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Abstract

In this paper, we analyse whirling vibration and torsional vibration of a
rotating shaft after passing through its critical speed for whirling. First, equa-
tions of motion for a rotor-shaft system are derived with accuracy to the sec-
ond-order of shaft deformations, and it is demonstrated that Euler’s equations
of motion are equivalent to Lagrange’s equations of motion. Then we deals
with the passage problem of a rotor-shaft system under a constant driving tor-
que. And analyses for our equations of motion show that the torsional vibration
of a rotating shaft can be caused after passing its critical speed for whirling, and
the vibration is discussed in both cases of symmetrical rotor and asymmetrical
rotor.
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NOTATION

amplitude of shaft whirling

amplitude of vibration mode whirling with frequency p,

viscous damping coefficients for translation, inclination and rotation of rotor
eccentricity of rotor

mean moment of inertia of rotor about two principal axes of inertia perpendicular to
polar axis

moments of inertia of rotor about two principal axes of inertia perpendicular to
polar axis (let [; > 1)

complex component in [ ]

moment of inertia of rotor about rotating shaft

unit of imaginary number

length of shaft

distance from driving point A to point S which carries rotor

distance from point S to another shaft end B

mass of rotor

natural angular frequencies for whirling of shaft (p, > p, > p; > p,)
natural angular frequency of torsion of shaft

driving torque

time

x- and y-components of shaft deflection at point S

three principal axes of inertia of rotor

shaft deflection expressed in complex number

spring constants for shaft deflection

spring constant for torsion of shaft between driving point A and point S
angular position of dynamic unbalance

angular acceleration at shaft end A

rotating speed at point S

rotating speed at point A

critical speed for shaft whirling

dynamic unbalance of rotor

angle of shaft torsion between A and S

component of §, changing monotonously with time

vibratory component of 6,

maximum value of 6,, in one acceleration/deceleration

projection of inclination angle of shaft to xz- and yz-planes
inclination angle of shaft expressed in complex number

angular position of eccentricity

difference of I, and 1, from mean value 1

asymmetry of rotor

phase angle of vibration mode whirling with frequency p;

rotating angle of shaft at point S

rotating angle of shaft at point A

complex conjugate

differential with respect to time
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Chapter 1. General Introduction

Nowadays, rotating machines are much larger than as they were in the past and are oper-
ated in higher rotating speed for highest performance. For higher rotating speed, not only a
large vibration but also even a small vibration of the rotor-shaft system must be removed. In
order to prevent such vibrations, we should know what vibrations appear in the system, the
mechanisms how they occur, and how we can remove or reduce these vibrations.

There have been a large number of studies on the rotor-shaft system and its vibration
since Rankine", Grammel®, Stodola®, and Den Hartog" reported on natural frequencies and
major critical speed. And recently reported on vibrations in passing critical speeds'g),
vibrations of shaft having different stiffness'”"?, vibrations of asymmetrical rotor-shaft
system'”'? | vibration of a rotating shaft with non-linear spring constants*’*?, vibrations of a
rotating shaft with different pedestal stiffness” >, vibrations of a rotating shaft having a
crack™, vibration of rotor-shaft system with variable rotating speed27'28), vibration of a rotat-
ing shaft driven by a universal joint” acceleration patterns with consideration of torsional
vibration of the rotating shaft’”, and balancing the rotor-shaft system. By helps of these in-
vestigations, rotating machines can be driven smoother than before.

To analyse theoretically the passage problem of critical speed, as well as other problems
of rotor-shaft system, the equations of motion is very important. There are two major meth-
ods of deriving equations of motion, one is the Lagrange’s method and the other is Euler’s
one. These two methods must be equivalent at least for vibration problems of rotating bodies,
but sometimes they provide different appearance of equations of motion'*****%_ In chapter
2, we analyse why this occurs by equations with precision of second-order of shaft deforma-
tion. Using the theory of elastics on bending and torsion of the shaft®”, equations of motion
of rotor-shaft system with variable rotating speed are derived by both methods™. The result
shows that both two methods are really equivalent, and that the lack of second-order of small
quantities of shaft deformations causes the difference in the derived equations.

In the field of passage problem of major critical speed, there are a large number of
studies about the system consisting of symmetrical rotor and symmetrical shaft”***"), There
are some studies about the system consisting of symmetrical rotor and asymmetrical shaft*'™*
or the system consisting of asymmetrical rotor and symmetrical shaft'¥, but they are much
smaller in number than the former symmetrical-symmetrical system. A system with an asym-
metrical shaft is similar to a system with asymmetrical rotor, both of which have unstable
areas near their critical speeds. If asymmetry of the shaft is smaller than a certain value, some
angular positions of dynamic unbalance make the maximum amplitude of whirling smaller
than that in case of a system having symmetrical rotating shaft*®.

Ota et al'® analysed the vibration of asymmetry rotor-shaft system in passing through
the critical speed under constant angular acceleration and explained why the maximum
amplitude of shaft whirling may be smaller than that in the case of symmetrical rotor-shaft
system. It is because the maximum amplitude of whirling depends not only on eccentricity,
dynamic unbalance, and asymmetry of rotor but also on their relative angular positions. But
the minimum driving torque for passing the critical speed is not discussed in detail, though
the system may not pass the critical speed because of too large whirling amplitude caused by
smaller driving torque. A rotor-shaft system driven under a larger driving torque passes
through its critical speed smoothly like a system under constant angular acceleration. But
smaller driving torque makes whirling amplitude in ‘approaching’ its critical speed too large,
the system needs more driving torque for ‘passing’ the critical speed. Thus, in asymmetrical
rotor-shaft system the effects of driving torque, asymmetry of rotor, eccentricity, and
dynamic unbalance on the whirling amplitude of shaft and rotating speed should be
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investigated. Especially under constant driving torque, the change of rotating speed and whir-
ling amplitude must be known. What will happen in the system if the system cannot pass the
critical speed? We consider this problem in chapter 3 by numerical analyses with using
asymptotic method*?.

When a rotor-shaft system has just passed its critical speed for whirling, the amplitude
of shaft whirling changes periodically, and its frequency of the change becomes higher as
the system gets apart from the critical speed. The phenomenon like beats is already well-
known®®, but our analyses show that this phenomenon may cause torsional vibration*®*”).

It may be considered that torsional vibration of rotating shaft seems to occur in such sys-
tems that have gears or universal joints48'5°) or in systems of fluctuating driving torque’"?.
And some researches are made by TondI’”, for example, on a simple system consisting of a
symmetrical rotor and symmetrical shaft with both ends fixedly supported. Gasch and
Pfiitzner” investigated the minimum driving torque to pass through its critical speed for
whirling, while no consideration was made about torsional vibration of the shaft.

Reciprocal engines such as ones for automobiles have periodical changes of torque
working on their crank shaft’™*>. And Ono® reported that a rotating shaft with constant
speed @ has another vibration component with frequency @ * v when its driving torque is
changed with frequency v.

And in order to take fatigue of shaft into consideration, shafts with variable rotating
speed, such as ones passing through their critical speed, experience whirling vibration with
the frequency of which differs from that of shaft rotation, then the shafts undergo cyclic
stress. In addition to whirling vibration, torsional vibration of shaft makes the shaft more dan-
gerous in fatigue. Thus it is very important for safety and maintenance of machinery to con-
sider whether the torsional vibration will occur in passing through critical speed and how
large it will be if it occurs. Numerical analyses are made for symmetrical rotor-shaft system in
chapter 4.

In asymmetrical rotor-shaft system, there are two frequency components of shaft
whirling. One is observed even in symmetrical system and the other appears only in asymme-
trical system. Then the system may resonate in shaft torsion at two rotating speeds. The
character of these torsional vibration are investigated in chapter 5 by using asymptotic solu-
tions*?.

The contents of this paper are as follows:

Chapter 1 deals with this general introduction as written above.

Chapter 2 describes the reason why equations of motion with variable rotating speed dif-
fer owing to being derived by Euler’s method or Lagrange’s method, and proves these two
methods are essentially equivalent unless the precision of small quantities of second-order of
shaft deformation is lost in their deriving process%)‘

Chapter 3 shows the characteristics of an asymmetrical rotor-shaft system under a
constant driving torque56’57). There described how large driving torque is needed to pass the
critical speed and what happens when the driving torque is smaller than the minimum torque
for passing through the critical speed by using equations of motion based on those obtained
in chapter 2.

Chapter 4 analyses the torsional vibration of symmetrical rotor-shaft system46’47). The
rotating speed where torsional vibration occurs, how large vibration changes as damping
coefficients change, and the mechanism how the torsional vibration occurs are described.

Chagyter 5 is intended for an asymmetrical rotor-shaft, and its torsional vibration is inves-
tigatedss’ %, Asymptotic solutions are also proposed. In addition to the case described in
chapter 4, the asymmetry of rotor makes the problem of torsional vibration more difficult.

Our analytical assumption in chapter 2 to 5 are as follows:

(1) Rotor is rigid;
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(2) Rotating shaft is elastic and its spring constant for restoring force is linear;

(3) Deformations of rotating shaft (deflection, angle of deflection, and angle of torsion)
are small;

(4) No distributed mass is in rotating shaft;

(5) Gravity is ignored.

Chapter 2. Equations of Motion of a Rotor-Shaft System
with Variable Rotating Speed38)

2.1 Introduction

Rotating machinery sometimes changes in its shaft speed for some reason such as the
starting or stopping of a machine, the operating under a changing load torque, and the driv-
ing through a universal jointn). The research papers previously in issue, however, do not
regularly exhibit equations of motion for such shaft-rotor system. These research papers are
divided in terms of equations of motion for a shaft with variable rotating speed, being accom-
panied by the terms due to the change of rotational speed. This principal difference seems to
appear in inertia terms according to whether the equations of motion are derived from

Lagrangian formulations®>” or Eulerian formulations®>***”, The inertia terms may be ex-
pressed as

M,=16,,— il,0,0,,— il,0,6,, (2.1)
and

M, =10, — il,0,0, — 3il,6,0,, (2.2)

where 1, is the polar moment of inertia, I the diametral moment of inertia about an axis per-
pendicular to the polar axis, @, the rotational angle, 6,, = 6, + i0,, (i = J—1) the inclination
angle of the polar axis from the z-axis, projections of which to the xz- and yz-planes are 0,
and 6,, (refer to Fig. 2.2). Superscript dot notations means differentiation with respect to
time ¢ Equation (2.1) appears to be derived from Euler’s equation of motion, and Eq. (2.2)
from Lagrange’s ones.

As for the rotational motion of a rigid body, Euler’s equations of motion must be per-
fectly equivalent to Lagrange’s ones. In the light of the foregoing, why is it that the previous
equations of motion are not derived in the same way? This problem relates to the dynamical
foundation for the vibration analysis of a rotor-shaft system with variable rotating speed. The
difference between Eq. (2.1) and Eq. (2.2) yields in the equations of motion which assure an
accuracy to the first-order of the shaft deformation. Therefore, our analytical foundation is to
consider that the gyroscopic terms contain the socond-order quantities of the shaft deforma-
tion. The equations of motion in the present study have an accuracy to the second-order, and
explain the appearence of the second-order terms. Because Lagranian in this case requires
the deformation energy to the third order, the deformation energy of the shaft to be ex-
pressed with an accuracy to the third-order, the deformation energy is derived by applying
the theory of elasticity’” to bending and torsion.

2.2 Rotor-shaft system

Consider a rotor-shaft system such as detailed in Fig. 2.1. A rotor D with mass m is
mounted on the end S of an overhung shaft S;.The shaft S, has a uniform circular section and
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Fig. 2. 1. Rotor-shaft system.

Fig. 2. 2. Coordinate system.
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/in length, and is driven at the shaft end A. The driving torque at A-end will change the
rotating speed of the shaft.The distributed mass of the shaft and the effect of gravity are
neglected. A rectangular coordinate system O-xyz is stationary, and its z-axis coincides with
the center line of two ball bearings. The shaft end S is located at the origin O when the shaft
is not deformed.

In Fig. 2.2, G-XYZ is a movable rectangular coordinate system parallel to O-xyz, and its
origin G is the center of gravity of the rotor D. The axes x;, x,, and x; fixed on the rotor D
are the principal axes of inertia. The x;-axis, the polar axis, is inclined by 7 from the straight
line GT parallel to the tangent of the deflection curve at the point S. The azimuth direction of
this dynamic unbalance 7 is assumed to coincide with the x,-axis. The center of gravity G is
in deviating by e from the point S, and its direction is in advance by f§ to the sence of shaft
rotation from the x;-axis. Let / be the moment of inertia about the x;- and x,-axes, and I, be
the polar moment of inertia about the x;-axis. Each orientation of the three principal axes of
inertia is specified by Eulerian angles 6,, ¢,, and 1,, and the orientation of the principal axes
of flexible shaft by 6;, ¢,, and ..

Let the non-dimensional eccentricity e// and the dynamic unbalance 7 be quantities of
the same order as the deflection, the angle of deflection, and the angle of torsion. Thus the
equations of motion in this paper are derived with an accuracy to the second-order of these
small quantities.

2.3 Lagrange’s equations of motion

2.3.1 Kinetic energy
For the kinetic energy of the rotor we have the following expression:

1 . . 1 2 2 1 2
T=5 m(x’+ y7) +5 (o + @) + 5 Lod, (2.3)

in which x, and y, are the lateral displacements of the center of gravity G to the x- and y-
directions; ,, w, and w, are the components of the angular velocity vector of the rotor to
the x;-, x,-, and x;-axes, respectively.

Now let the inclination of the x;-axis from the z-axis be 6,, and the projections of 6, to
the xz- and yz-planes be 0,, and 6,,, respectively, introducing

O.=4¢,+y,. (2.4)
Then Eq. (2.3) becomes

1 . . 1, . 1 - .
T=5mx +y))+51(6,) + 6,))+5 1,{0,(6,.6,,— 6,,6,.) ) (2.5)

which neglects small quantities of the fourth and higher powers of 6,. Expression (2.5) for
the kinetic energy coincides with the well-known results obtained by neglecting small quan-
tities of the third and higher powers of 6,, and 6,,.

2.3.2 Potential energy

The driving point A is assumed to be subject to the external forces F;, and F, and the

moments of force M,,, M,,, and M,,, deforming the flexible shaft from rotation, as shown in

~ Fig. 2.1. The flexible shaft will undergo deformations of bending and torsion. Under these
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conditions the potential energy (i.e., the strain energy stored in the shaft) is produced. Let the
bending rigidty of the shaft be El, and the torsional rigidty GI,. A coordinate s with the driv-
ing point A at its origin, is chosen along the center line of the flexible shaft. Then we have the
following expression for the potential energy:

1 !
y=1 fo (El, (7 + 97ds (2.6)
with

Q=— (%—g sinw—%sinGCosw),
Q,=- (%? cosy + %’g sin 6 sin ), (2.7)

d d
Qg——“—(agcos@-f-%,)

in which 6, ¢, and vy are Eulerian angles representing the angular positions of the principal
axes of the flexible shaft’”. It is assumed that the three principal axes do not change in these
directions along the longitudinal direction of the shaft without deformation.

In Fig. 2.1, let Mg, M,, and M, denote the moments of force acting from the section
under a certain point s to that over, in the principal axes of the flexible shaft. Then

ME = EI().Q&,
M,= ELSQ,, (2.8)

hold.
The torsional angle 6, at a point apart by s from the point A can be defined by

0,=¢+y—0,, (2.9)

in which @, is the rotational angle at the driving point A. Let the projective angles of 6 to the
xz- and yz-planes be 6, and 6,. Rewriting Eq. (2.6) with an accuracy to the third-order of 9,,
0,, and 6,, we obtain

Vz%/j[}slo{(%)z*'(%)z}

+Glz{(€lg)2—%§5(Ox%~9y%)”dz, (2.10)

provided that the origin of the z-axis is the point A.
Integrating Eq. (2.8) with Egs. (2.7) and (2.9) under the boundary condition of Fig. 2.1
gives the angles of deflection 6,(z) and 6,(z), the angle of torsion 6,z), and the deflections
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x(2) and y(z) required to calculate Eq. (2.10). Using these results we derive the deflections x,
and y;, the angles of deflection 6;, and 6, and the angle of torsion 6,, at point S:

x,= x(0), y,= ¥(0), ] (2.11)

O = 6.(0), 6,,= 6,(0), 6,= 6,0).

The right-hand side of Eq. (2.11) contains the quantities F,,, F,

sy My, My, and M,,. Accord-
ingly, solving Eq. (2.11) for these quantities yields

sy?

F,= az,+ y0,, + i*af 6,.0,,,
M, = ya+ 00, — 06, b +3), (2.12)

d
Msz = (5,05, - (7 + _[l) (xsesy - ysesx)

with the spring constants

. 121510, =_6;:;IO, a=4";1° , 6,=%I‘ (2.13)

and the complex numbers

F,=F,+iF,,

M.v = Msy - iMsx > (2 14)
z=x+ iy, '

0,, = 6, + i6,,.

Now we can carry out integration of Eq. (2.10) with an accuracy to the third powers of 6,
0y, Oy, x,/1, and y,/1, find our way to the following expression for the potential energy:

V= % . (xs2 + }’sz) + ¥ (%05 T y;0s)) +% 0 (6”‘2 + 0‘3’2) + % 6’0“2
_0
[

0y (xxesy - ysesx)‘ (2 15)

The appearance of Eq. (2.15) differs from that of the potential energy presented previously
in that Eq. (2.15) contains the underlined small term of the third-order. Previous expressions
for the potential energy ™" show —M,, 0, (based on the notation of this paper) in place of the
fourth term (1/2)46,6;, in the right-hand side of Eq. (2.15), where M,, represents the driving
torque. Such term produces in the potentional energy the work the constant driving torque
M,, performs while the shaft rotates by @,. Only for the rigid shaft is this consideration
possible. The expression —M,, ©; in the potential energy is necessary to consider the change
of the driving torque —M,, proportional to the torsional angle 6,, from zero to a certain value.
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2.3.3 Dissipation function

Assume that the rotor is subjected to viscous friction for the translation and the rota-
tional motion about the axis perpendicular to the polar axis, and about the polar axis, whose
damping coefficients are ¢, ¢,, and ¢;, respectively. Then the dissipation function F is ob-
tained by putting ¢;, ¢, and ¢, in place of m, I, and I,in Eq. (2.3).

F=2e (243D +3 00! +od)+1 qol (2.16)

2.3.4 Lagrange’s Equations of motion

Between the rotational angle @, of the rotor and that O, of the shaft, we find the rela-
tion:

6, = 0,+ % (6, sin O, — 6, cos O)). (2.17)
Now we introduce the following complex numbers:

z,=x,tiy=z+1eexp(i(O;+§)},

(2.18)
6,,= 6,,+ i6,,= 6, + texp (i0,).

Considering Egs. (2.17) and (2.18), and substituting Eqgs. (2.5), (2.15), and (2.16) along with
the dissipation function Finto Lagrange’s equations of motion, we obtain the following equa-
tions of motion:

M=% i(1,6,+ &, 0,— 8,6,) 0,=0, (2.19)

Mg — me (X, sin (O,+ &) — y,cos (O, + &)} =0, (2.20)
mz;+ ¢z, + F,

= me®; exp (i (0, + &)} — ie (mO,+ ¢,0,) exp (i (O, + &)},
(2.21)

where
M;= 16, — il,00,, + ¢,0,, + M,
— 1 (I— 1) 6] exp (i0,) + it { (I— L) O,+ (¢, — ;) O,) exp (i (Oy) ),
(2.22)
M= 1,6,+ .0, + 3,0, ~ % (36, ~ 1.6.)

+ 21, (0,0, — 0,0,) — T(I— 1) (usin ©,— f,c0s ©)).  (2.23)
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The driving torque M,, at the point A is defined from the equilibrium equation for the
moment of force:

My = =8,8,+ % (356, 3.6.). (2.24)

2.4 Euler’s equations of motion

Neglecting small quantities of the third and higher powers of 6,, we can express Euler’s
equations of motion by the following forms:

H,cos ©,+ H,sin ©,= K, — ¢,

H,cos ©,— H,sin 6,= K, — ¢w;, (2.25)
1,0, + 3 1,(6,.0,,— 0,,0,,) = K5 — 33,

where

H,= 1,6,0,, — 10,

o (2.26)
H,= 1,6,0,,— 10,,.
The notation for K;, K,, and K; in Eq. (2.25) represents the components to the x;-, x,-, and
x;-axes of the moment of restoring force about the center of gravity G, respectively.
We assumed in advance that the deflections x, and y,, the angles of deflection 6, and
0,,, and the angle of torsion 6,, were caused at the point S of the shaft under the action of the
forces F,, and F,, and the moments of force M,,, M,,, and M, on the point S. Therefore, if
the deflections, the angles of deflection, and the angle of torsion at the point S are x;, y;, 0,
0,,, and 6, then the restoring force and the moments of restoring force must be —F,,, —F;,,
—M,,, —M,,, and —M,,. On these basis of this consideration K, K;, and Kj; are given by

Kl = _(Msx - eersz) cos @r - (Msy - G,yMsZ) sin @,,
K, = (Mu — 0,,M,,) sin @, — (Msy - O,yMsz) cos O, (227)
K3 = _gers.r - eryMsy - MSZ + Me’

M,= e(ay,+ y0y) cos (O, + &) — e(ax,+ y0y,) sin (O, + &). (2.28)

Equation (2.25) expresses the equilibrium for the moments of force in the principal axes
of inertia, is rewritten into the equilibrium equations to the x-, y-, and z-axes by using the
direction cosines of the principal axes of inertia. Substitution of Egs. (2.12), (2.17), (2.19),
and (2.27) into Eq. (2.25) leads to the following equations for the inclinational and rotational
motions at the point S of the rotating shaft:

M= i(1,6,+ 6,) 6,=0 (2.29)
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Mg+ 6, (16, — 1,06, + yy,) — 6,, (16, + 1,0,0,, + yx,)
—M,— 10} (I— L) (6, sin O, — 6, cos ©,) = 0. (2.30)

The translation of the rotor is given by Newton’s law of motion:
mz,=—F,— ¢z, (2.31)

which becomes the same expression as Eq. (2.21) by using z; in place of z,.

2.5 Comparison of Lagrange’s and Euler’s equations of motion

Equations (2.19) and (2.20) from Lagrange’s equation of motion do not coincide in ap-
pearance with the corresponding Eqs. (2.29) and (2.30) from Euler’s equations. Referring to
Eq. (2.20), we find the relation

6,0,,0,, = — (Ip@s +6 @s) 0, (2'32)

by which Eq. (2.19) becomes Eq. (2.29) with an accuracy of the second-order. Similarly, Eq.
(2.20) becomes Eq. (2.30) by using Egs. (2.19) and (2.21).

Thus Egs. (2.19) and (2.20) are equvalent to Egs. (2.29) and (2.30), respectively.
Euler’s equations of motion show the projections of the changes in angular momentum per
unit time and the moments of force to the rectanguler coordinate axes x, y, and z, while
Lagrange’s equation show these projections to the directions of 6,,(y-direction), Gsy(—x—direc-
tions), and @; = ¢, + y,. Further, the ®y-direction is defined by the resultant vector of the
vector ¢, in the z-direction and the vector ¥, in the tangent (GT-direction in Fig. 2.2) at the
point S of the deflection curve. The @ direction is perpendicular neither to the 6, -direction
nor 6,,-direction.

2.6 Conclusions

(1) Applying Lagrange’s equations of motion for the shaft with variable rotating speed
derives the expressions different in appearance from the result by applying Euler’s equations
of motion, but they are essentially equivalent.

(2) Itis due to lacking an accuracy of the second-order quantities of the shaft deforma-
tion that previous equations of motion do not necessarily coincide.

(3) When the kinetic energy and the potentional energy are considered with an accu-
racy to the third-order of the deflections, the angles of deflection, and the angle of torsion,
the kinetic energy is given by Eq. (2.5), which coincides with the previous result assuring an
accuracy to the second-order. The potential energy, however, is given by Eq. (2.15), which is
not presented in the previous papers.
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Chapter 3. Passing through the Critical Speed of an Asymmetrical
Rotor-Shaft System under Constant Driving Torque>>*”

3.1 Introduction

In a rotating shaft system with an asymmetrical rotor®"), there is an unstable region where
the shaft deflection may increase infinitely. Therefore, it may be more difficult for the system
to pass through the critical speed in an asymmetrical system than that in a symmetrical one.
Many studies on the critical speed passing problem have been made. But there are few
studies on a symmetrical shaft with an asymmetrical rotor'”'®), and there are some studies on
an asymmetrical shaft with a symmetrical rotor'”"?,

This chapter deals with a system consisting of a symmetrical shaft and an asymmetrical
rotor. The purpose is to know characteristics about the whirling and the rotating speed of a
shaft passing through its critical speed with a constant driving torque. Under the constant
driving torque, the rotating speed will be related to the whirling amplitude of shaft. How
much is the driving torque enough to pass smoothly through the critical speed or the unstable
region? In order to analyse this problem, the present equations of motion have an accuracy of
the second-order quantities for the deflection, the angle of deflection, and the torsion. Then
the equations of motion are reduced to approximate equations by using the asymptotic
method*”. These analytical results explain how the amplitude and the rotating speed change.

3.2 Rotor-shaft system and equations of motion

3.2.1 Rotor-shaft system and coordinates

Consider a rotor-shaft system such as detailed in Fig. 3.1. An asymmetrical rotor D with
mass m is mounted on the end S of an overhang flexible shaft S,. The shaft S, has a uniform
circular section and /in length, and is driven at the shaft end A. The driving torque 7, at the
A-end will change the rotating speed. The A-end and the point S rotate with angular veloc-
ities w, and w, and their rotational angles are assumed to be @, and ©, respectively. Thereby
hold w, = @, and w = @, where the superscript dot notation means differentiation with re-
spect to time # The distributed mass of the shaft S, and the effect of gravity are neglected. A
rectangular coordinate system O-xyz is stationary, and its z-axis coincides with the center line
of two ball bearings. The shaft end S is located at the origin O when the shaft is not de-
formed.

In Fig. 3.2, G-XYZ is a movable rectangular coordinate system parallel to O-xyz, and its
origin G is the center of gravity of the rotor D. The axes x;, x,, and x; fixed on the rotor D
are the principal axes of inertia; the x;-axis, the polar axis, is inclined by 7 from the straight
line GT parallel to tangent of the deflection curve at the point S. The azimuth direction of
this dynamic unbalance 7 is in advance by 7 to the sense of shaft rotation from the x;-axis.
The center of gravity G, furthermore, is in deviating by e from the point S, and its direction is
in advance by £ to the sense of shaft rotation from the x;-axis. The moments of inertia about
the x,-, x,-, and x;-axes are I,, I, (I; > 1), and L, respectively.

When the flexible shaft has some deformations, the point S deviates by x, y in the x-, y-
directions, and the tangent of the deflection curve at the point S is 6. Let 6, and 6, be the
projections of 6 to the xz- and yz-planes, respectively. The torsional angle of shaft is defined
as the difference between the rotational angle @, at the point A and that @ at the point S:

0,=6-0,. (3.1)
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Fig. 3. 1. Asymmetrical rotor-shaft system.
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unbalance 7 to principal axes of inertia x;, x,, and x;.
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We assume that the non-dimensional eccentricity e// and the dynamic unbalance 7 are
small quantities of the same order as the deflection, the angle of deflection, and the angle of
torsion. Thus, the equations of motion in this chapter are derived with an accuracy to the sec-
ond-order of these small quantities. Now we introduce the following complex numbers:

z=—);+i

N|‘<

, 6,=6,+i6,, (3.2)

in which i = [—T.

Let a, ¥, and 6 be the spring constants for lateral displacements of the shaft, o, be the
spring constant for torsion of the shaft, and ¢;, ¢,, and ¢; be the damping coefficients for
translation, inclination, and rotation of the rotor, respectively.

3.2.2 Equations of motion
Here we introduce the following non-dimensional parameters:

¢ =e/l, ) =T,/(al), y = y/(al), & = 6/(al’), & = 6/(al’),
o =a/{ma, ¢ =c/(’{ma), ¢/ =c/(I"[ma),

w, = /[alm, o = o/ Ja/m,t =t[a/m,

I=(I, + L)/2ml"), I, =L/(ml%), Al =(I, — L)/(2ml*).

(3.3)

Hereafter, the primes in Eq. (3.3) are omitted.

The kinetic energy of the rotor is given as the sum of the energy for translation and that
for rotational motion. The potential energy of the flexible shaft is derived by using theory of
elasticity to bending and torsion””. The dissipation function is calculated under the assump-
tion that the rotor is subjeted to viscous frictions for the translation, the rotational motion
about the polar axis, and that about the axis perpendicular to the polar axis. Substituting the
kinetic energy, the potential energy, and the dissipation function into Lagrange’s equations of
motion, we obtain the following equations of motion:

iz 40, =—c i —i06,0,+ e‘@2 —i(O+¢ @')} expli(0+ ), (3.4)

16, —il,06,+ 66, + yz=—c,0, +i6,02 +-’% (1,6 + c;0)
+ r[(z —1)&* — i[(l —1)6+(c,— ) @” exp(i(0+ 1)) (3.5)
+ar4 [552 exp(2i0) — ir6 expli(© — '7)}] ;

LO+¢,6=T, +Im[ lro6.- [A19§ exp(—i6) + 1416, exp(in)

(3.6)
+ ezexp(—i€) + (I — 16, exp(—in)} exp(-—i@)] ,
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where 0, is a conjugate complex number of 6,, Im[ ] represents an imaginary part in [ |,
and the superscript dot notation means differentiation with respect to non-dimensional time .
The torsional angle 6, is given by the following equation:

— T
6,=—Im[z0] — 5" (3.7)

As the driving torque T, is given as a constant value, substituting Eq. (3.7) into Egs. (3.4)
and (3.5) and integrating Egs. (3.4), (3.5), and (3.6) give z, 6, and O. The rotational angle
0, at the driving point is

9,=6—6,. (3.8)

The rotating shaft system has four natural angular frequencies for the whirling vibrations.
Let these frequencies be py, p,, ps, and p, in order of size. We deal with the case that the
shaft system is going to pass through the critical speed w = p, under the constant driving
torque T,. The rotating speed does not always change smoothly because of the finite driving
torque. The asymptotic method is now applied to analyse the nonlinear equations of motion
(3.4), (3.5), and (3.6). The rotating shaft is assumed to vibrate with single whirling mode of
frequency p,. Under the above assumption, we can construct the asymptotic equations45) for
the equations of motion. The first approximate equations are as follows:

z=Aexp{i(@+ D)}, 0, =1,A,exp{i(O+ D)}, (3.9)
Ay =—0,A, + ew, sin(®, — &) + v, sin(®, — 1) + AloyA, sin2 P, ,

. . (3.10)
b,=p,—w+ —A& cos(P, — &) + 74—2 cos(®@, — n) + Alo, cos2 P, ,

2 2
where
=—(1-p")7, (3.11)
2(C1 + Czkzz)pz —_ T,.K22 + Dza)
&= ; : (3.12)
21, (21p, — Lw) + 4p,
2
Mo = — @ s
%, (I(p,+ @) — Lo} +p,+ o
5 (3.13)
(I—Lyxo
Vy = — N
P I(p+ 0)— Lol +p+ o
2

2 —

P ¥ . Coclmd ) (3.14)

o2+ (21 — L)}’

D, =2(1+ I,%) % +2(2Ip, — Lo)x, %,%. (3.15)
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Substitution of Eq. (3.9) with Eq. (3.10) into Eq. (3.6) derives the following equation:

Lo + c;w =T, + Ay’ p," Ay sin2®, + tAIx,p,” A, sin( D, + 1)
(3.16)
+ ep, A, sin(D, — E) + 1(I — L)x,p, Ay sin( @, — 77)

which determines the angular velocity . In this case w, =  holds by Egs. (3.7) ~ (3.9).

3.3 Numerical results

The approximate equations will be useful for expressing numerically the whirling ampli-

tude and the rotating speed, etc. We use the following parameters to obtain the numerical re-
sults:

1=0.0534, 1,=0.1034,

3.17)
8=1/3, 6,=0.0655 y=-0.5 ¢=10x10" (

The remaining parameters are shown in each calculation. All initial values in case of numeri-
cal integration take the solution in steady state.

3.3.1 Unstable region

Analysing Eq. (3.10) for constant w gives the condition whether the rotating shaft sys-
tem is stable or not. Figure 3.3 shows the unstable region, which expands around @ = 0.53 as
the asymmetry AI/I increases. Furthermore, this value 0.53 is nearly equal to the critical
speed w, when AI= 0.

]..0 N [ T I

e
o0
T

1

Unstable

&
(o)}
T

1

Stable Stable

<o
NN
T

Asymmetry Alll

e
N
T

1

0.45 0.50 0.55 0.60
Rotating speed o,

Fig. 3. 3. Unstable region (¢, = ¢, = 1.0 X 107).
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3.3.2 General vibration characteristics of asymmetrical rotor

(i) Case of comparatively large driving torque

Figures 3.4(a) and 3.4(b) demonstrate the amplitude A4, and the rotating speed w ob-
tained by integrating Egs. (3.10) and (3.16). The unstable region is about from » = 0.52 to
o = 0.54, because the asymmetry AI/1is 0.275. The manner by which the amplitude changes
is qualitatively similar to the results for a symmetrical rotor™>. The larger driving torque
becomes, the smaller maximum amplitude becomes in passing through the first critical speed.

x1073

Amplitude 4,
— 0w

0 250 500 750 1000
Time t
(a) Amplitude response

< © -
) [oe] o

Rotating speed @,
<
~

:

0 250 500 750 1000

)
o

Time t

(b) Rotating speed response

Fig. 3. 4. Case of comparatively large driving torque (47 = 0.0147, e= 0.9 X 107,
T=46X10" E=n=0", ¢,=¢=1.0x 107,
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The rotating speed increases smoothly, and passes easily through the critical speed @, = 0.53
and the unstable region. As the driving torque 7, becomes large, the angular acceleration in-
creases. It is caused by the effect of the damping coefficient c; that the rotating speed does
not increase linearly. Therefore, the rotating speed must finally get the value 7,/c;, which is
obtained by neglecting the second term of the right hand side in Eq. (3.6) and by putting w

=0.

4,

Amplitude

Rotating speed @,

Fig. 3. 5. Case of comparatxvely small driving torque (4= 0.0147, e= 0.9 X 107,
r=4.6%10"*
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Fig. 3. 6. Influence of damping coefficients on amplitude and rotating speed (7, = 0.6 X 1074,
AI=0.0147,¢e=09X 107, =46 X 107, £= = 0%).

(ii) Case of comparatively small driving torque

Figures 3.5(a) and 3.5(b) show the results for the driving torques smaller than those in
Fig. 3.4. The driving torques 7, = 0.55 X 10~ and 0.60 X 10™* are too small to pass through
the critical speed, the amplitude A, becomes far larger than that in Fig. 3.4. The rotating
speed o, after smooth increase to the neighborhood of the critical speed, fluctuates around
the critical speed, to say more precisely, the lower boundary of the unstable region, and never
passes the critical speed. After that it seems as if the rotating speed converged the lower
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boundary of the unstable region. Similarly, the amplitude A, increases smoothly and con-
verges a value while fluctuating. When the driving torque 7, takes 0.80 X 107 or 0.65 X
107%, the rotating speed approaches gradually 7,/c; = 0.80 or 0.65. The rotating speed,
however, fluctuates about the value smaller than 7,/¢;= 0.60 or 0.55 when the driving torque
takes 0.60 X 10~ or 0.55 X 10™*. This rotating speed response relates to the energy dissipa-
tion in the whirling vibration. Part of the torque is spent to sustain the whirling vibration, the
rest is spent to accelerate the rotating speed. The whirling v1brat10n under the driving torque

T,= O 60 X 10™* spends the torque S (0.60 — 0.52) = 0.8 X 107°, and that under T, = 0.55
X 10™* spends the torque 0.3 X 107°. So the former amplitude becomes larger than the latter
amplitude.

3.3.3 Effects of damping coefficients for whirling vibrations

If the damping coefficients for whirling vibrations are made larger, the system might be
able to pass through the critical speed even if the driving torque is very small. As shown in
Figs. 3.6(a) and 3.6(b), the shaft system when ¢; = ¢, = 1.00 X 10~ cannot pass the critical
speed w,. In this case the changes of A, and w are snmlar to those shown in Flgs 3.5(a) and
3. 5(3b) for T, = 0.60 X 10 . Whereas slightly larger damping coefficients (¢, = ¢, = 1.03 X
107°) than 1.00 X 10~ enable the system to pass it. This slight difference in the damping
coefficient about 1.00 X 10~ affects considerably the behavior of the system.

3.3.4 Effects of asymmetry and eccentricity

Figure 3.7 shows the change of the maximum amplitude A, to the angular position of
eccentricity £ keeping the relation n# = & + 180 degrees. The pattern A, to & is like a sine-
curve. The maximum amplitude takes the maximum value near £ = 40 degrees and 220 de-
grees, while it takes the minimum value near £ = 130 degrees and 310 degrees. When the
maximum amplitude A,,, takes the minimum value, the A, ~value is smaller than that of
symmetrical rotor (41/1 = 0.0), and the asymmetrical system may pass the critical speed

«107

10 . T T T 4 T

Maximum amplitude 4,

0 90 180 270 360
& degree

Fig. 3. 7. Influence of asymmetry on maximum amplitude (7, = 1.0 X 107, e= 0.9 X 107,
T=4.6X 107", n=E+ 180", ¢, = ¢, = 1.0 X 107°).
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Fig. 3. 8. Influence of eccentricity on maximum amplitude (7, = 1.0 X 107, AI'=0.0147,
T=46X%X10" =0 ¢ =¢=10X107).

more smoothly than symmetrical system. The rotating shaft presents such behaviors because
of the effects of asymmetry AI/I, eccentricity e, and dynamic unbalance 7 canceled each
other at those angles.

Figure 3.8 shows the result when only the angular position of eccentricity & changes. The
maximum amplitude A,,, is very small when e = 3.5 X 10~° and & = 0 degree. Conse-
quently, the system balances well by choosing suitably the magnitude and the angular posi-
tion of eccentricity.

These are similar results to the case caused in constant angular accelaration'®, and the
same consideration of dynamics can be made.

3.4 Conclusions

(1) A rotating shaft with an asymmetrical rotor needs the minimum limit driving torque
to pass through the critical speed. If the driving torque is much larger than the minimum, the
shaft system can pass smoothly through the critical speed. If smaller, the rotating speed fluc-
tuates around the critical speed and the amplitude goes up to a high value.

(2) In cases of too small driving torque to pass the critical speed, a little larger damping
coefficients for whirling vibrations may enable the system to pass it. When the rotating shaft
can pass through the critical speed because of larger damping coefficients, the pattern of am-
plitude to time is not like that in cases of smaller damping coefficients.

(3) An increase in asymmetry does not always enlarge the maximum amplitude. The
magnitude of the maximum amplitude depends also on the angular position and the magni-
tude of eccentricity.
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Chapter 4. Torsional Vibration of a Symmetrical Rotor-Shaft System
under Constant Angular Acceleration***”

4.1 Introduction

This chapter deals with the torsional vibration of a rotating shaft when it is passing its
critical speed of whirling with a constant angular acceleration. In most cases the torsional
vibration is noticed in the systems which have gears or universal joints because such elements
have causes of the vibration. But the present rotor-shaft system is so simple that it consists of
a symmetrical shaft fixedly supported at both ends and a symmetrical rotor attached at the
middle of the shaft. This system seems to have no causes for torsional vibration. Chapter 3
shows some possibility of torsional vibration in the system with variable rotating speed.

A rotating shaft in passing its critical speed will experience periodic stress change caused
by whirling vibration with different angular frequency from rotating speed. On the other
hand, a torsional vibration surely causes periodic stress change and thereby the rotationg
shaft exposes itself to danger of fatigue destruction. Therefore, it is very important to analize
whether the torsional vibration occurs in passing the critical speed and if it does occur, how
large it will be. This study presents that the torsional vibration really occurs even in a simple
rotor-shaft system and that its amplitude depends both on angular acceleration and on damp-
ing coefficients. And we considered how the torsional vibration occurs.

4.2 Rotor-shaft system and equations of motion

4.2.1 Rotor-shaft system and coordinates

Consider a rotor-shaft system such as detailed in Fig. 4.1. A symmetrical rotor D with
mass m is mounted on a point S of a flexible shaft S, fixedly supported at both ends A and B.
The shaft S, has a uniform circular section and / in length, and is driven at the shaft end A.
The distance from A to S is /;. Forced acceleration at the driving point A will cause a tor-
sional vibration at the same time as change the average magnitude of rotating speed at the
point S. Let T, be a driving torque at the A-end. The A-end and the point S rotate with an-
gular velocities w, and o, and their rotational angles are assumed to be @, and 6, respec-
tively. Thereby hold w, = @, and w = @, where the superscript dot notation means differen-
tiation with respect to time ¢ The distributed mass of the shaft S; and the effect of gravity are
neglected. A rectangular coordinate system O-xyz is stationary, and its z-axis coincides with
the center line of two ball bearings. The point S is located at the origin O when the shaft has
no deformations. In Fig. 4.1, G-XYZ is a movable rectangular coordinate system parallel to
O-xyz, and its origin G is the center of gravity of the rotor D. The axes x;, x,, and x; fixed on
the rotor D are the principal axes of inertia; the x;-axis, the polar axis, is inclined by 7 from
the straight line GT parallel to tangent of the deflection curve at the point S. The azimuth di-
rection of this dynamic unbalance 7 is in advance by # to the sense of shaft rotation from the
x;-axis. The center of gravity G, furthermore, is in deviating by e from the point S, and its di-
rection is in advance by & to the sense of shaft rotation from the x;-axis. The moment of iner-
tia about the x;-axis as well as x,-axis is /, and that about x;-axis is I,

‘When the flexible shaft has some deformations, the point S deviates by x, y in the x-, y-
directions, and the tangent at the point S of the deflection curve is 6. Let 6, and 6, be the
projections of 6 to the xz- and yz-planes, respectively. The torsional angle of shaft is defined
as the difference between the rotational angle @, at the point A and that @ at the point S:

6,=0-06,. (4.1)
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Fig. 4. 1. Rotor-shaft and coordinate systems (x;-, X,-, and x;-axes are three principal
axes of inertia of rotor, GS = e is eccentricity, and line GT is the tangent of
shaft deformation curve at point S and is in G-x,x; plane.).

We assume that the non-dimensional eccentricity e// and the dynamic unbalance v are
small quantities of the same order as the deflection, the angle of deflection, and the angle of
torsion. Thus, the equations of motion in this chapter are derived with an accuracy to the sec-
ond-order of these small quantities. Now we introduce the following complex numbers:

z=(x+iy/, 6,=6,+i6,, (4.2)

in which i = [—1.

Let a, y, and & be the spring constants for lateral displacements of the shaft, J, be the
spring constant for torsion of the shaft, and ¢y, ¢,, and ¢; be the viscous damping coefficients
for translation, inclination, and rotation of the rotor, respectively.

4.2.2 Equations of motion
Here we introduce the following non-dimensional parameters:

¢ =e/l, T, =T,/(al’), ¥ = y/(al), & = 6/(al’), &, = 8/(al’),
o = 01/\/””—01, G = Cz/(lzﬁn_a), G = 03/(12W)7

w, = w,/Ja/m, o = w/ja/m,t =tja/m,
I =1/(ml), I = L/(ml%).

(4.3)
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Hereafter, the primes expressing non-dimensional quantities in Eq. (4.3) are omitted.

The kinetic energy of the rotor is given as the sum of the energy for translation and that
for rotational motion. The potential energy of the flexible shaft is derived by using theory of
elasticity to bending and torsion”. The dissipation function is calculated under the assump-
tion that the rotor is subjeted to viscous frictions for the translation, the rotational motion
about the polar axis, and that about the axis perpendicular to the polar axis. Substituting the
kinetic energy, the potential one, and the dissipation function into Lagrange’s equations of
motion, we obtain the following equations of motion:

Ftz490,=—ciz —id,0,0,+ e{ O —i(O+¢ ci))} exp(i(O+ E), (4.4)
16, —il,006, + 66, + yz
=—c,0,+i6,0z +% (1,0 +;0) (4.5)

+ r[(l — 1) — i{(l —1)0 +(c,— )

] exp(i(O+ 7)),

1,0 +¢,0
=T + Im[ %Ipéﬁz —[ez"exp(—i’g') + (1 —1,)6, exp(—in)] exp(—i@)] ,
(4.6)

“where 6, is a conjugate complex number of 6, Im[ ] represents an imaginary part in [ ],
and the superscript dot notation means differentiation with respect to non-dimensional time .
The torque 7, is given by the following equation:

T, =—06,0, — 6,(y6, — x6,) . 4.7)

The rotating shaft system has four natural angular frequencies for the whirling vibrations.
Let these frequencies be p,, p,, ps3, and p, in order of size.

4.2.3 Rotating angle

In this analysis, the angular acceleration 2 is constant. Therefore, the rotating speeds at
the points A and S are calcurated as

W, =W +A, w=w,+86,, (4.8)

where w, is the initial rotating speed of the point A.
Furthermore, the rotating angle at the point A is determined by integrating Eq. (4.8):

1
O = Wyt +321°, (4.9)

where @, = 0 at time 1= 0.



On the Vibrations of a Shaft Passing Through its Critical Speed 27

4.2.4 Angle of torsion

The angle of torsion 8, consists of the following two components: one is a part deter-
mined by the angular acceleration A and the damping coefficient of torsion ¢;, another is a
part influenced by whirling vibration of shaft. Let the former part be 6,; and the latter 6,,.
Then the angle 6, can be written as

0,=0,+06,. (4.10)

The torsional angle 6, is a particular solution of Eq. (4.6) neglected the second-order of
small quantities:

-1

etl 6
t

{Ipl + C3((l)a0 + A,t - C3A,/(St)} ) (4.11)

which changes smoothly with time. When 6,; is given by Eq. (4.11), an equation for 6,
becomes as follows:

IpétZ +0,0, = — C3ét2+ 5!(9xy - ny) - %Ip(éxey - éyex)
+ v(I — L){6,sin® — 6,cosO) + ¢[xsin(O+ &) — ycos(O + &)) .
(4.12)

If the right hand side of Eq. (4.12) changes with natural frequency p,, then the torsional
vibration will resonate.

4.3 Numerical results

4.3.1 Parameters

Numerical integration for Egs. (4.4), (4.5), and (4.12) explains the influences of the
angular acceleration or the damping coefficient on the torsional vibration.
The common parameters’ values when integrating are as follows:

1=0.0534, I,=0.1034, }; = 0.200, y = —0.0923, 6 = 0.0164,

» » (4.13)
0,=0.00256, e=10X10 ", =4 X 10 °, n=0".
Using of these parameters determines the critical speed for whirling,
0, =0.925, (4.14)

and the natural angular frequency for torsion,

p, =0.157 (4.15)



28 H. Ota, S. Nakamura and M. Kato

4.3.2 Torsional vibration in passing critical speed

(i) Case of acceleration

Figure 4.2 shows the the amplitude of whirling A = |z| and the torsional angle 6, to the
rotating speed w, with the acceleration 4 = 0.20 X 10~ from 0.70 to 1.40. The initial condi-
tion for numerical integration is determined from the stationary solution when starting ac-
celeration. The angle 6, starts to fluctuate at w, = w, where the amplitude A grows. The
whirling amplitude A repeats alternately increase and decrease after its peak. The torsional
vibration 6,, becomes larger suddenly in w, = 1.10 ~ 1.15 and decreases monotonously
after.

x107

Amplitude A

O 1 L ! L L L
07 08 09 10 11 12 13 14

Rotating speed o,

Fig. 4. 2. (a) Whirling amplitude

x107
6

4t

Angle of torsion 6,

07 08 09 10 11 12 13 14
Rotating speed o,

Fig. 4. 2. (b) Torsional vibration
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-1.0 ¢
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07 08 09 1.0 11 12 13 14
Rotating speed w,

Torque 7T,

(c) Driving torque

Fig. 4. 2. Changes of whirling amplitude and torsional vibration in acceleration
(A=2X107" ¢=¢=1X10", g =5%x107%.

We can notice by detail observation to Fig. 4.2 that 6,, becomes negative or positive ac-
cording as A increases or decreases. The driving torque T, also changes similarly to 6,,, and
its change is almost —d,6,,, then the term —J,(y6, — x6,) does not seem to effect on 6.

(if) Case of deceleration

Figures (4.3a) and (4.3b) show the patterns of the amplitude A and the angle 6,, to the
rotating speed w, with the constant deceleration 4 = —0.20 X 10™° from 1.20 to 0.50. The
maximum amplitude of shaft whirling is slightly smaller than that in acceleration, while its
periodical change is faster than that in acceleration. A torsional vibration of the rotating shaft
starts after the critical speed w,, and its peak appears around w, = 0.72. The peak is about
half of that in acceleration.

We have shown the typical patterns of change of the whirling amplitude and angle 6,, in
Figs. (4.2) and (4.3). The maximum value of 6,, around w, = 1.13 in acceleration and w, =
0.72 in deceleration can be made smaller than the peak value just after passing w, = w,. by
some parameters of the system. But we take the former value for 6,,,,,, “the maximum value
of 6,.”

4.3.3 Effect of angular acceleration

Figure 4.4 shows how the angle 6,,,,, depends upon the angular acceleration A. Both
black triangles and white ones represent the first peak of the angle 6, appearing in passing
the critical speed o, = w,.. These peaks are almost the same value both in acceleration and
in deceleration for an absolute value of angular acceleration |A|.

Both black circles and white ones represent the angle 6,,,,, appearing after passing the
critical speed. The angle 0,,,,,, is very small for the smaller || near zero. It grows rapidly and
reaches its maximum for a little larger ||, and decreases for much larger [A|. And among all
range of |A| shown in Fig. 4.4, 6,,,,.. in acceleration is always larger than that in deceleration.
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Fig. 4. 3. Changes of whirling amplitude and torsional vibration in deceleration
(A==2%X10"% ==1%X107°, ¢ =5%107%.

According to Fig. 4.4, it is not better to pass the critical speed by using too small |A| be-
cause the peak of 6,, and that of shaft whirling A at w, = w,. becomes too large, though
Ormax Decomes very small. Also using larger |A| is no longer good because it makes 6,5,,,,
larger. The parameters used in Fig. 4.4 let us know that the best values of the angular ac-
celeration 1 are 4 = 0.07 X 10~ in acceleration and A = —0.13 X 10~ in deceleration,
which As make the maximum value of these two peaks of 6, in w, = w,, and 6,,,, the
smallest.
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Fig. 4. 4. Effect of angular acceleration on maximum angle of torsion
(= 6=10X107% ¢;=0.5 X 107%).
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Fig. 4. 5. Effect of damping coefficient for shaft rotation
(M =02%X107° ¢ =¢,= 10X 107).

4.3.4 Effect of damping coefficient for rotation

Effect of the damping coefficient for rotation c¢; on the angle 6,,,,,, is shown in Fig. 4.5.
The peak at w, = o, is hardly effected by ¢;. As the value of ¢; increases, the value of 6,
becomes larger in deceleration, but it changes slightly in acceleration. The amplitude of tor-
sional vibration does not always decrease as ¢; increases.

4.3.5 Effect of damping coefficients for translation and inclination

Effect of damping coefficients for translation ¢; and inclination ¢, is shown Fig. 4.6.
The peaks of 6, at w, = w, are not effected by both ¢; and c,, but they are clearly
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effected by ¢; and ¢,. For larger values of ¢; and ¢, (larger than 3.5 X 10 in acceleration
and than 1.5 X 107 in deceleration), the value of 0,,,,, is smaller than the peak value at
Wy = Wge-

4.4 Mechanism for torsional vibration

Figures 4.2(a) and 4.3(a) show that the amplitude of shaft A whirling after passing criti-
cal speed changes periodically like beats. This beating phenomenon occurs because the whirl-
ing vibration after passing through the critical speed consists of two vibrations: one is forced
vibration by unbalance of rotor and the other is free vibration. The frequency of this

x10°
2.0

—eo— >0
—o—A<0
—— Peak at o =, (A>0)

—o— Peak at 0, =0, (A<0)

1.5+

1.0 +

05+¢

Maximum angle of torsion 6,9,

0.0 : : : x1073
00 05 10 15 20 25 3.0

Damping coefficient ¢, ¢,

Fig. 4. 6. Effect of damping coefficient for translation and inclination
(1A =02%107, ¢;=05Xx107).
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Fig. 4. 7. Change of whirling amplitude and driving torque
(closed pattern of Fig. 4.2).
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forced vibration is w,, the rotating speed. The frequency of free vibration just after passing
critical speed w, is mainly p,, because at the rotating speed w,, there appears a resonance of
forced vibration with frequency w, and one of natural angular frequencies p,. The resonance
gives the maximum whirling amplitude A,,,,. Then vibrating mode of p, becomes dominating,
and the shaft deformation at that time is the initial condition for free vibration of the shaft.
Therefore, the changing frequency of shaft whirling just after passing critical speed is almost
®, — p, in acceleration and p, — w, in deceleration.

Now consider on the relation between whirling amplitude A and a flucuating component
of driving torque T,,. The rotating speed w, approaches the critical speed w,, and amplitude
A is increasing, with the maximum gradient of A at the peak of torque T,,. And T, does not
turns into negative until A start to decrease. This relation of phase between amplitude A and
torque T, shows the best efficiency of work done by driving torque at the shaft end A to
change the energy of the rotor-shaft system. But this relation is not maintained after angle of
torsion becomes large.

Figure 4.7 is the close pattern of Fig. 4.2 from w, = 1.06 ~ 1.16. The changing fre-
quency of amplitude A increases and when it coincides with natural frequency of torsional vi-
bration p,, the shaft starts to vibrate torsionally in its natural frequency p,. Then there is no
more that phase relation, and the efficiency of work by the driving torque becomes worse.
Therefore large change of driving torque is needed, and the torque change makes this tor-
sional vibration.

4.5 Conclusions

We have derived the equations of motion of a symmetrical rotor-shaft system to the sec-
ond order of shaft deformations, and then integrated them numerically to analyse the small
component of the torsional vibration of the shaft. The results are summerized as follows:

(1) By using the equations of motion to the second order of small quantities, the smal-
ler component of torsional vibration can be derived.

(2) The moments of restoring force and those derived from the eccentricity make a
small vibration component of torsion. ‘

(3) The amplitude of torsional vibration becomes large at the rotating speed equal to
the sum of the natural angular frequencies of whirling and torsion.

Chapter 5. Torsional Vibration of an Asymmetrical Rotor-Shaft
after Passing through its Critical Speed of Whirlingss’sg)

5.1 Introduction

When a rotating shaft passes its critical speed of whirling, it is well-known that the am-
plitude of whirling reaches the maximum and changes periodically, and that the frequency of
the change becomes higher as the rotating speed of the shaft leaves the critical speed”. In this
case, the torsional angle is opposite in sense according to increase or decrease in the whirling
amplitude*®. The torsional vibration makes a resonanse when the frequency of change of
whirling amplitude coincides with a natural frequency of the torsional vibration of the shaft.
If the rotor is asymmetrical, the frequency of change of whirling amplitude has also the com-
ponent twice as that in a symmetrical rotor-shaft system *®) Then the torsional vibration of the
shaft may resonate at two different rotating speeds. It should be noted that this torsional vi-
bration may occur only by passing the critical speed of whirling under a constant angular ac-
celeration.
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The present rotor-shaft system is a simple one that consists of a symmetrical and flexible
shaft and an asymmetrical rotor mounted on the shaft. Both ends of the shaft are fixedly sup-
ported. First, equations of motion of the system will be derived. Then, they will be analysed
by applying asymptotic method*”. The numerical results show that the torsional vibration of
a shaft mounting an asymmetrical rotor has different character from that of a symmetrical
rotor-shaft system.

5.2 Asymmetrical rotor-shaft system and rotating angles

5.2.1 Asymmetrical rotor-shaft system

Figure 5.1 shows the asymmetrical rotor-shaft system and its co-ordinate system. The
shaft S, is an elastic rod of length / with a uniform circular cross section. It is fixedly sup-
ported at both ends, A and B. And the shaft is driven at the point A. An asymmetrical rotor
D is mounted at point S of the shaft. The distance from the driving point A to S is /; and the
distance from S to the another end B is 4. Three principal axes of inertia moment of rotor D
are x;, X, and x;, and three moments of inertia about these principal axes are [, I, and I, re-
spectively. These axes x; and x, are determined so that /; might be larger than Z,. Co-ordi-
nate system O-xyz is stationary, and its z-axis coincides with the center line of the shaft when
the shaft has no deformation. Co-ordinate system G-XYZ is parallel to O-xyz. The origin G
is the center of gravity of the rotor D. Angular position of the eccentricity of rotor GS=c¢
moves according to the deflection or rotation of the shaft and is in advance by & to the sense
of shaft rotation from the x;-axis. The dynamic unbalance of the rotor 7 is the angle between
the x;-axis and the line GT which is parallel to the tangent of the shaft deflection curve at
point S. The azimuth direction of this dynamic unbalance is in advance by 7 to the sense of
shaft rotation from the x;-axis.

]ZPixed support

__Shafts,,

Asymmetrical
0 - rotor D

Fig. 5. 1. Asymmetrical rotor-shaft and coordinate systems (x;, x,, and x;
are three principal axes of inertia. GS = e is eccentricity and ©
is dynamic unbalance. Line GT is parallel to the tangent at the
point S of the shaft deflection curve).
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5.2.2 Rotating angles

The angle of rotation at point A is defined as @, and that at point S is . The angle of
shaft torsion is defined as 6,= ® — ©,. Assuming that the angular acceleration A at the driv-
ing end A is constant, we have the following equations:

G, =4, w,=At+ay,, @a=%,u2+w,,0¢, (5.1)

O=A+6, o=M+og+b, O=31"+wut+6, (5.2)
in which w, is the rotating speed at A and o is that at S, and w,, is the initial rotating speed
at point A.

5.2.3 Shaft deflection and angle of deflection

Let the components of the shaft deflection along the x- and y-axis be x and y, and the
projections of the angle of deflection to the xz- and yz- planes be 6, and 6, respectively. By
using the unit of imaginary number i = /—1, we introduce the following complex numbers
representing the deflection and the angle of deflection of shaft:

z=x+iy, 6,=6,+i6,. (5.3)

5.3 Equations of motion and parameters

Let a, y and 0 be the spring constants for lateral displacement of the shaft. The rotor is
subjected to viscous frictions against translation, inclination, and rotation. Let these damping
coefficients be ¢;, ¢, and ¢;, respectively. Now we introduce the following non-dimensional
parameters:

I'=(L + L)/2ml%), I, = L/(ml), AI' = (I, — L)/2ml%),

¢ =e/l,y =yl(al), & = 6/(al’), o/ = 6/(al’),

o =afma, & =o/(Ima), ¢ = /(I [ma), (5-4)
X=2(a/m), P =p/Ja/m, w; = w/[a/m, & = of[a]m,

7=z/lt =t]a/m.

Hereafter, the primes which express non-dimensional parameters in Eq. (5.4) are omitted.
Angle of torsion 6, is divided into two parts 6,; and 6,, as

6,=0,+06,, (55)
where 6, is the part which changes monotonously with time, given by

0, = —%t (LA + c(w0 + At — 651/0))} (5.6)
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The quantity 6, is the part whose vibration may resonate at some rotating speeds, and it is
determined by differential equations shown later.

The kinetic energy of the rotor is given as the sum of the kinetic energy for translation
and that for rotational motion. The potential energy of the flexible shaft is given by applying
the theory of elasticity to bending and torsion®”. The dissipation function is calculated under
an assumption that the rotor is subjected to viscous frictions for the translation, the rotational
motion about the polar axis and that about the axis perpendicular to the polar axis. Neglect-
ing a distributing mass of the shaft and the gravity, substitute the kinetic energy, the potential
one and dissipation function into Lagrange’s equations of motion. Then we obtain the follow-
ing equations of motion:

it+z+y0,=—cz —i0,0,0, + e[ — i(0 + ) exp(i(@+ &},  (5.7)

16, — il,wb, + 06, + yz = —c,0, + ia,e,(z —%ez)
+ r[(l — D)o — (I =Ly + (¢, — ¢5) w}] exp(i(@ + 7)) (5.8)
+ AI(‘é‘Z +2iw?§‘z) exp(i20) + 1A — i) exp(i(© — 7)) ,
L6, + 30, +6,6,
~Im [—%Ipézéz — A10 exp(—i20) — 040, — ezexp(—i(O+ &) (5.9)
—1(I — L), exp(—i(© + n)} — 7416, exp{—i(O — n))| ,

where 0, is a complex conjugate of 6,, Im[ | represents an imaginary part in [ ], and the
superscript dot means differentiation with respect to non-dimensional time #. Equations (5.7),
(5.8) and (5.9) have an accuracy of the second-order of the small parameters and variables.
This accuracy is needed in order to analyse the torsional vibration. The driving torque 7, is
given by the following equation:

T,=—0,6,+1m[z6]} . (5.10)

5.4 Asymptotic solution

5.4.1 Whirling vibration

The rotating shaft has four natural angular frequencies for whirling vibration. Let these
frequencies be p;, p,, p; and p, in order of size. We deal with the case that the shaft system is
passing through its critical speed w = p, under the constant angular acceleration. The asymp-
totic method is applied to analyse the non-linear Egs. (5.7), (5.8) and (5.9). The rotating
shaft is assumed to vibrate with single whirling mode of frequency p,. Under this assumption,
we can construct the asymptotic solutions for e%uations of motion. The first approximate
equations are expressed as the following equations %)

z2=A exp{i(@+ D)), 6, =1 Arexp{i(@+ D)}, (5.11)
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Ak = _CkAk + el Siﬂ(@k - g) + TV Siﬂ(@k - 77) + AI(TkAk Sin2¢k ,

(5.12)
b= p—w +eA—": cos(®, — &) + % cos(d, — ) + Aloy cos2 by,
k
where
e =—(1=pY/v, (5.13)
2+ oxd)pe+ 0.0, + Ap,
&= 7 ) (5.14)
4p, +21(2Ip, — Lw)
2
W
= > 5.15
o et 0+ k2 (I(pe + ) — L) (>-13)
I—L)x0*
Ve = ( » DL , (5.16)
bt ot {I(p + o) — Lo}
2
K 20—
oy = —— AP0 P) (5.17)
o {2+ 21— 1)K}
2(6,6, + ¢
Bi=— (o tl yo)% 1+ IKk2+2Kkpk Q2Ip, — Lw)} . (5.18)
P w Y
The term dp,/dw can be derived as
dpi _ Lp(1 - p’)’
do 2\2 2 2 2 (5.19)
@ (A=p)y @ +Ip)+y@p — 1)
from the following equation of natural frequency:
1=+ Lop—IpH)— ¥ =0. (5.20)
By conversion of variables
uk=AkCOS¢k, Vi =AkSin(15k, (5.21)
Eq. (5.12) can be rewritten as following:
uy = —Cpy +{Alo, — (P — 0)) v, — ewysing — vsing
(5.22)

Vi ={Aloy +(pp — )i — Ly + epycosé + Tvycos .
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5.4.2 Torsional vibration

The deflection and inclination of the shaft are given by Egs. (5.11) and (5.12), or by
(5.22). Substitute them into the Eq. (5.9) and ignore small quantities above the second-order
of e, 1, AI, &, ¢; and 6,. Then, we obtain the following equation for torsional vibration 6,,:

] , 5p.—1d
Ipetz -+ C39t2 + 6t9t2 = %kak(ukz -+ sz) a)"!ac?_‘ d_flf - ZCkKkpk
— (o siné + w0y sinn) uy + (eo, cos§ + Ty cosn) v

+ 24I(1,woy +pk2) K U Vy 5 (5.23)

where
1
o = 3Ll u(pe + 0) + by D =wlLxw(pe + o) + (1= L)pd| s (5:24)

and

1
W= 7 (0,0, + ;) (5.25)

which has an accuracy of the first-order of small quantities.

5.5 Numerical results

5.5.1 Parameters, critical speed and initial condition

Here we integrate Eqs. (5.22) and (5.23) numerically, and analyse the effects of asym-
metry of rotor A4I/I and angular acceleration A upon the torsional vibration §,. Some values
of the non-dimensional parameters are as the following:

1=0.0534, 1,=0.1034, y=—0.0923, 8=0.0164,
8,=0.00256, e=6.0X 10", 7=6.0% 107", (5.26)
q=06=40X%X10" ¢=10X10""

the values of which are fixed throughout this chapter and other parameters are shown each
time.

Since 1, is greater than Iin Eq. (5.26), there is only one critical speed for whirling at w,
= p,. This critical speed for whirling is calculated w,, = 0.9253, and natural frequency for
torsional vibration is p, = 0.1573.

Initial condition for integration is a steady state at starting speed derived by putting uy, =
v, = 0 in the Eq. (5.22) for whirling, for torsional vibration putting 6,, = 0,=0.

5.5.2 Torsional vibration and change of whirling amplitude

Figure 5.2 shows a typical pattern of torsional vibration 6,, of a rotating shaft. For ref-
erence, the pattern of whirling amplitude A, is also shown. Dotted line shows a steady value
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of A,. In Fig. 5.2, angular acceleration at driving point A is A = 1.0 X 10, and asymmetry
of rotor is A4I/1= 0.05. This asymmetry is not so large, but it shows a different pattern from
that shown in the Fig. 5.3 whose parameters except asymmetry 41/] are the same as those of
the Fig. 5.2. We can find that 6,, and A, change synchronously after passing through w,, to
w, = 1.0 in Fig. 5.2, w,. to w, = 1.1 in Fig. 5.3. In Fig. 5.2, the first resonance peak of tor-
sional vibration appears about w, = 1.03. We named this peak ®. But in Fig. 5.3, @ does not
appear. This shows that @ does not generate until the rotor has asymmetry. In both Figs. 5.2
and 5.3, another resonance peak @ appears nearly at w, = 1.12. Whether @ or @ is
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l2><10

9152

!

0.8 0.9 1.0 1.1 1.2

o

Fig. 5. 2. Torsional vibration in passing through the critical speed of
whirling (4I/1=0.05, A= 1.0 X 10_4, E=0, n=n).

0.8 0.9 1.0 1.1 1.2

Fig. 5. 3. Torsional vibration in passing through the critical speed of
whirling (AI/I=0, 2= 1.0 X 107, =0, = 7).
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Fig. 5. 4. Effect of angular acceleration on the maximum amplitude
of torsional vibration (§ = 0, n = 7).

larger depends on the values of angular acceleration 4, asymmetry of rotor 41/, angular po-
sition of eccentricity &, and so on.

5.5.3 Critical speeds for torsional vibration

When a symmetrical rotor-shaft system passes through its critical speed w, for whirling,
the whirling amplitude A, has one frequency component w, — p;, in acceleration or p, — @, in
deceleration. In addition to this, A, in asymmetrical rotor-shaft system includes one more fre-
quency component 2(w, — p,) in acceleration or 2(p, — w,) in deceleration as shown in Fig.
5.2 because of asymmetry of rotor. If one of these two frequencies coincides with the natural
frequency of torsional vibration p,, the resonance of torsional vibration occurs. Then critical
speeds for torsional vibration w,, are calculated in acceleration as the solution of the follow-
ing equations,

2wy —P) = D1 (5.27)
W =Py =i (5.28)

and also in deceleration,

2(p2 - wct) =D:> (5.29)
P2 = ®a=p. (5.30)

The critical speeds from Egs. (5.27) and (5.29) make resonance named ® and those
from Egs. (5.28) and (5.30) make @. For the parameters shown in Eq. (5.26), each value of
w,, from equations (5.27) ~(5.30) is calculated as 1.0039, 1.0826, 0.8467, 0.7680, respec-
tively. Figures 5.2 and 5.3 support these calculated results.
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Fig. 5. 5. Effect of angular acceleration on the maximum amplitude of
torsional vibration (¢ = 0.5z, n = 1.57).

5.5.4 Effects of angular acceleration

The maximum amplitude of torsional vibration 6,,,,, is effected by the angular accelera-
tion A. Figure 5.4 shows the result in case £ = 0. The maximum amplitude 6,,,,,, in accelera-
tion is larger than that in deceleration. In contrast with this, Figure 5.5 (£ = #/2) shows that
B2max IN acceleration is not always larger than that in deceleration especially in smaller |A].
This means that angular position of eccentricity and angular acceleration effect on 6.

Both Figs. 5.4 and 5.5 show that in asymmetrical rotor-shaft system 6,,,,,, fluctuates and
approaches closer to that in symmetrical rotor-shaft system according to larger |4, and that in
such case as smaller |4 about 1 X 107" a little change of |A| causes large change of 6,,.
It is because of the phase difference of torsional vibrations © and @ causing 6, larger or
smaller. If ® and @ are in the same phase, 6,,,,,, becomes large, and if they are in the oppo-
site phase, 6,;,,,, becomes small.

5.5.5 Effects of angular position of eccentricity

In asymmetrical rotor-shaft system, whirling amplitude changes according to the angular
position of the eccentricity. So the amplitude of torsional vibration may also change accord-
ing to the angular position of the eccentricity. Figure 5.6 shows effects of angular position of
eccentricity £ upon the maximum amplitude of torsional vibration 6y, with fixed relation #
= £ + 7. The same result as shown in Fig. 5.6 is obtained in the case & = & ~ 2 because of
geometrical character of this system.

According to Fig. 5.6, both in acceleration and in deceleration 6y, increases and de-
creases once when &/sr changes 0 to 1. In such region as &/z =~ 0.4 ~ 0.8, 6, in asym-
metrical rotor-shaft system is smaller than that in symmetrical rotor-shaft system when the
rotating shaft is accelerated. The resultant vibration of torsion consists of the vibration caused
by the eccentricity and the dynamic unbalance and that caused by the asymmetry. The two is
in or out of phase by the magnitude of &.
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— A =1.0x10"
A=-1.0x10"*

0t2ma:c

E/m

Fig. 5. 6. Effect of angular position of unbalance on the maximum amplitude
of torsional vibration (n = & + ).

5.6 Conclusions

In this study we deal with the torsional vibration of an asymmetrical rotor-shaft system.
The torsional vibration may occur twice after passing through the critical speed for whirling.
First is caused by asymmetry of rotor and second is by eccentricity and dynamic unbalance of
rotor.

In case of acceleration, the critical speeds for torsional vibration @, are calculated as w,,
= W, + p/2 and 0, = w,. + p, where w,. is the critical speed for whirling and p, is the natu-
ral frequency for torsion. In case of deceleration, the critical speeds are w,, = w,. — p,/2 and
Wy = Wge — Pre

The amplitude of torsional vibration depends on the angular acceleration, the angular
positions of eccentricity and dynamic unbalance, and the asymmetry of rotor.
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