/p(3),

|B| ≤ C∥u∥2Hs0∥w∥2/q(2)∥Ds+2w∥2/p(2),

which completes the proof. □

Lemma 3.73. Let s ≥ 1, s0 > 7/2 and ε1 ∈ [0, 1]. Then there exists C = C(s0, s) >

0 such that for any u, v ∈ Hmax{s+3,s0}(T),∣∣∣∣(ε1 − ε2)

∫
T
u2Ds−1wDs−1∂4xvdx

∣∣∣∣ ≤ Cmax{ε21, ε22}∥v∥2Hs+3 + C∥u∥4Hs0∥w∥2Hs ,
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where w = u− v.

Proof. This follows from the Hölder inequality. □

Finally, we are ready to show the main inequality in this section.

Proof of Proposition 3.8. Let s′ ∈ [1, s]. Put w := u1 − u2. Note that w satisfies

∂tw = ∂x(K(u1)−K(u2))− ε1∂
4
xw + (ε1 − ε2)∂

4
xu2 (3.19)

on [0,min{Tε1 , Tε2}). By Lemma 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34 and 3.35, we

have∣∣∣∣12 ddt∥Ds′w∥2 + λ1(s
′)⟨∂xu1, (Ds′∂xw)

2⟩+ λ2(s
′)⟨(H∂2xu1)HDs′∂xw,D

s′w⟩

+ λ3(s
′)⟨u1∂xu1HDs′∂xw,D

s′w⟩+ 2ε1∥Ds′+2w∥2|

= |⟨Ds′{∂x(K(u1)−K(u2))− ε1∂
4
xw + (ε1 − ε2)∂

4
xu2}, Ds′w⟩

+ λ1(s
′)⟨∂xu1, (Ds′∂xw)

2⟩+ λ2(s
′)⟨(H∂2xu1)HDs′∂xw,D

s′w⟩+ 2ε1∥Ds′+2w∥2|

≤ CIs0(u1, u2)
3{∥w∥2

Hs′ + ∥w∥2Hs0−3∥u2∥2Hs′+3 + ∥w∥2Hs0 (∥u1∥2Hs′ + ∥u2∥2Hs′ )}

+max{ε21, ε22}∥u2∥2Hs′+4 .

(3.20)

By Lemma 3.38, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46, 3.47, 3.48, 3.52, 3.53, 3.54, 3.55,

3.56, 3.57, 3.58, 3.63, 3.64, 3.65, 3.66 and 3.67, we also have∣∣∣∣ ddtM (1)
s′ (u1, u2)− λ1(s

′)⟨∂xu1, (Ds′∂xw)
2⟩+ λ1(s

′)λ4(s
′)

4
⟨(H∂2xu1)HDs′∂xw,D

s′w⟩
∣∣∣∣

=

∣∣∣∣λ1(s′)4
(⟨∂tuHDs′w,HDs′−1w⟩+ ⟨uHDs′∂tw,HDs′−1w⟩+ ⟨uHDs′w,HDs′−1∂tw⟩)

−λ1(s′)⟨∂xu1, (Ds′∂xw)
2⟩+ λ1(s

′)λ4(s
′)

4
⟨(H∂2xu1)HDs′∂xw,D

s′w⟩
∣∣∣∣

≤ CIs0(u1, u2)
2(s′+2){∥w∥2

Hs′ + ∥w∥2Hs0−3∥u2∥2Hs′+3 + ∥w∥2Hs0 (∥u1∥2Hs′ + ∥u2∥2Hs′ )}

+
ε1
10

∥Ds′+2w∥2 +max{ε21, ε22}∥u2∥2Hs′+4 .

(3.21)

Similarly, by Lemma 3.39, 3.49, 3.50, 3.51, 3.59, 3.68, 3.69, 3.70 and 3.71, we have∣∣∣∣ ddtM (2)
s′ (u1, u2)− λ2(s

′)⟨(H∂2xu1)HDs′∂xw,D
s′w⟩

∣∣∣∣
≤ CIs0(u1, u2)

2(s′+2){∥w∥2
Hs′ + ∥w∥2Hs0−3∥u2∥2Hs′+3

+ ∥w∥2Hs0 (∥u1∥2Hs′ + ∥u2∥2Hs′ )}+
ε1
10

∥Ds′+2w∥2 +max{ε21, ε22}∥u2∥2Hs′+4 .

(3.22)
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Moreover, by Lemma 3.40, 3.62, 3.72 and 3.73, we obtain∣∣∣∣ ddtM (3)
s′ (u1, u2)−

λ1(s
′)λ4(s

′) + 4λ3(s
′)

4
⟨u∂xuHDs′∂xw,D

s′w⟩
∣∣∣∣

≤ CIs0(u1, u2)
2(s′+2){∥w∥2

Hs′ + ∥w∥2Hs0−3∥u2∥2Hs′+3

+ ∥w∥2Hs0 (∥u1∥2Hs′ + ∥u2∥2Hs′ )}+
ε1
10

∥Ds′+2w∥2 +max{ε21, ε22}∥u2∥2Hs′+4 .

(3.23)

It is easy to see that

d

dt
{∥w∥2(1 + C∥u1∥2 + C∥u1∥4s

′
)} ≤ CIs0(u1, u2)

4s′+3∥w∥2
Hs′ . (3.24)

Therefore, collecting (3.20), (3.21), (3.22), (3.23) and (3.24), we obtain (3.9). □

3.4. The energy estimate in L2. In this subsection, we prove Proposition 3.9,

which is the only thing left to prove. We introduce some estimates for the operator

J .

Lemma 3.74. Let k ∈ N ∪ {0}. There exists C = C(k) > 0 such that

∥HJ∂k+1
x f − ∂kxf∥ ≤ C∥f∥

for any f ∈ L2(T).

Proof. It suffices to show that there exists C = C(k) > 0 such that∣∣∣∣−i sgn(ξ)ψ(ξ)|ξ|
(iξ)k+1 − (iξ)k

∣∣∣∣ ≤ C

for any ξ ∈ Z. But this is clear since the left hand side is equal to |ξ|k|ψ(ξ)− 1| and
supp(1− ψ) ⊂ {|ξ| ≤ 2}. □

Lemma 3.75. Let s0 > 5/2. Let u ∈ Hs0(T) and v ∈ L2(T). Then

∥J∂x(u∂2xv) + uH∂2xv∥ ≲ ∥u∥Hs0∥v∥.

Proof. Note that

J∂x(u∂
2
xv) + uH∂2xv

= (J∂3x +H∂2x)(uv)− 2(J∂2x +H∂x)(∂xuv) + J∂x(∂
2
xuv)− [H, u]∂2xv +H(∂2xuv).

Lemma 3.74 shows the desired inequality. □

As a corollary, we have the following.

Corollary 3.76. Let s0 > 5/2. Let u ∈ Hs0(T) and v ∈ L2(T). Then

∥HJ∂x(uH∂2xv)− uH∂2xv∥ ≲ ∥u∥Hs0∥v∥.
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Lemma 3.77. Let s0 > 5/2. Let u ∈ Hs0(T) and v ∈ L2(T). Then

∥J∂x(∂xu∂xv) + ∂xuH∂xv∥ ≲ ∥u∥Hs0∥v∥.

Proof. This follows from the follwing equality

J∂x(∂xu∂xv) + ∂xuH∂xv

= (J∂2x +H∂x)(∂xuv)− J∂x(∂
2
xuv)−H(∂2xuv)− [H, ∂xu]∂xv

and Lemma 3.74. □

As a corollary, we have the following.

Corollary 3.78. Let s0 > 5/2. Let u ∈ Hs0(T) and v ∈ L2(T). Then

∥HJ∂x((H∂xu)H∂xv)− (H∂xu)H∂xv∥ ≲ ∥u∥Hs0∥v∥.

Lemma 3.79. Let s0 > 1/2 and Λ = D2 or D∂x. There exists C(s0) > 0 such that

for any f ∈ Hs0+1(T) and g ∈ L2(T),

∥[⟨D⟩−1Λ, f ]g∥ ≤ C∥f∥Hs0+1∥g∥.

Proof. See (ii) of Lemma 2.4 in [29]. □

We estimate the time derivative of M (j)(u, v) for j = 1, 2, 3.

Lemma 3.80. Let s0 > 7/2. Let u,w ∈ Hs0+1(T). Then

|⟨(H∂4xu)Hw,HJw⟩ − ⟨u∂4xw,HJw⟩ − ⟨uHw, J∂4xw⟩ − 4⟨∂xu, (∂xw)2⟩| ≲ ∥u∥Hs0∥w∥2.

Proof. We use Lemma 3.37 with f = u, g = Hw and h = HJw. It is clear that

(3.18) with s = 0 holds. Set

−4⟨∂xfH∂xg, ∂2xh⟩+ 2⟨∂2xfHg, ∂2xh⟩ = 6⟨∂2xfHg, ∂2xh⟩+ 4⟨∂xfHg, ∂3xh⟩ =: A+B.

For A, Lemma 3.74 shows that

|A| ≤ 6|⟨w∂2xu, (HJ∂2x − ∂x)w⟩|+ 3|⟨∂3xu,w2⟩|+ 6|ŵ(0)⟨∂3xu,HJ∂xw⟩|

≲ ∥u∥Hs0∥w∥2.

Similarly, Lemma 3.25 and 3.74 show that

|B − 4⟨∂xu, (∂xw)2⟩|

≤ 4|⟨w∂xu, (HJ∂3x − ∂2x)w⟩|+ 4|⟨∂xuw, ∂2xw⟩+ ⟨∂xu, (∂xw)2⟩| ≲ ∥u∥Hs0∥w∥2,

which completes the proof. □
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Lemma 3.81. Let s0 > 7/2. Let u,w ∈ Hs0+1(T). Then

|⟨∂5xu, (Jw)2⟩ − 2⟨(H∂xu)Jw,HJ∂4xw⟩+ 4⟨(H∂2xu)H∂xw,w⟩| ≲ ∥u∥Hs0∥w∥2.

Proof. The integration by parts shows that

|⟨∂5xu, (Jw)2⟩ − 2⟨(H∂xu)Jw,HJ∂4xw⟩+ 4⟨(H∂2xu)H∂xw,w⟩|

= |⟨∂4xuJw, J∂xw⟩ − ⟨(Hu)J∂xw,HJ∂4xw⟩ − ⟨(Hu)Jw,HJ∂5xw⟩

− 2⟨(H∂2xu)H∂xw,w⟩|,

which allows us to use Lemma 3.37 with f = Hu, g = J∂xw and h = Jw. Then

(3.18) with s = 0 holds. Lemma 3.26 shows that

|⟨∂xfH∂xg, ∂2xh⟩| = |⟨∂x((H∂xu)HJ∂2xw), J∂xw⟩| ≲ ∥u∥Hs0∥w∥2.

Finally, we have

2⟨∂2xfHg, ∂2xh⟩

= 2⟨(H∂2xu)HJ∂xw, J∂2xw⟩

= 2⟨(H∂2xu)HJ∂xw, (J∂2x +H∂x)w⟩+ 2⟨(H∂3xu)(HJ∂x − 1)w,Hw⟩

+ 2⟨(H∂2xu)(HJ∂2x − ∂x)w,Hw⟩ − 2⟨(H∂2xu)H∂xw,w⟩,

which completes the proof. □

Lemma 3.82. Let s0 > 7/2. Let u,w ∈ Hs0+1(T). Then

|⟨uH∂4xu, (Jw)2⟩+ ⟨u2Jw,HJ∂4xw⟩ − 4⟨u∂xuH∂xw,w⟩| ≲ ∥u∥2Hs0∥w∥2.

Proof. Adding and subtraction a term, we have

2|⟨uH∂4xu, (Jw)2⟩+ ⟨u2Jw,HJ∂4xw⟩ − 4⟨u∂xuH∂xw,w⟩|

≤ |⟨H∂4x(u2), (Jw)2⟩+ 2⟨u2Jw,HJ∂4xw⟩ − 8⟨u∂xuH∂xw,w⟩|

+ |⟨2uH∂4xu−H∂4x(u2), (Jw)2⟩|.

Lemma 3.5 and 3.15 show that the second term in the right hand side can be

estimated by ≲ ∥u∥2Hs0∥w∥2. We use Lemma 3.37 with f = u2 and g = h = Jw.

Note that (3.18) with s = 0 holds. It is easy to see that

|⟨∂2xfHg, ∂2xh⟩| = |⟨∂x(∂2x(u2)HJw), J∂xw⟩| ≲ ∥u∥2Hs0∥w∥2.
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Finally, Lemma 3.74 shows that

− 4⟨∂xfH∂xg, ∂2xh⟩

= −8⟨u∂xuHJ∂xw, (J∂2x +H∂x)w⟩ − 8⟨∂x(u∂xu)(HJ∂x − 1)w,Hw⟩

− 8⟨u∂xu(HJ∂2x − ∂x)w,Hw⟩+ 8⟨u∂xuH∂xw,w⟩,

which completes the proof. □

Lemma 3.83. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uH∂x(u∂2xu− v∂2xv),HJw⟩ − 3⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. First we set

A := ⟨uH∂x(u∂2xw),HJw⟩, B := ⟨uH∂x(w∂2xv),HJw⟩.

It is clear that |B| ≲ ∥u∥Hs0∥v∥Hs0∥w∥2. Note that

∂x(u∂
2
xw) = ∂3x(uw)− 2∂2x(∂xuw) + ∂x(∂

2
xuw).

Then we set

A = ⟨uH∂3x(uw),HJw⟩ − 2⟨uH∂2x(∂xuw),HJw⟩+ ⟨uH∂x(∂2xuw),HJw⟩

=: A1 + A2 + A3.

It is clear that |A3| ≲ ∥u∥2Hs0∥w∥2. For A1, we have

A1 = ⟨uw,H∂3x(uHJw)⟩

= ⟨uw,H(∂3xuHJw)⟩+ 3⟨uw,H(∂2xuHJ∂xw)⟩+ 3⟨uw,H(∂xuHJ∂2xw)⟩

+ ⟨uw,H(uHJ∂3xw)⟩ =: A11 + · · ·+ A14.

It is clear that |A11|+ |A12| ≲ ∥u∥2Hs0∥w∥2. For A13, we have

A13 = 3⟨uw, [H, ∂xu]HJ∂2xw⟩ − 3⟨u∂xuw, J∂2xw⟩

= 3⟨uw, [H, ∂xu]HJ∂2xw⟩ − 3⟨u∂xuw, J∂2xw +H∂xw⟩+ 3⟨u∂xuH∂xw,w⟩.

Similarly, we have

A14 = ⟨uw, [H, u]HJ∂3xw⟩ − ⟨u2w, J∂3x +H∂2xw⟩

+ ⟨∂x(u2H∂xw), w⟩ − 2⟨u∂xuH∂xw,w⟩.



W.P. FOR HIGHER ORDER NONLINEAR DISPERSIVE EQUATIONS 69

Finally, we have

A2 = 2⟨∂xuw,H(∂2xuHJw)⟩+ 4⟨∂xuw,H(∂xuHJ∂xw)⟩+ 2⟨∂xuw,H(uHJ∂2xw)⟩

=: A21 + A22 + A23.

Obviously, |A21|+ |A22| ≲ ∥u∥2Hs0∥w∥2. Observe that

A23 = 2⟨∂xuw, [H, u]HJ∂2xw⟩ − 2⟨u∂xu(J∂2xw +H∂xw), w⟩+ 2⟨u∂xuH∂xw,w⟩.

Therefore, we have

|A+B − 3⟨u∂xuH∂xw,w⟩|

≤ |A1 − ⟨u∂xuH∂xw,w⟩|+ |A2 − 2⟨u∂xuH∂xw,w⟩|+ |A3|+ |B| ≲ Is0(u, v)
2∥w∥2,

which completes the proof. □

Lemma 3.84. Let s0 > 7/2. Let u, v ∈ Hs0+1(T). Then

|⟨uHw,HJ∂x(u∂2xu− v∂2xv)⟩ − 2⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. First we set A := ⟨uHw,HJ∂x(u∂2xw)⟩ and B := ⟨uHw,HJ∂x(w∂2xv)⟩. It

is easy to see that |B| ≲ I(u, v)2∥w∥2. We have

A = ⟨uHw,H{J∂x(u∂2xw) + uH∂2xw}⟩ − ⟨uHw, [H, u]∂2xw⟩

+ ⟨∂2x(u2)Hw,w⟩+ ⟨∂x(u2H∂xw), w⟩+ 2⟨u∂xuH∂xw,w⟩.

Lemma 3.15, 3.26 and 3.75 show that

|A− 2⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)
2∥w∥2,

which completes the proof. □

We modify Lemma 3.43 in L2(T).

Lemma 3.85. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uH∂x((∂xu)2 − (∂xv)
2),HJw⟩+ 2⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)

2∥w∥2,

where w = u− v.

Proof. Set z = u+ v. First we set

⟨uH∂x(∂xz∂xw),HJw⟩ = ⟨uH∂2x(∂xzw),HJw⟩ − ⟨uH∂x(∂2xzw),HJw⟩

=: A+B.
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It is clear that |B| ≲ I(u, v)2∥w∥2. Moreover, we set

A = −⟨∂xzw,H∂2x(uHJw)⟩

= −⟨∂xzw,H(∂2xuHJw)⟩ − 2⟨∂xzw,H(∂xuHJ∂xw)⟩ − ⟨∂xzw,H(uHJ∂2xw)⟩

=: A1 + A2 + A3.

It is also clear that |A1|+ |A2| ≲ I(u, v)2∥w∥2. For A3, we have

A3 = −⟨∂xzw, [H, u]HJ∂2xw⟩+ ⟨∂xzw, uJ∂2xw +H∂xw⟩ − 2⟨u∂xuH∂xw,w⟩

− 1

2
⟨∂x(uH∂xw), w2⟩,

from which follows that

|A+B + 2⟨u∂xuH∂xw,w⟩|

≤ |A1|+ |A2|+ |A3 + 2⟨u∂xuH∂xw,w⟩|+ |B| ≲ Is0(u, v)
2∥w∥2,

which completes the proof. □

Lemma 3.86. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uHw,HJ∂x((∂xu)2 − (∂xv)
2)⟩+ 2⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)

2∥w∥2,

where w = u− v.

Proof. Set z = u+ v. Note that

⟨uHw,HJ∂x(∂xz∂xw)⟩

= ⟨uHw,H{J∂x(∂xz∂xw) + ∂xzH∂xw}⟩ − ⟨uHw, [H, ∂xz]H∂xw⟩

− ⟨∂x(u∂xz)Hw,w⟩ − ⟨∂x(uH∂xw), w2⟩/2− 2⟨u∂xuH∂xw,w⟩.

Then, Lemma 3.15 together with Lemma 3.77 completes the proof. □

Lemma 3.87. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uH∂x((H∂xu)2 − (H∂xv)2),HJw⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. Set z = u+ v and set

⟨uH∂x((H∂xz)H∂xw),HJw⟩

= ⟨uH∂2x((H∂xz)Hw),HJw⟩ − ⟨uH∂x((H∂2xz)Hw),HJw⟩ =: A+B.
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It is clear that |B| ≲ Is0(u, v)
2∥w∥2. Observe that

A = −⟨(H∂xz)Hw,H∂2x(uHJw)⟩

= −⟨(H∂xz)Hw,H(∂2xuHJw)⟩ − 2⟨(H∂xz)Hw,H(∂xuHJ∂xw)⟩

− ⟨(H∂xz)Hw,H(uHJ∂2xw)⟩ =: A1 + A2 + A3.

Again, |A1|+ |A2| ≲ Is0(u, v)
2∥w∥2. And we note that

A3 = −⟨(H∂xz)Hw, [H, u]HJ∂2xw⟩+ ⟨(H∂xz)Hw, uJ∂2xw⟩

= −⟨(H∂xz)Hw, [H, u]HJ∂2xw⟩+ ⟨u(H∂xz)Hw, J∂2xw +H∂xw⟩

+
1

2
⟨∂x(uH∂xz), (Hw)2⟩,

which completes the proof. □

Lemma 3.88. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uHw,HJ∂x((H∂xu)2 − (H∂xv)2)⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. Set z = u+ v. Note that

⟨uHw,HJ∂x((H∂xz)H∂xw)⟩

= ⟨uHw,HJ∂x((H∂xz)H∂xw)− (H∂xz)H∂xw⟩ −
1

2
⟨∂x(uH∂xz), (Hw)2⟩.

Corollary 3.78 completes the proof. □

Lemma 3.89. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨u∂x(uH∂2xu− vH∂2xv),HJw⟩ − 3⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. First we set

A := ⟨u∂x(uH∂2xw),HJw⟩, B := ⟨u∂x(wH∂2xv),HJw⟩.

It is clear that |B| ≲ Is0(u, v)
2∥w∥2. We also set

A = ⟨u∂3x(uHw),HJw⟩ − 2⟨u∂2x(∂xuHw),HJw⟩+ ⟨u∂x(∂2xuHw),HJw⟩

=: A1 + A2 + A3.
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Again, it is clear that |A3| ≲ Is0(u, v)
2∥w∥2. Note that

A1 = −⟨uHw, ∂3x(uHJw)⟩

= −⟨uHw, ∂3xuHJw⟩ − 3⟨uHw, ∂2xuHJ∂xw⟩ − 3⟨uHw, ∂xuHJ∂2xw⟩

− ⟨u2Hw,HJ∂3xw⟩ =: A11 + A12 + A13 + A14.

It is easy to see that |A11|+ |A12| ≲ Is0(u, v)
2∥w∥2. We have

A13 = −3⟨u∂xuHw, (HJ∂2x − ∂x)w⟩+ 3⟨∂x(u∂xu)Hw,w⟩+ 3⟨u∂xuH∂xw,w⟩

and

A14 = −⟨u2Hw, (HJ∂3x − ∂2x)w⟩ − ⟨∂2x(u2)Hw,w⟩ − ⟨∂x(u2H∂xw), w⟩

− 2⟨u∂xuH∂xw,w⟩.

Similarly, we have

A2 = −2⟨∂xuHw, ∂2xuHJw + 2∂xuHJ∂xw⟩ − 2⟨u∂xuHw,HJ∂2xw⟩

= −2⟨∂xuHw, ∂2xuHJw + 2∂xuHJ∂xw⟩ − 2⟨u∂xuHw, (HJ∂2x − ∂x)w⟩

+ 2⟨∂x(u∂xu)Hw,w⟩+ 2⟨u∂xuH∂xw,w⟩.

Therefore, we see that

|A+B − 3⟨u∂xuH∂xw,w⟩|

≤ |A11|+ |A12|+ |A13 − 3⟨u∂xuH∂xw,w⟩|+ |A14 + 2⟨u∂xuH∂xw,w⟩|

+ |A2 − 2⟨u∂xuH∂xw,w⟩|+ |A3|+ |B| ≲ Is0(u, v)
2∥w∥2,

which completes the proof. □

Lemma 3.90. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨uHw, J∂x(uH∂2xu− vH∂2xv)⟩ − 2⟨u∂xuH∂xw,w⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. First we set A = ⟨uHw, J∂x(uH∂2xw)⟩ and B := ⟨uHw, J∂x(w∂2xv)⟩. It is

clear that |B| ≲ I(u, v)2∥w∥2. On the other hand, we have

A = ⟨uHw, J∂x(uH∂2xw)− u∂2xw⟩+ ⟨∂2x(u2)Hw,w⟩+ ⟨∂x(u2H∂xw), w⟩

+ 2⟨u∂xuH∂xw,w⟩.

Then, Lemma 3.75 completes the proof. □



W.P. FOR HIGHER ORDER NONLINEAR DISPERSIVE EQUATIONS 73

Lemma 3.91. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨(H∂xu)Jw, J∂x(u∂2xu− v∂2xv)⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. First we set A = ⟨(H∂xu)Jw, J∂x(u∂2xw)⟩ and B = ⟨(H∂xu)Jw, J∂x(w∂2xv)⟩.
It is easy to see that |B| ≲ Is0(u, v)

2∥w∥2. We also set A′ = ⟨(H∂xu)Jw, uH∂2xw⟩.
Lemma 3.75 shows that |A+ A′| ≲ Is0(u, v)

2∥w∥2. So we consider A′. Note that

A′ = ⟨∂2x(uH∂xu)Jw,Hw⟩+ 2⟨∂x(uH∂xu)J∂xw,Hw⟩+ ⟨u(H∂xu)J∂2xw,Hw⟩

=: A′
1 + A′

2 + A′
3.

It is clear that |A′
1|+ |A′

2| ≲ Is0(u, v)
2∥w∥2. Lemma 3.74 shows that

A′
3 = ⟨u(H∂xu)(J∂2x +H∂x)w,Hw⟩+

1

2
⟨∂x(uH∂xu), (Hu)2⟩,

which completes the proof. □

Lemma 3.92. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨(H∂xu)Jw, J∂x((∂xu)2 − (∂xv)
2)⟩| ≲ Is0(u, v)

2∥w∥2,

where w = u− v.

Proof. Set z = u+ v. Note that

⟨(H∂xu)Jw, J∂x((∂xu)2 − (∂xv)
2)⟩ = −⟨∂x(∂xzJ∂x((H∂xu)Jw)), w⟩,

which shows the desired inequality. □

Lemma 3.93. Let s0 > 7/2. Let u, v ∈ Hs+2(T). Then

|⟨(H∂xu)Jw, J∂x((H∂xu)2 − (H∂xv)2)⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

Proof. The proof is identical with that of the previous lemma. □

A similar argument to the proof of Lemma 3.91 with using Corollary 3.76, we can

show the following:

Lemma 3.94. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

|⟨(H∂xu)Jw,HJ∂x(uH∂2xu− vH∂2xv)⟩| ≲ Is0(u, v)
2∥w∥2,

where w = u− v.

By the integration by parts with Lemma 3.15 and 3.74, we obtain the following:
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Lemma 3.95. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

4∑
j=3

(|⟨uH∂x(Fj(u)− Fj(v)),HJw⟩|+ |⟨uHw,HJ∂x(Fj(u)− Fj(v))⟩|)

≲ Is0(u, v)
4∥w∥2,

where w = u− v.

By the presence of J , we can easily obtain the following two lemmas:

Lemma 3.96. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

4∑
j=3

|⟨(H∂xu)Jw, J∂x(Fj(u)− Fj(v))⟩| ≲ Is0(u, v)
4∥w∥2,

where w = u− v.

Lemma 3.97. Let s0 > 7/2. Let u, v ∈ Hs0(T). Then

4∑
j=2

|⟨u2Jw, J∂x(Fj(u)− Fj(v))⟩| ≲ Is0(u, v)
5∥w∥2,

where w = u− v.

Proof of Proposition 3.9. The proof is similar to that of Proposition 3.10. Put w :=

u1 − u2. Then w satisfies (3.19) on [0, T ]. By Lemma 3.36, we have∣∣∣∣12 ddt∥w∥2 + λ1(0)⟨∂xu1, (∂xw)2⟩+ λ2(0)⟨(H∂2xu1)H∂xw,w⟩+ λ3(0)⟨u1∂xu1H∂xw,w⟩
∣∣∣∣

≤ CIs0(u1, u2)
3∥w∥2Hs +max{ε21, ε22}∥u2∥2Hs0+1 .

(3.25)

By Lemma 3.80, 3.83, 3.84, 3.85, 3.86, 3.87, 3.88, 3.89, 3.90, 3.95, we also have∣∣∣∣ ddtM (1)(u1, u2)− λ1(0)⟨∂xu1, (∂xw)2⟩+
λ1(0)λ4(0)

4
⟨(H∂2xu1)H∂xw,w⟩

∣∣∣∣
≤ CIs0(u1, u2)

5∥w∥2Hs +max{ε21, ε22}∥u2∥2Hs0+1

(3.26)

Similarly, by Lemma 3.81, 3.91, 3.92, 3.93, 3.94, 3.96, we have∣∣∣∣ ddtM (2)(u1, u2)− λ2(0)⟨(H∂2xu1)H∂xw,w⟩
∣∣∣∣

≤ CIs0(u1, u2)
5∥w∥2Hs +max{ε21, ε22}∥u2∥2Hs0+1 .

(3.27)
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Moreover, by Lemma 3.82 and 3.97, we obtain∣∣∣∣ ddtM (3)(u1, u2)−
λ1(0)λ4(0) + 4λ3(0)

4
⟨u∂xuH∂xw,w⟩

∣∣∣∣
≤ CIs0(u1, u2)

5∥w∥2Hs +max{ε21, ε22}∥u2∥2Hs0+1 .

(3.28)

It is easy to see that

d

dt
{∥w∥2H−1(1 + C∥u1∥2 + C∥u1∥4)} ≤ CIs0(u1, u2)

7∥w∥2. (3.29)

Indeed, we have

⟨⟨D⟩−1∂x(u1∂
2
xu1 − u2∂

2
xu2), ⟨D⟩−1w⟩

= −⟨[⟨D⟩−1∂2x, u1]w, ⟨D⟩−1∂xw⟩ −
1

2
⟨∂xu1, (⟨D⟩−1∂xw)

2⟩

+ 2⟨⟨D⟩−1∂x(∂xu1w), ⟨D⟩−1∂xw⟩ − ⟨⟨D⟩−1(∂2xu1w), ⟨D⟩−1∂xw⟩

+ ⟨⟨D⟩−1∂x(w∂
2
xu2), ⟨D⟩−1w⟩,

which together with Lemma 3.79 implies that

|⟨⟨D⟩−1∂x(u1∂
2
xu1 − u2∂

2
xu2), ⟨D⟩−1w⟩| ≲ Is0(u1, u2)∥w∥2.

Other terms can be estimated in a simiar way, and then we obtain (3.29). Therefore,

collecting (3.25), (3.26), (3.27), (3.28) and (3.29), we obtain (3.10). □
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4. Well-posedness and parabolic smoothing effect for higher order

Schrödinger type equations with constant coefficients

4.1. Introduction. We consider the Cauchy problem of the following:

Dtu(t, x) = D2m
x u(t, x) +

2m∑
j=1

(
ajD

2m−j
x u(t, x) + bjD

2m−j
x ū(t, x)

)
, (4.1)

u(0, x) = φ(x), (4.2)

where 1 ≤ m ∈ N, M = R (orT), (t, x) ∈ (−∞,∞) ×M, Dt = −i∂t, Dx = −i∂x
and i is the imaginary unit. The constants {aj}, {bj} ⊂ C and the initial data

φ(x) : M → C are given and u(t, x) : (−∞,∞) × M → C is unknown. We are

interested in the Cauchy problem of the following higher order nonlinear Schrödinger

type equations:

i∂tu(t, x)− ∂2mx u(t, x) = F (∂2m−1
x u, ∂2m−1

x u, ∂2m−2
x u, ∂2m−2

x u, . . . u, u), (4.3)

with (4.2), where F is a polynomial. As important examples, this class of equa-

tions includes the nonlinear Schrödinger hierarchy and the derivative nonlinear

Schrödinger hierarchy, which are integrable systems appearing in the soliton the-

ory. In [3], Chihara studied the well-posedness and the ill-posedness of (4.3) for

m = 1 with (4.2) on T. Recently, in [32], Tsugawa has studied similar problem and

shown a non-existence result of solutions of (4.3) for some nonlinearity and m = 1

with (4.2) on T by employing the twisted parabolic smoothing. In their proofs,

the so called “energy inequality” of (4.1) with variable coefficients {aj(t, x)} and

{bj(t, x)} plays an important role. Our plan is to extend this result to m ≥ 2. How-

ever, the energy inequality for higher m is much complicated. Therefore, we assume

{aj} and {bj} are constants to make the problem simple in the present paper and

will study the variable coefficients case in the forthcoming paper. λ defined below

is used to classify (4.1) into three types.

Definition 13. γ = {γj}m−1
j=1 and λ = {λj}2m−1

j=1 are defined as

γj = b2j −
j−1∑
k=1

ā2(j−k)γk, 1 ≤ j ≤ m− 1,
λ2j = 2 Im a2j − 2

j−1∑
k=1

Im b̄2(j−k)γk, 1 ≤ j ≤ m− 1,

λ2j−1 = 2 Im a2j−1 + 2

j−1∑
k=1

Im b̄2(j−k)−1γk, 1 ≤ j ≤ m.
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Our main result is the following.

Theorem 4.1.

(Dispersive type, L2 well-posedness) Assume that λj = 0 for 1 ≤ j ≤ 2m− 1. Then,

for any φ ∈ L2(M), there exists a unique solution u(t, x) of (4.1)–(4.2) such that

u(t, x) ∈ C((−∞,∞);L2(M)).

(Parabolic type) Assume that there exists j∗ ∈ N such that λj = 0 for 1 ≤ j <

2j∗ and λ2j∗ > 0 (resp. λ2j∗ < 0). Then, for any φ ∈ L2(M), there exist a

unique solution u(t, x) of (4.1)–(4.2) on [0,∞) (resp. (−∞, 0]) such that u(t, x) ∈
C([0,∞);L2(M)) ∩ C∞((0,∞) × M) (resp. C((−∞, 0];L2(M)) ∩ C∞((−∞, 0) ×
M)). For any φ ∈ L2(M)\C∞(M) and δ > 0, no solution u of (4.1)–(4.2) exists on

(−δ, 0] (resp. [0, δ)) such that u(t, x) ∈ C((−δ, 0];L2(M)) (resp. C([0, δ);L2(M))).

(Twisted parabolic type) Assume that there exists j∗ ∈ N such that λj = 0 for 1 ≤ j <

2j∗− 1 and λ2j∗−1 > 0 (resp. λ2j∗−1 < 0). Let φ ∈ L2(M) satisfy P+φ ̸∈ H1/2(M).

Then, for any δ > 0, there exist no solution u(t, x) of (4.1)–(4.2) on [−δ, 0] (resp.
[0, δ]) satisfying u ∈ C([−δ, 0];L2(M)) (resp. u ∈ C([0, δ];L2(M))). Moreover, the

same result as above holds even if we replace P+, [−δ, 0] and [0, δ] with P−, [0, δ]

and [−δ, 0], respectively.

Remark 4.1. Put v(t) = ⟨∂x⟩−su(t). Then v satisfies (4.1) if u is the solution of

(4.1) and u(t) ∈ L2(M) ⇔ v(t) ∈ Hs(M). Therefore, Theorem 4.1 holds even if we

replace L2(M) with Hs(M) and H1/2(M) with Hs+1/2(M) for any s ∈ R.

Remark 4.2. In “Dispersive type”, the persistence of regularity holds on both (−∞, 0]

and [0,∞). In “Parabolic type”, the equations have the parabolic smoothing effect

on either (−∞, 0] or [0,∞), which means the persistence of regularity breaks down

on either [0,∞) or (−∞, 0]. Non-existence results in “Parabolic type” and “Twisted

parabolic type” is by the breakdown of the persistence of regularity.

Since the coefficients are constants, by the Fourier transform, (4.1) can be rewrit-

ten into the following:

Dtû(t, ξ) = ξ2mû(t, ξ) +
2m∑
j=1

(
ajξ

2m−jû(t, ξ) + bjξ
2m−jû(t,−ξ)

)
. (4.4)

Here, we fix ξ ∈ R (or Z) and put

Uξ(t) =

(
û(t, ξ)

û(t,−ξ)

)
, X0 =

(
1 0

0 −1

)
, Xj =

(
aj bj

(−1)j+1bj (−1)j+1aj

)
,
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for 1 ≤ j ≤ 2m. Then, by (4.4) with (4.2), it follows that

DtUξ(t) =
2m∑
j=0

ξ2m−jXjUξ(t), Uξ(0) =
t(φ̂(ξ), φ̂(−ξ)), (4.5)

which is a system of linear ordinary differential equations. We can easily obtain the

unique solution

Uξ(t) = Uξ(0) exp it
2m∑
j=0

ξ2m−jXj (4.6)

on t ∈ (−∞,∞) for each ξ ∈ R (or T). Therefore, our interest in Theorem 4.1 is

essentially on the regularity of the solution. Here, note that XjXk = XkXj holds

for any 0 ≤ j, k ≤ 2m if and only if bj = 0 holds for any 1 ≤ j ≤ 2m. If we assume

this assumption, (4.5) is not a system but a single ordinary differential equation and

û(t, ξ) = φ̂(ξ) exp it
(
ξ2m +

2m∑
j=1

ξ2m−jaj

)
(4.7)

for each ξ ∈ R (or Z). Since γj = 0 and λj = 2Im aj, it follows that

|û(t, ξ)| = |φ̂(ξ)|
2m∏
j=1

exp
−tξ2m−jλj

2
,

by which we obtain Theorem 4.1 easily. On the other hand, it seems difficult to

obtain Theorem 4.1 by (4.6) for general {bj} since XjXk ̸= XkXj for some j, k. To

avoid this difficulty, we employ the energy estimate. Propositions 4.2 and 4.3 are

main estimates in this paper. The first term of the left-hand side of (4.8) is the

main part of the energy. The second term is the correction term. For “Dispersive

type”, the third and the fourth terms vanish. Thus, we easily obtain the L2 a

priori estimate. For “Parabolic type”, the third term includes λ2j∗∥|∂x|m−j∗u∥2.
The parabolic smoothing is caused by the term. For “Twisted parabolic type”,

the fourth term includes λ2j∗−1⟨D2(m−j)+1
x u, u⟩. We want to show the parabolic

smoothing by making use of the term. However, the sign of the term is not definite.

That is unfavorable in our argument. Therefore, we compute the energy inequalities

of P+u and P−u instead of u and obtain Proposition 4.4. Note that the sign of

all terms except the correction terms in (4.11) and (4.12) are definite. Though

(4.11) is the energy inequality for ∥P+u∥, it includes λ−j ∥|∂x|m−j/2P−u∥2. This is

because (4.1) is essentially coupled system of P+u and P−u as (4.4). The term

λ−j ∥|∂x|m−j/2P−u∥2 cannot be estimated by ∥u∥. This is the main difficulty in

the proof of “Twisted parabolic type” in Theorem 4.1. We analyse a property of

{λ−j } and use an additional correction term F−
k to eliminate a bad effect caused by
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λ−j ∥|∂x|m−j/2P−u∥2 and obtain (4.9) (see also (4.10)). This is the key idea in this

paper.

4.2. The energy estimates. Our purpose in this subsection is to show Propo-

sitions 4.2 and 4.3. Proposition 4.2 below is used to show “Dispersive type” and

“Parabolic type” in Theorem 4.1.

Proposition 4.2. Let u satisfy (4.1). Then, there exists C = C({aj}, {bj}) > 0

such that ∣∣∣∣∣ ddt
(
∥u∥2 +

m−1∑
j=1

Re γj⟨D−2j
x P ̸=0ū, P ̸=0u⟩

)

+
m−1∑
j=1

λ2j∥|∂x|m−ju∥2 +
m∑
j=1

λ2j−1⟨D2(m−j)+1
x u, u⟩

∣∣∣∣∣ ≤ C∥u∥2.

(4.8)

Definition 14. α = {αj}2m−1
j=1 , λ+ = {λ+j }2m−1

j=1 , λ− = {λ−j }2m−1
j=1 are defined as

αj = bj −
1

2

j−1∑
k=1

(1 + (−1)j−k)āj−kαk, 1 ≤ j ≤ 2m− 1,

λ+j = 2 Im aj +

j−1∑
k=1

(−1)j−k+1 Im b̄j−kαk, 1 ≤ j ≤ 2m− 1,

λ−j = −
j−1∑
k=1

Im b̄j−kαk, 1 ≤ j ≤ 2m− 1,

and β+ = {β+
k }

2(m−j∗−1)
j=1 and β− = {β−

k }
2(m−j∗−1)
j=1 for 1 ≤ j∗ ≤ m− 2 are defined as

λ−2j∗+k+1 =
k∑

j=1

(−1)k−jλ+2j∗+k−j−1β
+
k , 1 ≤ k ≤ 2(m− j∗ − 1),

λ−2j∗+k+1 =
k∑

j=1

(−1)k−1λ+2j∗+k−j−1β
−
k , 1 ≤ k ≤ 2(m− j∗ − 1).

Remark 4.3. It is easy to see that γj = α2j for 1 ≤ j ≤ m− 1. Then, we have

λ2j = λ+2j + λ−2j, λ2k−1 = λ+2k−1 − λ−2k−1

for 1 ≤ j ≤ m− 1 and 1 ≤ k ≤ m.

Proposition 4.3 below is used to show “Twisted parabolic type” in Theorem 4.1.
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Proposition 4.3. Let u satisfy (4.1). Assume that there exists j∗ ∈ N such that

λj = 0 for 1 ≤ j ≤ 2(j∗ − 1) and λ2j∗−1 ̸= 0. Put

F−
k (u) = ∥|∂x|−(k+2)/2P−u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x |∂x|−k−2P+u, P−u⟩,

F+
k (u) = ∥|∂x|−(k+2)/2P+u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x |∂x|−k−2P−u, P+u⟩.

Then, there exists C = C({aj}, {bj}) > 0 such that∣∣∣∣∣ ddt
(
∥P+u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P−u, P+u⟩+

2(m−j∗−1)∑
k=1

β+
k F

−
k (u)

)

+ λ+2j∗−1∥|∂x|m−j∗+1/2P+u∥2
∣∣∣∣∣ ≤ C∥u∥2 + C∥|∂x|m−j∗P+u∥2,

(4.9)

and ∣∣∣∣∣ ddt
(
∥P−u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P+u, P−u⟩+

2(m−j∗−1)∑
k=1

β−
k F

+
k (u)

)

− λ+2j∗−1∥|∂x|m−j∗+1/2P−u∥2
∣∣∣∣∣ ≤ C∥u∥2 + C∥|∂x|m−j∗P−u∥2.

(4.10)

To prove Propositions 4.2 and 4.3, we use the following lemma.

Lemma 4.4. Let u satisfy (4.1). Then, there exists C = C({aj}, {bj}) > 0 such

that ∣∣∣∣∣ ddt
(
∥P+u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P−u, P+u⟩

)

+
2m−1∑
j=1

(λ+j ∥|∂x|m−j/2P+u∥2 + λ−j ∥|∂x|m−j/2P−u∥2)

∣∣∣∣∣ ≤ C∥u∥2
(4.11)

and ∣∣∣∣∣ ddt
(
∥P−u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P+u, P−u⟩

)

+
2m−1∑
j=1

(−1)j(λ+j ∥|∂x|m−j/2P−u∥2 + λ−j ∥|∂x|m−j/2P+u∥2)

∣∣∣∣∣ ≤ C∥u∥2.

(4.12)

Proof of Lemma 4.4. First, we show (4.11). For simplicity, we set v+ := P+u and

v− := P−u. Note that P+ū = P−u = v− and P−ū = P+u = v+. Then, v+ and v−
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satisfy

Dtv
+ = D2m

x v+ +
2m∑
k=1

(akD
2m−k
x v+ + bkD

2m−k
x v−) (4.13)

and

Dtv− = −D2m
x v− −

2m∑
k=1

(−1)k(ākD
2m−k
x v− + b̄kD

2m−k
x v+). (4.14)

By (4.13), we have

d

dt
∥v+∥2 = 2Re ⟨∂tv+, v+⟩ = −2 Im ⟨Dtv

+, v+⟩

= −2
2m∑
j=1

(Im aj⟨D2m−j
x v+, v+⟩+ Im bj⟨D2m−j

x v−, v+⟩)

= −2
2m∑
j=1

(Im aj∥|∂x|m−j/2P+u∥2 + Im bj⟨D2m−j
x v−, v+⟩).

Here, we consider the time derivative of correction terms to cancel out the second

term. Fix 1 ≤ j ≤ 2m− 1. We see from (4.13) and (4.14) that

d

dt
Reαj⟨D−j

x P−u, v+⟩ = − Imαj⟨D−j
x Dtv−, v

+⟩+ Imαj⟨D−j
x v−, Dtv

+⟩

= Imαj⟨D−j
x (D2m

x v−), v+⟩+ Imαj⟨D−j
x v−, D2m

x v+⟩

+
2m∑
k=1

((−1)k Imαj āk⟨D2m−k−j
x v−, v+⟩+ (−1)k Imαj b̄k⟨D2m−k−j

x v+, v+⟩

+ Imαj āk⟨D2m−k−j
x v−, v+⟩+ Imαj b̄k⟨D2m−k−j

x v−, v−⟩)

=: Aj
1 +Bj

1 +
2m∑
k=1

(Aj
2,k + Aj

3,k +Bj
2,k +Bj

3,k).

Observe that

Aj
1 +Bj

1 = 2 Imαj⟨D2m−j
x v−, v+⟩,

Aj
2,k +Bj

2,k = (1 + (−1)k) Imαj āk⟨D2m−k−j
x v−, v+⟩,

Aj
3,k = (−1)k Imαj b̄k∥|∂x|m−(k+j)/2P+u∥2,

Bj
3,k = Imαj b̄k∥|∂x|m−(k+j)/2P−u∥2.

We collect coefficients of derivative losses with rearranging the summation order.

Note that for any sequences cj,k, it holds that

p∑
j=1

p−j∑
k=1

cj,k =

p−1∑
j=1

p−1−j∑
k=0

cj,k+1 =

p−1∑
j=1

j∑
k=1

ck,j−k+1. (4.15)
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It is easy to see that∣∣∣∣∣
2m∑
j=1

2m∑
k=2m−j

(Aj
2,k + Aj

3,k +Bj
2,k +Bj

3,k)

∣∣∣∣∣ ≲ ∥u∥2.

Then, by (4.15), we have

2m−1∑
j=1

2m−1−j∑
k=1

(Aj
2,k +Bj

2,k) =

2(m−1)∑
j=1

j∑
k=1

(Ak
2,j−k+1 +Bk

2,j−k+1)

=

2(m−1)∑
j=1

j∑
k=1

(1 + (−1)j−k+1) Imαkāj−k+1⟨D2m−1−j
x v−, v+⟩.

Similarly, we obtain

2m−1∑
j=1

2m−1−j∑
k=1

Aj
3,k =

2(m−1)∑
j=1

j∑
k=1

(−1)j−k+1 Imαkb̄j−k+1∥|∂x|m−(j+1)/2P+u∥2,

2m−1∑
j=1

2m−1−j∑
k=1

Bj
3,k =

2(m−1)∑
j=1

j∑
k=1

Imαkb̄j−k+1∥|∂x|m−(j+1)/2P−u∥2.

This concludes the proof of (4.11). For the proof of (4.12), we set v+ := P−u and

v− := P+u. Then, they satisfy (4.13) and (4.14). Therefore, the exactly same proof

works. □

Now we are ready to prove Proposition 4.2. Though we can prove it directly

without using Lemma 4.4, we give the proof of it by the lemma.

Proof of Proposition 4.2. Note that ⟨P+f, P−g⟩ = ⟨P−f, P+g⟩ = 0 for any func-

tions f, g. This implies that ⟨P̸=0f̄ , P ̸=0g⟩ = ⟨P−f, P+g⟩+ ⟨P+f, P−g⟩. So, collect-
ing (4.11) and (4.12), we obtain∣∣∣∣∣ ddt

(
∥P ̸=0u∥2 +

m−1∑
j=1

Reα2j⟨D−2j
x P ̸=0ū, P ̸=0u⟩

)

+
m−1∑
j=1

λ2j∥|∂x|m−jP̸=0u∥2 +
m∑
j=1

λ2j−1⟨D2(m−j)+1
x P ̸=0u, P ̸=0u⟩

∣∣∣∣∣ ≤ C∥u∥2.

We also note that γk = α2k. Finally, it is easy to see that∣∣∣∣∣ ddt∥P0u∥2 +
m−1∑
j=1

λ2j∥|∂x|m−jP0u∥2 +
m∑
j=1

λ2j−1⟨D2(m−j)+1
x P0u, P0u⟩

∣∣∣∣∣ ≤ C∥u∥2.

Therefore, we have (4.8). □
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The terms λ−j ∥|∂x|m−j/2P−u∥2 with 1 ≤ j ≤ 2j∗−1 in Lemma 4.4 are unfavorable

in our argument to prove Proposition 4.3. Therefore, we analyse the coefficients λ−

below.

Lemma 4.5. It holds that

λ−j+1 = −1

2

j−1∑
l=1

(1 + (−1)l)(Re al)λ
−
j+1−l

+
1

2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l)(Im al) Re b̄j−l−k+1αk

for 1 ≤ j ≤ 2(m− 1).

Proof. By the definitions of λ−j and αk, we have

λ−j+1 = −
j∑

l=1

Im blb̄j−l+1 +
1

2

j∑
l=1

l−1∑
k=1

(1 + (−1)l−k) Im b̄j−l+1āl−kαk =: A+B.

It is easy to see that A = 0. Observe that

p∑
l=1

l−1∑
k=1

cl−kdlek =

p−1∑
l=1

p−l∑
k=1

cldl+kek (4.16)

for any sequences {cj}, {dj} and {ej}. This implies that

B =
1

2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l) Im b̄j−l−k+1ālαk

=
1

2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l)((Re al) Im b̄j−l−k+1αk − (Im al) Re b̄j−l−k+1αk).

Here we used the fact that Im cd = (Re c) Im d + (Im c) Re d for any c, d ∈ C. This

completes the proof. □

Lemma 4.6. Assume that there exists j∗ ∈ N such that λ2j = 0 for 1 ≤ j ≤ j∗.

Then, it holds that Im a2j = λ+2j = 0 for 1 ≤ j ≤ j∗ and λ−j = 0 for 1 ≤ j ≤ 2j∗ +3.

Proof. The proof proceeds by the induction on j. We prove the following: assume

that there exists j∗ ∈ N such that λ2j = 0 for 1 ≤ j ≤ j∗. Then it holds that

Im a2j = λ+2j = λ−2j = λ−2j∗+1 = λ−2j∗+2 = λ−2j∗+3 =

j−1∑
k=1

Im b̄2(j−k)α2k = 0

for 1 ≤ j ≤ j∗. It is easy to see that the claim above with j∗ = 1 follows. Assume

that λ2j∗+2 = 0. By the hypothesis, it holds that λ−2j∗+n = 0 for 1 ≤ n ≤ 3. Then we
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have λ+2j∗+2 = 0. Now, we claim that Im a2j∗+2 = 0. Since λ2j∗+2 = λ+2j∗+2 + λ−2j∗+2,

we have

Im a2j∗+2 −
j∗∑
l=1

Im b̄2(j∗−l+1)α2l = 0.

Since γl = α2l, we see from the definition of γ that

j∗∑
l=1

Im b̄2(j∗−l+1)γl =

j∗∑
l=1

Im b̄2(j∗−l+1)b2l −
j∗∑
l=1

l−1∑
k=1

Im b̄2(j∗−l+1)ā2(l−k)γk =: A+B.

It is easy to see that A = 0. We have

B = −
j∗−1∑
l=1

j∗−l∑
k=1

Im b̄2(j∗−l−k+1)ā2lγk

= −
j∗−1∑
l=1

(Re a2l)

j∗−l∑
k=1

Im b̄2(j∗−l−k+1)γk +

j∗−1∑
l=1

(Im a2l)

j∗−l∑
k=1

Im b̄2(j∗−l−k+1)γk = 0

by (4.16) and the hypothesis, which shows that Im a2j∗+2 = 0. Using Lemma 4.5

again, we obtain λ−2j∗+4 = λ−2j∗+5 = 0. Then we obtain λ+2j∗+2 = 0, which completes

the proof. □

Remark 4.4. From the proof of the above lemma, we also see that

λ2j∗+2 = 2 Im a2j∗+2, λ2j∗+4 = 2 Im a2j∗+4

when λ2j = 0 for 1 ≤ j ≤ j∗.

Now, we prove Proposition 4.3.

Proof of Proposition 4.3. We give only the proof of (4.9) since we can show (4.10)

in the same manner. When j∗ = 1, we see from the definition that λ−n = 0 for

n = 1, 2, 3. When j∗ ≥ 2, Lemma 4.6 implies that λ+j = λ−j = 0 for 1 ≤ j ≤ 2(j∗−1).

Moreover, it holds that λ−2j∗+n = 0 for n = −1, 0, 1 and λ+2j∗−1 ̸= 0. By (4.11), we

have ∣∣∣∣∣ ddt
(
∥P+u∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P−u, P+u⟩

)
+

2m−1∑
j=2j∗+2

λ−j ∥|∂x|m−j/2P−u∥2

+ λ+2j∗−1∥|∂x|m−j∗+1/2P+u∥2
∣∣∣∣∣ ≲ ∥u∥2 + ∥|∂x|m−j∗P+u∥2
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Thus, we only need to show∣∣∣∣∣ ddt
2(m−j∗−1)∑

k=1

β+
k F

−
k (u)−

2m−1∑
j=2j∗+2

λ−j ∥|∂x|m−j/2P−u∥2
∣∣∣∣∣

≲ ∥u∥2 + ∥|∂x|m−j∗P+u∥2.

(4.17)

Put v = |∂x|−(k+2)/2P̸=0u. Since v satisfies (4.1), by (4.12), we have∣∣∣∣∣ ddt
(
∥P−v∥2 +

2m−1∑
j=1

Reαj⟨D−j
x P+v, P−v⟩

)
+

2m−1∑
j=2j∗−1

(−1)jλ+j ∥|∂x|m−j/2P−v∥2
∣∣∣∣∣

≲ ∥v∥2 + ∥|∂x|m−j∗P+v∥2.

Thus, we obtain∣∣∣∣∣
2(m−j∗−1)∑

k=1

β+
k

( d
dt
F−
k (u) +

2m−k−3∑
j=2j∗−1

(−1)jλ+j ∥|∂x|m−(j+k+2)/2P−u∥2
)∣∣∣∣∣

≲ ∥u∥2 + ∥|∂x|m−j∗P+u∥2.

By (4.15), we have

2(m−j∗−1)∑
k=1

2m−k−3∑
j=2j∗−1

(−1)jβ+
k λ

+
j ∥|∂x|m−(j+k+2)/2P−u∥2

=

2(m−j∗−1)∑
k=1

k∑
j=1

(−1)k−j+1β+
j λ

+
2j∗+k−j−1∥|∂x|

m−j∗−(k+1)/2P−u∥2.

Therefore, by the definition of β+
k , we conclude (4.17). □

4.3. Proof of main theorem. In this subsection, we show Theorem 4.1.

Definition 15. For f ∈ L2(M) and N > 0, we define

E(f ;N) := ∥f∥2 +N∥∂−m
x P̸=0f∥2 +

m−1∑
j=1

Re γj⟨D−2j
x P̸=0f̄ , P ̸=0f⟩.

We choose N sufficiently large so that Lemma 4.7 holds. If there is no confusion,

we write E(f) := E(f ;N).

Lemma 4.7. Let N > 0 be sufficiently large. Then, for any f ∈ L2(M) it holds

that

1

2
E(f) ≤ ∥f∥2 +N∥∂−m

x P ̸=0f∥2 ≤ 2E(f).
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Proof. The Gagliardo-Nirenberg inequality and the Young inequality show that

m−1∑
j=1

|Re γj⟨D−2j
x P ̸=0f̄ , P ̸=0f⟩| ≤

1

2
∥f∥2 + C∥∂−m

x P̸=0f∥2. (4.18)

So, it suffices to choose N = 2C. □

We prove the first part of Theorem 4.1.

Proof of “Dispersive type” in Theorem 4.1. We consider our problem only on [0,∞)

since the result on (−∞, 0] follows from the same argument. Let T > 0, which can

be arbitrary large. We first show the a priori estimate supt∈[0,T ] ∥u(t)∥ ≤ C∥φ∥. We

assume that u satisfies (4.1) and (4.2). Then, it is easy to see that d
dt
∥∂−m

x P ̸=0u∥2 ≤
2|⟨Dt∂

−2m
x P ̸=0u, P ̸=0u⟩| ≤ C∥u∥2. This together with (4.8), Lemma 4.7 and λj = 0

for 1 ≤ j ≤ 2m − 1 implies that d
dt
E(u(t)) ≤ CE(u(t)) on [0, T ]. Thus, by the

Gronwall inequality and Lemma 4.7, we obtain the a priori estimate. Next, we

show the existence. Let φn = F−1χ(|ξ| < n)Fφ for n ∈ N. Then, we have the

solution un of (4.1) with un(0) = φn by (4.6). Moreover, un ∈ C([0, T ];L2(M)) since

|
∑2m

j=0 ξ
2m−jXj| ≤ C({aj}, {bj}, n) for |ξ| < n. Since {φn} is a Cauchy sequence

in L2(M), by the a priori estimate, we conclude {un} is also a Cauchy sequence

in C([0, T ];L2(M)). Thus, we obtain the solution u ∈ C([0, T ];L2(M)) of (4.1)–

(4.2) as the limit of un. Finally, the uniqueness easily follows from the a priori

estimate. □

Proof of “Parabolic type” in Theorem 4.1. We use the argument from the proof of

Theorem 1.2 in [33]. We consider only the case λ2j∗ > 0 since the other case

follows from the same argument. Let T > 0, which can be arbitrary large. By the

Gagliardo-Nirenberg inequality and the Young inequality, we have∣∣∣∣ m−1∑
j=j∗+1

λ2j∥|∂x|m−ju∥2 +
m∑

j=j∗+1

λ2j−1⟨D2(m−j)+1
x u, u⟩

∣∣∣∣ ≤ 1

2
λ2j∗∥|∂x|m−j∗u∥2 + C∥u∥2.

Recall that λj = 0 for 1 ≤ j ≤ 2j∗ − 1. Therefore, in the same manner as the proof

of “Dispersive type”, we obtain the a priori estimate:

sup
t∈[0,T ]

(
∥u(t)∥2 + λ2j∗

2

∫ t

0

∥|∂x|m−j∗u(τ)∥2dτ

)
≤ C∥φ∥2.

It then follows that we have the unique existence of the solution u ∈ C([0, T ];L2(M))∩
L2([0, T ];Hm−j∗(M)), which implies that u(t) ∈ Hm−j∗(M) for a.e. t ∈ [0, T ]. Let

0 < ε < T . Then there exists t0 ∈ (0, ε/2) such that u(t0) ∈ Hm−j∗(M). Since

⟨∂x⟩m−j∗u satisfies (4.1)–(4.2) with initial data φ := ⟨∂x⟩m−j∗u(t0) ∈ L2(M), ap-

plying the same argument as above, we conclude ⟨∂x⟩m−j∗u ∈ C([t0, T ];L
2(M)) ∩
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L2([t0, T ];H
m−j∗(M)). That is, u ∈ C([t0, T ];H

m−j∗(M))∩L2([t0, T ];H
2(m−j∗)(M)).

We can choose t1 so that ε/2 < t1 < ε/2 + ε/4 and u(t1) ∈ H2(m−j∗)(M). Again,

applying the same argument as above with the initial data φ := ⟨∂x⟩2(m−j∗)u(t0) ∈
L2(M), we conclude u ∈ C([t1, T ];H

2(m−j∗)(M))∩L2([t1, T ];H
3(m−j∗)(M)). By re-

peating this process, we conclude u ∈ C([ε, T ];Hk(m−j∗)(M)) for any k ∈ N, which
implies u ∈ Cℓ([ε, T ];Hk(m−j∗)−2mℓ(M)) for any k, ℓ ∈ N by (4.1). By the Sobolev

embedding, we obtain u ∈ C∞([ε, T ] × M). Since we can take ε > 0 arbitrary

small and T > 0 arbitrary large, we conclude u ∈ C∞((0,∞) × M). Finally, we

show the nonexistence result by contradiction. Assume that there exists a solution

u ∈ C((−δ, 0];L2(M)) of (4.1)–(4.2) with φ ∈ L2(M) \ C∞(M). We take t0 such

that −δ < t0 < 0. Then, as we proved above, we have u ∈ C∞((t0, 0]×M), which

contradicts to the assumption φ = u(0) ̸∈ C∞(M). □

The following proposition is the main tool to show the result for “Twisted para-

bolic type” in Theorem 4.1.

Proposition 4.8 (the twisted parabolic smoothing). Let u ∈ C([t0, t1];L
2(M))

satisfy (4.1). Assume that there exists j∗ ∈ N such that λj = 0 for 1 ≤ j < 2j∗ − 1

and λ2j∗−1 > 0 (resp. < 0). Then, it follows that

P+u (resp.P−u) ∈ C((t0, t1];H
1/2(M)) (forward smoothing), (4.19)

P−u (resp.P+u) ∈ C([t0, t1);H
1/2(M)) (backward smoothing). (4.20)

In particular, it holds that u ∈ C∞((t0, t1)×M).

Proof. We consider only the case λ+2j∗−1 > 0 since the same proof works for the case

λ+2j∗−1 < 0. For simplicity, set

G+(u) :=
2m−1∑
j=1

Reαj⟨D−j
x P−u, P+u⟩+

2(m−j∗−1)∑
k=1

β+
k F

−
k (u),

where F−
k is defined in Proposition 4.3 and {αj} and {βk} are defined in Definiton 14.

Set M := supt∈[t0,t1] ∥u(t)∥. Note that supt∈[t0,t1](|G
+(u(t))| + |G+(|∂x|1/2u(t))|) ≤

CM and G+(|∂x|1/2u(t)) is continuous on [t0, t1] by the presence of D−j
x in the

definition of G+(u) above. By the Gagliardo-Nirenberg inequality and the Young

inequality, we have

∥|∂x|m−j∗Qu∥2 ≤ δ∥|∂x|m−j∗+1/2Qu∥2 + Cδ−1∥u∥2
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for δ > 0, Q = P+ or P−. Take δ > 0 sufficiently small. Then, this together with

(4.9) and (4.10) yields

λ+2j∗−1

∫ t1

t0

∥|∂x|m−j∗+1/2Qu(τ)∥2dτ ≤ C(M)(1 + |t1 − t0|),

for Q = P+ or P−. By the interpolation, we also have

∫ t1

t0

∥|∂x|su(τ)∥2dτ

=

∫ t1

t0

(∥|∂x|sP−u(τ)∥2 + ∥|∂x|sP0u(τ)∥2 + ∥|∂x|sP+u(τ)∥2)dτ

≤ C(M,λ+2j∗−1)(1 + |t1 − t0|)

(4.21)

for 0 ≤ s ≤ m + j∗ − 1/2. It then follows that ∥|∂x|m−j∗+1/2u(t)∥ < ∞ for

a.e. t ∈ [t0, t1]. Then, for any ε > 0 there exists t∗ ∈ (t0, t0 + ε) such that

∥|∂x|m−j∗+1/2u(t∗)∥ < ∞. Note that (4.9) holds even if we replace u with |∂x|1/2u
since |∂x|1/2u satisfies (4.1). Thus,

∣∣∣∣ ddt(∥|∂x|1/2P+u∥2 +G+(|∂x|1/2u)
)
+ λ+2j∗−1∥|∂x|m−j∗+1P+u∥2

∣∣∣∣
≤ C∥|∂x|1/2u∥2 + C∥|∂x|m−j∗+1/2P+u∥2,

(4.22)

By the Gagliardo-Nirenberg inequality and the Young inequality, we have

∥|∂x|m−j∗+1/2P+u∥2 ≤ δ∥|∂x|m−j∗+1P+u∥2 + Cδ−1∥|∂x|1/2u∥2

for δ > 0. Taking δ > 0 sufficiently small and integrating (4.22) on [t∗, t](⊂ [t0, t1])

with (4.21), we obtain

∥|∂x|1/2P+u(t)∥2 +
λ+2j∗−1

2

∫ t

t∗

∥|∂x|m−j∗+1P+u(τ)∥2dτ

≤ C(M,λ+2j∗−1, |t1 − t0|) + ∥|∂x|1/2P+u(t∗)∥2 <∞
(4.23)
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since u(t∗) ∈ Hm−j∗+1/2(M). Therefore, by (4.22) again, it follows that for any

t∗ ≤ t′ ≤ t ≤ t1∣∣∣∥|∂x|1/2P+u(t)∥2 − ∥|∂x|1/2P+u(t′)∥2
∣∣∣

≤
∣∣∣[|∂x|1/2P+u(τ)∥2 +G+(|∂x|1/2u)

]τ=t

τ=t′
+ λ+2j∗−1

∫ t

t′
∥|∂x|m−j∗+1P+u(τ)∥2dτ

∣∣∣
+
∣∣∣[G+(|∂x|1/2u)

]τ=t

τ=t′

∣∣∣+ λ+2j∗−1

∫ t

t′
∥|∂x|m−j∗+1P+u(τ)∥2dτ

≤ C

∫ t

t′
∥|∂x|1/2u(τ)∥2dτ + C

∫ t

t′
∥|∂x|m−j∗+1/2P+u(τ)∥2dτ

+ λ+2j∗−1

∫ t

t′
∥|∂x|m−j∗+1P+u(τ)∥2dτ +

∣∣∣[G+(|∂x|1/2u)
]τ=t

τ=t′

∣∣∣.
(4.21), (4.23) and the dominated convergence theorem imply that the right-hand

side goes to 0 as |t − t′| → 0, which shows that ∥|∂x|1/2P+u(t)∥ is continuous on

[t∗, t1]. The fact P+u ∈ C([t0, t1];L
2(M)) with P+u ∈ L∞([t∗, t1];H

1/2(M)) yields

P+u ∈ Cw([t∗, t1];H
1/2(M)). Combining the continuity of ∥|∂x|1/2P+u(t)∥ and

the weak continuity of P+u(t) in H1/2(M), we obtain P+u ∈ C([t∗, t1];H
1/2(M)).

Since we can take ε > 0 arbitrary small, we get P+u ∈ C((t0, t1];H
1/2(M)). We

also obtain P−u ∈ C([t0, t1);H
1/2(M)) in the same manner. Therefore, u = P−u+

P0u + P+u ∈ C((t0, t1);H
1/2(M)). By repeating this process, we also obtain u ∈

C((t0, t1);H
k/2(M)) for any k ∈ N, which yields u ∈ C∞((t0, t1) × M)) since u

satisfies (4.1). □

Proof of “Twisted parabolic type” in Theorem 4.1. We use the argument from the

proof of Theorem 1.2 in [32]. We consider only the case λ2j∗−1 > 0 since the

case λ2j∗−1 < 0 follows from the same argument. Let φ ∈ L2(M) satisfy P+φ /∈
H1/2(M). We prove Theorem 4.1 by contradiction. We assume that there exists

u ∈ C([−δ, 0];L2(M)) satisfying (4.1)–(4.2) on [−δ, 0]. By Proposition 4.8, we have

P+u ∈ C((−δ, 0];H1/2(M)), which contradicts to P+φ /∈ H1/2(M). This proof

works even if we replace P+ and [−δ, 0] with P− and [0, δ], respectively. □
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