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Abstract 

Signalized arterial is the core traffic facility of the urban road network and its performance 

is directly related to citizens’ commuting convenience. The signalized intersection is one of the 

key components of signalized arterials. Their operations considerably affect the performance 

of the whole road system. Spillback describes the situations that downstream queues extended 

over upstream stoplines so that upstream platoons cannot be discharged normally. It is a 

common traffic issue on signalized arterials when traffic is extremely congested. However, 

even before spillbacks, the capacity of each intersection can be influenced especially on the 

signalized arterial on which intersections are closely spaced and undertake high input volume. 

This effect is called the downstream influence which is a visual and psychological impact on 

upstream drivers. While waiting to be discharged in an approach, drivers observe the size of 

the downstream queue and estimate the duration of the downstream queue. Base on this, then 

they will know whether their forward routes can be interfered by downstream traffic. If they 

noticed that their desired driving speed cannot be achieved, they may sacrifice the efficiency 

to pursue safety and comfort. As a result, the performance of the discharge flow is discounted. 

Meanwhile, this impact can be propagated and amplified towards the upstream direction. This 

is the reason why, in peak time, congestions occurred in upstream sections of designed 

bottlenecks. 

  

However, in current practice, existing traffic simulators cannot capture this phenomenon 

properly, because they ignore the capacity drop before spillback happens. Meanwhile, 

estimation methodologies in existing manuals do not include factors comprehensively 

explaining the downstream influence. Correspondingly, the primary objective of this research 

is to theoretically model the downstream influence and propose a procedure that can properly 

estimate the influenced saturation flow rate (SFR, hereinafter) and start-up lost time (SLT, 

hereinafter). Several questions should be answered before achieving this target. How to 

measure and quantify the downstream influence? How to introduce the downstream influence 

into the traffic simulation on signalized arterials? More importantly, how to produce estimation 

methodologies for SFR and SLT that can be applied in practice? However, fundamental 

research regarding the above questions is very rare so far. Moreover, empirical cases of 

discharged flow with downstream influence are important and not easy to be observed. Finding 
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proper survey sites is another challenge of this study. To solve the above questions, the effort 

of each chapter is highlighted below. 

 

As an initial step of this research, fundamental philosophies of the discharge process at 

signalized intersections are introduced in Chapter 2. Also, attention is also given to reviewing 

literature about related researches. Existing methodologies about SFR and SLT estimations are 

listed and compared. Also, previous researches about downstream influence are summarized, 

which aims to provide a deep understanding of current research gaps and pave the way for this 

research. 

 

Chapter 3 quantifies impacts of the downstream traffic on the discharge flow at upstream 

through lane by both empirical study and theoretical model. Utilizing the data collected at an 

experimental site of Yasukuni-tori in Tokyo City, SLTs and SFRs of 5 approaches at 3 

signalized intersections are statistically studied with several downstream factors (queue length, 

segment length, and offset). Results show that long queues in the short downstream segment 

under large positive offset may lead to low SFR and large SLT. Based on these findings, a 

virtual speed (vop) is created to measure the downstream influence, vop is the speed by which 

the upstream platoon joins the downstream queue just at the time when the last vehicle starts 

to move. vop is a function of queue length, segment length, and offset. By using this variable as 

the core indicator, the intelligent driver model (IDM) is improved and the new model is named 

as IDM+ in this study. A micro-simulation platform is designed based on the IDM+. Moreover, 

simulated trends are generalized and summarized into a two-step model by doing the regression 

analysis on data that were produced from the simulation experiment. In this two-step model, 

vop is firstly calculated based on downstream factors. Influenced SFR and SLT are then derived 

based on the vop. Firstly, the new model completely coincides with the experiment data. More 

importantly, it shows a similar trend and has a good fit with what was observed from the survey 

site. 

 

Chapter 4 analyzes the downstream influence on signalized arterials. The cell 

transmission model (CTM) is a popular model of simulating traffic propagations and modified 

CTM improved the basic theory so that it can simulate realistic discharge features (SFR and 

SLT). In this study, downstream impacts are introduced into the modified CTM letting its 

parameters be governed by models of influenced SFR and SLT (from Chapter 3). Firstly, the 

performance of the proposed CTM is proved to have equivalent performances as the IDM+. In 
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order to further test the new CTM, a CTM based platform is created for simulating a real-world 

arterial, the Hirokoji-tori in Nagoya. The comparison result shows that the modified CTM 

model considering downstream influence fits the observed traffic flow on signalized arterials 

better than the existing CTM. Especially in predicting the traffic congestion, the newly 

proposed CTM has a very outstanding performance. This conclusion emphasized the important 

role of downstream influence in modeling traffic propagation along signalized arterials. Finally, 

the proposed model is tested through a sensitivity analysis by which it is pointed out that high 

traffic demand, high entry flow from the minor streets, short segment links, large positive 

values of both downstream and secondary downstream intersections’ offsets may result in the 

upstream congestion of signalized corridors.  

 

Chapter 5 mainly proposes a methodology that can estimate adjustment factors for SFR 

and SLT by the long-term traffic demand profile instead of the real-time queue length data. In 

the beginning, another CTM based platform is created by use proposed CTM to simulate the 

discharge process at a signalized intersection. By utilizing the data from simulations, the 

relationship between traffic demand and queue length is modeled by the regression analysis. 

Following the hint of models of influenced SLT and SFR in Chapter 3, the estimation model 

for adjustment factors is structured into a two-step model as well. Firstly, vop is calculated by 

the estimated queue length along with other downstream factors. Secondly, another regression 

analysis is done to determine the relationship model between simulated adjustment factors and 

newly calculated vop. Then, CTM based platform and the proposed estimation procedure are 

performed for 6 specially designed scenarios. Results are shown in contour line figures. They 

revealed that lower green ratio, smaller cycle length, and more flow from minor streets result 

in more serious downstream impacts. Finally, the proposed estimation procedure is further 

applied in real-world approaches comparing with the methodology prescribed in MTSCJ. 

Results indicate that proposed adjustment factors are reasonable and necessary to be included 

in practice.  

 

Chapter 6 highlights the major findings of this research. Consideration of multi-lane 

Arterials, the stochastic features of calibrated parameters in the car-following model, clearing 

vehicles influence, clearance lost time, and autonomous vehicle flow are suggested as 

significant future study points in order to reach the final goal of dynamic network traffic control 

considering downstream influence. 
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CHAPTER 1 INTRODUCTION 

1.1  Research Background 

As an important facility, signalized arterials play a critical role in collecting traffic from 

minor roads and delivering them to expressways. Especially during peak time, signalized 

arterial carried a large amount of commuter flow. Signalized intersections are fundamental 

components of signalized arterials and its operations significantly affect the performance of the 

whole arterial. Therefore, signalized arterials and intersections have been paid widespread 

attention.  

 

It is undoubted that increasing the capacity of the discharging process at network nodes 

can enhance the performance of the whole signalized arterial effectively. For a typical signal 

cycle, vehicles would arrive randomly at any time following the demand profile and queued 

vehicles will be accumulated during the red time. Once the signal indication turns green, the 

queued vehicles will pass the stop line one by one and then gradually be discharged with a 

saturation flow rate (SFR). Transition stage from parking condition (0 flow rate) to saturation 

flow may (maximal flow rate) takes several seconds during which period, they shall react to 

the green signal, press the pedal and accelerate. Normally, the discharge process is defined by 

three variables, saturation flow rate (SFR, hereinafter), start-up lost time (SLT, hereinafter) and 

clearance lost time (CLT, hereinafter). They play main roles in traffic engineering studies and 

practice applications because they are foundation variables for capacity estimations at 

signalized intersections and determining signal phasing. 

 

Especially in the urban area, congestion on signalized arterial is becoming a common 

problem in majority metropolis, which are influencing society, environment, and economy 

significantly. For decades, considerable attention has been paid to establishing methods to 

solve arterial congestion and improve operational efficiency. Some researchers and 
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practitioners introduced signal coordination into signalized arterials to improve overall traffic 

flow propagation along urban arterials. Green waves have been recognized as one of the most 

efficient methods to avoid or mitigate traffic congestion which is letting the green signal on 

before the upstream traffic flow arrives so that vehicles can keep running without stop. For 

instance, bandwidth maximization is one of the most popular methods in arterial signal 

coordination control following this idea (Little, 1981). However, its effect is always discounted 

for shortly spaced intersections under high traffic demand. Because the presence of queue in 

the downstream segment may slow down the vehicle platoon from the upstream approach and 

the upstream intersection is always influenced and works in a low capacity condition.  

 

Considering this, traffic scholars suggested that under high traffic demand the existing 

queue in the downstream segment should be discharged for a few seconds firstly before the 

upstream green by shifting the offset. However, there is no systematic research on how traffic 

propagation is hindered by downstream traffic. Accordingly, no specific calculation procedure 

is proposed to define the shifted offset. In order to overcome this research gap, understanding 

the influenced capacity of the upstream intersection is the first important issue to be solved.  

1.2  Problem Statement 

The presence of long-length and long-duration queues in the downstream may negatively 

reduce the discharge performance of the upstream approach. Ideally signalized intersections 

with large cycle length under high traffic pressure need longer link length to accommodate a 

large amount of queued vehicles. For a short road segment, a large portion of the downstream 

space may be occupied by queued vehicles and only a small available space can be left for 

upstream discharging. Once the above situation is accompanied by positive offsets, the duration 

of the downstream queue can be further extended. 

 

For understanding the downstream impact, the discharge flow is roughly divided into three 

types. First is the uninfluenced discharge flow, upstream platoon discharges into a downstream 

segment with ideal traffic conditions (short queue or even no queue). In this case, the capacity 

of upstream is limited by road conditions such as geometry design. Secondly, spillback is an 

extreme case of the downstream impacts when the downstream queue is quite long and last for 
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long durations. Vehicles of upstream intersection cannot pass the stop line because of the 

extension of the downstream queue. This phenomenon will waste effective green time and 

significantly reduce the efficiency of the upstream intersection. It has been referred to in 

Highway Capacity Manual (HCM, hereinafter) 6th Edition (TRB, 2016) and added into the 

estimation model as a reduction parameter. At last, recently, it has been widely recognized that 

even before spillback occurs the capacity of the upstream intersection will be deteriorated by 

the downstream conditions. Therefore, between uninfluenced discharge flow and spillback, 

there is another type of discharge flow named influenced discharge flow. In this influenced 

discharge flow, the upstream platoon can pass the stop line without stopping. However, facing 

the downstream queue, especially for the through movement, most of the drivers may hesitate 

to quick start-up and choose a lower speed than free start in order to have a more comfortable 

and safer trip. It is expected that the longer the downstream queue is, the greater such an impact. 

Furthermore, if the queue in the downstream segment is still waiting for the traffic signal to 

turn green, the drivers departing from the subject intersection approach would be further 

discouraged because a red indication of the next signal means the long duration of the 

downstream queue. 

 

On the other hand, during peak hours along urban arterials, if congestion happens, 

researchers usually attribute it to traffic demands higher than bottleneck capacities or 

problematic signal timing. However, at some intersections which their designed capacities 

satisfy the demand and should not be the bottleneck of signalized arterials, congestion still can 

be frequently observed. What's more, traffic flows freely in downstream intersections at the 

same time. Through observation and analysis, we claimed that congestions on signalized 

arterials should not simply be blamed on reaching capacity or wrong signal timings. 

Cumulative interactions between multiple consecutive intersections such as the above-

mentioned downstream influence have inescapable responsibilities. This part will be detailed 

introduced in Chapter 4.  

 

Hence, downstream influence is an important issue not only for estimating the capacity of 

a single intersection but also for accurately simulating the real traffic propagation along a 

signalized arterial. However, the existing estimation methods for capacity do not fully consider 

the downstream influence and they could overestimate the real value. For instance, the 

estimation model of SFR in HCM only explained the downstream influence when spillback 

happens but did not cover the capacity drop of influenced discharge flow. What's more, none 
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of the existing manuals proposed a method to estimate the influenced SLT considering 

downstream influence. These yield to overestimated capacity, especially in urban dense 

corridors with closely spaced intersections further result in the inappropriate estimation of 

vehicle signal green intervals and cycle lengths. 

 

Besides, existing simulators did not properly include the consideration of downstream 

impacts when modeling discharge behaviors at signalized intersections. This drawback may 

reduce the simulation accuracy which makes simulators fail to predict the occurrence of 

congestion. Vehicles in existing simulators (such as VISSIM) can only react to motions of 

vehicles ahead. Although this interaction can result in a little reduction in discharge 

performances. However, in the real world, not only a single vehicle ahead but also the whole 

platoon downstream may influence upstream drivers’ judgment and operation. This little 

reduction described by existing simulators is not enough to explain the actual influenced 

discharge process. (The detailed analysis will be further introduced in Chapter 2 and Chapter 

3) in the capacity of the upstream intersection. Therefore, developing a concrete estimation 

methodology for the influenced SFR and SLT with proper considerations of downstream 

impacts is necessary.  

1.3  Research Objectives 

According to the problem statement above, an overall research framework to reach the 

global objective is presented in Figure 1.1. 

 

 

Figure 1.1  The overall research framework 
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Firstly, though vehicles in the upstream approach can directly observe the downstream 

queuing conditions with less sight obstruction, they will react to and influenced by the 

downstream platoon. Theoretically, they are more significant to downstream traffic. Excluding 

the influence of turning vehicles, this article will mainly focus on the capacity of through lanes 

before spillback occurs. With the recognition of the study becomes deeper, research objectives 

are divided into four stages. This research primarily intends to study the influenced discharge 

procedure empirically. More specifically, this research first of all attempts to distinguish key 

influencing factors and quantify downstream impacts. Secondly, influenced discharge driving 

behaviors are planned to be theoretically modeled by an improved car-following model. 

Thirdly, by adopting the proposed car-following model, the influenced SFR and SLT will be 

modeled by reproducing a simplified discharging process. Then, how downstream impacts 

perform along the arterial are intended to be investigated. In the end, a set of adjustment factors 

for the influenced SLT and SFR is intended to be proposed. The aim of the proposed 

methodology is mainly to facilitate capacity estimations at the signalized intersections in urban 

areas under heavy traffic demand. 

1.4  Research Flow and Organization of Dissertation 

A research flow to complete the tasks shown in Figure 1.1 is presented in Figure 1.2, 

concurrently with the organization of this dissertation. Chapter 2 mainly goes through some 

basic terminologies involved in this study and reviews past researches about capacity 

estimations at signalized intersections. In this Chapter, we also review researches and 

methodologies about the downstream influence on capacity estimation in existing manuals and 

simulators. Studies about key technologies involved in this paper such as the car-following 

model are referred to as well. In Chapter 3, downstream impacts are empirically analyzed 

firstly to find out key influencing factors and their effect mechanism on the capacity of through 

movement. By these findings, an existing car-following model, Intelligent Driver Model (IDM, 

hereinafter) is redesigned to explain the influenced driver behaviors under the downstream 

influence. Then a simplified discharge process is formulated on the basis of the proposed car-

following model to model the influenced SFR and SLT. Chapter 4 further extends the above 

study from a single intersection level to an arterial level. In this chapter, models of influenced 

SFR and SLT are further introduced into a meso-level model, Cell Transmission Model (CTM, 
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hereinafter). Through the experiment study, the mechanism of downstream influence evolving 

along the arterial is analyzed and the importance of considering the downstream influence in 

modeling arterials is pointed out as well. Based on the proposed CTM, Chapter 5 proposes a 

methodology for calculating the adjustment factors on influenced SFR and SLT of through 

lanes. This chapter pays more attention to the practical ability of the model and discusses a few 

case studies to preliminarily investigate the application conditions of the proposed 

methodology. Chapter 6 highlights the major findings of this research and suggestions on 

future studies. 
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CHAPTER 3 MODELING DOWNSTREAM IMPACTS AT SIGNALIZED INTERSECTIONS

CHAPTER 2 
FUNDAMENTAL PHILOSOPHY AND LITERATURE REVIEW

CHAPTER 6 

CHAPTER 4 MODELING DOWNSTREAM IMPACTS ON SIGNALIZED ARTERIALS

CHAPTER 5
ADJUSTMENT FACTORS ON SFR AND SLT OF DOWNSTREAM CONDITIONS

4.2 Simulation Test on a Real-world Arterial

4.3 Sensitivity Analysis

5.3 Modeling Adjustment Factors (Second Step Model)

1.2 Problem Statement

1.3 Objectives

3.1 Empirical Study on Downstream Influences

2.2 Existing Methodologies about SFR and SLT Estimations
2.3 Existing Researches about Downstream Influence

3.3 Model Validation

3.4 Modeling the Influenced SFR and SLT
Simulation experiment

5.1  Generating Experiment DataSimulation platform

Finding key influencing factors and quantify the downstream influence

3.2 Modeling the Influenced Discharge Behavior by Car-Following Model

Generalized Models of Influenced SLT and SFR 
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Figure 1.2  Research flow and organization of this dissertation 
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CHAPTER 2 FUNDAMENTAL PHILOSOPHY 

AND LITERATURE REVIEW 

2.1  Fundamental Philosophies  

Basically, signalized arterial consists of several signalized intersections. The performance 

of one signalized intersection is mainly related to traffic conditions at the directly downstream 

segment. In some extreme cases, the traffic capacity of an intersection is affected by multiple 

connected downstream intersections at the same time. For instance, when downstream 

intersections are closely spaced (intervals are less than 50m) and traffic demand is quite high, 

queues in multiple road sections can easily merge into one long queue. However, firstly, the 

above situations are quite rare in reality and generally accompanied by the occurrence of 

spillback which is beyond the scope of this study. Secondly, vehicles in the next segment 

occupy most of the visions of upstream drivers and dominate their judgment. To have a better 

understanding of the capacity reduction phenomenon, this research assumes that driver 

behaviors of vehicles discharging from the subject intersection are only influenced by traffic 

conditions in the directly downstream section. A corridor with two signalized intersections is 

plotted to explain the fundamental philosophy in this research as shown in Figure 2.1. 

 

 

Figure 2.1  Fundamental philosophies and definition of analysis parameters 

 

Subject Lane

ls

At the onset 
of green

Subject 
Intersection

Downstream 
Intersection

L
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L
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As shown in Figure 2.1, ls defines the length of the downstream segment which is the 

distance from the upstream stop-line to the downstream stop-line. lq is the queue length in the 

downstream link which is the distance from the rear bumper of the last queueing vehicle in the 

downstream link to the downstream stop-line. las represents the available space ahead of the 

upstream discharge platoon which is the distance from the rear bumper of the last queueing 

vehicle in the downstream link to the front bumper of the first queueing vehicle in the upstream 

platoon. Because this research mainly focuses on the discharge process of upstream through 

lanes, downstream queue length and available space are measured at the onset of upstream 

green indication. offset is the time difference between the onset of green at the downstream 

intersection and the onset of green at the subject intersection. According to signs of offset 

values, it is classified into two types, positive offset, and negative offset. A positive offset 

means at the onset of upstream green, the downstream signal is still red. Negative offset means 

at the onset of upstream green, the downstream signal already became green. 

 

As shown in Figure 2.2, for one discharge process in this road system, when the upstream 

indication turns green, vehicles need to react to the initiation of the green phase and to 

accelerate. After a few seconds, they reach the maximal departure flow rate. During the 

acceleration time, the green time is underutilized and it is generally regarded as SLT. 

Correspondingly, SLT is defined as the additional time consumed by the first few vehicles in 

a queue at a signalized intersection above and beyond the saturation headway. The maximal 

departure flow rate generally regarded as SFR. In HCM (TRB, 2016), SFR is defined as, the 

equivalent hourly rate at which previously queued vehicles can traverse an intersection 

approach under prevailing conditions, assuming that the green signal is available at all times 

and no lost times are experienced.  
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Figure 2.2  Flow rate changing during one discharge process  

 

It is easy to infer that these efficiency factors (SFR and SLT) are related to the above-

mentioned downstream condition measurements, ls lq, and offset. Understanding interactions 

between upstream discharging, downstream situations, and traffic conditions are the basis of 

this research. Different traffic demand may yield various downstream conditions and result in 

different discharge efficiency of upstream platoons. Generally, under low traffic demand, only 

a few vehicles occur in downstream links and upstream vehicles will pass through the 

downstream link smoothly. While under high traffic demand, there may be a long queue in 

downstream and upstream vehicles may stop behind the queue.  

2.2  Existing Methodologies about SFR and SLT Estimations 

In HCM (TRB, 2016), the capacity of a signalized intersection is calculated separately for 

each lane group. For the subject lane group, it is defined as the number of vehicles in one hour 

(veh/h) that can go through the intersection under prevailing geometry conditions, traffic 

demand profiles, and signalized timings as shown in Equation (2-1).  

 

 
g

c s
C

  (2-1) 
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where, variables in this equation are defined for each lane group, c is the capacity (veh/h), 

s is the saturation flow rate (veh/h), g is the effective green time (s), and C is the cycle length 

(s). 

 

It can be known from Equation (2-1) that capacity is governed by saturation flow rate (s), 

effective green time (g), and cycle length (c). Green time is the defined time interval for each 

cycle and discharging vehicles can go through the stop line only during this period. 

Theoretically, the length of the effective green time (g) should be long enough to satisfy the 

arrival traffic demand. It is calculated by the following Equation (2-2). 

 

  g G Y SLT CLT     (2-2) 

where, variables in this equation are defined for each cycle, G is the green time, Y is the 

amber time, SLT+CLT defines the total lost time (s), SLT is the start-up lost time, and CLT is 

the clearance lost time. 

 

SFR and SLT are two important parameters for capacity estimation and discussed in this 

research. The following two sections introduce existing methodologies and researches about 

these two parameters. 

2.2.1 Saturation flow rate (SFR) 

SFR estimation is one of the most important study fields in the study on signalized 

intersections. The most frequently used procedure to estimate the SFR is the one proposed by 

HCM 6th Edition (TRB, 2016), which is explained through Equation (2-3). 

 

 est 0SFR w HVg p bb a LU LT RT Lpb Rpb wz ms sps f f f f f f f f f f f f f  (2-3) 

SFRest is a function that is calculated by letting the base SFR times different adjustment 

factors (fxx). Where SFRest is the adjusted saturation flow rate (veh/h/ln), s0 is the base saturation 

flow rate (pcu/h/ln), fw is the adjustment factor for lane width, fHVg is the adjustment factor for 

heavy vehicles and grade, fp is the adjustment factor for the existence of a parking lane and 

parking activity adjacent to lane group, fbb is the adjustment factor for the blocking effect of 

local buses that stop within the intersection area, fa is the adjustment factor for area type, fLU is 
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the adjustment factor for lane utilization, fLT is the adjustment factor for right-turn vehicle 

presence in a lane group, fRT is the adjustment factor for right-turn vehicle presence in a lane 

group, fLpb is the pedestrian adjustment factor for left-turn groups, fRpb is the pedestrian-bicycle 

adjustment factor for right-turn groups, fwz is the adjustment factor for work-zone presence at 

the intersection, fms is the adjustment factor for downstream lane blockage, and fsp defines the 

adjustment factor for sustained spillback. 

 

Recent researches revealed that results from Equation (2-3) are always higher than 

observed values that are based on field surveys. It indicates that these factors are not sufficient 

and other adjustment factors should also be considered for more accurate estimation SFR. In 

urban areas, especially during the peak time, the arrival demand will reach 70%-90% of the 

intersection capacity. The long queue may generate at each intersection approach. By 

observation, it is found that SFRs of the departing vehicles are very likely influenced by the 

downstream longer queue. Hence, it is worthy to confirm whether the impact from downstream 

queues can be quantified into an adjustment factor for the SFR estimation. 

 

The estimation method prescribed in the Manual on Traffic Signal Control, Japan (MTSCJ, 

2006) follows a similar equation as the one in HCM. However, in MTSCJ’s equation, only 

adjustment factors of fw, fHV, fbb, fLU, fLT, fRT, and fLpb are considered. However, values of base 

SFR differ with the HCM method. Also, the values of the 7 considered factors vary in different 

subject sites considering the geometric conditions and traffic demand profiles. They are defined 

according to Japanese conditions. On the other hand, adjustment factors like fa, fp, fLU, fRpb, fwz, 

fms, and fsp are not included in the equation. 

 

The procedure of observed SFR (SFRobs) that is prescribed in HCM is defined by 

saturation headway (hs) observed in each cycle. For one cycle, the hs is the average value for 

headways of all vehicles discharged except the first four headways as shown in Equation (2-4) 

and (2-5). 

 

 obs

3 600
SFR

s

,

h
  (2-4) 

 4

4
n

s

T T
h

n





 (2-5) 
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Where, variables in this equation are defined for each cycle, SFRobs is the observed SFR 

(veh/h/ln), hs is average saturation headway (s), Tn is the discharge time of nth queued vehicle 

(s), T4 is the discharge time of 4th queued vehicle (s), and n is the number of queued vehicles 

observed. 

 

With the development of new information technologies, the methods of traffic information 

acquisition are constantly improving. Based on new technologies, some innovative methods 

for measuring observed SFR were proposed to facilitate the signal timing process. For instance, 

Wang et al (2019) proposed a new procedure for measuring SFR by Didi drivers’ trajectory 

data. By this method, real-time data of observed SFR can be uploaded without the necessity of 

field investigation. 

 

In recent year, the effects of different parameters such as taxi blockage and composition 

of traffic flow on SFR has been investigated by many researchers as well. Davoodi et al. (2015) 

claimed that motorized two-wheelers have better function of acceleration and maneuverability 

properties than passenger cars. Traffic flow that is composed of such vehicles can significantly 

increase the discharge performance. Chand (2017) revealed that the PCU for a certain vehicle 

type should not be a constant value. For certain traffic flow, PCU values may vary with their 

corresponding proportions dynamically. The rule of PCU changing is expected to be proposed, 

whereas, it has not been summarized in this research finally. In order to load or unload 

passengers, Taxi may park on the roadside or street. Behbahani et al. (2017) investigated this 

behavior and proposed that the average on-street parking maneuver time (or the average 

blockage time) of taxies may reduce the SFR at signalized intersections. Results indicated this 

reduction becomes more obvious when lane width is narrower. 

 

In addition to impacts from taxi blockage and traffic composition, scholars have proved 

that weather and intersection geometry have significant impacts on the SFR as well. Sun et al. 

(2013) carried out an empirical analysis at a four-leg signalized intersection under different 

weather conditions. Research results indicated that SFRs observed on rainy days are 

approximately 3-7% less than SFRs observed on sunny days. Branston (1979) conducted a 

comparative analysis under different brightness conditions. He proposed that for the discharge 

traffic on through lane, SFRs observed in dark environments are 6% less than SFRs observed 

in light environments. Chodur et al. (2011) investigated negative effects on SFRs from multiple 

types of bad weather conditions (rain, snow, cloudy, and foggy). They found that long-duration 
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rain results in a greater reduction in observed SFRs (8.5%-12.3%) than the short-duration rain 

(3.6% on average). In addition, they indicated that SFR in snowy and cloudy weathers are 10% 

and 11.4% respectively less in comparison to SFR observed on sunny days. 

 

Regarding studies about intersection geometry, attentions are mainly paid on turning 

radius, lane width, approach grade, and turning angles. In 2011, Shao et al. (2011) did a 

comprehensive study on intersection performances involving many influencing factors such as 

road geometries (lanes number, turning radius, lane width, approach grade), traffic conditions 

(parking conditions, traffic composition, speed limitation, venerable road users), and city 

population. They concluded that the capacity of left-turning lanes (right-hand driving) are 

sensitive to lane width and turn radius. Sando et al. (2009) investigated geometry impacts on 

SFRs of triple left-turn lanes. They revealed that values of downgrades and turning angles 

positively influence SFRs. Whereas, one-way streets and curved approaches have negative 

contributions to SFRs. 

2.2.2 Start-up Lost Time (SLT) 

Start-up lost time denotes the underutilized time due to the platoon accelerating process 

(TRB, 2016). Since no estimation methodology for SLT that has been proposed by any manual, 

the method to calculate the observed value of SLT (SLTobs) is introduced here. The SLTobs is 

calculating the total time difference between the first four headways and the four times 

saturation headway.  

 

  
4

obs
1

SLT i s
i=

= h h  (2-6) 

Where, hi is the headway that measured at stop line for ith vehicle in the discharged queue. 

 

As a small value, the change of SLT is often ignored and is set as constant simply being 

given a value of 2 or 3 seconds in signal timings. HCM (TRB, 2016) recommends that SLT is 

generally about 2.0 sec/phase. Nevertheless, small values should also be taken seriously. Tiny 

errors will result in the mismatch between designed capacity and real traffic demand. This 

difference may be amplified on traffic corridors, leading to a big problem for the road system. 

Many factors have been proved that may impact the SLT, such as vehicle type, gradient, 
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pedestrian behaviors, reaction time, and psychological factors. Minh and Sano (2003) claimed 

that start-up lost time should be divided into two parts. First is the start response time and 

second is time lost due to vehicles’ acceleration. Start response time (tr) is the time difference 

between the green indication (or other recognizable starting indications) and the time when 

drivers in a queue press the accelerator pedal. It is an indicator of driving characteristics and a 

key composition of start-up lost time at signalized intersections. Li and Prevedouros (2002), 

recommended using the following equation (2-7) for representing the relationship between the 

start-up lost time and the start response time. 

 

  obsSLT 4r avff st  H h    (2-7) 

Where Havff is the average queue discharge headways of the first four vehicles in the queue 

at a signalized approach (s). 

 

For estimating the tr, different values are proposed in various researches. As early as 1977, 

Messer and Fambro (1977) revealed that for the first driver in the waiting platoon at a signalized 

intersection, response time is as much as 2.0s. While for the vehicles in another position, 

reaction times are recommended to defined as 1.0s. Because before actions the leading vehicle 

should judge more information than drivers in other sequences. Both Institute of Transportation 

Engineers (1994) and Akçelik et al. (1999) claimed to define start response time as 1.0s. 

Whereas, Bonneson (1992) proposed 1.22 seconds for tr. Li and Prevedouros (2002) claimed 

to use 1.76s and 1.42s separately for tr values of through and left-turning vehicles. In the 

AIMSUN simulator (2010), the default value of tr for vehicles in a leading position is 1.35s. 

Tong et al. (2002) proposed that tr for passenger cars and taxis should be around 1.32s. 

AASHTO (2004) studied its stochastic feature. Considering drivers may face different 

situations, they claimed that values of tr should distribute between 1.0s and 2.5s. In Turkey, 

Çalışkanelli and Tanyel (2016) suggested defining different values for different maneuver 

types. They found that mean values for vehicles of through, right-turning, and left-turning 

maneuvers are separately 1.48s, 1.39s, and 1.26s. Also, an empirical formula is proposed by 

them for predicting the tr of drivers in the leading position under different situations, as shown 

in Equation (2-8). 

 

 0 149 0 136 0 020rt . MNV . GN . C    (2-8) 



16 

Where MNV is the maneuver type (through passing vehicles, MNV=0; right-turning 

vehicles, MNV=1; left-turning vehicles, MNV = 2) and GN is the gender of the driver (1 for 

male drivers and 0 for female drivers). 

 

Base on Equation (2-8), Çalışkanelli, et al. (2017) further proposed an empirical model 

for estimating the tr of drivers in the leading position and pointed out that SLT is related to lane 

width, bus percentage, and queue length, as shown in Equation (2-9). 

 

 8 00 194 3 31 0 07L bus qSLT .  . W . P . L      (2-9) 

Where WL defines the lane width (m), Pbus bus percentage (%) in the queue and Lq is the 

queue length of discharging platoon (veh/ln). 

2.3  Existing Researches about Downstream Influence 

Since the end of the 20th century, scholars realized that the discharge effectiveness at 

signalized intersections is strongly related to downstream traffic conditions. The first is about 

the downstream influence explained by HCM (2016) in the SFR estimation (Equation (2-3)). 

Among all adjustment factors, fsp is the only parameter that explains the adjusting of 

downstream impacts. Equation (2-10) is the formula in HCM that introduces the calculation of 

fsp and shows that fsp is subject to the volume-to-capacity ratio (v/c) and fms. Equation (2-10) 

reveals that the fsp only represents downstream impacts from sustained spillbacks which is 

caused by the traffic oversaturation or mid-segment lane blockage. Whereas, it can be observed 

that capacities of signalized intersection reduced due to downstream queue even when no 

spillback occurs. Hence, this adjustment factor prescribed by HCM is insufficient to cover all 

types of downstream queue influence. 

 

 
0 5

1
.u

sp,l ms sp,l
u

dv
f ( ) f f

c     (2-10) 

Where, variables in this equation are defined for each upstream movement, fsp,l is 

adjustment factor for spillback for iteration l, dvu is the maximum discharge rate (veh/h), cu is 
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capacity at the upstream intersection (veh/h), and fms is adjustment factor for downstream lane 

blockage. 

 

Akcelik and Rouphail (1992) were the first researches to study downstream influence at 

non-isolated signalized intersections. They established a simple analytical model for simulating 

queue interaction. Through simulation experiments, they found that even traffic inputs are 

lower than defined capacity, the whole performance of the paired intersections is strongly 

related to the queue size in the link between two intersections. Finally, they gave a hint about 

the future study that SFR reductions due to downstream impacts are worthy to be investigated. 

Ahmed and Abu-Lebdeh (2005) assumed a hypothetical two neighboring signalized 

intersection and macroscopically modeled delays for this road section by simulating traffic 

flow propagations and signal control parameters. It is found that the delay occurred on this 

assumed road system is relevant to the downstream conditions. They pointed out that 

downstream conditions should be included in the evaluating level-of-service (LOS) and 

capacity estimation. Finally, this paper emphasized that properly adjusting offsets and green 

ratios can reduce delays at two intersections. The Traffic Signal Timing Manual (FHWA, 2008) 

suggested taking traffic measures for urban arterials during high volume periods with 

objectives of minimizing the time when intersections are suffering from spillbacks and 

managing interactions between queue at each intersection. This manual mentioned that 

downstream queue lengths should also be included in the evaluation of traffic measures at 

intersections. 

 

Yu and Sulijoadikusumo (2005) did a comprehensive investigation into existing analytical 

models. They pointed out that in order to represent downstream disturbance current models are 

far from enough. All of these models required a large amount of data empirical data which can 

cover all types of traffic and road conditions. This work is quite challenging and hard to be 

finished. Therefore, a mathematical model requiring a small size of empirical data should be 

found in the future study. For overcoming this gap, a network-wide simulation model with 

proper consideration of downstream impacts is necessary. As one of the most advanced 

simulators, VISSIM is based on Wiedemann 74 and Wiedemann 99 car following models for 

the longitudinal movement (2015). It has been widely applied in simulating not only the 

uninterrupted traffic flow but also the interrupted traffic flow. By the test in chapter 3, it was 

found that this software did not consider the downstream influence properly while simulating 

the discharge flow at closely spaced intersections. Hashemi et al. (2017) did field surveys and 
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investigated the downstream impact at two Japanese corridors on which intersections are 

closely spaced. This paper provided adequate empirical analysis for the influenced SFR. 

However, he hasn’t provided a convincing approach for estimating SFR reductions considering 

the downstream influence. This paper clearly proved that a long queue in a short downstream 

link with a large positive offset can lead to a lower SFR at the subject intersection.  

2.4  Summary 

As introduced in the fundamental philosophy, SLT and SFR are two important parameters 

for capacity estimation at signalized intersections. From the above literature reviews, it can be 

concluded that researchers were devoted to making the capacity estimation model more 

accurate and comprehensive by incorporating more adjustment factors. However, existing 

models are still problematic because none of them has properly considered the capacity 

reduction from downstream impacts. Since the 1990s, scholars started to study the interaction 

effect between two adjacent intersections. It has been gradually recognized that not only the 

upstream queue length and delay but also the SFR and SLT should be affected by the 

downstream conditions. However, until now, no systematic research about downstream 

influence at signalized intersections has been proposed much less the practical application. 

Therefore, it is an important research gap and this problem is necessary to be addressed. 
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CHAPTER 3  MODELING DOWNSTREAM 

IMPACTS AT SINGNALIZED INTERSECTIONS 

Downstream impacts happen frequently and especially for streets in the urban area which 

have closely spaced intersections and high traffic volume. Based on empirical studies, this 

chapter mainly addresses two issues, how are upstream capacities affected parameters and 

which are key influencing factors of downstream conditions. The essence of all macroscopic 

qualitative changes is caused by microscopic quantitative changes. This phenomenon is studied 

starting from capturing influenced driving behaviors. Firstly, Yasukuni-tori in Tokyo Japan, a 

typical arterial for this phenomenon is observed in this chapter, which is the foundation work 

for understanding and capturing this behavior. By several comparative analyses, key 

influencing factors are determined and a new car-following model is designed with these 

factors. Base on this new car-following model, downstream impacts at isolated intersections 

are modeled. 

3.1  Empirical Study on Downstream Influence 

3.1.1 Assumptions 

Firstly, the perspectives of upstream waiting drivers are analyzed. The following figure 

(Figure 3.1) shows the information that upstream drivers can get from observations while 

waiting. They can clear know the available space (las), segment length (ls), queue length (lq) by 

spatial observation. Also, by comparing the time difference between two consecutive signals 

or simply observe the motion of the downstream platoon, drivers can know the offset. 
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Figure 3.1  Perspectives of upstream waiting drivers 

 

Two different typical downstream conditions are shown in Figure 3.2. Case A shows a 

good downstream condition, where the queue in the downstream link is short (nearly 30% of 

downstream space has been occupied by queueing vehicles). The signal of downstream 

intersection is green which means that the downstream queue will be discharged soon. Case B 

shows a bad downstream condition where the queue in the downstream segment is long (almost 

100% of downstream space has been occupied by queueing vehicles) and the signal of the next 

intersection is red which indicates that the downstream queue may last for a long time.  

 

 

(a) Case A (b) Case B 

Figure 3.2  Two cases of downstream conditions 
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For case A, drivers waiting in upstream through lane can anticipate that at the time when 

they arrive at the downstream link, downstream vehicles may already have gone far away. 

There is a high probability that their forward routes are not hindered by the downstream queue, 

so that they may start-up quick and travel fast. In contrast, for case B, drivers may notice that 

the end of the downstream queue is closed and the red signal indicates that the downstream 

queue may stay even after their arrival. Upstream drivers can infer that no matter how fast they 

drive they have to join the downstream platoon. Most of the drivers have the subconsciousness 

of optimizing their travel processes. Therefore, if drivers understand that they have a high 

probability of stopping or decelerating after only travel for a short distance, they may not 

accelerate and travel as quickly as a free discharge. Drivers’ behaviors are disturbed worrying 

about the risk of a crash or wishing to join the downstream queue in a comfortable way. 

 

Accordingly, this research assumed that under negative influence from downstream traffic, 

the SFR will be lower and SLT will be higher from the through lanes at upstream intersections. 

Shorter downstream links and longer downstream queues probably result in greater 

downstream impacts. In addition, if the signal indication at the downstream intersection is red 

at the onset of green, downstream impacts may further be amplified. 

3.1.2 Sites Selection and Data Collection 

In the whole study, two roads in Japan were observed and studied. One is the Yasukuni 

road in Tokyo. Signals on this road are set as actuated traffic signals so that multiple offset 

values can be observed from this road. The other one is the Hirokoji-tori in Nagoya. Phase 

timing of traffic each signal along Hirokoji-tori is fixed and their cycle lengths are the same. 

Therefore, only 4 different offset values can be observed from the Hirokoji-tori. For analyzing 

downstream impacts under various traffic conditions (different segment lengths with different 

offset), the Yasukuni road in Tokyo is suggested to be analyzed. The field study of the Hirokoji-

tori in Nagoya will be applied for the arterial level study and detailed in Chapter 4. The 

following paragraph introduces detailed information about the field survey on the Yasukuni 

road.  
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Figure 3.3 shows the plane figure of the observed target. Three intersections (a) Jimbocho 

intersection (b) Sendaimae intersection (c) Manatabashi intersection on this road are closely 

spaced on a street with a length of 600m. The longest segment between two intersections is 

250m and the shortest segment is 116m. 5 observed approaches are located on these three 

intersections. They are the westbound (WB, hereinafter) and the eastbound (EB, hereinafter) 

approaches of Jimbocho intersection, the WB and EB approaches of Sendaimae Intersection, 

the EB of Manaitabashi Intersection. As shown in the plane figure, each approach has two 

through lanes and shared right-turn lanes. 1, 2, 3, and, 4 approaches also equipped with a left-

turn lane. The second through lane of each approach is the main target of the survey. 

 

  

Figure 3.3  Plane figure of Yasukuni road 

 

Tables 1(a), (b), and (c) show base phase plans of these three intersections. They have a 

common cycle length value (150s). Signal of Jimbocho intersection is set as 4 phasings with 

two protected-permissive right-turn phases. The signal of Sandaimae intersection is 4 phasing 

with two protected right-turn phases. Meanwhile, the signal of Manaitabashi intersection is 2 

phasing. All signals of the road section are set as actuated. The green time of each cycle changes 

according to arrival demand. Signal phases of these intersections vary for different cycles on 

the basis of base phase plans. Accordingly, offset values change with cycles slightly but not 

breaking the coordination of signals along this arterial. 
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Table 3-1 Signal setting of each intersection 

(a) Jimbocho Intersection 

 
(b) Sendaimae Intersection 

 
(c) Manaitabashi Intersection 

 
TH: through vehicle RT: right-turning vehicle LT: left-turning vehicle 

 

 

Movement
Signal phasing (s) Cycle 

length 
(s)

φ1 φ2 φ3 φ4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
TH&LT

150

Pedestrian
RT

TH&LT
Pedestrian 

RT
Vehicle movements 61 4 20 2 4 39 4 10 2 4

Pedestrians 40 10 11 - - - - 18 10 11 - - - -

Signal Phase
Sequence

Movement
Signal phasing (s) Cycle 

length 
(s)

φ1 φ2 φ3 φ4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
TH&LT

150

Pedestrian
RT

TH&LT
Pedestrian 

RT
Vehicle movements 78 4 7 3 4 34 4 10 2 4

Pedestrians 57 10 11 - - - - 13 10 11 - - - -

Signal Phase
Sequence

Movement
Signal phasing (s) Cycle 

length 
(s)

φ1 φ2

1 2 3 4 5 6 7 8 9 10
Vehicle

150

Pedestrian
Vehicle

Pedestrian 
Vehicle movements 98 4 4 36 4 4

Pedestrians 77 10 11 - - 15 10 11 - -

Signal Phase
Sequence

Green Amber Red

Pedestrian flashing green Exclusive RT phase

Pedestrian movement Vehicle movement



24 

A video survey was conducted on Tuesday, January 31 and Wednesday, February 1, 2017. 

3 video recorders were positioned near the window of a tall building where is the office of i-

Transport Lab (ITL). They were focusing on recording the Sendaimae intersection, recording 

the Jimbocho intersection, and covering the whole street separately, as shown in Figure 3.4. So 

that the movement of each approach can be clearly observed. Survey time on Tuesday starts 

from 1:00 pm to 6:00 pm covering the off-peak hour and evening peak hour. Survey time on 

Wednesday starts from 8:00 am to 12:00 am covering the off-peak hour and morning peak hour. 

At last, 235 cycles were recorded on two consecutive sunny days. 

 

 
Camera 1 Camera 2 Camera 3 

   
Figure 3.4  Camera positions of the field survey on Yasukuni-tori 

3.1.3 Data Processing 

Considering the focus point of this research which is to study the influenced capacity of 

through lanes under different downstream conditions, through lanes that are not influenced by 

turning vehicles are observed. Considering the actual situation of the survey site, only the 2nd 

(through) lane of each approach was selected for the data extraction, as shown in Figure 3.3. 

Throughout the length of the survey time in both two sites surveyed, no accident or any special 

incident has happened which could interrupt the traffic flow. All video sessions are available 

for data collection. 

 

In order to extract valid data, only signal cycles with upstream queued platoons that 

consist of more than 8 queuing vehicles are selected. Meanwhile, we required that in the 

selected platoon at least the first six vehicles shall be passenger cars. Situations that only one 

heavy vehicle exists in the platoon are allowed but it should not be in the position of first six 
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vehicles. The heavy vehicle effect was eliminated by removing their headways and the vehicle 

behind them from the queue. In red time, the first vehicle may mistakenly wait at the position 

after the stop line. In this study, the passing time of the vehicle in this situation will be recorded 

as 0. During data collection, this phenomenon rarely happens at the survey site and most 

leading vehicles waited at the position 1-3 meters upstream of the stop line. We attribute this 

to the good driving habits of Japanese drivers. In addition, two other screening rules are set as 

well in order to eliminate the impact of other variables that are not studied as much as possible. 

Firstly, treating as invalid cycles, cases were excluded in which vehicles of the subject approach 

turn into the other lane before going through the intersection or the normally discharging is 

disturbed by motorbikes, bicycle, and cutting in effect. Secondly, cases were also removed in 

which vehicle breakdowns, drivers’ distraction, and spillback happened at subject approaches. 

These conditions may lead to extremely strange headways. Furthermore, for properly 

distinguishing cycles in which spillback occurred, two methods are applied. The first is visual 

judgments. Cycles in which upstream discharged platoons are obviously hindered by the 

extension of the downstream queue are screened out firstly. Then, for some ambiguous samples, 

math judgments are applied which will be introduced in the SFR and SLT calculations. 

 

Furthermore, it is important to mention that at the onset of upstream green, not all 

downstream vehicles are queuing vehicles. There may be some vehicle from the last phase 

moving behind the downstream queue. According to the car-following theory, upstream 

vehicles are directly influenced by them. However, for this research, it is the actual real-world 

observation at the analysis sites that there were very few moving vehicles. Most of the vehicles 

in the downstream link joins the queue before the upstream green. We attribute this result to 

the short link and long all red time between green indications (4s). Based on the above analysis 

and observation, it can be inferred that the impact of these moving vehicles is very minimal for 

short-link streets. To simply study the influence of the downstream queue, it is reasonable to 

remove all samples with moving vehicles and only observed cycles without moving vehicles. 

For variable-controlling, some influencing factors have been excluded such as heavy vehicles, 

drivers’ distraction, and overtaking behaviors through data screening. However, these factors 

are important to be reconsidered before this method is applied in practice in the future.  

 

Finally, in every selected cycle, the time of each vehicle passing the stop line and the 

corresponding downstream, conditions such as queue length, segment length, and offset are 

recorded. The collected videos are analyzed using an image processing software, “Traffic 



26 

analyzer” (Suzuki and Nakamura, 2006) by manually clicking each point of time. Figure 3.5 

shows the interface of the analyzer.  

 

 

Figure 3.5  Traffic analyzer screen shot 

 

Conventionally, headways reduce gradually with more and more queued vehicles passing 

through the stop line. Because platoon is still accelerating and hasn’t reached the maximal flow 

rate when the first few vehicles are running through the stop line. HCM claimed that departure 

headways become saturated when the fifth queued vehicle passes the stop line (TRB, 2016). 

Accordingly, the saturation headway is the average headway of all queued vehicles except the 

first four. In this manual, the observed SFR is calculated by letting 3600 (seconds of one hour) 

divided by saturation headway as shown in Equations (2-4) and (2-5). The observed SLT is 

calculating as shown in Equations (2-6) and it is the difference between the total time taken for 

the first four vehicles to pass the stop line and four times saturation headway.  

 

For being easily applied, this equation simply assumed that all discharge platoons reach 

the maximal flow rate after the fourth vehicle passed the stop line. This assumption cannot 

explain all cases. Especially in field data, headways fluctuate on vehicle sequence drastically 

and irregularly which makes it difficult to visually figure out the right position when the flow 

becomes saturated. In reality, the headway reduction usually ends at or after the fourth vehicle 

while sometimes before the fourth vehicle. The headway distribution of each cycle varies and 

the HCM method should not simply be applied in this study. Considering this problem, 
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measuring the observed SFR and SLT will be done by a newly introduced methodology and it 

is divided into the following 5 steps. 

 

1. Data points in one cycle are ordered according to time. i in this calculation procedure 

defines the number of data points and n defines the total number of data points. For 

each selected cycle, plot the cumulative number of discharged vehicles (Y={ y1, 

y2,…yn}) on the elapsed time (after the onset of green time) (X={ x1, x2,…xn})  as shown 

in Figure 3.6,  

2. Solve two linear regression curves by the least square method separately for all points 

and all points except the first points as shown in Equation (3-1) and (3-2); 

 

  1 1 1 2i iy=p x+q i= , n，...  (3-1) 

 

  2 2 2i iy=p x+q i= n，...  (3-2) 

3. Calculate their x-intercepts and verify whether these two values satisfy the following 

two criteria; 

a) The values of the two x-intercepts are larger than zero. (-q1/p1>0 and -q2/p2>0) 

b) The difference ratio (as shown in Equation (3-3)) is less than 5%. 

 

 2 1 1 2

1 2

5
q p q p

%
q p


  (3-3) 

4. If both two requirements are met, output the first x-intercept value (-q1/p1) as the 

SLTobs and the first slope value (p1) as the SFRobs for this cycle. Otherwise, making 

new data set by removing the first data point as shown in and turn back to the 2nd step. 

 

    
1 2 1 32n

' ' '
nY y , y , y = y , y , y


    (3-4) 

 

    
1 2 1 32n

' ' '
nX x , x , x = x , x , x


    (3-5) 

5. If the above two requirements are not satisfied yet after all available data points of a 

selected cycle have been scanned, it means saturation headway cannot be found in this 

cycle. This cycle will be identified as an invalid sample and be abandoned. Cycles in 

which spillback happened or extreme large headways occur due to vehicle breakdowns 

and drivers’ distraction to may have this result. 



28 

 

An example of two successive calculations is provided. Two linear regression curves are 

shown in Figure 3.6 (Figure 3.6(a) is the fitting curve for 3rd to 14th data points; Figure 3.6(b) 

is the fitting curve for 4th to 14th data points). The above two requirements are satisfied. 

Therefore, the SLT (the x-intercept in Figure 3.6(a)) and the SFR (the slope in Figure 3.6(a)) 

of example is 3.84s and 1560veh/h/ln respectively. By the above procedure, the vehicle 

sequence where the platoon becomes saturated can be mathematically distinguished as well. In 

this example, after the 3rd vehicle passes the stop line, this platoon reaches the saturation flow 

rate. In addition, one of the criteria is “difference ratio is lower than 5%”. 5% is set according 

to the situation of the overall sample. If the headway distribution fluctuates drastically in 

another field survey, this value can be raised. 

 

 
(a) the fitting line for 3rd to 14th data points (b) the fitting line for 4th to 14th data points 

Figure 3.6  Example of measuring SLT and SFR 

3.1.4 Result and Discussion 

After data screening, a total of 294 cycles for all observed approaches are extracted. The 

methodology mentioned in the last section is used to calculate the observed SLT and observed 

SFR of each cycle. Based on watching the recorded video and actual driving experiences, it is 

found that the performance of the upstream platoon and behaviors of upstream drivers differ 

from different available space (las) which is the distance from the upstream platoon to the last 

queuing vehicle in the downstream queue. It can be inferred that when las is short, vehicles 

accelerated and ran slowly. On the contrast, while las is long, the platoon discharged quickly. 

In order to highlight this point, results are categorized based on the value of las. “las =100m” 

and “las =200m” are selected as two thresholds. “las>200m” represents the SLT and SFR of the 
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cycles which are less affected by downstream conditions. “las<100m” represents the SLT and 

SFR of the cycles which are greatly affected by downstream conditions. “200m≥las≥100m” 

represents the transitional part between them. Figure 3.7 shows the average SFRs and SLTs of 

all five approaches for each las interval.  

 

 (a) SFR 

 

(b) SLT 

Figure 3.7  Basic histograms for all five approaches 

 

Firstly, when focusing on the sample size of each approach, it can be easily observed that 

the number of samples at approach 3 (12 samples) and approach 5 (4 samples) are quite small. 

It is because that their downstream link lengths are too short (approach 3 is 140m and approach 

5 is 116m) that downstream can easily extend to upstream resulting spillbacks. Especially, 

during data screening, we found that spillbacks happen more frequently for approach 5. It is 

due to large positive offset values (19s~24s) at approach 5, which always stops the propagation 

1611 

1357 

1188 

1684 
1555 

1662 
1530 

1381 

1703 
1567 1548 

800

1000

1200

1400

1600

1800

2000

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5

SF
R

 (
ve

h/
h/

ln
)

las<100m 100m≤las≤200m las>200m

Number  of      0    40  96            0   17   37            3    9    0              1    67  20            3     1     0 
Samples 

3.37 

6.08 
5.72 

3.55 
2.74 

2.35 

3.74 
4.29

2.92 2.64 
3.11 

0

1

2

3

4

5

6

7

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5

SL
T

 (
s)

las<100m 100m≤las≤200m las>200m

Number  of      0    40  96           0    17   37            3    9    0              1    67  20            3     1     0 
Samples 



30 

of the upstream platoon. Also, approaches 1, 2, and 4 have very samples in the category 

“las<100m” we inferred that longer segments have better ability in accommodating queuing 

vehicles and ls should be one of the key influencing factors. Secondly, while comparing values 

in each category at different approaches, it is found that average SFRs in “las<100m” are all 

lower than them in “200m≥las≥100m” and average SFRs in “las>200m” is higher than the other 

two groups. Average SLTs in “las <100m” are all higher than values in “200m≥las≥100m” and 

average SLTs in “las>200m” are always the lowest in three categories. The above findings 

indicate that with las becomes smaller, the negative influence on upstream capacity from 

downstream traffic becomes stronger.  

 

The available space (las) is equal to segment length (ls) minus queue length (lq) For further 

analysis, samples are plotted on values of lq. As shown in Figure 3.8 (a) and (b), it can be clearly 

observed that with lq becomes longer, SFRs tend to decrease and SLTs tend to increase, which 

reveals that lq is one of key influencing factors.  
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(b) SLT 

Figure 3.8  Relationship between SFR(a), SLT(b) with queue length (lq) 

 

During the above analysis, we can observe both positive and negative offsets in approach 

1 and 4. In approach 2 and approach 3, only negative offsets can be observed. In approach 5 

only positive offset cases exist. Therefore, for investigating the influence from offset values, 

samples in approach 1 and 4 are separately plotted. Samples with different offsets are classified 

into four groups, (-∞, -5], (-5, 0], (0, 5], and (5, +∞]. Four groups are dyed in different colors. 

With offsets increasing from negative value to positive value, colors of samples (SFR: red, 

SLT: blue) change from light to dark. 

 

As shown in Figure 3.9 and Figure 3.10, the whole data can be divided into two stages, 

flat part (0≤lq≤60m) and reduction part for SFR or upgrading part for SLT (60≤lq). as shown in 

Figure 3.9(a) and (b), most of the data points (both SFR and SLT) are located in flat sections 

in approach 1. In this stage, SFRs and SLTs in four groups are intermingled. A small sampling 

of data distributes in decreasing (SFR) or increasing (SLT) parts. In the changing stage, it can 

be roughly observed that samples with low offsets are lower than ones with high offsets. On 

the other hand, as shown in Figure 3.10(a) and (b), only a few data points are in the flat stage 

in approach 4 and they are highly mixed. Almost 80% of the points belong to the decreasing 

(SFR) or increasing (SLT) sections. We can clearly observe that samples with high positive 

offset values are lower than points with low offset values. The above findings indicate that 
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large positive offset values can aggravate the negative influence of long queues and it deserves 

to be counted as one key influencing factor as well. 

 

 

(a) SFR 

 

(b) SLT 

Figure 3.9  SFR(a) and SLT(b) in four offset groups at approach 1 
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(a) SFR 

 

(b) SLT 

Figure 3.10  SFR(a) and SLT(b) in four offset groups at approach 4 
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long ls can alleviate this influence. For instance, the same queue length in links with different 

ls leads to different las for upstream platoons. Also, a positive offset can extend the duration of 

the downstream queue while negative offset lets the downstream queue discharge soon after 

upstream green. So that signs of offsets are also important to be considered in the model 

developing. 

3.2  Modeling the Influenced Discharge Behavior by Car-Following Model 

3.2.1 Analysis of the Influenced Discharge Behavior 

For investigating performances of existing car-following models in reproducing 

influenced discharge behaviors, some popular models are applied to simulate upstream vehicles’ 

trajectories based on observed motions of last queued vehicles in the downstream link. An 

example of simulating results is shown in Figure 3.11. As we can observe from this figure, GM 

and IDM do not fit the observed trajectory accurately. Regarding the performances of existing 

models, they can be classified into two groups. Represented by GM, once discharged, some 

car-following models aim to shorten the current headway to the minimum space headway. their 

trajectories are approaching leading vehicles as quickly as they can. Represented by IDM, 

behaviors simulated these models not only aim to shorten the current headway but also 

constrained several limitations such desired speed. Therefore, once discharged simulated 

vehicles will accelerate to the desired speed instantly. However, both simulated trajectories of 

the two groups are faster than observed ones. It is concluded that existing models cannot 

produce realistic discharge behaviors because they do not consider the resistance from 

downstream traffic properly. In reality, drivers will adjust vehicles’ movements not only based 

on behaviors of leading vehicles but also based on downstream information (such as queues 

and signals). 
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Figure 3.11 Trajectories of discharge vehicles (GM, IDM, and observation) 

 

As early as 1959, Herman et al. (1959) introduced driver anticipation into the car-

following model. While driving, drivers not only estimate the current driving conditions (speed, 

distance to the vehicle ahead) but also predict the future driving state in downstream. In 2012, 

Deng analyzed the actual driving process and claimed that drivers’ anticipation can be 

classified into two categories (Deng, H, 2012). First is the temporal anticipation which is based 

on the information from the vehicle ahead and vehicle in driving including their acceleration 

and velocity. Second is the spatial anticipation which is spatially analyzing information from 

multiple downstream vehicles. In the assumed environment (short segment streets) of this study, 

drivers waiting in the subject approach can receive a lot of traffic information by observing 

downstream vehicles. In this research, upstream vehicles not only speed up reacting to the last 

vehicle but also adjust their driving strategies based on motions of the whole downstream 

platoon. It is reasonable to treat downstream influence as the result of both temporal and spatial 

anticipation. Therefore, in order to simulate driving behaviors in influenced discharge flow, 

not only the motion of the last vehicle in the downstream platoon should be included, but also 

the size and duration of the downstream queue should be considered in the model. 

 

In order to understand the anticipation processes of upstream drivers in this research, two 

typical discharging cases at Jimbocho intersection are plotted in Figure 3.12. Grey dash lines 

show the discharge process of the upstream platoon without any downstream queue. Blue lines 

show the discharge process of upstream vehicle influenced by long queue in downstream. No 
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matter the acceleration rate or the cruising speed after the acceleration of blue lines is lower 

than grey lines. Through comparison, it can be found that without the influence from the 

downstream queue upstream platoon discharging achieved a higher efficiency than the one 

facing to long downstream queue. We further observed that blue lines join the downstream 

queue just at the time when the last vehicle in downstream almost starts to move. This can 

provide drivers with more comfortable and safer travel processes. The same phenomenon can 

be observed in most cases of influenced flow. It can be inferred that the assumed optimization 

thought for avoiding fully stops really exist in most drivers’ minds. 

 

 

Figure 3.12 Influenced and uninfluenced discharging trajectories 

3.2.2 Improved Intelligent Driver Model (IDM+) 

Model development are on basis of the assumption that two signalized intersections that 

are spaced closely which allows vehicles in the upstream intersection to observe the situation 

at the downstream intersection, such as lq, ls, and signal indications. Considering the inference 

that drivers will react to not only front vehicles but also the action of the downstream platoon. 

Hence, in this study, the origin car-following model (fcar-follow) is improved by adding a 

downstream influence module (fdownstream). The basic structure of the new model is as follows. 
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 car follow downstreamf
t

f
dv

d    (3-6) 

Seldom of the existing car-following models can properly simulate traffic propagation on 

signalized arterials because most of them are specially designed for simulating traffic flow on 

motorway sections. This point of view was also acknowledged by Cohen (2002). He claimed 

that the majority of the current models are specially designed for the uninterrupted flow on 

freeways and only a few of them can deal with the interrupted flow on urban roads. Speed 

changes on motorway sections are low frequency and small amplitude. While speed changes 

on the signalized arterial are far more dramatic than it on motorways. Among the popular car-

following models, IDM is selected. Because through multiple attempts, it was found that IDM 

has better performance than other car following models in reproducing real discharge 

trajectories. The IDM (Treiber, 2000) is a time-continuous car-following model with a good 

robustness performance. IDM considers the acceleration, speed, and distance between the 

preceding vehicle IDM and current driving vehicle. It is described by two ordinary differential 

equations as follows (Equation (3-7) and (3-8)). 
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Where, T is the minimum time headway (s), a is the maximum vehicle acceleration (m/s2), 

b is the comfortable braking deceleration (m/s2), δ is the acceleration exponent which is usually 

set to 4, dα is the net distance (m), d* is the desired minimum net distance (m). Vehicle α-1 

refers to the vehicle directly in front of vehicle α in the platoon. xα and vα are the position and 

velocity, respectively, of vehicle α at time t. In addition, the velocity difference or approaching 

rate is ∆vα=vα-vα-1. lα denotes the length of vehicle α. In order to simplify the process, no heavy 

vehicles are considered in this study and all passenger vehicles are assumed to have equal 

length l. The net distance headway between vehicle α and vehicle α-1 is defined as dα=xα-1-xα-

lα-1 
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For designing the downstream module, the discharging process in Figure 3.12 is deformed 

based on the following rules, as shown in Figure 3.13. Firstly, vehicles’ trajectories are divided 

into three sections: acceleration, running, and deceleration. Secondly, the running process is 

deformed into a linear curve assuming that the cruising speed is constant. Thirdly, omitting the 

acceleration and deceleration in the start and stop processes are neglected. The whole trajectory 

is deformed into polygonal lines as shown in Figure 3.14. When upstream drivers are waiting 

to be discharged at the approach, they have plenty of time to observe the downstream traffic. 

By visual observation, they can know the size of the downstream queue and signal displays of 

the downstream and the subject intersection. Based on this information, they can anticipate the 

duration of the downstream queue (the time when the last vehicle in the downstream queue 

starts to move) and roughly plan the driving route. Once they cannot freely pass through the 

intersection and downstream link due to the hindrance of the downstream queue, drivers may 

not pursue their desired speed anymore. They may sacrifice driving efficiency to ensure 

comfort and safety. In this situation, if they can catch up the downstream platoon immediately 

after the last downstream queued vehicle starts to move, upstream drivers can run a safe path 

(small speed changes) but also keep driving efficiency (Even if they drive faster, travel time 

can't be shorter than this way). This path in this study is called the optimal route and Figure 

3.14 shows an example of the optimal route. The cruising speed of the optimal route is named 

as optimal speed vop accordingly which can be easily calculated as shown in Equation (3-3) and 

(3-4).  

 

 

Figure 3.13 Trajectory deformation 

Real Trajectory

DeformationAcceleration

Decelerationspace

time

a. Assume that after acceleration, vehicles keep 
cruising with constant speeds until stop.

b. Neglect the acceleration and deceleration part.
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Note: hd is the distance headway or space headway (m), l is the vehicle length (m), τ is the drivers' 
reaction time (s), db is the brake distance, the product of the reaction time and the current speed (m), ω 
is the distance from upstream 1st vehicle’s front bumper to stop line (m), d0 is the minimum stopping 
distance (m), n is the number of vehicles in the downstream queue, vop defines the optimal speed (m/s), 
respectively, tm defines the elapsed time from the onset of upstream green signal until the last vehicle 
of downstream queue starts to move (s). 

Figure 3.14 Deformed discharging process 
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Where v0 is the velocity the vehicle would drive at in free traffic (m/s). 

 

Substitute hd into Equation (3-9), then 
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Also, it can be inferred that 

 

 as s ql =l l +ω  (3-11) 

 

   01ql =nl n d +ω   (3-12) 
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 mt nτ offset   (3-13) 

By substituting the Equations (3-11), (3-12), and (3-13) into (3-10), the relationship 

between offset, ls, las, and vop can be deduced in Equation (3-14). Theoretically, vop should be 

larger than 0 and smaller than the drivers’ desired speed v0. Also, in some cases, queue in 

downstream may has been discharged before the onset of upstream green (tm is smaller than 0), 

which represents good downstream situations. vop for these cases equal to v0 as well. 
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Base on the above analysis, we can know that downstream impacts are results of both 

temporal and spatial influence. The longer the downstream queue in a road segment becomes 

and the larger the offset value is, the stronger the downstream influence becomes. The vop is 

variable which exactly meets the above statement and it introduced to measure the degree of 

downstream impact. Also, the downstream module is designed by taking vop as a core variable. 

The improved model is described by the following two ordinary differential equations 

(Equation (3-15) and (3-16)). In this study, the improved IDM is named as IDM+. 
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In order to maintain the car-following function, the first half part of the model (Equation 

3-15) preserves the original formula of IDM. In the module of IDM, high deceleration rates are 

used and the following vehicle can react to the leading car instantly (0 reaction time). These 

settings can guarantee the crash-free in the collective dynamic, which prevents the newly 

designed model from discussing local and asymptotic stability problems. The second half of 
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Equation (3-9) β is the module designed to represent downstream influence. In the original 

formula, β works as a negative force (or deceleration) on the origin desired acceleration of the 

upstream driver reproducing behaviors of resistance to downstream queues. Among parameters 

in the downstream module, c (m/s2) controls the amplitude of the negative force and k controls 

the increasing pattern of the negative force).  

 

The core part of this β function is the comparison between vop and v0. “vop>v0” means that 

drivers cannot freely run with desired speeds. Downstream conditions have negative impacts 

upstream driving. “vop<v0 or vop=v0” means drivers can drive as fast as they want. They can run 

through the downstream link with their desired speed (v0). There is no negative downstream 

influence and drivers in the subject approach are uninfluenced. Meanwhile, we observed that 

visions of drivers in the rear part of the platoon are partially blocked by former vehicles. 

Therefore, it is common sense that with the vehicle sequence in an upstream platoon moving 

backward, the downstream influence they received decreases. Decline patterns differ in 

different road geometries. This decline effect of downstream influence is called platoon 

attenuation and it is explained by a platoon attenuation coefficient γ as shown in Equation (3-

16). Different geometric layouts may lead to different visibility conditions. For instance, in a 

downhill section, drivers can see more far ahead than in an uphill section. This topic requires 

further investigation in future research. 

 

In the beginning, a sensitivity analysis is carried out to show features of the module (β). 

v0, c, k, d0, τ, and l are set to be 20m/s, 1.5m/s2, 4, 2m, 1s, and 4.5m in the sensitivity analysis. 

Two ls (200m and 150m) are defined to represent a shorter link and a longer link. For both two 

ls, values of offset gradually increase from -10s to 10s with an interval of 1s and values of lq 

increase from 0m until equaling to ls. The results of the sensitivity analysis are illustrated in 

Figure 3.15. In Figure 3.15(a) and (b), as the lq increases, the value of β also increases. This 

effect corresponds to the real-world observation that longer queue leads to greater downstream 

impacts. At a specific lq, as values of offset increases, β becomes larger. This effect is consistent 

with the empirical finding that large positive offsets can aggravate the downstream influence. 

Furthermore, regarding the comparison between curves in Figure 3.15(a) and Figure 3.15(b), 

it is obvious that for points with the same lq and offset, β values in Figure 3.15(b) is higher than 

Figure 3.15(a). This mechanism accords with the other conclusion that longer ls can 

accommodate more queued vehicles and mitigate downstream impacts. The above statements 
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are able to confirm that the newly designed downstream module is rational and it is meaningful 

to continue calibrating the new model. 

 

 

(a) Segment length (ls) is 200m  (b) Segment length (ls) is 150m 

Figure 3.15 Characteristics of the downstream influence module 

3.2.3 Parameters Calibration by Generic Algorithm 

Vehicles involved in the discharge process are numbered. As shown in Figure 3.16, the 

last queued downstream vehicle numbered as 1 and the first vehicle waiting in the subject 

intersection is numbered as 2. Vehicles waiting after vehicle 2 are numbered in sequence. In 

the calibration, with the empirical trajectories of their corresponding leading vehicles serving 

as the input data, simulated trajectories of vehicles 2, 3, 4…… can be calculated by car-

following models. The flow chart in Figure 3.17 shows the logic of generating simulated data 

that is used for calibration. The observed data used for calibration are from Yasukuni-Dori. For 

a discharge process, trajectories of the last queued vehicle in downstream and all upstream 

queued vehicles are recorded. Trajectories of upstream vehicles are recorded from the onset of 

upstream green until all upstream queued vehicles join the downstream queue. Finally, a total 

of 30 sets of data were collected. Figure 3.16 shows an example of collected data and explains 

the method of numbering vehicles in the discharging process. 
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Figure 3.16 An example of trajectory data and the vehicle numbering method 

 

 
Figure 3.17 Flow chart of generating simulated vehicle trajectories.  

 

Firstly, parameters in the proposed model should be carefully calibrated. Only after 

calibration, the model can be further applied to discuss its macroscopic and microscopic feature. 

How many mistake ratios are between observed and simulated data is the key point to judge 

whether the calibrated car-following model is good or not. In this research, the model will be 

regarded to have a good fitting performance if it can accurately reproduce observed discharge 

trajectories and maintain a neglectable error with the actual data. The mistake ratio is 

commonly measured by fitness values. In previous simulation researches, different indicators 
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by different fitness methods were introduced to calibrating simulators or micro models. The 

pros and cons of these fitness measurements have been comprehensively explained and 

compared in Traffic Simulation: Case for guidelines (Antoniou, C et al. 2014). Geoffrey E. 

Heavers (GEH) statistic is one of the most popular fitness calculation methods. It merged 

considerations of both relative and absolute differences into one function and it has been widely 

applied. For instance, Abuamer, I. M., Sadat, M. et al. (2016, 2017 and 2017) built simulation 

works by VISSIM for modeling ramp metering sections on Istanbul freeways. In their studies, 

the volume on main roads is treated as the key indicator for calibration. Fitness measurement 

is calculated by the GEH method. To achieve a reliable simulation performance, trajectories 

from the proposed model should be comparable with the whole observed data points in an 

acceptable mistake ratio. Kesting and Treiber (2008) used the mixed error to calibrate the IDM 

and proved that this fitness measurement is suitable for the IDM calibration. The fitness 

equation (Equation 3-17 and 3-18) of this study is designed by drawing on the mixed error 

measurement. Calibrated by this equation, drivers’ average behaviors can be captured. 

 

 
 21 1

sim datam
α α

data data
α α α

s s
Fitness

m s s


   (3-17) 

Where d a ta
αs  is the empirical trajectory data on time series of vehicle α, sim

αs  is the simulated 

trajectory data on time series of vehicle α with the observed leading vehicle serving as external 

input, and m is the number of vehicles for fitness calculation. Here, the expression . means 

the temporal average of time series of duration ∆T as shown in Equation (3-13) 

 

  
0

1 ΔT
z = z t dt

ΔT   (3-18) 

The calibration procedure can be transformed into an optimization problem that is finding 

a set of parameters aiming to let differences (Fitness) between simulated and observed 

trajectories be minimal. As shown in Figure 3.18, optimization processes for the calibration are 

carried out by the genetic algorithm which is performed based on the GA function of Matlab 

(R2017b). The GA process for the calibration issue is introduced as the following four steps. 

 

1. A certain amount (defined by the population size) of possible solutions will be 

generated stochastically which are subject to the given constraints. Each possible 
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solution is an individual of the whole population and contains a set of parameters of 

the car-following model (called as the gene). 

2. The solution set in one calculation iteration is named as the generation and the solution 

set created in the first step is the first generation. In each generation, fitness value will 

be calculated and assigned to each individual via Equation 3-17 and 3-18. 

3. In each generation, individuals with the lowest fitness value will be kept unchanged 

and be inherited to the next generation. Pairs of individuals will be randomly selected 

and combined to generate a new individual. Individuals with lower fitness values in 

the last generation have a higher probability of becoming parents. Genes of new 

individuals are produced through inheriting, mutating, and crossover. By this step, a 

new generation will be created. 

4. The new generation will go through the second and third steps again until average and 

best fitness values for generations satisfy convergence criteria as the iteration goes on. 

Then calculation will terminate and final parameters will be output. 

 

 

Figure 3.18 Iteration process of GA in Matlab 

 

The reaction time for signal response in this study is determined as one second, which is 

the recommended value in the Institute of Transportation Engineers (1994). In addition to this, 

IDM has 5 parameters that need to be calibrated. While IDM+ contains 10 indicators including 

5 parameters that are the same as those in IDM. Based on several attempts and study experience, 

we set constraints (minimum and maximum values) for all parameters to restrict them into 

reasonable solution space but not deleting any possible optimal solution as shown in Table 3-

2. The value of parameter c reflects the extent of downstream impacts and the k parameter 

defines the growth rate of downstream influence. Among the parameters in platoon attenuation, 
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h is the vehicle sequence in the upstream queue where the platoon attenuation converges. The 

downstream influence becomes lower with the vehicle sequence in the upstream queue 

increases. Because the visual sight of vehicles in the rear part of the platoon is partially blocked 

by former vehicles. They received less downstream information than former vehicles. However, 

they can still observe the suspended signal lights (subject and downstream) and speculate the 

downstream situation based on the driving experience. After the hth vehicle, the downstream 

impact received by upstream vehicles will not be changed anymore. Also, platoon sizes of 

collected samples are mostly equal to 6. Therefore, the constraints for h are [0.1, 6]. Both IDM 

and IDM+ are calibrated with the observed 30 sets of trajectory data. As shown in Table 3-2, 

in calibration results, the fitness value of IDM+ (16.80%) is lower than IDM (25.27%), which 

indicates that by considering the downstream influence IDM+ has a better ability in simulating 

the influenced discharging driving behavior. 

 

Table 3-2 Parameters constraints and calibration results 

Parameters 
Constraints 
[min, max] 

IDM+ Result IDM Result 

v0 (m/s) [1, 30] 24.23 22.82 
T (s) [0, 1.5] 1.02 1.52 

a (m/s2) [0.1, 6] 2.05 2.05 
b (m/s2) [0.1, 4] 3.94 3.91 
s0 (m) [0.1, 8] 2.05 2.05 

c (m/s2) [0.1, 6] 1.82 ~ 
k [0.1, 6] 1.85 ~ 
h [0.1, 6] 6.00 ~ 
g [0.1, 6] 4.00 ~ 
μ [0.01, 1] 0.62 ~ 

Fitness%  16.80 25.27 

3.3  Model Validation 

3.3.1 Simulation by IDM+ 

In order to validate the improved model, we assumed a specific road system for simulating 

influenced discharging processes under different downstream conditions. As illustrated in 

Figure 3.19, the assumed road section is just two signalized intersections connected by a two-

lane road. Turning movements at the major and minor streets are not considered because this 
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research only studies the discharge flow on through lanes. Furthermore, in theory, some 

vehicles that were from turning phases of the minor street may still be moving ahead of the 

upstream platoon (moving vehicle) after the onset of green indication. Even some of them may 

still be running in the intersection (clearing vehicle) and did not join into downstream queues. 

Their presence will deteriorate the upstream discharge performance. However, they are 

excluded from experiment designing as well. Because segment links at both observed and 

simulated road sections are short. In addition, inter-green intervals of the observed intersections 

are long enough (larger than 7s) so that it can avoid this phenomenon. In most cases, no moving 

vehicle or clearing vehicle can be observed. Therefore, this event is regarded as a 

small probability issue so that it will not be specially considered.  

 

Meanwhile, corresponding to screening rules of the empirical study, no heavy vehicle is 

included and all vehicles are set to be the same length (4.5m) which is the observed average 

value of passenger vehicles on Yasukuni road. Also, no secondary downstream intersection is 

simulated because experiments assume that downstream conditions of the second intersection 

are good so that the traffic flowing out from the system is uninfluenced. In principle, every 

intersection may be affected by its downstream traffic. However, it is difficult to properly 

consider the traffic condition at the secondary downstream intersection. Because the second 

intersection may further be influenced by its downstream. It will be an endless discussion to 

consider the link lengths, offsets, and queue lengths of multiple downstream intersections. 

More importantly, only parameter tm describes the situation of downstream discharge in the 

IDM+. When demand is lower than the capacity, the tm is only governed by the number of 

queued vehicles in downstream links (n), reaction time (τ), and offset as shown in Equation (3-

12). It is irrelevant to the traffic of secondary downstream intersection. When traffic at 

intersections is oversaturated, spillbacks will occur, which shall be out of range of this study. 

Therefore, this simplification and assumption are justified and acceptable.  
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Figure 3.19 IDM+ based simulation platform 

 

Simulation experiments are also performed in MATLAB (R2017b). Unlike the simulation 

experiments established in other simulation studies (such as Akyol, G., Silgu, M. A., and 

Celikoglu, H. B., 2019 or Erdağı, İ. G., Silgu, M. A., and Çelikoğlu, H. B., 2019), this 

simulation work does not plan to investigate the performance of long-time traffic at the 

assumed intersections. Instead, we only pay close attention to a small but important process 

such as one discharge process on the through lane in this study. In one case, the simulation 

period starts from the onset of upstream green until all upstream queued vehicles pass the 

upstream stop line. Hence, each simulation round only lasts for 30~50 seconds. Before 

discharging, link length (ls) between two intersections will be defined and a certain number of 

queued vehicles will be assigned to the downstream link to demonstrate values of lq. The green 

starting time of upstream and downstream signals will be given to simulate offset values. As 

shown in Figure 3.19, the ls, lq, and offset are input variables of the experiment. These three 

parameters will determine and generate the trajectory of vehicle 1. Successively, trajectories of 

other vehicles will be calculated and generated by IDM+ based on the trajectory of vehicle 1.  

 

Two scenarios (Scenario 1: ls=300m and Scenario 2: ls=200m) are assumed to represent 

the shorter downstream link and the longer downstream link. For both two scenarios, values of 

lq increase from 0m to until spillback issues are detected and values of offset gradually increase 

from -9s to 9s with an interval of 2s. For each case, the passing time of each vehicle at the 

upstream stop line is recorded. The SFR and SLT of the discharging process will be measured 

by the method introduced in Chapter 3.1.3. As we introduced before, calibrated IDM+ is able 
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to capture average driving behaviors. Correspondingly, simulated SFRs and SLTs represent the 

average values of the upstream discharge flow. Figure 3.19 shows the result of one simulation 

experiment. Departure headways at the stop line gradually decrease to a stable value (saturation 

headway) with the increase of vehicle sequence. Therefore, SFRs and SLTs are measurable 

from the recorded passing time. They are calculated through the method introduced in Chapter 

3.1.3. The results of simulated SFRs are shown in Figure 3.20, Figure 3.21, and Figure 3.22. 

The results of simulated SLTs are shown in Figure 3.23, Figure 3.24, and Figure 3.25. 

 

From graph shapes in Figure 3.20(a) and (b), it is found that with values lq decrease to 0m 

and values of offset decrease from 9 s to 9s, SFRs in both two scenarios increase gradually and 

converge to the same value (approximately 1700pch/h/ln). In this stage, downstream impacts 

are zero and SFRs are uninfluenced. SFRs in both two scenarios deteriorate to 1200 pch/h/ln 

with growths of lq and offset. In the comparison of the graph shapes in Figure 3.20(a) and (b), 

it is obvious that the decrease rate of SFRs on these directions (growths of lq and offset) in 

Figure 3.20(a) is higher than Figure 3.20(b). This trend accords with the empirical finding that 

drivers are more sensitive to the downstream queue that is in a shorter segment.  

 

Figure 3.21 is the right elevation of Figure 3.20 which shows the relationship between 

offset and SFR on three specific queue length (40m, 80m, and 120m). In general, as the offset 

increases, the SFR decreases. As shown in Figure 3.21(a), when lq is equal to 40 meters, values 

of SFR keep stable for all offset values. However, for the same lq in a shorter segment (200m), 

SFR curve just keeps constant between -9s and 3s. In the interval [3s, 9s], SFRs decrease from 

1700 veh/h/ln to 1450veh/h/ln. Trends of curves in Figure 3.21(b) (ls=200m) are similar to 

those in Figure 3.21(a). However, decreasing rates of SFR is more intense in Figure 3.21(b) 

due to the influence of short ls. With the lq increases (80m and 120m), ranges of offset values 

under which SFR reduces becomes wider. This is a rational result since drivers facing short 

queues may not worry about signal display too much. 

 

Figure 3.22 is the front elevation of Figure 3.20 which shows the relationship between 

queue length and SFR on 10 specific offsets (from -9s to 9s with an interval of 2s). Trends in 

Figure 3.22 (a) and (b) highlighted the relationship between downstream impacts and values of 

offset. Under negative values of offset, the downstream queue will start discharging earlier than 

the upstream platoon, which reduces the duration of downstream queues. The downstream 

impacts received by upstream drivers is small. On the contrary, under the positive values of 
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offset, upstream drivers can observe the red signal at the downstream intersection and 

understand the situation. Downstream queues will start to discharge late than upstream platoons 

and durations of downstream queues become long. Therefore, SFRs under negative offset 

values are higher than SFRs under positive offset values. Also, sections, where SFRs are 

uninfluenced under positive offset values, are shorter than those under negative offset values. 

This indicates that upstream SFRs are more easily affected by downstream queues with large 

positive values. 

 

 

(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.20 The relationship between SFR, lq, and offset 

 

  

(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.21 Front view: the relationship between SFR and offset 
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(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.22 Side view: the relationship between SFR and lq 

 

Exactly, the opposite trend can be observed from SLTs figures. Figure 3.23 shows that 

with the increase of downstream queue length (lq) and offset, SLTs increase significantly. On 

the contrary, as lq and offset decrease, SLTs gradually reduce and reach a stable limit 

(approximately 2.5s), where the downstream influence is almost zero. In addition, it is obvious 

that the growth rate of SLT on lq and offset in Figure 3.23 (a) is more intense than that in Figure 

3.23 (b). This is because the shorter segment length with a long downstream queue (Figure 

3.23 (a)) can result in stronger space-time pressure from downstream. 

 

Figure 3.24 is the right elevation of Figure 3.23 which shows the relationship between 

offset and SLT on three specific queue length (40m, 80m, and 120m). In general, as the offset 

increases, the SLT increases. As shown in Figure 3.24 (a), when lq is equal to 40 meters, values 

of SLT keep stable for from -9s until 7s. Whereas, for the same lq in a shorter segment (200m), 

the SLT curve only keeps stable between -9s and -3s. In the interval [-3s, 9s], SLTs increase 

from 2.5s to 4s. However, growth rates of SLT in Figure 3.24(b) is faster due to the short ls. 

With values of lq increases (80m and 120m), ranges of offset values under which SFR reduces 

becomes wider. Trends of curves in Figure 3.24 (b) (ls=200m) are similar to those in Figure 

3.24(a). 

 

Figure 3.25 is the front elevation of Figure 3.23 which shows the relationship between 

queue length and SLT on 10 specific offsets (from -9s to 9s with an interval of 2s). Same as 

findings in figures of SFR, the impact of downstream queue length is strongly related to the 

value of offset. With offset increases, stable parts of curves become longer. Comparing with 

Figure 3.25(a) and (b), it is found that growth speeds of SLTs in shorter segment cases are more 
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intense. At negative offset values, the downstream platoon will start discharging before the 

onset of upstream green indication. Therefore, the duration of the downstream queue is shorter. 

This reduces the risk that upstream routes are hindered by the downstream queue. Therefore, 

the upstream platoon receives less downstream impacts and quick start-ups. On the contrary, if 

the offset is positive, discharging drivers will hesitate to fully accelerate while observing that 

the downstream segment is occupied with a lot of queuing vehicles that are still waiting for the 

green signal indication in the downstream intersection. The positive offset will magnify the 

impact of the downstream queue leading to a significant increasing of SLT. Meanwhile, the 

same as curves of SFR, data points of SLTs with lq more than 150m (for 300m segment length) 

or 90m (for 200m segment length) in which spillbacks occur are removed. 

 

 

(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.23 The relationship between SLT, lq, and offset 

 

 

(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.24 Front view: the relationship between SLT and offset 
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(a) Scenario 1: ls=300m (b) Scenario 2: ls=200m 

Figure 3.25 Side view: the relationship between SLT and lq 

3.3.2 Simulation in VISSIM 

VISSIM is an advanced simulator that can realize various simulation functions. It can not 

only handle modeling for uninterrupted or interrupted traffic flow but also deal with 

simulations for pedestrian and bike flow. Therefore, it has been widely applied in practice and 

researches in recent years. Also, VISSIM is a flexible software, many researchers developed 

secondary programs for VISSIM to achieve more functions, such as estimation of vehicles’ 

energy consumption and pollutant emission (Silgu, M. A., et al., 2018).  

 

The hypothetical road section is also simulated in the VISSIM (PTV, 2015), as shown in 

Figure 3.26. Longitudinal movements of vehicles in VISSIM are calculated based on car-

following models (Wiedemann 74 and Wiedemann 99) and all vehicles’ behaviors in VISSIM 

have been set with default values. The platform consists of two roads (minor and main road) 

and different traffic volume (red vehicle) has been set for the minor road. Before the upstream 

green, queue in downstream links with different lengths can be generated by the flow from the 

minor street for different cases. Also, the downstream signal is set to turn green at different 

times for simulating various offset values. At the onset of green indication, upstream queued 

vehicles (blue) discharge into the downstream segment reacting to different downstream 

conditions.  
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Figure 3.26 Simulation platform in PTV VISSIM 

3.3.3 Comparison with Empirical Data 

There is only one offset type on Hirokoji-tori, Nagoya for all surveyed periods, which is 

not significant for data comparison. As for the Yasukuni-tori in Tokyo, sample sizes of 

approaches 3 (12 samples) and 5 (4 samples) are not big enough for validation. Also, surveyed 

samples of approach 2 are all cases with small or even zero downstream influence due to the 

negative offset settings (-15s~-2s). Finally, only observed data from approaches 1 and 4 have 

been selected for the validation. The downstream lengths of approach 1 and approach 4 are 

both 250m. Therefore, samples from the two approaches can be integrated and analyzed 

together. Among the data, cases of offset=1s, 5s, and 9s have even offset spans and are with 

sufficient samples. Hence, they are selected for data plotting. As for the simulated data by 

IDM+, an IDM+ simulation platform (250m downstream segment length which is the same as 

approaches 1 and 4) is created on the basis of the idea mentioned in Chapter 3.3.1. Also, the 

same simulation platform (250m spaced two signalized intersections) is built by PTV VISSIM. 

For both IDM+ based simulation and VISSIM based simulation, simulation operates only one 

discharge process for each case (less than 60s) then the performance of the upstream platoon 

is measured. Three offset values (1s, 5s, and 9s) are set and the queue length in downstream 

increases from 0 until spillback occurs.  

 

Figure 3.27 shows results of observed SFRs and simulated SFRs (IDM+ and VISSIM) 

under 1s, 5s, and 9s offset. IDM+ curves show a good correspondence with empirical data (Data 
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points of observed SFRs are evenly distributed around curves that were simulated by IDM+). 

The mean absolute percentage error (MAPE) for IDM+ is 3.39% (0.09% ~10.29%) and the 

root mean square error (RMSE) is 71.02pcu/h/ln. These values indicate that the proposed model 

(IDM+) is reliable for reproducing observed SFR. SFRs simulated by the proposed model 

decrease sharply with the increase in queue length, in a very similar trend as the observed SFRs 

for all 1s, 5s, and 9s offsets. When the offset decreases (from 9s to 1s), decreasing trends of 

SFRs becomes milder and the stable part becomes longer, which indicates that downstream 

impacts on SFR are weakened for small offset values.  

 

 

Figure 3.27 Validation result of SFR (IDM+, VISSIM, observed data) 

 

Figure 3.28 shows results of observed SLTs and simulated SLTs (IDM+ and VISSIM) 

under 1s, 5s, and 9s offset. IDM+ curves show the same trend with the empirical SLT (Data 

points of observed SLTs are evenly distributed on both sides of IDM+ curves). The mean 

absolute percentage error (MAPE) for IDM+ is 7.59% (0.15% ~23.13%) and the root mean 

square error (RMSE) is 0.35s. These values indicate that the IDM+ fits observed SLT well. As 

values of offset decrease (from 9s to 1s), growth trends of SLTs become milder and the flat 

parts are longer. These trends are similar to what is shown in empirical data, which indicates 

the fact that downstream impacts on SLT become smaller as offset values decrease. In addition, 
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the result of VISSIM shows that SFRs simulated by VISSIM do not change at all for all 

downstream conditions. Also, even though SLTs from the VISSIM for offset=5s and 9s 

increases in rear parts of curves with lq increases, SLTs simulated by VISSIM are obviously 

smaller than empirical data and ones modeled by simulation. VISSIM can explain the 

downstream influence caused by the upstream platoon reacting to the last vehicle in the 

downstream queue. Hence, SLTs from the VISSIM for offset=5s and 9s increase in rear parts. 

However, VISSIM neglects considering the time-space pressure on upstream vehicles which is 

caused by the size and duration of the downstream queue. This is also the reason the SLTs in 

VISSIM is extremely smaller than empirical data. This finding confirms the shortcoming of 

current simulators which we mentioned in Chapter 2. 

 

 

Figure 3.28 Validation result of SLT (IDM+, VISSIM, observed data) 
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3.4  Modeling the Influenced SFR and SLT 

3.4.1 Simulation Experiment 

On the basis of the proposed car-following model (IDM+), more simulation scenarios are 

designed to generate enough data for modeling the relationship between downstream and 

influenced SFR and SLT. 6 options of downstream segment lengths (increase from 100m to 

350m with an interval of 50m) combined with 10 offset options (-9s, 7s, -5s, -3s, -1s, 1s, 3s, 

5s, 7s, 9s), a total of 60 experiments are created. Like the experiment designed in Chapter 3.3.1, 

each of these 50 simulation experiments only runs for one discharge. In one discharge process, 

queued vehicles (enough for the platoon to reach the saturated flow) discharge from the 

upstream approach until joining the downstream queue or passing through the downstream 

stop-line. Trajectories of last vehicles in the downstream shift regarding the value of queue 

length increasing from 0m to the segment length. After screening out the data in which 

spillback happened, 620 valid data were generated for regressing finally. 

3.4.2 Regression Analysis 

After obtaining the above experiment data, they are plotted for analyzing trends of SFR 

and SLT on downstream impacts. Several parameters have been examined such as lq, ls, offset, 

and so on. Finally, we find that data points of SLTs and SFRs converge into regular curves on 

values of optimal speed (vop) as shown in Figure 3.29, which are easy to formulate. 
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(a) SFR 

 

(b) SLT 

Figure 3.29 Models of influenced SFR and SLT 
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For showing results clearly, data points with vop values exceeding 30m/s are classified as 

data with vop equal to 30m/s. Because when vop is larger than 30m/s, both SFR and SLT have 

reached stable stages. In these parts, downstream impacts are minimal. SFRs no longer increase 

significantly with the growth of vop, and SLTs decrease significantly with the increasement of 

vop. Therefore, this deformation will not influence the accuracy of models. Values where SFRs 

and SLTs become stable are called base SFR (SFRbase=1691veh/h/ln) and base SLT 

(SLTbase=2.5153s). Regression models for estimating SFR and SLT are shown by Equations 

(3-19) and (3-20), respectively.  

 

  44 195 997 93 1691opSFR min . v .   ，  (3-19) 

 

   0 67
18 99 2 5153

- .

opSLT max . v .  ，  (3-20) 

The regression model for the influenced SFR is shown in Figure 3.29(a). The relationship 

between SFR and vop is formulated into a piecewise model which consists of a flat section and 

a linear increasing part. The regression line of influenced SFR fully coincides with SFR data 

points from experiments. Also, the value of R2 (Regression Line to Experiment Data) is 0.9973, 

which further indicates that the result predicted by IDM+ can be perfectly replaced by the 

newly proposed piecewise formula. On the other hand, the regression model for the influenced 

SLT is shown in Figure 3.29(b), the relationship between SLT and vop is formulated into a 

piecewise model which consists of constant part and increasing part. The regression line fully 

coincides with data points from experiments. R2 (Regression Line to Experiment Data) is 

0.9923, which further indicates that the result predicted by IDM+ can be totally replaced by 

the newly proposed piecewise formula. 

 

While comparing with empirical data, it is found that regression lines of SFR and SLT 

also show good fit results. Observed data points show the same trend as regression curves. 

Statistically, for SFRs, the absolute percentage error range is between 0.00% and 32.78%. The 

mean absolute percentage error is 7.20% and root mean square error is 143.93 veh/h/ln. For 

SLTs, the absolute percentage error range is between 0.00% and 38.11%. The mean absolute 

percentage error is 14.02% and root mean square error is 0.64s. In addition, it can be observed 

that there is no experiment data when vop is less than 4.5m/s. Because in this interval, the 

downstream traffic is congested and upstream discharge platoons are stopped by the 

downstream queue. These cases are treated as spillback and excluded. 
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3.5  Summary 

One of the most important contributions of this chapter is creating a new car-following 

model that can capture the driving behavior under different downstream conditions. The 

proposed car-following model (IDM+) pointed out the flaws of existing micro-simulators. The 

downstream module of IDM+ can provide a good idea or hint for existing micro-simulators to 

improve their core models. So that they can simulate the discharge flow more accurately. 

Another important contribution is proposing generalized models of influenced SFR and SLT. 

By these models, the capacity drop can be estimated with micro indicators of downstream 

situations. Also, the research process is summarized as follows. 

 

A typical Japanese arterial, Yasukuni-tori in Tokyo was observed and studied in this 

chapter. Based on empirical analysis, it was found that the queue length in the downstream link, 

offset, and segment length could influence the SFR and SLT at upstream intersections. Longer 

queue in shorter downstream links with large offset signals leads to a lower SFR and a higher 

SLT. An improved car-following model, IDM+ was created by incorporating the above-

mentioned downstream parameters into an existing car-following model, IDM. Parameters in 

this model were calibrated by using the Generic Algorithm. On the basis of a micro-simulation 

platform (a one-lane road with two consecutive signalized intersections), the effectiveness and 

characteristic of the newly proposed car-following model were validated and tested comparing 

with surveyed SFR and SLT. It has been proved that the IDM+ is able to explain the influenced 

driving behavior and the result from the designed simulation platform can reproduce the 

influenced SFR and SLT considering different downstream conditions. Furthermore, based on 

the simulation platform, relationships between influenced SFR, SLT, and downstream 

conditions (vop) were further simplified into two piecewise regression models. These two 

models can not only show the same varying trends from IDM+ but also have a good fit with 

empirical data. Therefore, they are reliable and will be further applied in the next Chapter. 
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CHAPTER 4  MODELING DOWNSTREAM 

IMPACTS ON SIGNALIZED ARTERIALS 

Accurately modeling the traffic propagation along signalized arterials has been an 

important topic of traffic engineering for decades. It is the basis for optimizing signal timings 

of signalized arterials. Several simulators such as VISSIM, AIMSUM, and TRANSYT are 

undertaking this job. They work based on different basic traffic models such as CTM, car-

following model, and cellar automata. By adding consideration of new influencing factors can 

improve their estimation accuracies. Downstream influence is one of the important issues that 

have been neglected for now. Chapter 3 studied the downstream influence of an isolated 

intersection. The relationship between downstream conditions and the SFR&SLT at the 

upstream intersection is revealed. In Chapter 4, research will mainly focus on the downstream 

influence at an arterial level and provide the model basis for solving the relationship between 

downstream situations and traffic conditions.  

 

There are a lot of existing traffic models that can simulate the interrupted traffic flow 

along signalized arterials. However, none of them have properly considered the downstream 

influence over the upstream intersection which has been analyzed in the last chapter. Traffic 

propagation along signalized arterials considering downstream impacts is a complicated issue 

and an iterative process. Upstream traffic flows into the downstream link and forms the queue 

in downstream. However, the size and the duration of the queue in the downstream link will 

influence the traffic flow from the upstream in turn. Through this work, a reliable model for 

simulating the traffic on signalized corridors considering influenced SFR and SLT will be built 

based on the modified CTM. This model will be validated on a Japanese corridor, Hirokoji-

tori. Meanwhile, how the downstream influence performs on the signalized corridor will be 

analyzed by a sensitivity analysis. 
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4.1  Traffic Model on Signalized Arterials Considering Downstream Impacts 

4.1.1 From IDM+ to CTM 

This chapter will mainly discuss the downstream influence on signalized arterials. It is a 

possible way to further built a simulation platform for multiple intersections based on IDM+. 

Several detailed driving behaviors such as overtaking, cutting in effect need to be considered. 

These behaviors are beyond the scope of this study, but they are necessary for the car-following 

model-based simulation platform. Several scenarios need to be designed if these behaviors are 

properly set. This will make the research deviate from the main study target.  Meanwhile, as 

an extension of this study, signal control optimization considering the current downstream 

condition will be achieved not only for a single signalized intersection but also for a signalized 

corridor or network in future studies. At those research stages, applying the car-following 

model will be a complicated and unwise approach. Accordingly, we resort to solutions of this 

chapter to meso or macro models. The macro-level models such LWR model are a 

hydrodynamic model that simply solves the relationship between flow, density, and speed. It 

cannot integrate well with the SFR and SLT models. Therefore, the final answer exists in meso 

level model.   

 

Cellar automata (CA) and the cell transmission model (CTM) are two main mesoscopic 

traffic models currently. As a meso-level model, CTM and CA is a connection between macro 

and micro traffic models. They can not only reproduce the detailed micro phenomena such as 

lane group blockage or queue storage but also reflect the kinematic theory which can be 

addressed by macro-level models. In a CA, space and time are divided into discrete cells and 

steps. Each cell is either empty or contains a single car. A car has a discrete speed. The model 

structure of CA is not appropriate for combining with models of SFR and SLT. In a CTM, 

space and time are divided into discrete cells and steps. Each cell defines a certain length of 

the road section and the boundary flux between cell are determined in CTM. The boundary 

flux is a good entry point for models’ combination. In CTM, overtaking and cutting in effect 

can be explained or covered by the fundamental diagram. CTM balances the accuracy degree 

and computational complexity very well. 

 

As early as the end of the last century, Daganzo (1994) proposed the basic Cell 
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Transmission Model (CTM), to solve the kinematic wave equation on homogeneous highway 

sections. In the same year, he also proposed a generalized CTM theory for complex urban 

networks. The generalized CTM is flexible for modeling urban traffic and optimizing signal 

arrangements. For example, Lo (2001) modeled traffic propagations on urban arterials in 

Hongkong based on generalized CTM. Based on this work, the optimal signal timing plan is 

solved by GA. A lot of secondary extensions and modifications have been developed for CTM 

in order to make the theory more applicable to urban traffic. For example, some researchers 

contributed to improving CTM in the field of simulating detailed traffic maneuvers. Liu (2008) 

proposed an improved procedure based on CTM to simulate detailed platoon accumulations 

and dissipations at different lane-group types in a detailed way by CTM. By this model, even 

some detailed phenomena can be reproduced such as through vehicles may be blocked by 

queued left-turn vehicles at shared-left turn lanes. Recently, some researchers made some 

modification on the CTM basic theory, in order to correct the drawbacks of CTM in simulating 

micro driving behaviors. For instance, traditional CTM cannot reproduce discharge processes 

at intersections. Srivastava et al. (2015) modified the sending function so that CTM can capture 

realistic platoon discharge features (SFR and SLT).  

 

As can be seen from the above researches, CTM is an extremely flexible model. Extension 

researches made it can be well applied in different situations, no matter for highways or urban 

roads. Therefore, for modeling the SFR and SLT influenced by micro parameters along 

corridors, the modified CTM should be the best option and selected for this research. In this 

section, the basic and generalized equations of CTM and modified CTM are referred firstly. 

Based on these pieces of knowledge, the way how the modified CTM is improved is introduced 

as well. At last, the effect equivalence of CTM and micro model (IDM+) based simulation is 

further proved. 

4.1.2 Basic CTM and Generalized CTM 

CTM (Daganzo, 1994) is a discretized framework, which has become one of the most 

popular and accepted tools used for traffic modeling. Originally CTM is designed for solving 

the LWR model and the basic definition of CTM is applied for long homogeneous freeway 

sections. In the homogeneous definition, roadway space is discretized into cells with even 

length L, while time is discretized into time steps (length ∆t). Meanwhile, it is required that 
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each cell has the same traffic capacity. The length of each cell is equal to the distance that a 

single vehicle travels in one-time step at the free-flow speed. Therefore, when there is no 

congestion, one expects that a vehicle would move from one cell to another at each time step. 

Then, CTM predicts macroscopic traffic behavior by evaluating the flow (Φj) and density (kj) 

at a finite number of intermediate points at different time steps. This is done by defining the 

sending flow (Sj) and the receiving flow (Rj) of each cell as a function of traffic density and 

then calculating boundary fluxes according to upstream sending and downstream receiving.  

 

CTM introduces the concept of demand (or sending flow), and supply (or receiving flow) 

as functions of the densities in each cell. The boundary flux (flowrate across the shared 

boundary of any two cells) is determined as the minimum of the demand in the upstream cell 

and supply in the downstream cell. The conceptual framework of the basic CTM is illustrated 

in Figure 4.1. Figure 4.1 (a) shows the discretization of a link into cells and the computation of 

boundary fluxes. Figure 4.1 (b) shows the sending and receiving curves which are most 

commonly used in macroscopic models, corresponding to the triangular fundamental diagram. 

Formula (4-1)-(4-4) are basic transmission equations of CTM. 

 

 

 

(a) Homogeneous cells and boundary fluxes (b) Sending and receiving curves 

Figure 4.1  Conceptual framework of the basic CTM 
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        j j f j cS t =S k t min v k t ,q  (4-3) 

 

         j j c jam jR t =R k t min q ,w k k t   (4-4) 

 

Where j is the cell number, kj(t) is the density of cell j at time t (veh/m), ∆t is the time step, 

Φj(t) is the flux from cell j-1 to cell j (veh/h), vf is the free speed (m/s), Sj(t) is the sending value 

of cell j at time t (veh/h), Rj(t) is the receiving value of cell j at time t (veh/h), S’j(t) is the 

modified sending value of cell j at time t (veh/h), qc is the cell capacity (veh/h), w is the 

shockwave speed (m/s), kc is the critical density, respectively, kjam defines the jam density 

(veh/m). 

 

However, homogeneous settings are not available for all study cases, especially when 

simulating the urban road network. The generalized CTM (Daganzo, 1995) is an extensive 

theory of the basic CTM to predict the evolution of traffic flows for complex networks over 

time under all traffic conditions. The generalized CTM can be logically transformed from basic 

CTM. It can properly solve the above-mentioned problem, which facilitated the calculation 

among cells with varying traffic capacities, such as the road section described in Figure 4.2 (a). 

 

 
 

(a) Inhomogeneous cells and fluxes (b) Sending and receiving curves 

Figure 4.2  Conceptual framework of the generalized CTM 
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the maximum number of vehicles that can be present in cell j at time t. Nj is the product of the 

cell’s length, its jam density, and lane number. (2) Qj is the capacity of cell j which is the 

maximum number of vehicles that can flow into cell j when the time step goes from t to t+∆t. 

These constants vary with time so that it is able to model transient traffic incidents.  

 

The flow propagation equation can be written as the cell occupancy at time t+∆t equals its 

occupancy at time t plus the inflow and minus the outflow. Meanwhile, the inflow into cell j+1 

(the outflow of the preceding cell) at time t is governed by the vehicle holding number (nj) 

which means the number of vehicles in the upstream cell waiting to enter cell j+1, the available 

space in cell j+1 (Nj+1-nj+1 (t)), the capacity of cell j (Qj), and hydrodynamic approximation 

factor which is equal to w/vf. Formula (4-5)-(4-9) show transmission equations of the 

generalized CTM. 

 

 j jam lN =k nL (4-5) 

 

  j j ln =k t nL (4-6) 

 

 3600j cQ =q  (4-7) 

 

       1 1 1 1j j j f j jy t =min n t , Q , w v N n t       (4-8) 

 

        1 1j j j jn t+ t =n t y t y t     (4-9) 

Where nl is the number of lanes. 

4.1.3 Modified CTM 

In 2015, Srivastava et al. (2015) modified and improved the demand function of the basic 

CTM letting the model be able to reproduce realistic queue discharge features at an intersection 

for vehicle platoon accelerating far distant from an initial standing queue. The new model can 

simulate observed parameters of the discharge flow, such as headway, SLT, and SFR. The new 

demand function is defined through a combination of conventional macroscopic parameters, 

including critical density (kc), free-flow speed (vf), jam density (kjam), and an additional 
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parameter, projected jam density (kjam
*). The conceptual framework of the modified CTM is 

shown in Figure 4.3 and formula (4-10)-(4-13) are showing basic transmission equations of the 

modified CTM. 

 

Figure 4.3  Conceptual framework of the modified CTM 
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Where, c* is the slope of the modified sending curve (m/s), kjam
* is the projected jam 

density for the modified sending curve (veh/m).  

 

In the modified CTM, discharge features such as SFR and SLT can be derived by 

parameters (qc, w, c*), as shown in Equation (4-14) and (4-15). 
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derivation formulas from the basic CTM form to the generalized CTM form, which is necessary 

for this study. According to the relationship between generalized CTM and basic CTM, 

generalized formulas for the modified CTM are derived. The conceptual framework of the 

modified CTM in the generalized form is shown in Figure 4.4 and equations are shown in (4-

16)-(4-18). 

 

 

Figure 4.4  Generalized form: a conceptual framework of the modified CTM 
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        1 1j j j jn t+ t =n t y t y t     (4-18) 

4.1.4 Combination between Modified CTM and Regression Models 

So far, existing CTM models and extension do not consider the impact of downstream 

conditions over intersection discharge features. In this study, the modified CTM is improved 

by letting parameters in the model determined by the influenced SFR and SLT (functions by 

downstream parameters) which are calculated from formula (3-14) and (3-15). Accordingly, 

parameters (qc, kc, w, and c*) can be calculated by the following Equations (4-19)-(4-22). 
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Figure 4.5 (a) and (b) show the original and influenced triangular fundamental diagram. 

From these figures, the transformation process of influenced cells can be clearly understood. 

Once the SFR and SLT of one cell are influenced by downstream, values of parameters vf, kjam 

(Nj) will keep unchanged firstly. Then, the value of qc (3600Qj) will be shifted downward until 

equaling the new value of influenced SFR. The kc and w are changed according to the 

influenced SFR by formula (4-20) and (4-21). At last, the value of c* can be calculated by the 

formula () with influenced SLT value and newly calculated w.  

 

(a) Basic CTM form 

 

(b) Generalized CTM form 

Figure 4.5  Original and influenced triangular fundamental diagrams 

4.1.5 Comparison between Proposed CTM and IDM+ 

To facilitate narration and distinction, transmission cell defined by each CTM theory is 

F
lo

w
 r

at
e

Density kj

kc

Capacity qc

vf
w

Sending   S(kj(t))
Receiving R(kj(t))

kjam

c*

kjam
*

F
lo

w
 r

at
e

Density kj

kc

qc

vf

w

Influenced Sending   S(kj(t))
Influenced Receiving R(kj(t))

kjam

c*

kjam
*’

w’

kc’

c*’

qc’

kjam
*

F
lo

w

Density kj

kc

Qj

vf w

kjam

c*

kjam
* kc’

Qj’

F
lo

w

Density kj

kc

Qj

vf

w

kjam

c*

kjam
*kjam

*’

w’ c*’



70 

named with abbreviation name including traditional CTM proposed by Daganzo in 1995, 

modified CTM proposed by Srivastava in 2015, and modified CTM considering downstream 

influence proposed in this research as shown in Table 4-1. Also, another three types of 

functional cells are indispensable for the model establishing, as shown in Table 4-2. 

 

Table 4-1 Abbreviation names and features of different CTM theories 

Abbreviation CTM Theory Discharge Features 
Normal cell Traditional CTM  

(Daganzo in 1995) 
If downstream space and signal allow, traffic flow into 
the next cell immediately by a constant flow rate.  

Modified cell Modified CTM  
(Srivastava in 2015) 

The cell can reproduce realistic discharge features. The 
SLT and SFR are both constant values. 

Influenced cell Modified CTM with 
downstream impacts 
(Proposed CTM) 

The cell can reproduce real discharge features. Also, the 
SLT and SFR of each cycle will be changed according 
to the downstream traffic conditions. Before the green 
time of each cycle, a new set of parameters based on the 
influenced SLT and SFR will be assigned to the 
influenced cell until the green light ends. 

 

Table 4-2 Abbreviation names and functions of different functional cells 

Abbreviation Functions 
Source cell The cell with infinite capacity does not stand for any real distance and can 

always output traffic flow into the next cell with a certain flow rate. 
Ending cell The cell with infinite capacity does not stand for any real distance and can 

always absorb traffic flow from the previous cell. 
Signal cell The cell does not stand for any real distance and implements the rule of signal 

timing. It releases the traffic flow from certain movements at a given time 
interval. 

 

Before further conducting any experiment by using various CTM definitions, comparing 

the simulation performance between the CTM and IDM+ based platform for the discharge 

process is quite necessary. By the technique introduced above, a similar simulation platform as 

Chapter 3.3.1 is built as shown in Figure 4.6. For both two platforms, the downstream 

intersection is assumed not to be influenced by the secondary downstream intersection.  
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Figure 4.6  IDM+ and CTM based simulation platforms 

 

For comparison, two scenarios that are the same as ones mentioned in Chapter 3.3.1 are 

assumed. The first scenario has 200m downstream segment length (ls) with 200m while the 

downstream length of the other scenario is 300m. For both two scenarios the offset increases 

from -5s to 5s. Queue length lq increases from 0m to 200m in the first scenario (ls=200) and 

from 0m to 300m in the second scenario (ls=300m). For the IDM+ based platform, through 

placing a varying number of queueing vehicles in the downstream link, queues with different 

lengths can be generated. Meanwhile, parameters of the car-following model are set the same 

as Chapter 3. The passing time of each vehicle at the upstream stop line is recorded.  

 

The parameter m in this platform determines the downstream segment length (ls), 

occupancies of cells define the downstream queue (lq) (detailed lq measurement method in the 

CTM platform is introduced in Chapter 4.2.3). By giving different values to m, cell 

occupancies in downstream links, and phase settings in two signal cells, different cases can be 

generated for the CTM based platform. While regarding CTM parameters of this simulation, 

each transmission cell is defined based on the surveyed data from the Yasukuni-Dori. The time 

interval for each calculation step is determined to be 1s. The kjam is 137 veh/km/ln and the vf is 

58.5km/h. Accordingly, the cell length of each transmission cell is 16.063m. For normal cells, 

qc is equal to the base SFR value (1691veh/h/ln). For modified and influenced cells, the qc, w, 

and c* are calculated on the base SLT value (2.5153s) and the base SFR value. In addition, 

parameters (qc, w, and c*) of influenced cells are governed by functions of influenced SFR and 

SLT. Same as the IDM+ based platform, only one discharge process of the upstream 

intersection is simulated for one simulation round. Before the upstream green indication, 5 cells 
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in the upstream link are fully occupied which is equivalent to the setting of enough queued 

vehicles in the IDM+ based platform. Therefore, the upstream queue length is long enough for 

the platoon to reach saturated conditions in one simulation. In addition, for results from both 

the IDM+ and the CTM based platform, cycles in which spillback phenomena happen during 

the simulation will be excluded. 

 

Figure 4.7 (a) and (b) show comparison results of SFR and SLT from these two platforms. 

For SFRs, the value of R2 is 0.9973, the mean absolute percentage error is 0.51% (0~2.73%), 

and the root mean square error is 10.59. For SLTs, the value of R2 is 0.9923, the mean absolute 

percentage error is 1.53% (0~6.31%), and the root mean square error is 0.07. The above-

mentioned statistic measurements prove that simulation results from CTM based platform fit 

data points from IDM+ based platform very well. It further indicates that when simulating 

signalized arterials, the CTM and IDM+ based platforms have equivalent functions of 

reproducing downstream influence. The CTM based platform can be completely replaced by 

the IDM+ based platform. 

 

 

(a) SFR (b) SLT 

Figure 4.7  Comparison between these IDM+ and CTM based platforms 
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4.2  Simulation Test on a Real-world Arterial 

4.2.1 Sites Selection, Data Collection, and Data Processing 

For testing the improved CTM definition on the real-world road and analyzing the 

accumulative effect of downstream impacts, the Hirokoji-tori is chosen to be the testbed to 

achieve objectives. Especially during peak hours along this arterial, it has been observed that 

heavy congestions happened after the intersection whose capacity is higher than input volume 

while the platoon at the downstream intersection can be freely discharged without any 

congestion. Whereas, it should be attributed to interaction effects between multiple consecutive 

intersections. Figure 4.8 shows the plane figure of the observed target, Hirokoji-tori. Five 

intersections (a) Motoyama-mae intersection (b) Motoyama intersection (c) Suemoridori-4 

intersection (d) Suemoridori-3 intersection (e) Suemoridori-2 intersection on this road are 

closely spaced. These five intersections located on a street with a length of 831m. The longest 

segment between two intersections is 237m and the shortest segment is 154m. 9 observed 

approaches are located on these five intersections. They are the westbound (WB, hereinafter) 

approach of Motoyama-mae intersection, WB and eastbound (EB, hereinafter) approaches of 

Motoyama intersection, WB and EB approaches of Suemoridori-4 Intersection, WB and EB 

approaches of Suemoridori-3 intersection, WB and EB approaches of Suemoridori-2 

intersection. Lane group arrangement of each approach is shown in the plane figure as well. 

Cycle lengths of these five intersections are all 160s with fixed offset settings. Figure 4.9 shows 

phase plans and offset settings of these five intersections.  

 

  

Figure 4.8  Plane figure of Hirokoji road 
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Figure 4.9  Phase settings of intersections on Hirokoji road 

 

A video survey was conducted on Monday, May 8, 2017. 5 video recorders were placed 

on the roof of the building of Aichi Gakuin University (school of dentistry hospital) which is 

located at the northwest corner of the Suemoridori-2 intersection. They were respectively 

observing the Motoyama intersection, Suemoridori-4 intersection, Suemoridori-2 intersection, 

the road section after Suemoridori-2 intersection, and covering the whole street separately, as 

shown in Figure 4.10. Therefore, the traffic operating of each approach can be clearly recorded. 

The survey time starts from 8:00 am to 12:00 am and from 1:00 pm to 6:00 pm covering the 

off-peak hour and peak hour. At last, a total of 198 cycles were recorded. Only the 2nd (through) 

lane of each approach was selected for the data extraction, and the data processing method is 

the same as the method performed for Yasukuni-tori (Chapter 3.1.3). 
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Camera 1 Camera 2 Camera 3 

   
Camera 4 Camera 5 

  
Figure 4.10 Camera positions of the field survey on Hirokoji-tori 

4.2.2 Simulation Model for Real-World Arterial 

As shown in Figure 4.11, the simulation platform is built for the traffic flow on the section 

from the stop line of Motoyama-mae EB to the stop line of Suemoridori-2 WB which is the 

direction of the morning peak flow. Two time periods on this road are chosen to be simulated. 

The first period is morning peak hour which is from 8:34:20 am to 8:47:40 am (5 signal cycles, 

800s). The second period is an off-peak hour which is from 10:34:20 am to 10:47:40 am (5 

signal cycles, 800s). During the selected periods, we observed that discharge flows from the 

WB approach of Suemoridori-2 are freely discharged without any downstream influence. 

Hence, downstream conditions of Suemoridori-2 intersection are not considered for the 

simulation. The whole selected section is 880 meters long and it is represented by 54 
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transmission cells and 27 functional cells (5 signal cells, 11 source cells, 11 ending cells). Each 

transmission cell is around 16 meters long and some segment lengths cannot be divisible by 

16m. Hence, segments simulated by the CTM are not perfectly equal to actual links. There is 

only a 1m~8m error for each link. Regarding the objective of this simulation test we, believe 

that these errors will not have fatal effects on experimental results and they can be neglected. 

 

 

Figure 4.11 Structure of the CTM based simulation platform 

 

Firstly, for determining parameters of cells, the same process introduced in Chapter 3 is 

implemented for the Hirokoji-tori as well. Models for the influenced SLT and SFR have been 

generated as shown in Equations (4-23) and (4-24). The final results of SFR and SLT model 

regression are shown in Figure 4.12 (a) and (b). The time interval for each calculation step is 

determined to be 1s. The kjam is 137 veh/km/ln and the vf is 57.6km/h. Accordingly, the cell 

length of each transmission cell is 16.063m. For normal cells, qc is equal to the base SFR value 

(1631 veh/h/ln). For modified and influenced cells, the qc, w, and c* are calculated with the 

base SLT value (2.9513s) and the base SFR value. In addition, parameters (qc, w, and c*) of 

influenced cells are governed by functions of influenced SFR and SLT.  

 

  47 224 972 93 1631opSFR min . v .   ，  (4-23) 

 

   0 75
17 99 2 9513

- .

opSLT max . v .  ，  (4-24) 
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(a) SFR 

 

(b) SLT 

Figure 4.12 Models of influenced SFR and SLT in Hirokoji-tori 

 

In Figure 4.11, cells in red circles represent the cells that are located just upstream of stop 

lines. These cells define discharge features of corresponding intersections. In three simulation 

models (Model 1, Model 2, and Model 3), cells in red circles are set as normal cells, modified 

cells or influenced cells respectively. 
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The cells in red circles are normal cells (Daganzo, 1994 and 1995). As the signal turns 

green, if downstream space allows, the queued platoon discharge into downstream instantly in 

a constant flow rate (1631 veh/h in this study) without going through the start-up lost time. 

 

(2) Model 2 

The cells in red circles are modified cells (Srivastava, 2015). After signals turn green, 

discharge flow from these cells goes through the period of SLT firstly and during this time the 

flow rate gradually increased to the SFR. The SLT and SFR are both constant values, which 

are 1631veh/h and 2.9513s in this study.  

 

 (3) Model 3 

The cells in red circles are influenced cells (proposed CTM in this research). Firstly, real 

discharge features (SFR and SLT) at signalized intersections can be reproduced. At every cycle, 

SLT and SFR at each intersection are adjusted regarding current downstream conditions. 

Before green time, these cells will receive information from the downstream link and calculate 

the influenced SLT and SFR (Equation (4-24) and (4-24)).  

4.2.3 Model Validation 

For the above two time periods, the entry flow, exit flow, and initial occupancy of the 

considered road segment were observed and recorded. Serving as demand profiles and initial 

occupancies, the above data will be input to simulation models. All 3 simulation models 

worked for the two selected periods and the density of each cell was recorded at each time step. 

The simulation result of the off-peak hour period is shown in Figure 4.13. Model 1, 2, and 3 

got similar results. In particular, the traffic density distribution on time of model 2 and model 

3 are exactly the same. Also, by visual comparison with the observed video, the results of all 

the three models are consistent with what we observed from the real-world video. It also proves 

that CTM theory is able to reproduce the traffic propagation and there is no significant 

difference between 3 models under low flow conditions.  
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Figure 4.13 Simulation results of model 1, 2, 3 and observed video (off-peak time) 

 

Simulation results of three models and screenshots of the observed video during the peak 

hour period are shown in Figure 4.14. In the result of model 1, the traffic congestion mainly 

occurs in the middle part of the simulated arterial (sections after intersection (III) and 

intersection (IV)). At sections after intersections (V), (IV), and (III), queue lengths simulated 

by model 2 and model 3 show great consistency in changing trends. In the road section that is 

circled by black dash lines (the section after the intersection (II)), it is observed that the 

simulated queue only occupied around 50% of this section. However, the platoon simulated by 

model 3 takes 80% of this section. Meanwhile, based on visual observations, traffic in the video 

is compared with simulation results and three typical screenshots at intersections (V), (VI), (II) 

are provided as well in Figure 4.14 (d). Firstly, in the video, short platoons accumulated in the 

section after intersection (V) and all queued vehicles during one red time can be discharged in 

one green phase. This finding is the same as the results simulated by all 3 models. Secondly, 

in the road section after the intersection (IV), no severe congestion is observed and nearly 100% 

waiting vehicles in one cycle can be discharged during the given green signal. At the time when 

the queue length is longest in a cycle, around 50% of the section is occupied by queued vehicles. 

Queue lengths of three models in that section match this observed phenomenon except model 

1 whose result is significantly longer than the observation. Thirdly, during all observed cycles, 
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queue length at the section in the black dash line circle is extremely long. Even in some time, 

the queue extended to the intersection (I) leading to the occurrence of spillback of upstream. 

Only model 3 can capture this heavy congestion in this section. Both queue lengths simulated 

by model 1 (40% occupied) and model 2 (60% occupied) are too short than the actual value. 

Hence, when simulating traffic propagations on signalized arterials, model 3 (proposed model) 

has a better ability than model 1 (normal CTM) and model 2 (modified CTM) especially in 

reproducing traffic space-time distributions and predicting congestion positions. These 

findings emphasize the importance of considering the downstream influence in urban traffic 

simulations. They proved our assumption that downstream impacts can be accumulated and 

amplified towards the upstream direction. This mechanism may lead to traffic jams in upstream 

sections which are heavier than expected. 

 

 

Figure 4.14 Simulation results of model 1, 2, 3 and observed video (peak hour) 

 

For validations, time-based queue lengths (lq) at all intersections measured from three 

simulation models are compared with the time-based lq measured from the real-world video. 

For the observed video and simulation results, periods for measuring queue lengths are from 

the onset of the red signal until one platoon is completely discharged. Figure 4.15 shows the 

measurement method of queue lengths (lq) for the CTM based simulation and real-world videos. 

For the observed video, only queues on through lanes are selected and measured. For one 



81 

measurement, lq is equal to the distance from the stop line to the rear bumper of the last 

queueing vehicle. If there are more than one through lane in the road section, the lq is equal to 

the average lq of all through lanes. Regarding the lq in CTM simulations, for one measurement, 

the lq is equal to the sum distance of two parts. The first part is the distance from the stop line 

to the endpoint of the last jam density cell. The second part is equal to the length of one cell 

length multiplied by the occupancy (cell density/jam density) of the cell located just upstream 

of the last jam density cell. The variation of lq during the off-peak hour is quite small and it is 

no sense to compare values of lq with negligible fluctuations for field data and simulation 

models. Therefore, only comparison results of queue lengths during the peak-hour period are 

illustrated as shown in Figure 4.16. 

 

 

Figure 4.15 Queue length measurement method 
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(a) Intersection (II) (b) Intersection (III) 

 
 (c) Intersection (IV) (d) Intersection (V) 

Figure 4.16 Time-based queue lengths at each intersection 
 

Changing trends of queue length which is simulated by model 1 are completely different 

from observed trends at four intersections during the selected five cycles. As for queue lengths 

generated by model 2 and model 3, they are similar to the empirical data at the intersections 

(III), (IV) and (V), as shown in Figure 4.16 (b), (c), and (d). At the intersection (II), the queue 

length curve simulated by model 2 is quite different from the observed one as shown in Figure 

4.16 (a). Whereas, the queue length curve of model 3 fits the queue length very well no matter 

for the changing trend or the value magnitude. It can be concluded that the proposed model has 

a better ability in reproducing queue length distribution and traffic propagation on signalized 

arterials than model 1 (normal CTM) and model 2 (modified CTM).  

 

Total delay (TD, hereinafter) is measured for the given period and defines the overall 

running slowly and stopping time of all vehicles when they were passing the road section (s). 

In further comparison, TDs at four intersections ((II), (III), (IV), and (V)) are measured from 

the surveyed site and three CTM based simulation models. Calculation methods for empirical 

data and simulation models are different as follows. 

 

(1) TD of empirical data (TDemp) 

Total delays of the empirical data are calculated considering the integral difference 

between time-based arrival flow (narrived (t)) and time-based discharged flow (ndischarged (t)). 

Therefore, TDemp equals the cumulative number of arrived vehicles minus the cumulative 
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number of discharged vehicles as shown in Equations (4-25).  

 

      emp arrived discharged
t

TD = n t n t t   (4-25) 

(2) TD of the simulation model (TDsim) 

In CTM based platform, under low traffic levels, all traffic in one cell should flow into 

the downstream cell during the next time step theoretically (Lo, 2001). With raisings of cell 

densities, portions of vehicles must stay in original cells during the next iteration and delays 

are incurred by this part of traffic for this time interval. Considering this principle, delays of 

CTM based platform are calculated by following two equations (Equation (4-26) and (4-27)). 

 

    j j ln t =k t n L   (4-26) 

 

      1sim j j
t j

TD = n t t t t     (4-27) 

Where nj(t) is the number of vehicles in cell j at time t waiting into cell j+1 and nl defines 

the number of lanes in one cell. 

 

Results of TDs are compared in Histogram as shown in Figure 4.17. At each intersection, 

the TDsim of model 1 is obviously different from the TDemp, especially at intersections (V) and 

(II). Regarding the model 2 and model 3, their TDsim of model 3 at intersections (V), (VI) and 

(III) are similar to the observed data. At these three intersections, the difference between 

empirical data and model 3 is almost the same as the difference between empirical data and 

model 2. At intersection (II), an extremely large error which is 8052s (21.7% of the observed 

data) between observed data and the result of model 2 can be observed. In contrast, the error 

between model 3 and empirical data, which is only 1274s, is negligible (3.4% of the actual 

value). It indicates that model 3 can estimate the delay that occurred on this signalized arterial 

more accurately than model 1 and model 2. These findings also emphasized that considering 

downstream impacts is necessary for simulating arterials. 
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Figure 4.17 TD at each intersection 

4.3  Sensitivity Analysis 

4.3.1 Hypothesized Arterial and Scenario Settings 

As shown in Figure 4.18, a hypothetical signalized arterial with three consecutive 

signalized intersections is assumed. Traffic in one direction on this road is simulated by using 

the proposed CTM. Parameter values of cells follow the parameter setting which was applied 

in model 3 (proposed CTM) of Chapter 4.2.2. Based on this platform, six scenarios are created 

for sensitivity analysis as shown in Table 4-3. Only segment length, offset values, and input 

volume will be discussed in this section. For each scenario, values of the cycle length and the 

green ratio at all intersections are fixed with 160s and 0.6 respectively. For each scenario, 

offsets of AB (the offset between intersection A and intersection B, offset-AB for short) and 

offsets of BC (the offset between intersection B and intersection C, offset-BC for short) 

changes from -30 up to 30s with the same increment of 3s. A total of 2646 cases (441 cases for 

each scenario) were created finally.  
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Figure 4.18 The hypothesized arterial 

 

Table 4-3 Scenario settings in sensitivity analysis 

No. m Qmajor (veh/h) Total Qminor 

(veh/h) 
Cells in red circles 

1 15 (240 m) 900 0 Influenced cell (Proposed 
model) 

2 15 900 0 
Modified cell  

(Srivastava in 2015) 
3 15 700 0 Influenced cell 
4 15 700 100 Influenced cell 
5 15 700 100 Modified cell 
6 30 (480 m) 700 100 Influenced cell 

 

In each case, the simulation period contains 3200s warm-up time (20 cycles) at the 

beginning and then 4000s measuring time (25 cycles). At intersection A, the changing of queue 

lengths at each cycle is recorded and maximal queue length for each cycle in the measuring 

period is extracted. In each case, the average value of 25 maximal queue length is calculated 

and this value is named as Average Maximal Queue Length at intersection A (AMQL-A or 

AMQL, hereinafter). In this study, AMQL is introduced to evaluate the congestion level in 

upstream of the assumed arterial (at intersection A). It can be easily inferred that the larger 

values of AMQL-A are, the greater the congestion in upstream is. The first 3200s warm-up 

time is set to ensure queue lengths that are measured to be a stable value for the defined case. 

4.3.2 Result Analysis 

The results of 6 scenarios are listed in Figure 4.19. Firstly, as shown in Figure 4.19 (a), in 

scenario 1, AMQLs are unchanged in a lower value (150m) in the low offset section (Offset-

AB in [-30s, 5s] and Offset-BC in [-30s, 15s]). Then, when the Offset-AB increases from 5s to 

30s and the Offset-BC increases from 15s to 30s, AMQL-A rapidly grows to 225m. Also, in 
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the increasing area, the growth rate of AMQL-A on the Offset-AB axis is faster than it on the 

Offset-BC axis. These findings indicate that under low negative offset values of two 

downstream intersections, the upstream intersection may receive less downstream influence. 

Whereas, large positive offset values of two downstream intersections may result in heavy 

traffic jams at upstream intersections. Meanwhile, discharge performances are mainly 

influenced by the offset of the nearest downstream intersection. Secondly, in the comparison 

between results of scenario 1 (Figure 4.19(a)) and scenario 2 (Figure 4.19(a)), values of 

AMQL-A of scenario 1 are greater than them of scenario 2, in the interval where Offset-AB 

belongs to [5s, 30s] and Offset-BC belongs to [-5s, 15s]. After checking the simulation result 

of each case in this interval, we proved that the difference of queue length is not caused by 

spillbacks at intersection A but is due to capacity deteriorations that are influenced by negative 

downstream conditions. This finding provides evidence for the conclusions that without 

considering downstream impacts existing models may overestimate the intersection capacity 

and existing simulators (modified CTM) cannot accurately predict congestions on signalized 

arterial. The same finding can be got by comparing scenario 4 and scenario 5. Thirdly, in Figure 

4.19 (c), in the interval where Offset-AB belongs to [-30s, 15s] and Offset-BC belongs to [30s, 

-15s], values of AMQL-A do not increase any more like them in scenario 1. Also, in scenario 

3, AMQLs are lower than them in scenario 1 when Offset-AB belongs to [15s, 30s]. It indicates 

that congestions in upstream sections can be obviously alleviated by reducing input volumes. 

Also, it can be concluded that upstream congestion would no longer be sensitive to offset values 

of the second downstream intersection if traffic inputs are low. Fourthly, in the comparison 

between scenario 3 and scenario 4 (Figure 4.19 (c) and Figure 4.19 (d)), the growth interval in 

scenario 4 is wider than scenario 3. Also, the increasing of queue lengths on the Offset-BC axis 

in scenario 4 is more drastic than it in scenario 3. It reveals that input volumes from minor 

street play an important role in stimulating the queue growth at the upstream intersection. 

Finally, the results of scenario 4 and scenario 6 are compared, as shown in Figure 4.19 (d) and 

Figure 4.19 (f). Scenario 4 and Scenario 6 use the same traffic input profile. However, unlike 

the result in scenario 4, values of AMQL-A in scenario 6 are invariant under all offset values. 

This finding emphasizes that long links can mitigate downstream interactions between 

signalized intersections. 

  



87 

  
(a) Scenario 1 (b) Scenario 2 

  
(c) Scenario 3 (d) Scenario 4 

  
(e) Scenario 5 (f) Scenario 6 

Figure 4.19 Sensitivity analysis: results of scenarios 1-6 
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4.4  Summary  

The main contribution of this chapter is proposing an improved CTM. Existing CTM 

theories cannot simulate correctly traffic propagations on arterial. However, by the proposed 

procedure in this chapter, not only the discharge process at single signalized intersections can 

be properly reproduced but also congestion positions on signal-controlled arterials can be 

accurately predicted, which is very important and necessary for urban traffic modeling. 

Meanwhile, the research process to achieve such contribution is summarized as follows. 

 

Regression models for the influenced SFR and SLT which are proposed in Chapter 3 are 

introduced to control parameters in the modified CTM. Through a virtual road section, we 

proved that the improved CTM model and IDM+ based simulation platform can achieve the 

same effect in generating influenced SFR and SLT. After that, the improved CTM is tested on 

the Hirokoji-tori during both peak hour and off-peak hour along with the normal CTM and the 

modified CTM. The proposed CTM was proved to have a better performance than previous 

CTM models in simulating the traffic propagation along signalized arterials. It reveals that the 

downstream influence can be accumulated along the upstream direction leading to severe 

congestion in the upstream intersection. Therefore, considering downstream impacts is an 

important issue for reproducing the real traffic on signalized arterials. Furthermore, a 

sensitivity analysis was conducted and it concluded that high traffic demand, high entry flow 

from the minor streets, short segment links, large positive values of both downstream and 

secondary downstream intersections’ offsets may result in the upstream congestion of 

signalized corridors.  
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CHAPTER 5 ADJUSTMENT FACTORS ON SFR 

AND SLT OF DOWNSTREAM CONDITIONS 

As for the model proposed in Chapter 3, the core parameter lq in Equations (3-14) and (3-

15) is an instantaneous parameter that only represents the downstream situation of one signal 

cycle. However, adjustment factors of SFR and SLT are macroscopic indicators. In existing 

manuals, adjustment factors for SFR are normally estimated by long-term parameters such as 

traffic demand, traffic composition, road geometry design, and signal settings. These 

parameters can be easily got from field surveys which facilitates the model’s practical 

application. Once their values are determined, they need to take effect not simply for a single 

cycle but for a long period. Until now, there is still a gap before achieving the ultimate goal. 

This is the reason why this research emphasizes the derivation work from downstream situation 

parameters to normalized traffic condition parameters.  

 

In this chapter, another simulation experiment will be designed based on the improved 

CTM proposed in Chapter 4. Several scenarios will be determined for this experiment to 

generate data that can be further used for the model derivation. The model derivation is divided 

into two steps and will be performed by regression analysis. The first is to analyze the 

relationship between queue length and traffic condition parameters (traffic demand, signal 

settings, and so on). In this step, two regression equations will be created based on two different 

assumptions and their parameters will be calibrated by GA. The second is to study the 

relationship between adjustment factors (SFR and SLT) and estimated queue length of the new 

model. In this step, both two assumed queue length models will be further studied. Then, 

contour line figures for SFR and SLT adjustment factors for some cases will be provided. Only 

one estimation model will be selected and suggested by referring to their statistical 

measurements and logicalities. Finally, a comparison analysis between proposed models, 

existing manuals, and empirical data will be done to further validate the model and prove the 

necessity for applying new estimation methods. The total procedure for this Chapter is shown 

in Figure 5.1.  
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Figure 5.1  The procedure of modeling adjustment factors 

5.1  Generating Experiment Data 

The experiment is based on another hypothetical road as shown in Figure 5.2. Two 

signalized intersections connected by two-lane road with variable segment length (ls). For 

simplification, the traffic discharged from the downstream intersection is assumed to be free 

discharge receiving zero impact from its downstream. It also means that the SFR and SLT of 

the downstream intersection are constant values and equal to base SFR and base SLT values 

respectively. Also, signals in both upstream and downstream intersections are set to be 2-phase 

control. For all cases, the amber time is always 3 seconds and the all-red time is 4 seconds. the 

traffic from the upstream major road is defined as Qmajor. At the upstream intersection, certain 

traffic volume from the minor road (Right turn flow Qminor_R and left turn flow Qminor_L) merges 

into the major street during the given green time of the minor street. However, the traffic on 

the major will not turn into the minor road in this assumed road system.  
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Figure 5.2  Simulation platform for data-generating 

 

The result obtained from this road system can not only be directly applied for roads with 

a similar traffic arrangement (Figure 5.3 (upper)) but also be used for through lanes of multilane 

approaches when lane changing rate is very low (Figure 5.3 (lower)). Measurement methods 

of different input volumes of these two situations are shown in this figure as well. 

 

Figure 5.3  Applicable conditions of adjustment factor models 

 

The hypothesized road is converted into a CTM based simulation platform as shown in 

Figure 5.4. Normal cells, modified cells, and influenced cells are set with the same parameters 

as those surveyed from Yasukuni-tori (mentioned in Chapter 4.1.3). The traffic demand from 

major and minor roads is controlled by giving different values to three source cells in the 

platform. By changing the number of cells between two intersections, scenarios with different 

segment length (ls) can be generated. Also, parameters of signalized cells can be adjusted as 
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well for simulating different phase plan (Offset, green ratio (gr) cycle length (C)). In addition, 

the ratio between the traffic demand from minor roads (Qminor_R+ Qminor_L) and the traffic 

demand from the major road (Qmajor) is defined as rminor. 

 

 

Figure 5.4  CTM based simulation platform for data-generating 

 

By determining values for these parameters (Qmajor, rminor, ls, C, Offset, gr), different 

scenarios are designed as shown in Table 5-1. In this assumed road system, when the capacity 

of the downstream intersection is significantly lower than the one of the upstream intersection. 

In one cycle, vehicles discharged from the upstream intersection cannot totally pass the 

downstream intersection. After several cycles, the downstream queue will definitely extend to 

upstream intersection incurring spillback. If the downstream capacity is higher than the 

upstream capacity, in most cases the whole platoon from upstream can be perfectly handled by 

the downstream intersection. Then it can be easily inferred that in these situations there is no 

long queue in the downstream link and the downstream impact is minimal. However, situations 

that green ratios of upstream and downstream intersections are different are important as well. 

It is suggested to be studied and solved in future works. Therefore, we only study situations 

that the green ratio of the downstream intersection equals to the green ratio of the upstream 

intersection. Accordingly, green ratios of upstream and downstream intersection are set to be 

the same value (0.4 or 0.6). For making traffic volume lower than the traffic capacity, we let 

the Qmajor increase from 50 to 500veh/h/ln with an interval of 50 veh/h/ln. rminor values are 20% 

or 40%, representing the low and high traffic volume from minor streets respectively. The 

segment length (ls) increased from 48 to 320m with an interval of 16m. Cycle length (C) is 

120s or 150s and Offset values increased from -5s to 5s with an interval of 2s.  
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Table 5-1 Proposed surrogate safety conflict measures in literature 

Parameters Values 

gr 
Both two intersections equal to 0.4 
Both two intersections equal to 0.6 

Qmajor (veh/h/ln) 50~500 (50×10) 
rminor 20%  40% 
ls (m) 48~320 (16×18) 
C (s) 120  150 

Offset (s) -5 -3 -1 1 3 5 
 

Finally, a total of 8640 cases are generated and cases are numbered with variable k. For 

each case, the simulation runs for 45 cycles. The first 20 cycles are treated as warm-up time 

and dropped. Through this time, the traffic on this road system will become stable gradually. 

For the next 25 cycles, the queue length (lq) at the onset of the upstream green of each cycle is 

measured. Then, for case k, the influenced SFR and STL for each cycle are calculated based 

on equation (a) and (b). The average values of SFRs and SLTs for the rest 25 cycles ( kSFR

and kSLT ) are calculated. Adjustment factors of SFR and SLT for case k (Adj_SFRk and 

Adj_SLTk) are derived by letting kSFR  and kSLT be divided by SFRbase (1691 veh/h/ln) and 

SLTbase (2.5153s) as shown in Equations (5-1) and (5-2). Meanwhile, the average queue length 

( q k
l ) for the remaining 25 cycles is calculated as well, representing the ordinary queue length 

for case k. 
 

 k
base

kSF
Adj _SFR

SFR

R
=  (5-1) 

 

 k
base

kSL
Adj _SLT

SLT

T
=  (5-2) 

 

Before modeling, all data goes through processes of data screening and balancing. In the 

data screening, cases in which spillback happened are removed. In the data balancing, some 

cases in which downstream influence (low traffic volume with large negative Offset) are 

obviously 0 are deleted. The ratio of the number of samples with downstream impacts to the 

number of samples with 0 downstream impact is reduced to a reasonable value. Therefore, 

during regression, parameters of models will not be dominated by samples without downstream 

impact and these samples originally account for a large proportion (more than 90%) of total 
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samples before the data balancing. Finally, a total of 2114 samples are selected. In addition, 

several variables in the following paragraph will be used which are listed and explained in 

Table 5-2 for the convenience of differentiation. 

 

Table 5-2 Explanation of variables in modeling 

Variables Definition Source Positions 
Qmajor, rminor, 
ls, C, Offset, 
gr 

Parameters of Traffic 
Condition 

Scenario settings Independent variable of 
the 1st step model 

ql  Average queue length Calculated by the data 
of simulation 
experiments 

The actual value for the 
1st step model 


ql  Estimated average 

queue length 
Calculated by the 1st 
step model 

The estimated value of 
the 1st step model 


opv  Estimated optimal 

speed 
Calculated by ql  with 

Equation (3-13) 

Independent variable of 
the 2nd step model 

Adj_SFR  The adjustment factor 
for SFR 

Calculated by the data 
of simulation 
experiments 

The actual value for the 
2nd step model 

Adj_SLT The adjustment factor 
for SLT 

Calculated by the data 
of simulation 
experiments 

The actual value for the 
2nd step model 

Adj-SFR  
The estimated 
adjustment factor for 
SFR 

Calculated by the 2nd 
step model 

The estimated value of 
the 2nd step model 

Adj-SLT  
The estimated 
adjustment factor for 
SLT 

Calculated by the 2nd 
step model 

The estimated value of 
the 2nd step model 

5.2  Modeling the Queue Length (First Step Model) 

Estimation of queue length is an important part of studying traffic flow characteristics and 

developing effective traffic control strategies. Queue length is also a key parameter when 

calculating the influenced SFR and SLT under different downstream situations. Input-output 

(I/O) model and shockwave theory are two queue length estimation methods that are widely 

applied. The I/O model simply calculates the queue length based on the difference between the 

total input and output traffic volume. The space of the measured section is not considered and 

it is simplified into a point with 0 lengths in the I/O methodology. The shockwave theory 

method derives the queue length based on analyzing traffic density changes in the measured 
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road section. Unlike the I/O method, real features of measured sections and arrival flows are 

properly considered. Many efforts have been done to reveal the relationship between these two 

methods. Daganzo (1983) pointed out that these two methods can get the same value if 

approximation errors of calculations are allowed. Chin (1996) provided a typical example. In 

his case, he proved that through a certain compensation method differences between these two 

methods can be reduced to a negligible value. Yi (2008) proposed a baseline factor to explain 

the discrepancies between these two methods. Compensating by this factor, two methods can 

reach the same results.  

 

I/O and shockwave analysis are two basic models and can be properly applied to roadway 

sections. However, even for the simplest case (two consecutive intersections), the queue length 

on signalized arterials cannot be easily modeled, because several complicated issues are 

involved. The input and output flow (or traffic waves) are influenced by multiple variables 

such as cycle length, offset, segment length, traffic flow from minor streets as shown in Figure 

5.5. Especially in this study, the input flow and output flow for an intersection should also be 

governed by downstream situations. Considering the above difficulties, the queue length model 

will be studied through regression analysis. The queue length (lq) in this study is the distance 

measured from the rear bumper of the last queueing vehicle in the downstream link to the 

downstream stop-line at the onset of the upstream green of each cycle. But in this study, the 

dependent variable of the queue length estimation model is the average queue length of multiple 

cycles for one case. The data used for regression are generated from simulation experiments 

introduced in Chapter 5.1.  
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Figure 5.5  An example of queue length estimation by shockwave analysis 

5.2.1 Creation of regression models for queue length estimation 

In this section, functions will be produced, by which the average queue length can be 

estimated with variables of Qmajor, rminor, ls, C, Offset, and gr. At first, some basic functions 

such as power, linear, logarithmic are tested. However, their regression results are far from 

acceptable. As discussed before, the estimation of queue length on signalized arterials a 

complex process s. For overcoming this problem, two special regression equations are created 

based on two assumptions as shown in Equations (5-3) and (5-4).  

 

Assumption 1: queue length/input volume ratio is a measurable value 

 

       0 1 2 1q major minor sl =min CQ a +aOffset gr+a gr r l  ，  (5-3) 

Firstly, we considered that in common sense, the higher the input volume is, the longer 

the queue should be. The first formula is created based on the assumption that the ratio of queue 

length to volume is a constant value. a0 and a1are coefficients of the regression model. The 

queue length at one intersection is mainly dominated by the traffic volume from the upstream 

intersection which consists of two parts. The first part is the traffic volume from major street 

and equals to CQmajorgr. The second part is the traffic volume from minor street and equals to 
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CQmajor(1-gr)rminor. On the other hand, we observed that in one cycle vehicles from the minor 

street will stay in all probability while a large proportion of vehicles from the major street has 

been discharged from the downstream intersection. In addition, the number of vehicles (from 

the upstream main street) in the downstream queue was different under different offset 

conditions. This mechanism may result in different queue length/input volume ratios for the 

major volume and the minor volume. Accordingly, a0Offset and a1 are introduced to represent 

this discrepancy. The estimated queue length should always be smaller than ls. Therefore, the 

whole equation is nested into a maximal formula letting the result always be less than segment 

length (ls). By constraints settings, the value of the whole equation is always limited to be larger 

than 0. 

 

Assumption 2: linear formula with upper and lower constraints 

 

     0 1 2 3 4 5 6 0q major minor s sl =min max b +bOffset+b C+bQ +b gr+b r b l , l ，  (5-4) 

As for the second regression formula, b0, b1, b2, b3, b4, b5, and b6 are coefficients of the 

model. In this equation, the relationship between the lq and independent variables are simply 

assumed to be linear. Through the maximal and minimal equations, its results are limited to 

space between 0 and ls. 

5.2.2 Solving Coefficients by GA 

Math structures for these two equations are too complicated for statistic software such as 

SPSS, R, and STATA. Therefore, the regression work is transformed into an optimization 

problem. In this process, optimal variables are coefficients of regression models. The objective 

is to determine a set of parameters (Equation (5-3): a0, a1; Equation (5-4): b0, b1, b2, b3, b4, b5, 

and b6) letting estimated values (the ql  calculated by Equation (5-3) or (5-4)) fit actual values 

(the average queue length ql  of each case in the experiment). The optimization is solved by 

the genetic algorithm (GA function in Matlab (R2017b)) which has been applied in Chapter 

3.2.3. As shown in Equation (5-5), the fitness value is defined as the residual sum of squares 

(RSS), which measures the differences between actual values and estimated values. The fitness 

value is always larger than 0. The smaller the fitness value is, the higher the model’s accuracy 

is. 
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 2q qk k

k

Fitness l l   (5-5) 

Moreover, for applied mathematics and computer science, there may be more than one 

suspected candidate solution within the available space. These candidate solutions are optimal 

for their neighboring space. However, only the best one among them is the global optimal 

solution, other solutions are called local optimal solutions. When applying GA, the solution’s 

searching may fall into a certain limited area and output a local optimal solution. For preventing 

this happens, multiple attempts for one regression are suggested and it will be achieved by the 

following procedure.  

 

Firstly, cut the solution space into several intervals by adopting different variables 

constraints based on the experience. Secondly, perform the GA process for each solution 

intervals and several solution intervals whose results are in the top 50%. Thirdly, selected 

solution intervals are further cut into multiple intervals. Return the second procedure again 

until the overall optimal solution keeps unchanged for more than three rounds.  

5.2.3 Regression results and validations 

An example of the GA iteration process is shown in Figure 5.6. Also, the final constraint 

setting and optimal solution for each coefficient and is shown in Table 5-3.  

 

 

Figure 5.6  GA iteration process 
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Table 5-3 1st step: final constraint setting and optimal solution for each coefficient 

Queue Length Model 1: Assumption 1 
Parameters  Constraints Values 

a0 (0, 5×10-4] 2.6497×10-5 
a1 (0, 0.5] 1.3785×10-4 
a2  (0, 0.5]  1.1314×10-3 

Queue Length Model 2: Assumption 2 
Parameters Constraints Values 

b0 (-∞, 0] -10.5202 
b1 (-1, -0.5] -0.7593 
b2 (0, 0.5] 4.344×10-2 
b3 (0, 0.5] 3.352×10-2 
b4 (-20, -15] -16.0608 
b5 (15, 20] 19.5764 
b6 (0, 0.5] 8.2549×10-2 

 

Actual vs predicted comparison figures for assumptions 1 and 2 are shown in Figure 5.7 

(a) and (b). In the result of assumption 1, the R2 is 0.5820, the MAPE is 36.96%, and the RMSE 

is 6.00. When actual values are less than 15m, the regression model shows a good degree of 

fitness. However, when actual values are larger than 15m, data points are divergent on both 

sides of the diagonal line. It indicates that the regression model based on assumption 1 can fit 

the changing trend of the ql  and its estimated values can roughly reproduce actual values. For 

assumption 2, the R2 is 0.9291, the MAPE is 21.01%, and the RMSE is 2.47. Data points in 

Figure 1b basically coincide with the diagonal line and the convergent accuracy is obviously 

high. Only when actual values are larger than 30m, predicted values are a little bit larger 

(around 5%) than actual values. It reveals that the regression model based on assumption 2 fits 

actual data very well and its fitting performance is better than the previous one. Finally, we 

concluded that model 1 is more logical and reasonable while model 2 has better prediction 

accuracy. Both two models are able to explain the changing trend of ql  and will be further 

applied to the next step derivation. 
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(a) Assumptions 1 (b) Assumptions 2 

Figure 5.7  Actual vs predicted comparison for queue length models 

5.3  Modeling Adjustment Factors (Second Step Model) 

Regression models between Adj_SFR, Adj_SLT, and predicted queue length will be 

derived in this section. Combing with the 1st step model, models for adjustment factors will be 

proposed as well. In Chapter 3, models for influenced SFR and SLT are two-step models. For 

the convenience of description, these models are also listed as follows (Equation (5-6), (5-7), 

and (5-8)). Firstly, vop is calculated based on the parameters of downstream situations (lq, ls, 

and Offset). Then, influenced SFR and SLT are calculated by vop. Among parameters in this 

model, ls, lq, and Offset should be determined by current downstream situations. In practical 

applications, if conditions permit, values of τ, l, and d0 should be measured from the field data. 

Otherwise, they can be defined as default values (τ=1s, l=4.5m, and d0=2m). 
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  44 195 997 93 1691opSFR min . v .   ，  (5-7) 

 

   0 67
18 99 2 5153

- .

opSLT max . v .  ，  (5-8) 

The above equations are a micro-level model that can only be applied in the 

microsimulation and dynamic signal control systems. In contrast, the model for adjustment 

factors proposed in this section will be a macro-level model which can be applied for setting 

the long-term signal timing. There are similarities between these two models. The calculation 

procedure and equation structure of this macro-level model is designed referring to the micro-

level model. For instance, the macro-level model also needs to calculate the vop firstly before 

estimating adjustment factors. 

5.3.1 Regression Models for Adjustment Factors 

The estimated optimal speed (opv ) is calculated by estimated queue lengths ( ql ) based on 

Equation 1. The estimated queue lengths are calculated by queue length model 1 or queue 

length model 2. Hence, two groups of opv  are calculated at last. Parameters of τ, l, and d0 in the 

calculating are determined as default values (τ=1s, l=4.5m, and d0=2m) as shown in Equation 

(5-9).  
 

 

0
0

0 0

0

0

if 0

otherwise

s q q

qop

l l l d
min v offset

l dv d l
offset

d l

v

  
              


， 
  (5-9) 

 

Considering structures of Equation (5-7) and (5-8), it is inferred that both regression 

models for Adj_SFR and Adj_SLT consist of flat parts (Adj_SFR=1 and Adj_SLT=1) and 

influenced parts. The decreasing part of Adj_SFR is assumed to be linear and the increasing 

part of Adj_SLT is assumed to be an exponential model. Therefore, regression models for 

Adj_SFR and Adj_SLT are created as shown in Equations (5-10) and (5-11). 
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   0 1 1opAdj-SFR min c v + c ,  (5-10) 

 

   3

2 1
c

opAdj-SLT max c v ,  (5-11) 

 

Two sets of coefficients will be solved by inputting two groups of opv . Two regression 

models are named as “Assumption 1” and “Assumption 2” for short which correspond to two 

assumptions for queue length models in Chapter 5.2.1 respectively. This regression is also 

transformed into an optimization problem. The optimization target is to determine a set of 

parameters (c0, c1, c2, and c3) letting estimated values (Adj-SFR and Adj-SLT ) fit actual values 

(Adj_SFR and Adj_SLT). The result of the optimization is shown in Table 5-4 and Figure 5.8. 
 

Table 5-4 2nd step: final constraint setting and optimal solution for each coefficient 

Assumption 1 
Parameters Constraints Values 

c0 (0, 1] 2.2281×10-2 
c1 (0, 1] 0.6727 
c2 (0, 10] 4.2741 
c3 (-2, 2] -0.4812 

Assumption 2 
Parameters Constraints Values 

c0  (0, 1]  2.4019×10-2 
c1 (0, 1] 0.6047 
c2 (0, 10] 7.7491 
c3 (-2, 2] -0.6751 

 

 

(a) Assumptions 1 (b) Assumptions 2 

Figure 5.8  Regression models for Adj_SFR and Adj_SLT 
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Actual vs predicted comparison figures for assumptions 1 are shown in Figure 5.9 (a) and 

(b). In the result of SFR, the R2 is 0.9503, the MAPE is 0.78% (0~11.11%), and the RMSE is 

0.015. Data points evenly distributed on both sides of the diagonal line and the convergence 

performance is good. In the result of SLT, the R2 is 0.9476, the MAPE is 2.58% (0~27.76%), 

and the RMSE is 0.071. Most of the data is concentrated on the diagonal line and only a few 

points deviate from the centerline.  

 

 

(a) SFR (b) SLT 

Figure 5.9  Assumptions 1: actual vs predicted comparison for 2nd step model 

 

As for assumption 2, actual vs predict comparison figures are shown in Figure 5.10 (a) 

and (b). In the result of SFR, the R2 is 0.9999, the MAPE is 0.78% (0~11.88%), and the RMSE 

is 0.015. In the result of SLT, the R2 is 0.9696, the MAPE is 2.47% (0~31.44%), and the RMSE 

is 0.066%. In both Figure 5.10 (a) and (b), most data points located on or near the diagonal line. 

When actual values of SFR are in the interval of between 0.85 and 1, it can be observed that 

the divergence phenomenon occurs and some data points are significantly off the centerline. 

This model’s fitness performance is slightly better than the previous one. However, the 

estimation accuracy of the first model is higher than the second one. It indicates that both two 

models fit the changing trend of actual data and can reproduce their values accurately. 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

0.7 0.75 0.8 0.85 0.9 0.95 1

E
st

im
at

ed
 v

al
ue

s 
(m

)

Actual values (m)

R2=0.9503
MAPE: 0.78%
(0~11.11%)
RMSE: 0.015

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5

E
st

im
at

ed
 v

al
ue

s 
(m

)

Actual values (m)

R2=0.9476
MAPE: 2.58%
(0~24.76%)
RMSE: 0.071



104 

 

(a) SFR (b) SLT 

Figure 5.10 Assumptions 2: actual vs predicted comparison for 2nd step model 

5.3.2 Contour Figures for Adjustment Factors 

Combining the first step model and the second step model, ultimate models are obtained 

as shown in Equation (5-12) and (5-13). 
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Adjustment Factor Model 2 (Assumption 2)  
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(5-13) 

 

In order to further compare these two assumptions, several scenarios are designed for 

contour line figures drawing as shown in Table 5-5. Among offset types in different scenarios, 

green wave means the offset value under which upstream platoon with free-flow speed can 

reach the downstream stop line at the onset of downstream green. Queue clear 2s or 4s defines 

offset value under which upstream platoon with free-flow speed can reach the downstream stop 

line 2s or 4s after the onset of downstream green. For each scenario, the Qmajor increases from 

50 veh/h/ln to 450 veh/h/ln. Within this range, all cases will not be influenced by the spillback 

phenomenon.  

 

The simulation platform in Chapter 5.1, adjustment factor model 1, and adjustment factor 

model 2 perform for all 6 scenarios respectively. Based on results from them, contour line 

figures of all 6 scenarios are drawn separately for three methods. Figure 5.11 shows contour 

line figures for SFR and Figure 5.12 shows contour line figures for SLT.  
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Table 5-5 Scenarios are designed for contour line figures 

No. C Offset type rminor gr ls (m) 
Qmajor 

(veh/h/ln) 
1 150 Green wave 0.4 0.6 48-320 50~450 
2 150 Green wave 0.4 0.4 48-320 50~450 
3 150 Green wave 0.2 0.6 48-320 50~450 
4 120 Green wave 0.4 0.6 48-320 50~450 
5 150 Queue Clear 2s 0.2 0.4 48-320 50~450 
6 150 Queue Clear 4s 0.2 0.4 48-320 50~450 

gr: downstream=upstream=0.4 or 0.6 
Offset types: 

 
 

Firstly, the analysis focuses on the first column. In scenarios 1, 2, 3, and 4, with the ls 

decreases from 320 to 48, the Adj_SLT increases and the Adj_SFR decreases. With Qmajor 

increases from 50 to 450, it is found that the Adj_SLT increases and the Adj_SFR decreases as 

well. It confirms that the capacities of intersections with shorter downstream links under higher 

traffic demand are more easily influenced by downstream. Comparing the results of scenario 1 

and 2, values of Adj_SFR with same ls and Qmajor is lower in scenario 1 than them in scenario 

2. Meanwhile, values of Adj_SLT with the same ls and Qmajor are higher in scenario 1 than them 

in scenario 2. Because the gr in scenario 2 (0.4) is lower than scenario 1 (0.6), capacities of 

upstream intersections in scenario 2 are lower than scenario 1. In scenario 2, fewer vehicles 

can be discharged from upstream intersections to form the downstream queue than them in 

scenario 1. Accordingly, the SLT and SFR are more likely influenced by downstream at 

intersections with higher gr. Comparing results of scenario 1 and 3, for same points, values of 

Adj_SFR in the scenario 1 is lower than them in the scenario 3 and values of Adj_SLT in the 

scenario 1 is higher than them in the scenario 3. It reveals that lower rminor can mitigate 

downstream impacts. While comparing scenario 1 and scenario 4, it is found that, in the same 

position, the Adj_SFR in scenario 1 is lower than it in scenario 4 and the Adj_SLT in scenario 

1 is higher than it in scenario 4. Larger cycle lengths can result in more serious downstream 

impacts. By comparisons between scenario 1, scenario 5, and scenario 6, it can be clearly 

Green Wave Queue Clear 2s Queue Clear 4s

downstream

upstream

downstream

upstream

4s
downstream

upstream

2s
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observed that downstream influence for cases (Qmajor≤150 veh/h/ln) are 0 in scenario 5. When 

the queue clear time increases from 2s to 4s, the range of the Qmajor under which downstream 

impacts are 0 expands to (0, 300) veh/h/ln. It indicates that green wave timings perform badly 

on short link arterials or under high traffic demand because of the downstream influence. 

Letting downstream queue discharge firstly can eliminate the downstream influence. The 

longer the queue clear time is, the lighter the downstream impact is. However, longer queue 

clear time may result in the green time of downstream intersection being wasted (downstream 

queue already being discharged however upstream platoon hasn't arrived). It is necessary to 

discuss the relationship between wasted green time and improved upstream capacity. Then, the 

offset value can be determined comprehensively and reasonably. 
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Figure 5.11 Contour line figures for SFR 
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Figure 5.12 Contour line figures for SLT 
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On the other hand, attention should be focused on comparisons between results of these 

three methods. For scenario 1,2, and 6, shapes of contour line figures from the simulation 

experiments are similar to those from model 1 and model 2. Model 1 is more similar to the 
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simulation results than model 2. In scenarios 3, 4, and 5, results from simulations still show 

good consistency to results from the model. On the contrary, there are obvious differences 

between the shapes of contour lines from the simulations and those from model 2. For all 6 

scenarios, differences between values of each position and border are smaller than 0.05 for SFR 

figures and 0.1 for SLT figures. Model 2 has better fitness value, but it lacks logicality. 

Regression data is perfectly fitted. However, when the model 2 is applied for other situations 

(different offset types), its shortcomings will be exposed. Model 1 has good fitness value and 

logicality. It can not only fit the regression model well but also be reasonably applied in other 

scenarios. Therefore, model 1 is suggested to be applied finally. 

5.3.3 Comparison with Existing Manuals and Empirical Data 

In order to further validate the proposed model, a comparison analysis is done on Hirokoji-

tori between the proposed model, existing manuals, and empirical data. The empirical data is 

only extracted from the 2nd (through) lane of approach WB 4 and EB 7 in Figure 4.8. They are 

selected because they fit the applicable conditions of the proposed estimation model. Firstly, 

the upstream green ratio equals to downstream green ratio. Secondly, based on our observation, 

vehicles on selected lanes are mainly from the turning volume of the minor street and major 

volume of corresponding upstream through lanes. Lane changing (vehicles from other lanes 

merging into this lane or vehicles on this lane diverging into adjacent lanes) rarely happens in 

their downstream during this period. 15 cycles between 8:30 and 9:30 are randomly chosen. 

SFR and SLT for these 15 cycles are measured by the method mentioned in Chapter 3.1.3. 

Mean values for them are calculated to represent the actual SFR and the actual SLT for the 

selected period. Meanwhile, volume profiles are measured for selected lanes. Along with signal 

settings and segment length, they will be used in calculating adjustment factors of downstream 

influence as shown in Table 5-6. 

 

The calculation of estimated SFR (SFRest) is based upon the MTSCJ methodology 

described in Chapter 2.2.1. Among all the adjustment factors, only adjustment factor for lane 

width (fw) and adjustment factor for approach gradient (fg) are considered and the other 

adjustment factors equal to 1. The surveyed site is located in the urban area so that considering 

the adjustment factor for area type (fa) is feasible. However, MTSCJ does not include this factor. 

The result of the estimated SFR by MTSCJ methodology and Table 5-7. On the other hand, no 
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available estimation method for SLT can be found in existing manuals. SFR estimated by 

MTSCJ calculated by Equation (5-14) and adjusted SFR on MTSCJ is calculated by Equation 

(5-15). 

 

 0MTSCJ w HVg bb LU LT RT LpbSFR s f f f f f f f  (5-14) 

 

 0MTSCJ w HVg bb LU LT RT LpbAdjusted SFR s f f f f f f f Adj _SFR   (5-15) 

Meanwhile, some other factors that should be included may not be taken into account by 

the MTSCJ. For fair comparisons, we also calculate adjusted SFR on base SFR as well which 

equal to 1631 veh/h/ln as shown in Equation (5-16). Also, adjusted SLT on base SLT is 

calculated by Equation (5-17). The value of the base SLT is 2.95s which is consistent with 

Equation (4-24). Finally, estimated SFRs by MTSCJ (MTSCJ), adjusted SFR on MTSCJ, 

adjusted SFR on base SFR, and observed SFRs are compared in Figure 5.13. Regarding the 

SLT, because no available SLT estimation method can be found, only observed SLT and 

adjusted SLT on base SLT are compared in Figure 5.13. 

 

 base SFRAdjusted SFR base SFR Adj_SFR   (5-16) 

 

 base SLTAdjusted SLT base SLT Adj_SLT   (5-17) 

 

 Table 5-6 Calculating adjustment factors of downstream influence 

Approach C Offset ls (m) gr 
Qmajor 

(veh/h/ln) 
rminor Adj_SFR Adj_SLT 

WB 4 160 0 154 0.55 1001.25 0.50 0.95 1.22 

EB 7 160 0 160 0.55 1102.5 0.51 0.92 1.34 

 

Table 5-7 Estimated SFRs by the MTSCJ methodology 

Approach s0 
Lane 

width (m) 
fw 

Gradient 
(%) 

fg 
SFRest by 
MTSCJ 

Adjusted 
SFR 

WB 4 2,000 3 0.95 -0.08 1 1,900 1796 

EB7 2,000 3.2 1 0.45 1 2,000 1834 

 

In Figure 5.13, for both two approaches, estimated SFRs by MTSCJ and adjusted SFRs 

on MUTCJ are extremely larger than actual values. Adjusted SFRs on base SFR are close to 

but a little larger than actual SFRs. These indicate that the estimation method in the MTSCJ 

may overestimate the actual SFR. It is important to consider the downstream influence when 
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estimating the SFR. In the MTSCJ equation, not only the downstream adjustment factor but 

also some other necessary factors are left out. We speculate that the adjustment factor for area 

type (fa) and the factor involving elderly drivers can be discussed and taken into account. 

Meanwhile, adjusted SLT on based SLT and observed SLTs are almost equal in both two 

selected approaches, which further proves the usability of the proposed method. 

 

  

 

Figure 5.13 Comparison between proposed method, MTSCJ, and empirical data 

5.4  Summary 

This chapter established models of adjustment factors for influenced SFR and SLT 

considering downstream conditions. By this model, factors adjusting SFR and SLT for 

downstream influence can be calculated by parameters of traffic volumes, road geometry, and 

signal settings. Then the influenced SFR and SLT can be calculated accordingly by these 

adjustment factors. Before this research, none of the estimation models in existing manuals can 

properly calculate the influenced SFR and SLT considering downstream impacts. 

 

The model of adjustment factors proposed in this Chapter is a two-step model that is 

studied by regression analysis. The raw data used for modeling was from the simulation 

experiment. The first step is to estimate the downstream queue length considering downstream 

impacts. The second step is to estimate adjustment factors based on the newly proposed queue 
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length model. During the analysis, it was found that the model in two steps can reduce the 

computational complexity. Also, one regression fitting target was set for each step, which 

helped to improve the accuracy of the final model. In this process, the basic changing trend of 

queue length was reproduced in the first step and fitting errors were reduced to a good level in 

the second step. Finally, two models that are based on two different assumptions separately 

were got. Simulation platform and two models were performed on 6 designed scenarios. Based 

on contour line figures of these 6 scenarios, it was found that lower green ratio, smaller cycle 

length, and more flow from minor street result in more serious downstream impacts. Through 

comparison, model 1 (more logical, assumption: constant queue/volume ratio) is proved to be 

better than model 2 (more fitting, assumption: linear with upper and lower constraints). 

Through this process, it revealed that the model’s logicality is as important as the model fitting 

performance. The proposed model was further applied in real-world approaches along with the 

methodology prescribed in MTSCJ. Results indicate that proposed adjustment factors are 

reasonable and necessary to be included. 
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CHAPTER 6 CONCLUSIONS AND FUTURE 

WORKS 

6.1  Conclusions 

This research provided solid scientific evidence by empirical studies and appropriate 

methodology by theoretical studies for estimating the influenced SFR and SLT. The existing 

manuals and simulators overestimated capacities at signalized intersections. Also, previous 

research before this study did not comprehensively discuss the downstream influence. 

Therefore, the major contribution of this research is creating models for adjustment factors that 

can properly adjust SFR and SLT considering downstream conditions. The adjustment factors 

are calculated with parameters of traffic volumes, road geometry, and signal settings so that 

the model can be applied in practice easily. Furthermore, they can be included in the estimation 

models of existing manuals such as HCM 6th edition and MTSCJ letting predicting results more 

accurate. The improved car-following model created in chapter 3 and the improved cell 

transmission model proposed in chapter 4 are also important achievements of this research. 

The proposed car-following model can provide revising ideas for the core models of existing 

simulators and newly established CTM is a good tool for simulating traffic propagation on 

signal-controlled arterials. In this study, not only the car-following model and CTM but also 

simulation experiment and regression analysis are applied. These models and research methods 

are used to solve the relationship model between influenced SFR, SLT, and macro traffic 

indicators which is also the most important difficulty that has been overcome by this research. 

Meanwhile, significant findings of this study are summarized as follows. 

6.1.1 Influenced Discharging Behavior Considering Downstream Impacts 

This research proposed an improved car-following model (IDM+) that can properly 

reproduce influenced discharging behaviors under different downstream conditions. The main 

idea of this model is to consider the human subconscious. When they clearly understood that 

they must stop soon, drivers may reduce the speed to avoid completely stops and uncomfortable 
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deceleration. This influence was measured by a virtual speed optimal speed (vop, the speed by 

which the upstream platoon reaches the endpoint of the queue ahead when the last vehicle in 

the downstream queue just starts). Treating vop as the core indicator, the improved model was 

designed. This model was calibrated by empirical driving data. The model’s characteristics are 

tested by a sensitivity analysis. Results showed that facing with long queue and red signals in 

downstream links, drivers’ ambitions of rapid acceleration and quickly running will be 

discouraged. For the same length of the queue, this impact is more significant in a shorter 

segment link. Under these situations, accelerations and speeds of upstream vehicles are lower 

than uninfluenced ones. Accordingly, discharging efficiencies of upstream platoons are 

impacted. This subconscious is not only limited at signalized intersections in urban areas but 

also suitable for explaining some phenomena on freeway sections. For instance, when 

approaching the downstream jam section on a freeway, the speed of the upstream platoon tends 

to decrease. 

6.1.2 SFR and SLT Influenced by Downstream Conditions 

Studying on the influenced SFR and SLT firstly started from an empirical analysis on 

Yasukuni-tori. Results indicated that with queues in downstream links become longer, SFRs 

tend to be lower and SLTs tend to be higher. SFRs of data points with large offset values are 

lower than others and SLTs of data points with large offset values are higher than others. Also, 

downstream impacts are more significant for intersections with short downstream links. Then 

downstream influence is theoretically studied. Based on these findings, the downstream module 

in IDM+ was designed. The IDM+ was further designed into a simulation experiment. 

Simulation results showed that this experiment can properly reproduce the phenomena that 

were found in the empirical analysis. Meanwhile, simulated SFR and SLT. Trends modeled by 

IDM+ were further summarized into two-step models by doing regression analysis on the 

simulation data. In these models, downstream influence is measured by vop. Then, influenced 

SLT and SFR are calculated by vop based on two piecewise models. Influenced SFR and SLT 

calculated by regression models not only are the same as simulated values but also fitted the 

empirical data very well. 
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6.1.3 Downstream Influence on the Signalized Arterial 

For introducing the downstream influence into traffic modeling along signalized arterials, 

models of influenced SFR and SLT were combined with modified CTM. Unlike the traditional 

CTM, the newly composed model can simulate real discharge features at signalized 

intersections. By adjusting cells’ parameters regarding current downstream conditions, 

influenced SFR and SLT can be reproduced as well. Firstly, the proposed CTM was proved to 

have the equivalent performance as the IDM+. Then it was validated on a real-world road 

(Hirokoji-tori). Results proved that considering the downstream influence is quite a necessary 

procedure for traffic simulations. Because only by this, the simulation platform can accurately 

reproduce the evolution of queue length at each intersection, simulation the congestion section, 

and estimate the delay that happened on the corridor. Furthermore, how the downstream effect 

evolves along the signalized arterial was explored on a CTM based platform by the sensitivity 

analysis. It found that the degree of congestion in one road section is related to input volume 

(from minor and major streets), downstream links length, offsets of downstream, and secondary 

downstream intersections. 

6.1.4 Adjustment Factors of SFR and SLT 

Based on the proposed CTM theory, adjustment factors of SFR and SLT were modeled 

into two-step models. The queue length was estimated by regression analysis based on data 

that were from simulation experiments and then estimated vop was calculated by the estimated 

queue length. Adjustment factors of SFR and SLT were further modeled by estimated vop. By 

this procedure, Adj_SLT and Adj_SFR can be directly calculated by variables of traffic 

conditions (road geometry, traffic demand, and signal settings). Contour line figures revealed 

that high traffic demand (from major and minor streets) and short downstream link length lead 

to a lower Adj_SLT and higher Adj_SFR. Green ratios and large cycle length can aggravate the 

downstream influence. Meanwhile, it also indicated that green wave timings are not suitable 

for roads with short segments or under high traffic demand. Instead, queue clear timings (letting 

downstream queue discharge firstly before upstream platoon arrives) work well and are 

suggested for these cases. Finally, a comparison analysis was made at a real-world approach. 

Results showed that after including the Adj_SFR, the accuracy of the existing SFR model 

(MTSCJ) was improved. Also, SLT calculated by the proposed procedure is basically 
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consistent with observed SLT. Hence, it could be concluded that proposed models can be 

applied in practice for some specific road conditions. 

6.2  Limitations and Future Works 

The main limitation of this study is the exclusion of cases with several factors. Through 

data screening, some influencing factors have been excluded, such as heavy vehicles, 

motorcycles, cutting-in effect, and overtaking behaviors. Therefore, during experiment 

simulations, a simple two-intersections two-lane road was built. The assumed simulation 

platform can avoid discussing the impacts of cut-in effects and overtaking issues. However, 

these factors are necessary to be incorporated when the method is applied in practice. The other 

limitation is the basic assumption of this research. This study assumed that the subject and 

downstream intersection will not further be influenced by the secondary downstream 

intersection. However, the downstream intersection maybe not isolated from the impact of the 

secondary downstream intersection. Meanwhile, for short links, drivers can observe traffic 

conditions in the secondary downstream link. Hence, drivers may be influenced by two 

downstream intersections simultaneously. If all the above issues are considered there be infinite 

varieties of study cases. From the beginning, it is appropriate and necessary to explore the 

research with some simplifications. In the future, this research should be further improved by 

deleting the assumption gradually. The following is suggested as significant future studies in 

order to achieve the global objective of dynamic network traffic control considering 

downstream influence.  

6.2.1 Adaptability to Multi-lane Arterials 

As prescribed in Chapter 5.1, the final estimation model can mainly be applied to 

approaches on two-lane arterials. For approaches on multi-lane arterials, only when lane 

changing behaviors rarely happens in the corresponding downstream lane, the estimation 

model can be used. Before this model can be fully applied to approaches of multi-lane arterials, 

it is necessary to overcome the following points. Firstly, in empirical studies, cutting-in effect 

and overtaking behaviors are neglected. Also, in theoretical studies, models were built based 

on an assumed two-lane arterial where cutting-in effect and overtaking are not allowed. In order 
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to build a more compatible model, cutting-in and overtaking behaviors should also be included 

in the designing of the micro-simulation platform. Secondly, considering OD pairs of input 

flows, using rates of lanes in downstream links are different in reality. In terms of this, the 

queue length estimation model in Chapter 5.2 can be updated and improved as well in future 

studies. This point is also important for simulating the traffic on multi-lane arterials. In addition, 

on multi-lane arterials, one approach may consist of different types of lane groups (right or left 

turn lane, shared right or left turn lane). Although it can be inferred that discharge flows on 

through lanes are most susceptible to downstream influence. Other lane types might be 

impacted to some extent and should be investigated as well. 

6.2.2 Stochastic Feature of Calibrated Parameters in Car Following Model 

In Figure 3.29, only one point for each case was modeled and empirical data points 

distributed over a wide range surrounding modeled lines. This phenomenon can be explained 

by drivers’ stochasticity. In the IDM based micro-simulation platform, the same parameters 

were adopted for all drivers in the simulation to represent the average behavior. In the real 

world, these parameters might differ for different drivers. For instance, the reaction time for 

young drivers might be lower than old drivers. Assuming certain distributions (such as normal 

distribution) for model parameters might help in understanding the stochasticity of driver 

behavior. Distribution shapes should be estimated from empirical data. Adopting different 

parameters for different drivers and letting the experiment be performed based on the Monte 

Carlo method, more convincing results can be got. However, no available calibration 

methodology that can output distribution shapes for parameters of multi-variable car-follow 

has ever been proposed. This technical difficulty is expected to be solved in the future. 

6.2.3 Clearing Vehicles and Clearance Lost Time 

During collecting field data from video, it was observed that in some cases when platoon 

started to discharge there were some vehicles from the last phase still in the intersection as 

shown in Figure 6.1. These vehicles are called clearing vehicles and their presence may block 

or interfere the forwarding route of the discharge flow, resulting in high SLT. in observed 

streets, inter-green times of all intersections are up to 8 seconds which are long enough for 

vehicles clearing the intersection. Therefore, clearing vehicles occurred rarely. Their influence 
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was treated as random events and excluded from this research. However, at intersections under 

large traffic volumes, this phenomenon can be frequently observed. It is necessary to build a 

theoretical model for impacts from clearing vehicles. In addition, for now, it can be inferred 

that this phenomenon is related to lengths of inter-green times and traffic volumes from minor 

streets. 

 

 

Figure 6.1  Discharging flow influenced by clearing vehicles 

 

On the other hand, clearance lost time (CLT, hereinafter) also serves as important 

parameters in the capacity estimation of signalized intersections. CLT defines the time between 

signal phases during which an intersection is not used by any critical movements. Since 

clearance lost time is often not observable since observation requires that some vehicles which 

were waiting at the start of a green phase still be waiting when the green phase ends, it is simply 

defined as a default value of 2.0 seconds in HCM (2016). ALDOT's Traffic Signal Design 
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Guide and Timing Manual (2006) determines CLT to be half of the yellow interval plus the 

entire all-red interval. How could CLT be influenced by downstream influence is also an 

interesting topic in the future. 

6.2.4 Autonomous Vehicle Flow 

In the future, human-driven vehicles (HV, hereinafter) will be gradually substituted by 

autonomous vehicles (AV, hereinafter). With the improvement of related technologies, AVs 

can not only handle vehicles for humans during whole driving processes but even be 

completely superior to human drivers’ skills. Definitely, in the future, AVs will be able to have 

abilities that human drivers can’t do. For example, unlike human drivers, AVs don’t have 

emotions therefore they will not be impacted by downstream queues. Meanwhile when running 

AVs may share driving status information with other vehicles and communicate with control 

systems of signalized intersections. How would traffic propagations be distributed, if flows on 

the signalized arterial are 100% consisted of AVs? According to my imagination, for the AVs’ 

discharge platoon, all waiting vehicles will start quickly simultaneously at the onset of green 

indication and the platoon will operate as a train. Therefore, SLTs may simply equal to machine 

starting time and SFRs will always equal to a constant value. The traffic jam along a signalized 

arterial can be mitigated to some extent. But if congestion happened, the distribution of traffic 

along arterials will be different from what is shown in Figure? (due to the downstream influence, 

heavy traffic occurs in the upstream section). It can be inferred that congestion would happen 

only after bottleneck intersections (e.g. small green ratio). The above image assumes that all 

vehicles are AVs. “How results would be if only part of them (e.g. 10~90%) is AVs?” is also 

an interesting topic for future studies. 
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