Memoirs of the School of Engineering, Nagoya University
Vol.47, No.1 (1995)

WAVE FORCE ACTING
ON A SUBMERGED SPHERE

Koichiro IwATA and Norimi MIZUTANI

Department of Civil Engineering

(Received May 26, 1995)

Abstract

Wave force acting on a submerged sphere is discussed experimentally and
theoretically. This paper consists of major two parts. One is the wave force on a
sphere with large diameter, in which the diffraction force is a predominant wave
force. The other one is the wave force on a small sphere. In this case, the
inertia, drag and lift forces are the major components of the wave force. These
forces are governed by a flow around a sphere, and therefore the characteristics
of them are discussed experimentally in relation to the results of flow visualizing
experiment. The drag and inertia coefficients in the Morison equation are well
formulated in this paper. Moreover, new wave force formulae are proposed to
enable to evaluate the wave force affected by the proximity effects of the
bottom and free surface boundaries. This paper also shows that the applicability
of these wave force formulae together with their simplified formulae.

Contents

GEMETAL .. oienii i et 85
2. Wave Force on a Submerged Sphere with Large Diameter .............cooeevueeiiiniiiiiininennnnnes 86
2.1 INrodUCHON Luiivtiiniiii ittt e 86
2.2 Numerical ADALYSIS .......iiiiiiiiiiiiiiii e 86
2.3 Experimental Set-up and Procedure ...........ccovvuuieiiiirieiiiniiiiieeiiin e 91
2.4 Maximum Wave FOTCE ........ioiiiviiiiiiiiiiiiiiie it ieie e e et e et et et e e e eeenns 92
2.5 Dominant Range of Diffraction FOFCE .......uiiiuiiuiiiniiiiii i e 93
2.6 Effective Inertia Coefficients ............cccoviiiiiiiiiiieiiiiineii e 97
2.7 COMCIUSIONS L.ttivuiiit ettt ettt et e e e e e e e e e et et e e e et e e et e e e e e e eeeees 100
Wave Force on a Submerged Sphere with Small Diameter ............cocovvivueiiiiiiniiiniiinnnenn. 101
3.1 IRtrOdUCHON L.uvuiit it 101
3.2  Experiments and ANalYSIS ..........uiveiiiiiiiiinriiinriiiere e e 101
3.3  Flow around a Submerged SPRere ...........ciiiuiiiiinieiiiieiiiiin e 102



Wave Force Acting on a Submerged Sphere 85

3.4  Applicable Range of Morison Equation .............c.ooiiiviiiinnn 104
3.5  Inertia CoeffiCient ........coiviiiiiiiiiiii i 107
3.6 Drag CoeffiCient ......cocieiiiiiiiiii i 109
3.7 Maximum Wave FOICE ..c..iviiiiiiiiiiiiiiiiiii e 111
3.8  Boundary Proximity Effects ... 112
3.9  Estimation Method of R-type Wave FOrce ...........coooviiviiiiiiiiniin, 123
3. 10 Applicable Ranges of Wave Force Formulae ..........c.ooooiiiiiiiiiiiiniin i, 130
3011 CONCIUSIONS t1utinininiiinin ettt e et a s e s e eaeaeas 132
4. Concluding Remarks ......ooiuiiiiiiiii i 132
REEIEIICES . ut ittt et ettt b 133
1. General

Exact estimation of the wave force acting on coastal and offshore structures is one of the
most important problems for field engineers. Many researches have been conducted on the
wave forces acting on a circular cylinder”. However, only a few investigations have been
performed for the wave forces acting on a submerged sphere™¥)., Since the wave pressure
acting on the object is generally isotropic, the sphere may be regarded as one of the most
suitable shapes for an intermediate buoy in a mooring system for floating structures, under-
water storage tanks, etc. Therefore, it is important to investigate the characteristics of the
wave forces acting on a sphere to establish a rational engineering design formula for this kind
of structure.

Wave force can be classified into four components from their generation mechanisms.
One is the diffraction force and others are the inertia, the drag and the lift forces. The diffrac-
tion force is very significant in case that the size of an object is large compared with the wave-
length, whereas other three components are important for small objects. For a large object,
the existence of an object causes the wave deformation, and therefore a change of the pres-
sure distribution in time and space on the surface takes place. The resultant force is called the
diffraction force and we have to evaluate the wave deformation in order to estimate the
diffraction force. On the other hand, when an object is small compared with the wavelength,
the inertia, drag and lift forces are dominant force components. In this case, the wave defor-
mation is negligibly small, while the flow field including vortex shedding around an object is
very important. The role of each component on the total force depends much on the flow
condition, in particular on the flow separation and vortex shedding. It is very difficult to solve
theoretically the flow condition around a small object, and therefore we have to discuss these
forces based on the hydraulic experiments. Thus, the quite different treatments are necessary
to discuss the wave forces on large and small objects.

In this paper, the wave force under regular wave excitation is discussed. The diffraction
force on a large sphere is first discussed in the following chapter (Chapter 2) together with
the range in which the wave diffraction should be considered. Next, in Chapter 3, wave forces
acting on a small sphere are investigated. The proximity effects of the bottom and free sur-
face boundaries on the wave force are also investigated so that the new estimation formulae
can be established. Finally, the results obtained in this study are summarized in Chapter 4.
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2. Wave Force Acting on a Subimerged Sphere with Large Diameter

2. 1 Introduction

In this chapter, the diffraction force which is the dominant wave force component for the
acting wave force on large objects is investigated. Under such a condition, flow separation
hardly occurs and its effect can be neglected. Therefore, the motion of water is approximated
as an irrotational one and analysis based on the velocity potential can be applied. The wave
force, then, can be evaluated by integrating the wave pressure, derived from the velocity
potential, on the wetted surface. Thus, the objective of this chapter is equivalent to obtain the
velocity potential of diffracted waves. Even in such background, the research which has been
conducted on the diffraction force acting on the spherical structure is quite limited compared
with those of the cylindrical structures. Havelock™ discussed the diffraction force acting on a
submerged sphere under the deep water wave condition. His theory, however, is derived
without taking the free surface boundary condition into account, and therefore it is
impossible to evaluate the effects of the bottom and free surface boundaries on the acting
wave force. The effect of the free surface was discussed in the case of a bottom-seated hemi-
sphere®”. They reported that the effect of the free surface boundary on the wave force is
negligibly small if the radius of hemisphere is less than half of the stillwater depth. Black®
discussed theoretically the diffraction force on a sphere with its center being on the stillwater
level. He developed the numerical analyzing method using the axisymmetric Green’s function
and concluded that the bottom boundary affects little the wave force in the case that the
water depth is larger than twice of the sphere radius. Similar results were obtained by
Fenton”. Concerning the diffraction force acting on a fully submerged sphere in the finite
water depth, there have been very few analytical investigations taking the bottom and free
surface boundary conditions into consideration.

In this chapter, the velocity potential of the diffracted wave is obtained by numerical
analysis in which the Source Distribution Method is employed. Based on the numerical
analysis and laboratory experiments, the diffraction force on a submerged sphere and its
dominating range are discussed.

2.2 Numerical Analysis

2. 2.1 Source Distribution Method

As shown in Fig. 2.1, a sphere with radius a is fixed in the constant water depth, h. The
center of the sphere is located at (x,y,z) = (0,0,—d), where the coordinate system is Cartesian
shown in Fig. 2.1. The small amplitude wave with height H; and angular frequency o
(= 2n/T, T : the wave period) propagates to the positive direction of x-axis.

Provided that the fluid is inviscid and incompressible and its motion is irrotational, the
fluid motion can be represented by the velocity potential, & given in Eq.(2.1).

D = (¢; + d5)e 2.1

where ¢; and ¢g are the spatial velocity potentials of the incident and diffracted waves,
respectively, and i = [—1. The velocity potential of the incident wave, ¢; can be given by the
following form using the spherical coordinate (see Fig. 2.1).

1H10

i m cosh k(s + 1 cos0)

o= L sinh kI J.n (krsin®)cosmy (2.2)
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STRSZKL

Fig. 2.1 Definition sketch

where, r is the radius vector, 0 the zenithal angle, ¢ the azimuth angle, J,, the m-th order
Bessel function of the first kind, ¢, the Neumann’s constant and k the eigenvalue described
in the latter part of this section.
The velocity potential of the diffracted wave, ¢ should satisfy the following fundamental
equation and boundary conditions.
Fundamental equation:

2 2 2
or r or r° 00 r° 96 r'sin’® oy

Boundary conditions:

00 o’

—é;sré—% onz=0 (2.4)
0

‘éﬁf =0 onz=-h (2.5)
%4;§=—% onr=a (2.6)

0ds
im 1 | 22 — ikgs | = 2.7
r—l»g ( or 1 ¢S 0 ( )
where, g is the acceleration of gravity.

In this study, the Source Distribution Method (hereafter, referred to as the SDM) is
employed in order to determine ¢s. In the SDM, ¢5 is given by Eq.(2.8) as the sum of the
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contributions of the individual sources distributed on the sphere surface.
bs= [ [ H(R.O.W)G(r.0.4:R,0,%)ds(R,0,¥) (2.8)
R=a

where (1,0,9) and (R,0,¥) are, respectively, the coordinates of a reference point and a point
source, G(r,6,9;R,0,%) the Green’s function which means the velocity potential due to a
point source and {(R,0,¥) the source distribution function which represents its strength.

‘The Green’s function satisfying the fundamental equation, Eq.(2.3), and three boundary
conditions, Egs.(2.4), (2.5) and (2.7), is given by following equation'”.

G(r,0,9;R,0,¥) = q, cosh k(s + r cos@)cosh k(s + R cos@)H(()l)(kQ)

. (2.9
+ Y g, cosky(s + 1 cosB)cosk,(s + R cos®)K,(k,Q) )
n=1

where, Hy'" and K, are the 0-th order Hankel function of the first kind and the modified
Bessel function of the second kind, respectively. Q, gy and q, (n = 1) are given by the follow-
ing equations.

Q=4 (r sinB)” + (R sin®)” — 2rR sinb sin® cos(yp — W) (2.10)
2ni(k” — ko)
- -~ %) 2.11
Ttk (211
4k + k;
e+ o) (2.12)

T+ h -k,

In Eqs.(2.2) through (2.11), ko, k and k, are eigenvalues which satisfy the dispersion relation-
ships, Eq.(2.13) and Eq.(2.14).

ko= 0’/g (2.13)
2
OE = k tanh kh = —k_ tan k,h (2.14)

Once the source distribution function f(a,®,¥) is determined so that ¢g satisfies the im-
permeable condition on the sphere surface, Eq.(2.6), the velocity potential of the diffracted
wave, ¢s(1,0,1) is obtained.

2. 2. 2 Determination of the Source Distribution Function

The source distribution function is determined using Eq.(2.6). The integration cannot be
carried out straightforwardly because the Green’s function has a singularity at Q = 0. To
avoid the singularity, the relationship written in Bq.(2.15) is used™® to determine the source
distribution function, in which the first term of the left hand side corresponds to the integra-
tion around a singular point.
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1 1 3G (1,0 w 2,0,7)
S H@8) + [ fia.0,%) dS(2,0,7)

(a,8,9) # (a,0,¥)

+_  atr—a (215)
or

Considering the axisymmetry of the source distribution function, f(a,®,%) can be expanded
into a Fourier series.

f(a,0,¥)= Y ™ (2,0)cosm¥ (2.16)
m=0

where, £™ is the Fourier coefficient of order m.
Using the addition theorem of the cylindrical function and taking account of the axisym-
metry with respect to (Y-W), the Green’s function can be also expanded into a Fourier series.

G(1,0,9;3,0,%) = ¥ G™(1,0;2,@)cosm(yp — W)
m=0

= ). €m{qo cosh k(s + r cos®)cosh k(s + a cos®)
m=0

HY (kr sinB)J,, (ka sin®)
H' (ka sin®)J,(kr sind)

+ Y g, cosk,(s + r cosB)cosk, (s + a cos®)
n=1

ko (k,r sin®)I,(k,a sin®)
cosm(yp — ¥)
kn(kqa sin®)1, (k,r sin6)

(2.17)

where, G™ is the Fourier coefficient of order m, and I, is the m-th order modified Bessel
function of the first kind. The upper and lower terms in the brackets are to be adopted for
|r sin 8] > |a sin ®| and |r sin 6] <|a sin ®|, respectively.

Since the addition theorem is not applicable in the case that |r sin 6] = |a sin ©], another
treatment is required for this condition. In the past investigations, the mean value of the
upper and lower terms were used. The validity of this method, however, has not been dis-
cussed enough. Therefore, in this study, the following new method is employed.

Differentiation of Eq.(2.9) with respect to r leads to the following equation in the case
that |r sin 8] = |a sin ©/.
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%gr}- =q, [k cosB sinh k(s + r cosB)cosh(s + a cos@)Hgl)(kQ*)

&

— 32 cosh k(s + r cosB)cosh k(s + a cos@)Hg”'(kQ*)]
. (2.18)
+ ;1 qn[(—kn cos0)sin k(s + r cosO)cosk, (s + a cos)K,(k,Q*)

- Q cosk, (s + r cosO)cosk, (s + a cos@)KO’(an*)]

in which, Q* = 2a sin 6 /T — cos (¢ — ¥) and (') indicates the differentiation with respect
to r. Equation (2.18) can be also expanded numerically into a Fourier series using the axi-
symmetry with respect to (y—W), instead of taking the mean value of the upper and lower
terms in the bracket in Eq.(2.17).

9G _

5 i G(m)(r,e;a,G)cosm(w - W) (2.19)

m=0

Substituting Egs.(2.17) and (2.19) into Eq.(2.15) and using the relationship ds =
a’ sin @dOdW, the integral equation can be obtained for each mode of the Fourier series.
Since the Fourier coefficients G™(r,0,2,0) and £™ (©) depend only on 6 and © in the case
of r = a, the integral equation is rewritten into the simultaneous linear equations by dividing
the sphere surface into many pieces of latitudinal ring by parallels, as shown in Fig. 2.2. Sol-
ving the simultaneous linear equations, t(m)(®) can be obtained and then the source distribu-
tion function f(a,0,) can be determined with use of Eq.(2.16). Consequently, the wave
forces in x and z directions, Fx and Fz, are evaluated by the following equations.

i=1 na/40

o | W
i=21 ]
i=22\ | : /

i=3§3 ‘
1=39.

40

Fig. 2.2 Vertical view of surface elements of sphere
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Fx = Fx + Fpx
= Real [{ip o / ¢r sinB cosmpds}e“i"‘l + Real Hip o / s sind coswds} e—iot]
(2.20)

_ Real[[ip of b coseds}e‘i"‘} + Real [|ip of bs coseds}e‘*"‘] (2.21)

where, p is the density of water and Fy; and Fp; (i = x, z) are, respectively, the wave force due
to the incident and the diffracted waves.

Calculations were performed under following conditions which were determined by pre-
liminary calculations'"). The sphere surface was divided into 40 elements with same width of
mta/40 as shown in Fig. 2.2. The evanescent mode waves corresponding to the smallest 15
eigenvalues k, were taken into account. Concerning the Fourier series, the finite series up to
the first 10th mode were adopted.

2.3 Experimental Set-up and Procedure

Laboratory experiments were carried out using three-dimensional wave basin (30 m in
length, 10m in width and 0.6m in depth) at Department of Civil Engineering, Nagoya
University. Experimental conditions are listed in Table 2.1. As shown in the table, the range
of wave steepness H;/L was from 0.0095 to 0.085 (L : the wavelength) which includes the
finite amplitude waves of the second and third order Stokes waves.

Table 2.1 Experimental conditions

h (cm) 41.0
H,/h 0.06 - 0.18
H,/L 0.0095 - 0.085

h/gT? 0.013, 0.035, 0.065, 0.074, 0.102, 0.167
D/h | 0.902 0.733 0.488 0.293

0.293
dh | 050 | 050 8'?8 0.39
: 0.50

In each experimental run, the x- and z-directed velocities u and w, wave forces Fx and
Fz, and the water surface profiles were simultaneously measured using the electromagnetic-
type velocimeter, the cantilever-type wave force meters devised for this experiment and the
capacitance-type wave gauges, respectively. The lowest natural frequency of the wave force
meter was about 8 Hz and its effect on the measured wave force is negligibly small.
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2.4 Maximum Wave Force
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The relationships between the non-dimensional maximum wave force (Fx,/ ogD’H,,
Fz,/ pgDZHI) and ka are shown in Figs.2.3 and 2.4. The non-dimensional maximum wave
forces Fx,,/ pgD2H1 and Fz,/pgD*H; vary with ka and they take a maximal value, and it is
clearly recognized that the variations of Fx,/ pgDZHI and Fz,/ pgD2HI with ka become larger
as D/h increases.
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As shown in the figures, it can be pointed out that the agreement between experimental
and calculated values of Fx,,/ pgDzPII is generally good and increasing wave height seems to
affect little the non-dimensional maximum wave force. Also, calculated values of Fz,/
ogD’H; agree well with the measured ones under the condition that D/h is less than 0.9. The
experimental values of Fz,/ pgDZHI in case that D/h = 0.902 and 0.7 <ka<1.2, however,
are much smaller than the calculated one and the difference increases with an increment of
H/h. In these cases, the sphere emerges from the wave trough and the wave pressure never
acts on the sphere surface above the free surface. On the contrary, in the analysis, it is
assumed that the wave is of small amplitude and the sphere is always below the free surface.
Therefore, the wave pressure acts on all over the sphere surface and the whole wave pressure
is taken into the calculation of the wave force. This difference causes the discrepancy between
the experimental and analytical values. It is worth noting that the effect of appearance of the
sphere above the free surface on the horizontal wave force is very small. The reason of this
fact is that the most part of wave pressure on the top part of the sphere is the vertical compo-
nent and the contribution of horizontal component to the total wave force is small. Conse-
quently, the difference between the experimental and analytical values appears clearly in the
vertical wave force.

2.5 Dominant Range of Diffraction Force

In the previous sections, characteristics of the maximum wave force are discussed. Also
the SDM, based on the linear wave theory, is effective in estimating the diffraction force
except for the vertical wave force when the sphere emerges from the wave trough. However,
we have to know when the SDM is applied, in other words, the range in which the diffraction
force is dominant.

The wave force, Fx, can be expressed as follows.

Fx = Fx,, sin(ot + orx)
= Fixp, sinot + Fpx,, sin(ot + a,x) (2.22)

= (Fixm T Fpxm €0sasx)sinot + Fpy, sinasx cosot
Similarly,

Fz = —Fz, cos(ot + az) 2.23)
(2.

= —(Fizm + Fpzn cOsosz)cosot + Fpy,, sina,, sinot

In these equations, 0,;(i = X, z) is the phase lag between Fy; and Fyy;, and oy (i = x, z) is the
phase lag between Fy;; and F,. The second term in Eqs.(2.22) and (2.23) corresponds to the
apparent drag force caused by the phase lag.

In the evaluation of the effect of the diffracted wave on the wave force, it is important to
discuss the phase lag between F}; and Fy,; as well as the magnitude of the wave force, since the
phase lag decreases the wave force when it approaches s. Thus, in this study, the following
coefficients, r, and r,, are introduced.

Foxm sinoax

r ==
x FIXm + FDXm COSOlAx

(2.24)
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Fpzm sino,y,

"™ Fizm + Fzm COSGAZ (2.25)
Using r, and r,, the total maximum forces and phase lags can be rewritten as follows:

Fxy = (Fixm + Foxm €0S04x) \/I-i—_rf , O = tan_l(rx) (2.26)

Fz,, = (Fizm + Fpzm c0S0A7) m , Oz = tan_l(lfz) (2.27)

For sufficiently small 1, and r,, the magnitude of the total force is almost equal to the
first term in Eqgs.(2.26) and (2.27), which corresponds to the inertia term of the Morison
equation, since the square values of 1, and r, are much less than 1.0. On the other hand, large
values of r, and r, mean that the wave diffraction plays a very important role on the wave
force. Thus, in this study, the applicable range of the diffraction theory in the estimation of
the wave force is judged from r, and r,. In the judgment, variations of the wave height are
also taken into consideration.

Figures 2.5 and 2.6 show the variations of r, and r, with d/h and ka. In the figures, the
line indicating d = a + L/2 is shown by the broken line. The fluid force acting on the sphere
under the condition that d > a + L/2 is governed only by the hydrostatic pressure, since the
water particle motion is quite small. Thus, the calculation was not performed under such
conditions.

It was confirmed that the 5% wave height change corresponds to almost 3% change in 1,
and r,. Also, it was found that the wave diffraction takes place clearly when the r, and r, are
larger than 3%. Therefore, the applicable range of the diffraction theory in evaluating the
wave force is defined, in this study, as the range that r, and r, are larger than 3%. In the
figures, this range is shown as the shaded area. As seen in the figures, the range in which the
diffraction theory should be applied depends not only on the diffraction parameter, ka, but
also on the relative diameter, D/h, and the relative submergence, d/h. Figures 2.5 and 2.6
also show that the effect of the diffracted wave on the wave force can be negligibly small even
under a large diffraction parameter when the location of the sphere is sufficiently deep, since
the water particle motion around the sphere is small. The effects of the diffracted wave on the

0.0
d/hp

0.5
i / D/h=0.214 |
I L —]
1.0 d:h_? S U M B AR | ! TR S N O W O
0.1 0.5 1.0 ka 5.0 10.0

(a) D/h=0.214
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Fig. 2.5 Dominating range of horizontal diffraction force (shaded area)
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Fig. 2.6 Dominating range of vertical diffraction force (shaded area)

wave force are revealed to be small when D/h is less than 0.14, while it has very significant
effects on the wave force when D/h>0.85 and ka> 0.3, although figures of which are not
shown here.

2.6 Effective Inertia Coefficient

In the previous section, the dominant range of the diffraction force is discussed. In this
section, the characteristics of diffraction forces are discussed in terms of effective inertia coef-
ficients Cix and C;; defined by the Eqs.(2.28) and (2.29) are discussed.

Fx
Cx=—75"— 2.28
IX pTED3ﬁm/6 ( )
Fz,
Cp=—"75— 2.29
1z an3Wm/6 ( )

where, U and w are, respectively, the x- and z-directed water particle accelerations at the
center of the sphere which are evaluated with the linear wave theory and subsuffix m indi-
cates the maximum value. Figure 2.7 shows the relationship between C;x and ka. In the
figure, the curved line represents the calculated result by the SDM, in which the range of the
broken line corresponds to the range where the wave diffraction significantly takes place and
circles with horizontal bars indicate the values in the case that the wave breaking occurs.
Good agreements between the experimental and analytical results can be seen in these
figures and no significant difference caused by the increasing wave height is recognized even
under the condition that the wave breaking takes place. This indicates that the wave height
has little effect on the effective inertia coefficient and the SDM based on the linear wave
theory estimates accurately the experimental results which include results for nonlinear
waves. The main reason why the wave breaking has little effect on Cix is due to the facts that
the breaker type observed in the experiment is the spilling-type breaker with small volume of
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the entrained air and that the disturbed water particle motion is only limited in the area near
the free surface.

Effectiveness of present method based on the linear wave theory indicates that the
diffraction force under irregular wave field can be evaluated by superposition of the result for
each component wave.

As shown in Fig. 2.7, it was recognized as general tendencies that an increment of D/h
enlarges the variation of Cyx with ka and that variation of Cyx with ka becomes remarkable
with decreasing d/h. These results show that the relative diameter of the sphere, D/h and the
relative submergence, d/h significantly affects the Cix. The following reason can be applied
to these facts. The sphere approaches the free surface with an increase of D/h and a decrease
of d/h. This means that the water particle motion around the sphere becomes larger. Then,
the wave is remarkably diffracted and the wave pressure on the sphere is largely fluctuated.

Variation of Cx with ka becomes remarkable in the range that the diffraction theory
should be applied in calculating the wave force (broken line in Fig. 2.7). On the contrary, Cix
can be regarded almost constant in the range that the effect of the wave diffraction on the
wave force can be neglected (solid line). This indicates that the numerical calculations repre-
sent adequately the range in which the diffraction theory should be employed.

Figure 2.8 shows the relationship between C; and ka. The fundamental properties of
C,; are similar to those of Cx. In other words, C;; varies evidently with ka in the range that
wave diffraction becomes significantly. The contribution of D/h and d/h to C;; becomes
larger than Cy, and both D/h and d/h tend to affect more significantly Cy, than Cx. The
variation of C;; with ka becomes large with an increment of D/h and decreasing of d/h, al-
though the figure of which are not shown here. This would indicate that the free surface and
bottom boundaries affect significantly the wave diffraction, and the vertical component of the
wave pressure is more sensitively affected by the wave diffraction than the case of the hori-
zontal pressure component.
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2.7 Conclusions

In this chapter, the wave force acting on a submerged sphere with large diameter is dis-

cussed experimentally and theoretically. Conclusions obtained are summarized as follows:

D)

2)

The diffraction force on a submerged sphere is governed not only by the diffraction
parameter ka but also by the relative submergence of the sphere d/h and the relative
diameter D/h. The dimensionless wave height H;/h, however, affects little the dimension-
less wave force Fx,,/pgH;D” and Fz,,/pgH,D".

In the case that D/h is less than 0.9, the SDM is an effective and useful method in calcu-
lating the diffraction force on the sphere. In the range that D/h is more than 0.9, how-
ever, the SDM cannot be applicable to evaluate the vertical wave force acting on the sub-
merged sphere, in which the wave run-up and run-down on the sphere affect the wave
force.

3) The ranges in which the diffraction force should be taken into account are shown graphi-

cally, and the validity of these ranges are confirmed.
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3. Wave Force Acting on a Submerged Sphere with Small Diameter

3.1 Introduction

Existence of small objects does not affect the wave except for local disturbance. Thus,
under such a condition, the diffraction force can be negligible, while the inertia, drag and lift
forces are important for the estimation of acting wave force. These wave forces are closely re-
lated to the flow around objects. It is therefore important to reveal the wave-induced flow
around the sphere. Jenkins and Inman® observed the flow around the sphere and pointed out
that the circulation streaming diminishes the wave pressure on the sphere. In their experi-
ments, however, the location of the sphere was fixed and the effect of the submergence on
the wave force and flow patterns was not discussed. This indicates that further investigation is
necessary for in-depth understanding of the wave force.

The inertia and drag forces are categorized as the inline force which acts in the direction
of water particle motion. These inline forces are more important than the lift force because of
their large magnitude compared with the lift force, in general. The inline wave force on a
small object is generally estimated by the Morison equationm, which expresses the wave
force as a sum of the inertia and drag forces. In use of the Morison equation, the accurate es-
timation of the drag and inertia coefficients is necessary. Kono? pointed out that the drag
coefficient of the sphere in the wave field decreases with increasing Reynolds number (here-
after referred to as Re) and that the inertia coefficient can be approximated by 1.5. Jenkins
and Inman® obtained the similar result and stated that the drag coefficient decreases with in-
creasing Keulegan-Carpenter number™” (hereafter referred to as KC). Both researches dis-
cussed only the horizontal wave force, and the vertical wave force was not investigated.

In the particular conditions, such as cases of a sphere located near the bottom or free
surface boundaries and a case that strong vortex shedding takes place, the lift force plays an
important part of the wave force as well as the drag and inertia forces. The Morison equation
is not accurate enough to estimate such wave forces. It requires us to establish the new wave
force formula which can evaluate well the wave force including the lift force.

With this background, this chapter is to investigate experimentally the wave force acting
on a submerged sphere with small diameter.

3.2 Experiments and Analysis

In the experiments, an indoor wave tank of 0.7 m in width, 0.95 m in depth and 25 m in
length at Department of Civil Engineering, Nagoya University was used. Two kinds of ex-
periments such as the wave force measurement and the flow visualization were carried out. In
the experiments for the flow visualization, a horizontal step of 0.25 m height with a slope of
1/8 at the leading edge was installed. One part of the step was made of acrylate, and trans-
parent and waterproofed camera box was set beneath the acrylic bed so as to enable to take
flow pictures from a bed. The thin layered milk method using condensed milk was employed
to visualize the wave-induced flow around the sphere. The wave-induced flows were taken
pictures using synchronized two cameras with motor drive (S frames/s) through the acrylic
bed and a glass side wall of the wave tank. At the same time, the flows were also filmed with
a high speed 16 mm cine-camera (50 frames/s) through the glass side wall. Details of the
flow around the sphere were investigated with photographs and 16 mm films by means of a
film motion analyzer. Asymmetry of the flow in the transverse direction to the wave propaga-
tion was discussed using the photographs taken from the bottom.

In the wave force measurements, the submergence of a sphere was changed finely near
the bottom and free surface so as to investigate the boundary proximity effects. These
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experimental conditions are summarized in Tables 3.1 and 3.2. For all experimental runs, the
water surface elevation, the water particle velocities and the wave forces were simultaneously
measured with a capacitance-type wave gauge, an electromagnetic-type velocimeter and
cantilever-type wave force meters, respectively. Their time histories over 1 minute were re-
corded on magnetic tapes, and then they are digitized at a time interval of 0.05s.

Table 3.1 Experimental conditions for flow vis- Table 3.2 Experimental conditions for wave
ualization force measurement

h (cm) 45.0 h (cm) 70.0
h/gT* 0.035, 0.020, 0.011 h/gre | 0.054,0.028,0.022,

d/h | 0.222,0.356, 0.711, 0.889 0018, 0.014, 0.011

e e e d/h 0.107 - 0.979

D/ 0.141, 0.056, 0.021 -D/h 0.091, 0.036, 0.014

T -
U TD 17-56 u, T/D 0.4 - 100

3.3 Flow Around a Submerged Sphere

The wave-induced flow pattern around the sphere is found to be classified into four
types;

(a) Oscillating pattern without flow separation (Type-A)

(b) Oscillating pattern with flow separation (Type-B)

(c) Rotating pattern without flow separation (Type-C)

(d) Rotating pattern with flow separation (Type-D)

Schematic illustrations of time variations of the flow patterns over one wave period are shown
in Fig. 3.1. In the figure, numbers in the left column mean the phases of the water surface
profile in the top row. ‘

The oscillating flow pattern is similar to that observed in the oscillatory flow'®. In this
pattern, the horizontal motion of the water particle dominates over the vertical one. When
KCx(= u,T/D) is small, water particles oscillate on the sphere without separation (Type-A).
However, with increasing of KCy, the excursion length of water particle becomes larger and
then the flow separates (Type-B). The vortex ring is formed behind the sphere in every half
cycle in the typical case of Type-B, as shown in Fig. 3.1(b).

The rotating flow pattern appears when the orbit of water particle is not so flat. For
small KCx, a vortex filament is formed on the sphere and it rotates around sphere (see Fig.
3.1(c)). As KCy grows up, vortex filament becomes turbulent and flow separation takes
place. The wake region rotates around the sphere in the typical case. Different from the oscil-
lating flow pattern, no vortex ring is formed in the rotating flow pattern.

The occurrence of the rotating and oscillating flow patterns is largely governed by the ratio
of the vertical excursion length of water particle to the horizontal one, y (=w,/u,,), and the
rotating flow pattern takes place for y>1/2 and the oscillating flow pattern occurs for
y<1/3. In the range of 1/3 < y < 1/2 both flow patterns are observed. This means that the
range of 1/3 < y < 1/2 is the transitional range from the oscillating flow pattern to the ro-
tating one.

Next, let us consider the flow separation which has very significant effects on the maxi-
mum wave force. Figure 3.2 shows the relationship among the flow separation, KCx and Re.
Figure 3.2 indicates that when KCy becomes large, the flow separation takes place. The
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smaller Re becomes, the larger the critical KCyx becomes. This criterion can be given by

Eq.(3.1) in our experiments.

Re = 570000(KCx)~

(3.1)
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Equation (3.1) indicates that the flow separates more easily as the effect of viscosity becomes
smaller for a given KCx.

3.4 Applicable Range of Morison Equation

In the evaluation of the wave force on a small object, the Morison equation is usually ap-
plied. For Fx and Fz on a spherical body, the Morison equations are given as follows;

Fx = % CpxonD’uu® + w’ + % CuxpnD’u (3.2)
Fz = § CogprD W + W’ + L CponD (3.3)

where Cpx and Cp, are the drag coefficients, and Cy;x and Cy7 are the inertia coefficients. In
the Morison equation, only the drag and inertia forces are taken into account, and it is not
applicable when the lift force is dominant wave force component. Thus, the applicable range
of the Morison equation should be discussed. The correlation coefficient, r defined with
Eq.(3.4) is employed to determine the applicable range:

r= 11— (F.(t) — F(t))*/F(t)’ (3.4

where, F (t) and F(t) are the calculated and measured wave forces, respectively, and superbar
means the time average.

The Morison equation is judged, in this paper, to be applicable when r is larger than 0.9,
since the difference between F(t) and F(t) is negligibly small for r = 0.9. The correlation
coefficient r is calculated for all the experimental data. The values of r in the case of the hori-
zontal wave force, Fx, are larger than 0.9 except for the case that the sphere does not emerge
from the wave trough.

The correlation coefficients, r in the case of the vertical wave force, Fz are very scattered
between 1.0 and 0.3 and applicable range of the Morison equation is very limited as shown in
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Fig. 3.3. It can be seen that the Morison equation cannot be applied to evaluate the vertical
wave force on the sphere near the free surface and bottom. In Fig. 3.3(a), the values of
v=1/2 and 1/3 are simultaneously drawn as the dot-dash and broken curves, respectively.
Synthesizing the inapplicable range and these curves, it is clear that the Morison equation
cannot be applied when v is less than 1/3. In other words, the Morison equation is not ap-
plicable when the oscillating flow pattern is formed around the sphere. The applicable range
of the Morison equation in other cases are given in Figs. 3.3(b) and (c).

The reason why the Morison equation cannot be applied may be mainly due to the hori-
zontal velocity-induced lift force. That is, in the oscillating flow pattern, the horizontal mo-
tion of water particle dominates over the vertical one. Therefore the lift force due to the
asymmetrical vortex shedding along the horizontal axis possibly becomes larger compared
with the vertical drag and inertia forces. In addition, as d/h becomes larger, the horizontal
velocities above and beneath the sphere differs largely due to the bottom proximity effect™,
and this asymmetry of the velocities causes the vertical drift and second harmonic forces even
in the unseparated flow.
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3.5 Inertia Coefficient

We discuss here the force coefficients in the applicable range of the Morison equation.
Figure 3.4 shows the relationship between Cyx and KCx. For KCx smaller than 10, Cyx can
be regarded as almost constant and no significant contributions of h/gT?, d/h and D/h are
recognized. On the other hand, in the range of KCy > 10, Cyx decreases a little with increas-
ing KCx and it takes a minimal value at KCyx around 20, and then increases with an incre-
ment of KCy. The minimal value becomes smaller with decreasing of d/h. It is clear that Cyx
varies with KCy when KCy is larger than 10. The flow separation takes place in almost all
cases when KCx is larger than 10, and the pressure distribution on the sphere due to sepa-
rated flow differs from that of the unseparated flow. This difference may characterize Cyx
and the magnitude of Cyx is thought to be controlled by KCx. Comparing our experimental
data with the others’ values measured in the oscillatory flow field"*"'®), there are no large dis-
crepancies among them in the range of 5 <KCy <20.
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Fig. 3.4 Relationship between Cyx and KCy

Relationship between Cyy; and KC,(= w/,T/D) is given in Fig. 3.5. Figure 3.5 indicates
that variations of Cy, with KC; are generally similar to those of Cyx, in the range of
KC;<30. Different from Cyy, the values of Cy, vary with h/ gT2 as well as d/h, and it
seems that the minimal value decreases with decreasing of h/gT”. This would suggest that the
lift force plays an important role in causing the difference between Cyx and Cy.

Our experimental data of Cyx and Cy, are scattered a little. However, the mean values
of these can be well formulated graphically with the function of the dominating parameters,
and they are given in Figs. 3.6 and 3.7.
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3.6 Drag Coefficient

Figure 3.8 shows the relatlonshlp between Cpyx and KCy, in which the values in the oscil-
latory flow expenments 19 are also drawn for comparison. When KCy is less than 5 and the
inertia force largely dominates over the drag force, the drag coefficients are very scattered
and they are not plotted in the figure. It is seen that Cpy is affected by h/ gT? and d/h in the
range of KCyx up to 10. In the case of h/ gT =0.011, Cpx decreases with i mcreasmg KCy. On
the contrary, Cpy i mcreases with an increment of KCy in the cases of h/ gT >0.018. In addi-
tion, the smaller h/ gT is and the larger d/h is, the larger Cpx becomes. When KCy is smaller
than 10, the effect of the flow separation is not so large as already mentioned, and the fric-
tion due to the viscosity which depends on the velocity distribution on the sphere is main
component of the drag force. The velocity distribution on the sphere changes with the ﬂow
pattern characterized by h/ ¢T? and d/h. Therefore, the drag coefficient is governed by h/ gT?
and d/h when KCx is smaller than 10.

The drag coefficient, in the range that KCy is larger than 10, is almost constant and no
significant change due to h/ gT? and d/h is recognized. In this range, the flow separation oc-
curs in almost all cases, and asymmetric pressure distribution due to the flow separation
becomes a leading factor of the drag force in place of the friction. Although the difference in
the vortex ring formation is recognized between the oscillating and rotating patterns, it can be
said that the difference in the asymmetry of the pressure distribution between the two flow
patterns has little effect to the drag coefficient in the range of KCx > 10.

Relationship between Cp, and KC, is given in Fig. 3.9. Different from Cpy, Cp; in the
range that KC, is larger than 10 varies with h/ gT”. This may be largely due to the horizontal
velocity-induced lift force. Except for that, general tendency of Cp; is similar to Cpy.

The mean values of Cpx and Cp, can be well formulated graphically as the functions of
KC and h/gT? and they are given in Figs. 3.10 and 3.11, respectively. Although Cpy and
Cpy are also affected by d/h, its contribution is very small compared with that of h/ gT
Then the effect of d/h is implicitly included in the formulated curves. Using the drag coeffi-
cients given in Figs. 3.10 and 3.11 and the inertia coefficients in Figs. 3.6 and 3.7, the wave
force acting on a submerged sphere can be evaluated with high accuracy in the applicable
range of the Morison equation.
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3.7 Maximum Wave Force

Figure 3.12 shows a relationship between the non-dimensional maximum force in
x-direction, Fx* (=Fx,/p(u V v+ wz)sz) and KCy, in which the maximum and minimum
values of KCx which the flow separation takes place are indicated. The followings can be
pointed out from this figure. The dimensionless maximum wave force in the unseparated flow
field is proportional to (KCX)_I. This means that the maximum wave force is proportional to
the wave height. In the range of 4 <KCx <11, the flow around the sphere separates in some
cases, and the decreasing rate of Fx* with KCx becomes gentle. The flow separates in all
cases in the range that KCy is larger than 11, and Fx* approaches to a constant value. This
implies that the maximum wave force is proportional to the squared wave height. Thus, it is
clear that the maximum wave force is remarkably subjected to whether the flow is separated
or not.

The non-dimensional inertia and drag forces calculated with Cyx=1.2 and Cpx=0.7, re-
spectively, are also shown in Fig. 3.12. Here, Cyx=1.2 is the averaged value of Cyx in the
range of KCx <10, in Fig. 3.6, and Cpx=0.7 is also the averaged value of Cpy in the range of
KCx> 10, in Fig. 3.10. The good agreement between the calculated inertia force and ex-
perimental values in the range of KCx <10 is recognized. Also, the calculated drag force
agrees well with experimental values in the range of KCx > 10. The similar result is obtained
in the case of the z-directed wave force, as shown in Fig. 3.13.
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Fig. 3.12 Relationship between Fx* and KCyx

These results suggest that the wave force can be evaluated with only the inertia force
when the inertia force dominates over the drag force. In this case, the Morison equation can
be simplified as

Fx = 1 CyxpnDn (3.5)
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Fz = ¢ CyzpnD'W (3.6)

Conversely, the wave force can be estimated with the following simplified equations in the
case that the drag force dominates over the inertia force.

Fx = %— CpxonD*uu’ + w? 3.7)
Fz = % CpzonD’wiu’ + w’ (3.8)

The applicability of these wave force formulae will be discussed in Section 3.10.
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Fig. 3.13 Relationship between Fz* and KC;

3.8 Boundary Proximity Effects

Boundary proximity is very important factor for the wave force acting on a sphere, in
particular on the vertical wave force, when it is located near the bottom or free surface boun-
daries. The effects of these boundaries, however, are different each other because the bottom
is a fixed boundary, whereas the free surface is moving one. Thus, in this section, proximity
effects of these boundaries on vertical wave force are discussed separately.
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3. 8.1 Bottom Boundary Proximity

(1) Time Profile

In this case, the time variations of the vertical wave forces can be classified largely into
three types, such as S-type, T-type and R-type, as shown in Fig. 3.14. S-type profile has one
pair of regular maximal and minimal values in one wave period, while T-type profile has two
pairs. This type can be further divided into two types such as T-1 and T-2-types, as shown in
Fig. 3.14(b) and (c). T-1-type has a regular profile and quite similar variations are repeated.
On the other hand, T-2-type profile has different maximal and minimal values. R-type profile
does not show regular peak values. In all the cases, both water surface and water particle vel-
ocity profiles are sinusoidal.

The appearance of these profiles is affected by KCx, D/h and v which is correlated with
h/gT? and d/h. S-type wave force can take place mainly in the case that KCy is less than 4.
In this range, the flow separation does not occur and the inertia force dominates over the
drag one. Moreover, the excursion length of water particle motion is smaller than the sphere
diameter and then the nonlinear effect which causes the second harmonic wave force is not
large. This would suggest that this type of the wave force is little affected by the bottom
proximity.

T-1-type wave force was observed only in the limited range of D/h=0.091 and
4 <KCx <8. Considering that this time variation is regular and the effect of the flow separ-
ation to the wave force is small in that range, the T-1-type wave force may be strongly af-
fected by the lift force caused by the asymmetric pressure distribution due to the accelerated
velocity below the sphere. T-2-type wave force was observed for the larger value of KCy than
that of the T-1-type. Judging from its irregular variation, the lift force caused by the asymme-
tric vortex formation and viscous drag may play important roles.

R-type wave force takes place mainly under the flow condition of large KCx and is
thought to be caused by the vortex shedding or disturbance of the flow along the sphere sur-
face. T-2-type and R-type profiles are apt to appear more frequently as D/h decreases. This
can be due to the fact that the flow around the sphere tends to be strongly turbulent as D/h
becomes smaller'”).

(2) New Formula to Evaluate the Wave Force

The Morison equation can be applied to the S-type wave force. However, there is no
formula to evaluate other type wave forces. T-1-type wave force is characterized by the sec-
ond harmonic component and steady one whose direction is downwards, as shown in Fig.
3.14(b). Near the bottom boundary, the horizontal component of water particle velocity
dominates over the vertical one and the lift force caused by the horizontal component of
water particle velocity plays an important role. The vertical lift force acting on a sphere in the
horizontal flow field can be approximated as following form by extending the potential theory
derived by Lamb'®.

_ 9p’
512¢}

Fz=— é ponD’Cu’, C; 3.9

where e, is the distance from sphere center to the bottom.

The lift force given by Eq.(3.9) is composed of the steady and second harmonic compo-
nents and both components increase as the sphere approaches to the bottom. Figure 3.15
shows the variation of the ratio of the steady component to the total wave force Fz,/Fz, with
e;/D under the condition of h/ gT°=0.018. In the figure, the calculated value with Eq.(3.9)
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are also shown for comparison. Experimental results show that the contribution of the steady
component wave force to the total wave force is very small in the range of ¢;/D> 1.5, but it
becomes remarkably larger with decreasing e;/D in the range of e,;/D < 1.5. These tendencies
agree well with the calculated values based on the potential theory, as shown in Fig. 3.15.
The similar result is obtained for the second harmonic component force. These facts indicate
that the wave force component presented in Eq.(3.9) is possibly included in the wave force
acting on the sphere located near the bottom, although Eq.(3.9) does not satisfy the bound-
ary condition completely. Therefore, it is appropriate to consider that the T-1-type wave
force can be expressed by adding Eq.(3.9) to the Morison equation, Eq.(3.3). This paper
proposes here Eq.(3.10) as a new formula to evaluate the T-1-type wave force.

Fz = % CpzpnD’wiu’ + w* + %— CMZpﬂ:D3v'v
3.10
+1 o mppicyd + 1 ¢ onD? (w2 — ) G40
6“1 T e Lppn iu —u

In Eq.(3.10), the force expressed by Eq.(3.9) is decomposed into two terms which are pro-
portional to the steady and second harmonic components, and C;, and C;, are, respectively,
the corresponding lift coefficients introduced to adjust the effect of the boundary condition
and contribution of the vertical component of water particle velocity to the wave force. In the
case that the drag force is neglected, the following equation is derived from Eq.(3.10).

Fz = £ CyzonD*w + 1 ConD’C® + £ CLpnD’C (v — o 3.11
6 6 6

Comparisons between the measured and calculated wave forces are shown in Fig. 3.16. Three
calculation methods such as Method-1, Method-2 and Method-3 stated below are employed
to estimate the time variation of wave force.

e Method-1: This method uses Eq.(3.10). All the force coefficients (Cpz, Cyz, Cr; and Cyy)
are determined by the least square method.

e Method-2: This method uses Eq.(3.10). The formulated drag and inertia coefficients (Cp,
and C,z) for the applicable range of the Morison equation are employed, whereas the lift
coefficients (Cp; and Cp,) are determined by the least square method.

e Method-3: This method uses Eq.(3.11). The formulated inertia coefficient (Cyz) is em-
ployed, and the lift coefficients (Cp, and Cp,) are determined by the least square method.

It is clear from Fig. 3.16 that the calculated values by means of Method-1 (thin solid line)

agree well with the measured one (heavy solid line), and validity of the proposed formula

Eq.(3.10) can be recognized. Equation (3.10) is found to be applicable to the sphere of

D/h=0.091 under condition that 0.5<e;/D < 1.5 and KCy is approximately from 4 to 10.

Figure 3.16 also shows that Eq.(3.11) can be also applied from practical engineering view-

point. The applicable range of which will be discussed in Section 3.10.

For four coefficients in Eq.(3.10), following results are obtained. The value of Cy, is
confirmed to be close to the formulated values for the applicable range of the Morison equa-
tion™), Regarding the drag coefficient Cpy, they are widely scattered, however, this type of
wave force appears only when KC; is less than 10 and the drag force is dominated by the
inertia force, thus, the contribution of the scattered drag coefficient to the total wave force is
very small. Moreover, the term of the drag force can be neglected without lacking accuracy.
Figures 3.17 and 3.18 show the relationships between C;; and e;/D and between C;, and
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e;/D, respectively. Cp; and Cp, increase with an increment of e;/D. Although the values are
scattered a little, the mean values of C; and C;, can be formulated as follows.

Cp =a(e; /D)’ (3.12)
C,= b(e1/D)2 (3.13)

n/g72=0.011  u,T/D=8.1
D/h=0.091 v=0.043

Fz d/h=0.94
Fig Fzp=1171dyn
0 e,

-1
measured

calculated {Method-1 : Cyz=0.98, Cpz=-1.1, C1=1.2, € 2=0.51 )
—————— calculated (Method-2 : Cyz=1.2, Cpz=0.5, CL1=1.2, € 2=0.51 )
———-—— calculated {Method-3: Cyz=1.2, Cpz=0.0, C1=1.2, Crp=0.51 )

h/gT2=0.011 uyT/D=10.0

1 D/h=0.091  y=0.045
Fz d/h=0.94
Fzm Fzp=1487dyn

measured
———— calculated (Method-1 :Cyz=0.71, Cpz=-0.99, € 1=1.19, C p=0.52 )
—————— calculated (Method-2 : Cyz=1.2, Cp,=0.5, C{1=1.19, C|=0.52 )
——-—— calculated (Method-3: Cyz=1.2, Cpz=0.0, CL1=1.19, C2=0.52 )

Fig. 3.16 Comparisons between measured and calculated wave forces

Cui F T T T A T
L 0/h=0.091 :

50+ mean value —

I h/gT2=0.028 — — ]

F =0.018 —-- -~ b

=0.011 ———
RO~

10

T T
Lot

on the
5“ bottom C:/ // ) ]
Ay 2515075
L : n/gT2 i
5/// sl 7!5 : )
L b 0.028|-® |[-0- |- | |
0018/ ¢ |0 | ¢
: 0.011}¢- |9 |4
1 N e B
0.1 0.5 1 5 10
e1ﬂ3

Fig. 3.17 Relationship between C,; and e;/D



Wave Force Acting on a Submerged Sphere 117

Cinr T T
YL 0/h=0.091 g ]
- mean value
50+ { .
O h/qT2=0.028 — —
=0.018 —~——w_ | |
r =0.011 —0 |
I &
10 7
5? on the : umT/D —_
bottom: 2{2.5[5.007.5
h/gT J
" C—;/() sholrls| !
I s 0.028|-0 |0 |-e | |
: 001819 | ¢ |e
0011 ][4 |4
1 L NI RN
0.1 0.5 5 10

e1AD
Fig. 3.18 Relationship between C;, and e;/D

where a and b are the coefficients taking a=10.1 and b=8.3 for h/ gT7=0.028, a=11.6 and
b=6.2 for h/ gT2=O.O 18 and a=6.8 and b=4.4 for h/gT°=0.028.

Concerning the T-2 and R-type wave forces, it is hard to propose an estimation formula,
since the wave forces are strongly affected by the vortex formation and shedding and their
mathematical modeling is very difficult. Treatment such wave forces will be discussed in Sec-
tion 3.9.

3. 8.2 Free Surface Proximity
(1) Time Profile

Time profile of the vertical wave force on a sphere located near the free surface can be
classified into two types, such as S-type and T-type. Figure 3.19 shows the time variations of
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Fig. 3.19 Time profiles of surface elevation and vertical wave force (near free surface)
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the water surface elevation and T-type vertical wave force. T-type wave force has a minimal
value at the phase of the wave trough. Based on the visual investigation, the disturbance was
observed on the free surface when the free surface approaches the sphere. This would suggest
that the T-type profile is caused by the lift force due to the free surface proximity. On the
other hand, S-type wave force is dominated by the drag and inertia forces rather than the lift
force caused by the free surface proximity, and therefore the free surface proximity may not
be important so much to this type wave force.

The appearance range of both types are almost defined by KC,, e,/D (e, : distance from
sphere center to wave trough) and v, as shown in Fig. 3.20. T-type wave force is apt to ap-
pear as e,/D decreases and it hardly occurs in the case that e,/D > 5.0. When v is larger than
0.7, T-type wave force is not observed even for the case that e,/D is less than 5.0. This may
be due to the following reason. That is, the vertical particle motion becomes larger with an
increment of vy and the vertical drag and inertia forces become dominant over the lift force
caused by the free surface proximity. In particular, T-type profile is not observed for a small
sphere (D/h=0.014), for which KC; is larger than 20-and the vertical drag force is much
larger than the inertia and the lift forces caused by the proximity effect. From this result, the
free surface proximity effect on the wave force may be negligibly small for the condition that
KC; is larger than 20.

As shown in Fig. 3.19, the downward force acts on the sphere at the phase of wave
trough due to the water surface proximity. Therefore, in the case that the inertia force domi-
nates over the drag force, the lift force diminishes the positive maximum vertical wave force.
On the other hand, in the case that the drag force is predominant over the inertia one, the
free surface proximity affects little the maximum vertical wave force, since the lift force acts
at the phase of wave trough at which the vertical velocity is zero. Therefore, the absolute
value of the maximum vertical force is hardly affected by the free surface proximity.
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Fig. 3.20 Appearance range of S-type and T-type wave forces
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(2) Characteristics of T-type Wave Force

The spectrum analysis has revealed that T-type wave force are mainly composed of the
fundamental and second harmonic components2 ). The fundamental harmonic component
force is closely correlated with the drag and inertia force and the second harmonic compo-
nent is controlled by the lift force caused by the free surface proximity.

Figure 3.21 shows the variation of the amplitude of the second harmonic component
normalized by the buoyancy of the sphere, Fz,*, with e,/D. Fz,* tends to increase with de-
creasing of D/h and h/gT’, and Fz,* decreases as e,/D increases for given values of D/h,
h/gT? and d/h. From these results, the following relationship can be derived.

Fz,* = (e,/D) > (3.14)

The relationship between Fz,* and KCy is shown in Fig. 3.22. Fz,* becomes larger with
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increasing KCx for given D/h and e,/D, and it can be seen that the Fz,* is proportional to u’
as shown by the solid lines, which leads to the following relationship.

Fz,* o< u’ (3.15)

(3) New Formula to Evaluate T-type Wave Force

Kim®" discussed the effect of the existence of the free surface to the force acting on a
sphere in an uniform flow field and pointed out that the lift force exerts on the sphere due to
the interaction between the sphere and the free surface. He showed that the lift force is pro-
portional to (e,/D)” * and u” in his first order solution. The results obtained in this study are
very close to his results. Although his result is only applicable to the uni-directional flow
field, it can be assumed that the similar phenomena occur in the wave field, since the water
particle motion is only horizontal at the phase of wave trough. It is therefore reasonable to
employ his relationships to build a new formula to evaluate the T-type vertical wave force af-
fected by the free surface proximity. This paper proposes Eq.(3.16) as a new formula to
evaluate the T-type wave force.

= § CDanD wiu® + w’ + = CMan:D W
(3.16)

1 D V\
+§§CL3an2u2(n +d)

where, Cy; is the lift coefficient. In the equation, the third term of the right hand side repre-
sents the lift force caused by the proximity of the free surface. (n+d) is adopted instead of e,
so as to introduce the time variation of distance between the sphere and the free surface. The
calculated wave force is compared with the measured one in Fig. 3.23, in which the force
coefficients are determined by the least squares method. It can be said that the agreement be-
tween measurements and calculations is very good, although some minor discrepancy is rec-
ognized at the phase of wave trough. Equatlon (3.16) is found to be applicable to the wave
force under the conditions that h/gT><0.022 and 0.5<e,/D<5.0 (approximately corre-
sponding to ¥ <0.7), and that the drag force does not dominates™.
If the drag force is negligibly small, Eq.(3.16) can be simplified as

3
Fz= % CyzpnD’W + 25 CLgan2u2(n e d) (3.17)

Applicability of this equation will be discussed in Section 3.10.

(4) Coefficients in the Formula

The relationship between Cy;; and KC, is shown in Fig. 3.24, in which the formulated
value of Cy for the applicable range of the Morison equation is also shown as a solid line.
Although the experimental condition is different a little, the inertia coefficient obtained in the
present study corresponds well with the solid line. Figure 3.25 shows the relationship between
Cpz and KC,, in which the sohd lines are the formulated values for the applicable range of
the Morison equation for h/gT°=0.018. The present experimental results for h/gT?=0.018
agree well with the solid hne Because of lack of the data in the applicable range of the Mori-
son equation for h/gT’=0.022 and 0.011, further detailed discussion cannot be done.
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However, Cp, for h/ gT2=O.022 are also close to those for h/ gT2=O.O 18. Cp; for
h/gT?=0.011 are smaller than those for another cases, but the tendency of the variation with
KC; is in good agreement with those in other cases. Judging from these results, it can be said
that the drag and inertia coefficients formulated in this study for the applicable range of the
Morison equation can be applied to those in Eq.(3.16).
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Fig. 3.23 Comparison between measured and calculated wave forces
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The relationship between the lift coefficient, C 3 and e,/D is presented in Fig. 3.26. C;5
increases with an increment of e,/D. For a fixed value of e,/D, Cy; tends to be larger as
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h/gT? increases. This may be due to the vertical particle motion which is not included in the
lift force in Eq.(3.16). The mean value of C;; can be formulated by the following equation,
as shown in Fig. 3.26.

13 = a(e,/D)’ (3.18)

where a is a coefficient and takes 5.2 for h/ gT2=0.022, 4.4 for h/ gT2=O.018, 2.8 for
h/gT*=0.014 and 1.8 for h/gT?*=0.011.

3. 9 Estimation Method of R-Type Wave Force

Estimation methods of wave forces have been discussed in the preceding sections. How-
ever, it still remains the ranges in which there is no available estimation method for the verti-
cal wave force. In the ranges, the time history of the vertical wave force is irregular even
under a regular wave train (e.g., see Fig. 3.14), because irregular vortex shedding strongly af-
fects the wave force. This would suggest that a stochastic treatment is much superior to the
deterministic method, like Morison-type equations, in the estimation of the irregular wave
force. Therefore, in this section, probability distributions of the wave force and its period are
discussed.
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3. 9.1 Method of Analysis

In this study, the total amplitude of the vertical wave force and its period are treated. As
shown in Fig. 3.27, the period is defined as the time duration between successive two zero-
up-crossing points and the total amplitude is defined as the difference between the maximum
and minimum values in one period. The probability density of the dimensionless amplitude
Fz,/Fz, and its dimensionless period T,/T are calculated, where Fz, is the rms value of
Fz. The Weibull distribution is employed to express the probability distribution, since there is
good agreement between the experimental results. The Weibull distribution is given in the
following form.

— B . \B
p(&) = %(g p Y) eXp{—(jé o Y)

where o, 3 and vy are the scale, the shape and the location parameters which indicate the
width, the shape and the minimum value of the distribution, respectively. & is the variable and
Fz,/Fz.,, and T,/T are taken in place. In this study, the quantities regarding the amplitude
and the period are distinguished with subsuffixes F and T, respectively.

All these parameters are determined by the least square method. Figure 3.28 shows the
relationship between B and KCx. Most of By gather near 1.5, however, some of B scatter
widely. Figure 3.29 shows two typical distributions of the period for both large and small
values of 3. The figure shows that there is no significant difference between both experimen-
tal results despite the large difference in B values. The best fitted Weibull distribution for
large PBr, however, shows that the corresponding vy are too small compared with the ex-
perimental value. This would suggest that By is given by a constant value and the appropriate
value of Bt is around 1.5. Similarly, it is confirmed that f; is almost constant, although it
scatters more than B1. Thus, the least square fitting is performed again under the given shape
parameters, 31 and Bg.

Figure 3.30 shows typical time profiles of the vertical wave forces. As shown in the
figure, it is found that the time profile of the vertical wave force can be classified into two
types, that is RE-type in which a similar variation is repeated and IR-type which shows a
quite random variation. The RE-type wave force may occur under the influence of significant
lift force but still the drag and inertia forces dominate over the lift force. The IR-type wave
force is considered to be governed by the irregular lift force which dominates over the drag
and inertia forces.

(3.19)

Fz 4

Tp

Fig. 3.27 Definition of Fz, and T,



Wave Force Acting on a Submerged Sphere 125

16.0 T T T T T T T
Br . .
14.01 . E
.. b L]
12.0F . o . E
- * L]
10.0} E
L
e
8.0f . ]
L]
6.0F 9
° .
L] L]
4.0f .
. By=1.5
2.0k 2z om L "as 3 e N
4 . . . L WL T S I
B o L ks P 2 T S
0.0 L L 1 L 1 L !
0 10 20 30 40 0 60 70 80
KCx (up?/D)
Fig. 3.28 Relationship between 1 and KCx
p(Tp/TH[ p(Tp/T)
6.0 m-] 6.0 F m
5.0} 5.0 ;
a.0f a0t &
3.0f 3.0F
2.0 2.0
1.0f 10§
0.0 . L \ 0.0 y T \
0.0 1.0 Tp/T 2.0 0.0 1.0 To/T 2.0
(a) pr=1.7 (b) Br=14.8

Fig. 3.29 Typical distributions of T,/T

1
fz
Fzp

| W”Aw VA

e

(a) RE-type
1
fz
FZmoll:/ \/A lﬂ\\//\A\i/ %
B (b IR-type

Fig. 3.30 Time profiles of R-type wave force



126 K. Iwata and N. Mizutani

These types of time variation does not affect the vales of 1 and By, however they may
affect other parameters. Thus, the least square method is performed for each type of wave
force in order to discuss the properties of the Weibull parameters in detail.

3. 9.2 Width Parameter

The relationship between oy and KCy is shown in Fig. 3.31. In the least square fitting,
Pr is chosen as 1.26 for the RE-type and as 1.34 for the IR-type by taking the average of ex-
perimental values for each type of wave force. ap of the RE-type is almost less than 0.1,
which means that the width of distribution of the period is quite narrow. In this type of wave
force, the drag and inertia forces, which have the same period as the incident wave period,
are dominant components. Thus, the period of the RE-type is almost constant and equal to
the incident wave period, as already discussed in Section 3.9.1. On the other hand, ay for the
IR-type is widely scattered. This implys that the period of the IR-type varies according to
wave by wave. However, it can be seen from the figure that a; converges as KCy becomes
larger. This may show that the stable vortex shedding is formed under the flow with larger
KCx than 30.
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The relationship between o and KCy is shown in Fig. 3.32, in which B is chosen as 1.0
for both the RE-type and IR-type. The values of oy of the RE-type are small and scatter a
little around 0.5. This means the amplitude of the RE-type profile is quite narrow as long as
the drag and inertia forces dominate over the lift force, although it is not constant because of
the lift force. On the other hand, values of ay of the IR-type is larger than those of the RE-
type. That is, the width of distribution of the amplitude becomes very large when the lift force
dominates over the drag and inertia forces. The distribution width of o seems to converge as
KCy increases. This may be due to the fact that the asymmetric vortex shedding becomes
stable as KCy increases.

3. 9.3 Location Parameter

The relationship between yr and KCy is shown in Fig. 3.33. Clear difference in vy be-
tween the RE-type and IR-type is confirmed. v, for the RE-type scatters a little around 1.0,
which means that the period of the wave force coincides with the incident wave period. On
the other hand, it can be seen that yy of the IR-type decreases with an increment of KCy and
it approaches 0.2, indicating that the period of the vertical wave force decreases with the de-
velopment of the irregular vortex shedding. Thus, it can be pointed that the lift force due to
the irregular vortex shedding shortens the period of the vertical wave force.

It is found that the mean value of yr of the RE-type is 1.43 and that of the IR-type is
0.47. As stated in Section 3.9.1, the location parameter represents the minimum wave force.
Regarding the wave force, however, the value we are interested in is the maximum value.
Thus, another calculation is performed using the inverse value of the non-dimensional maxi-
mum amplitude, Fz,,,/Fz, The value of the location parameter, y¢, under this condition,
gives the maximum value of the amplitude. The relationship between y¢" and KCy is shown in
Fig. 3.34. y¢ of the RE-type seems to be independent of KCy and can be approximated as a
constant value of 0.3. This shows that the maximum amplitude is almost three times the rms
value. Regarding the values of vy for the IR-type, most of them are scattered around 0.2.
However, some of them are about 0.1, which means that the maximum amplitude may take
about ten times the rms value of the vertical wave force.
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3. 9.4 Estimation method of Irregular Wave Force

The six parameters of the RE-type (o, Br, Y1, 0 Br and yg) are independent of KCx
and can be regarded constant. Thus, the mean probability distribution of the amplitude and
the period can be determined using their mean values. Regarding the IR-type, the six par-
ameters are scattered more than those of the RE-type, however, it is recognized that the
widths of their distributions become narrow as KCy increases. Considering that the large
wave force is generated under the condition of large KCy, the mean shape of distributions of
the amplitude and the period can be also formulated using their mean values from an engin-
eering point of view.

The mean values of the parameters of the Weibull distribution are given in Table 3.3.
Using these parameters, the mean shape of the Weibull distribution can be obtained by the
following expressions.

Table 3.3 Mean values of Weibull parameters

RE-type IR-type
O 0.43 2.24
Br 1.0 1.0
Ye 1.43 0.47
o 0.04 0.33
By 1.26 1.34
Yr 0.94 0.23
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For RE-type wave force;

e e B s I G

p(;ztzis)=0_i§exp{“(FZp/onrtnj3— 1.43)] (.21
For IR-type wave force;

ofo)-ss ) e )T e

o) =z 15 62

Figure 3.35 shows comparisons between experimental and proposed distributions of
Fz,/Fz.,. Although there are some discrepancies between them, the proposed model can
evaluate adequately the experimental results. Thus, it can be concluded that the expected
statistical values like the one-third highest and the mean vertical wave forces can be evaluated
with this method.
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Fig. 3.35 Comparison between proposed model and experimental value
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3. 10. Applicable Ranges of Wave Force Formulae

We have shown that the Morison equation, which is proposed originally for the estima-
tion of the wave force on a vertical cylinder, is effective for a case of a submerged sphere.
However, it is also revealed that this formula cannot always be applied in the evaluation of
the wave force, and new formulae have been proposed in this study. For practical use, it is
convenient to show the applicable ranges of these formulae graphically. Moreover, it is useful
to discuss the applicable ranges of simplified formulae as well. In this section, the applicable
ranges of wave force formulae and their simplified forms are discussed so that one can easily
understand how to evaluate the wave force under a given condition.

In the determination of the applicable ranges, the correlation coefficients, ry, and rp,
defined by Eqs.(3.24) and (3.25) are employed.

o {Eu(t) — Ex(t)}/Fr(t) (3.24)

Ip = Jl — (Fp(t) — Fr(t))’/Fx(t)’ (3.25)

where, Fy(t) and Fp(t) are the forces evaluated with the simplified formulae by neglecting the
drag and inertia terms, respectively, and Fy(t) is the wave force evaluated without any simpli-
fications. The correlation coefficient of 0.9 is chosen as the critical value, which is the same
value that determines the applicable range of the Morison equation.

Summarizing these results, Figs. 3.36 and 3.37 are obtained. In the figures, the wave
breaking condition was calculated with Miche’s breaking limit. Similar figures are obtained
for different conditions, however they are not shown here because of the limited space.

The critical value of KCx of the applicable range of the inertia and drag terms for Fy are
almost constant, that is KCx=7 and =30, respectively. On the other hand, in the case of F,,
they are not constant, but decrease with an increment of submergence depth of the sphere.
This is due to the contribution of horizontal water particle motion to the drag term.

From Fig. 3.12, which shows the relationships between the non-dimensional maximum
wave force and KCy, it is clear that the inertia force is much larger than the drag force when
KCx is less than 7. Conversely, the drag force greatly dominates the inertia force when KCy
is larger than 30. This presents that the critical lines in Fig. 3.36 adequately show the range in
which either the inertia term or the drag term can be neglected in estimating the wave force.

Regarding the vertical wave force, the validity of the critical lines in the Fig. 3.37 can
also be confirmed from Fig. 3.13.
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3. 11 Conclusions

1) The wave-induced flow around the sphere can be classified into four types, such as the os-
cillating patterns with and without the flow separations and the rotating patterns with and
without the flow separations, and their appearance ranges are revealed.

2) In the unseparated flow, the maximum wave force is proportional to the wave height. On
the other hand, the maximum wave force is in proportion to the squared wave height
when the flow is separated.

3) New equations to evaluate the vertical wave force affected by the bottom and free surface
boundary proximity are proposed. These equations estimate well the measured wave force
affected by the boundary proximity effects.

4) The inertia and drag coefficients in applicable range of the Morison equation, and the lift
coefficients for proposed formulae are formulated graphically.

5) The applicable ranges of the wave force formulae and their simplified forms are shown
graphically.

4. Concluding Remarks

The wave forces acting on a submerged sphere in the regular wave field have been dis-
cussed theoretically and experimentally in this paper. When the size of a sphere is large com-
pared with the wavelength, the diffraction force is dominant. The diffraction force can be
evaluated by means of numerical analysis and the Source Distribution Method (the SDM)
based on the linear wave theory is shown to be useful method with enough accuracy, except
for the vertical force on a sphere which emerges from the wave trough. The ranges in which the dif-
fraction force is dominating have been shown based on the numerical analysis.

For the case of a small sphere, the Morison equation is applicable in estimating the hori-
zontal wave force. In its application, the drag and inertia coefficients should be carefully
chosen. This study gives such coefficients as a function of KCyx and h/ gTZ. In the estimation
of the vertical wave force, the Morison equation cannot always be applied and its applicable
ranges is revealed. For the vertical wave forces in inapplicable range, the new estimation
methods are proposed. Moreover, the wave force coefficients of these formulae are also
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formulated. For practical application of these estimation methods, some simplifications with-
out lacking accuracy are possible. This study has also investigated the applicability of simpli-
fied formulae.

The accumulated knowledge about the wave force on a submerged sphere by past re-
search has been limited and not been enough to reflect on the practical design. This study
covers over whole ranges in which the diffraction force is essentially important and the drag
and inertia and lift forces are dominant and compensates the shortage of past research. Thus,
it enables the designers and field engineers to evaluate the wave force acting on a submerged
sphere.
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