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Abstract

In this research, we investigated the influences of the distortion of the flow
generated by a sphere on the behaviors of velocity turbulence and plume diffu-
sion. The incident turbulent flow was created by a biplainer square grid, so that
the turbulence intensity decays downstream but the velocity field can be recog-
nized roughly isotropic in the upstream region of the sphere. The diffusion field
is an axisymmetric point-source plume which develops in this decaying grid tur-
bulence and runs against the sphere frontally.

Before giving the concrete experimental results and discussions, a general
explanation on the effect of an obstacle on the turbulent diffusion is provided
and the scientific significance of this research is clarified. In the second chapter,
after an account of experimental instruments, the details of the conventional
statistics of velocity and concentration field are provided. Special concerns are
given to the variations of the velocity and concentration fluctuation intensity
near the stagnation point. It is shown that the balance equations of velocity and
concentration fluctuation intensity are very useful to understand these phe-
nomena. In the third chapter, discussed are mainly the radial distributions of
conventional and conditional statistics of concentration field around the sphere
and the variation of the concentration detecting frequency along the stagnation
line. The data are summarized by imaging a striation structure of a diffusing
plume. The final chapter gives a detailed examination of the fractal feature of
sets of iso concentration points taken from data on the stagnation line.
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1. General Introduction

1.1 The aim of this research

The problem of turbulent diffusion firstly developed by Taylor' " has two facets, the one
is related to the informational aspect that is to determine the transfer probability of fluid par-
ticles'™ and the other is concerning to the real world that is pollution in our environment'™,
various chemical reactions such as burning, effective mixing and so on. Of course these two
facets are intimately related with each other from the viewpoint of fluid mechanics. Since the
importance of both theoretical and practical sides, the turbulent diffusion has attracted many
research workers. Historical review of it is given in Monin and Yaglom’s book'? and also the
works of Sakai', Tsunoda"™ and Liu"® may be useful.

Environmental situation is complex then very many conditions affect turbulent diffusion
significantly, the one of which is the geometrical shape over which diffusion proceeds. Build-
ings"™ 7 hills"? ") in the atmosphere and various structures in the ocean' "' have
strong effect of pollutant diffusion. Most prominent effect of these situation can be studied in
the case of turbulent diffusion around a simple body, for example cylinder, sphere, cube and
SO on.

In general, an obstacle causes three kinds of phenomena affecting turbulent diffusion,
these are;
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1-5),1-11)
1-5),1-12),1-13)
1-3),1-5),1-8)

(1) flow separation from the body

(2) distortion of flow field by the body

(3) effect of the wall surface of the body
Group of the first are increase of turbulence intensity through the instability of separated
shear layer, recirculation of mean flow, meandering of diffusion cloud by Karman
vortex" DI and down wash induced by reattachment'*»''¥). The second means not
only the rapid spreading of cloud by the obstacle but also changed turbulent field by distor-
tion appreciably affects the diffusion 1IN TIB) The most important effect of the
third comes from the appearance of the stagnation pointl'j)’l'ls) which is referred as stagna-
tion point effect in what follows. Examples are diffusing cloud flapping induced by the fluctu-
ation of stagnation point positionl'm and striation effect' >""'*" (see also chapter 3).

In Figure 1.1, the regions where these three effects appear in the flow field around a
body are depicted schematically. The effect of the flow separation is observable in the rear re-
gion of the body, but the effect of flow distortion is evident mainly in somewhat far region
from the body in front of the separation and final wall effect is naturally strong in the very
near wall region. Note these three effects have overlap region then to separate each effect
completely is usually impossible. Many researches have been reported on the effect of separ-
ation, for example, diffusion around cylinderl's)’l‘l1)’1'25), disc"* ) cube' ') and hill”
8),1-30) were studied.

In this research, our aim is to investigate the interaction between a non-buoyant plume in
the grid-turbulence and a sphere, typical three-dimensional body.

- Separation

Fig. 1.1 Sketch of the flow field around a body.

1. 2 The influence of flow distortion produced by an obstacle on the material diffusion

Since diffusion process is controlled by the turbulent structure, we summarize at first the
effect of flow distortion on the turbulence. This problem appeared in the history of fluid
mechanics as how to reduce the turbulent intensity in a wind tunnel and Prandtl pioneered to
solve this problem'™". Afterwards Ta lor'*? and also Batchelor & Proudman'"> analyzed
the same flow situation. Townsend'>”, Tucker'>* examined this problem experimentally.
The concept of rapid distortion is a key to solve this problem and the fundamental assump-
tion of the rapid distortion theory is that when the mean flow changes so quickly one can
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neglect every non-linear interaction between turbulent eddies and the action of viscosity
while the distortion occurs''®'"'¥,
The assumption is valid under the following conditions;

T,~ LJU<T,~T,~ L/u (1.1)
Re=UyL,/v> 1, Rey=uL/v>1 (1.2)
iU, <1 (1.3)

where T,, T, and T, means time scale of duration of distortion, time scale of flow filed (which
is time scale of non-linear interaction of the eddies), and viscous dissipation scale respec-
tively. L; and L are scale of flow field where distortion occurs and integral scale of turbulence
respectively. U, and «’ are representative mean velocity and rms value of turbulence respec-
tively. The other notations’ meanings are evident. The relationship T, ~ T, is inferred from
the condition Re; > 1. In this case we can use well known Taylor’s estimation &, ~ u”/L,
then T, ~ w’/e; ~ L/u' ~ T, follows.

If conditions (1.1,2,3) are satisfied we can linearize Navier-Stokes equation'"®. Fre-
quently linearized perturbed vorticity equation is used, that is;

0+ (U V)o = (0-V)U (1.4)
where instantaneous vorticity is decomposed as mean vorticity Q and fluctuating vorticity w.
The idea of rapid distortion originated from Prandtl and theoretical treatment of the theory
was due to Bachelor & Proudman''”. Much development of the rapid distortion theory was
estab}i%ed by Hunt and also he applied this theory to the turbulence field around a bluff
body .

His main results shows that the streamwise turbulent velocity intensity changes as follow-
ings;
a) if L/L; << 1, it increases as we approach the stagnation point,
b) if L/L,; > 1, it decreases as we approach the stagnation point and
c) if L/L; ~ O(1), when we are approaching the stagnation point, at first it increases and
then decreases near the stagnation point.
Hunt explained these variation using the concept of blocking that is, turbulent large eddy can
not maintain its free rotation if the distance between the eddy and the body surface becomes
smaller than the eddy scale''®. Predictions of Hunt were confirmed by Bearman'™> and
Britter, Hunt & Mumford'>®. Also related phenomena are examined by Gutmark, Wolfstein
& Wygnanski'™” using impinging jet, by Hunt, Rey & Arbey1'38) in case of stagnate region of
a flat plate held perpendicular to the main flow in a wind tunnel. But no report treating
three-dimensional case appeared without our’s""® which will be discussed in detail in the
next chapter.

Material diffusion field around two-dimensional bluff body has been examined theoreti-
cally by Burger' ™, Stumke'*” and Hunt & Mulhearn'"?. It is considered that Hunt & Mul-
hearn’s analysis is most advanced but they still use following simplified assumptions,

WUy < 1 (1.5)
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(Uo/wo)’D/LyUp) << 1 (1.6)
(L/w)/(LpUy) < 1 (1.7)

where D is molecular difusion coefficient and L is the representative streamwise length of
the body. Eq. (1.6) is required to neglect the molecular diffusion comparing turbulent diffu-
sion and Eq. (1.7) means the presupposition of the rapid distortion theory. Main result of
Hunt and Mulhearn can be stated as follows: provided that a line source or a point source is
located on the stagnation streamline and far from the body, the decaying rate of mean con-
centration is relatively small than that of without the obstacle but near the obstacle the rela-
tionship is inverted that is the former decaying rate is larger than that of latter. In the case of
point source this trend is more evident. Diffusion field around a circular cylinder has been
studied by Puttock & Hunt''", and by present authors'™". Results obtained in these studies
have confirmed well Hunt & Mulhearn’s theoretical predictionl'm. Simplified considerations
are given in Hunt’s and also Hunt & Britter’s papersl‘lz)’l'“), but until now no experiment has
been done except our research'™'?).

1.3 The construction of this study

In the experiment described in the next chapter, a sphere is placed in the decaying grid
generated water turbulence and a point source axisymmetric plume of dye solution is diffus-
ing along the stagnation line of the sphere. Mean velocity field, fluctuating velocity distribu-
tion are measured and mean rate of strain field is examined. Mean and fluctuating concentra-
tion fields are measured in detail and the effect of mean flow field distortion induced by the
sphere on the concentration profile is discussed using the concentration equation. In chapter
3, concentration data are analyzed and the probability density function (hereafter referred as
pdf) of concentration fluctuation is shown in front of and around the sphere. Also higher
order statistics are discussed. Integral and dissipation scales of concentration are obtained and
the relationship between them and the effect of distortion of the flow field is studied. Fractal
property of the fluctuating concentration in a turbulent flow is the one of the recent topics in
the field of diffusion study, in chapter 4 fractality of diffusing plume is clearly exhibited and
the effect of flow distortion from the sphere on the fractal dimension is clarified.
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2. FEffects of Distortion of Mean Flow due to a Sphere
on Turbulence and Concentration Field

2.1 Introduction

In recent years, studies on the changing process of turbulence caused by the distortion of
the mean velocity field have been steadily increasing2'1)~2“8). The strong diffusivity of tur-
bulence, which gives rise to rapid mixing of matter, is one of the most important features of
all turbulent flows, and so it is expected that the distortion of the flow must certainly have di-
rect influences on the diffusion process of matter”. In reference to the flow field around ob-
stacles, Britter et al.”'” and Bearman” " have obtained the turbulence statistics around a cir-
cular cylinder and a two-dimensional flat plate, respectively. Man;f investigations have been
conducted on the diffusion process of matter for cases of cylinders HTEDZIDIL) ridges®Y,
disks” !9, buildings® >, hills” ' "**, and such (see chapter 1). However, the effect
of turbulence distortion by the mean flow upstream of these obstacles has hardly been inves-
tigated. Also, to our knowledge, there are still very few studies on the concentration fluctua-
tion field around obstacles except two dimensional limited case”™ ¥, Various theoretical
analyses” ?#2972) o two-dimensional obstacle problems have been presented, but
comparison with the experimental results has been insufficient. Theoretical studies on three-
dimensional body problems have also displayed little progress to date. In this research, as a
first step to further research on three-dimensional problems, detailed experimental investiga-
tions have been carried out in the fields of velocity and concentration around the sphere.
Special attention has been given to the varying process of streamwise turbulence and the con-
centration fluctuation intensities along the upstream stagnation streamline. The respective bu-
dget equations have been used to explain these curves.
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Nomenclature of chapter 2

X, y,z2 : main streamwise, horizontal and vertical coordinates (see Fig. 2.1)
r 0 : radial coordinate and zenithal angle (see also Fig. 2.1)

U w : x, z components of the mean velocity vector

Uy : mean velocity of the main stream

u :  main streamwise velocity fluctuation rms value

r,y ! mean concentration and concentration fluctuation rms value

T; : initial concentration at the nozzle exit

d a : diameter and radius of the sphere

subscript

c : value on the plume axis

2.2 Experimental instruments and coordinate systems

Figure 2.1 shows the experimental arrangement and the coordinate systems used. For
experimental instruments, a water channel with a 250 mm X 250 mm cross-section and a
1920 mm length was employed. At the entrance to the channel, a biplanar square grid with a
mesh size of 10 mm and a bar diameter of 2 mm were installed so that roughly isotropic tur-
bulence was generated downstream of the grid plane. Diffusion material (a water solution of
direct dye, Lionol blue (C.I. Direct Blue 86, C.1.74180)) was released from a nozzle 2 mm in
diameter, which had been soldered to a pipe that itself provided one of the vertical bars. The
release velocity was adjusted to 1.7 times the mean velocity of the main stream to compen-
sate the flow for the defect of the mean velocity caused by the wake of the nozzle body. The
maximum initial concentration of this dye solution was adjusted to I'; = 1.0 g/1 in the present
experiments, so that the maximum density of diffusing material is about 1.001 g/cm”. Conse-
quently, the difference between diffusing material and surrounding pure water is very small
and its effect on the concentration field is almost negligible.

Head Tank

| { ] {
I )
n=§=l=}=}lll:
LT
#Iv/‘llw
~ o L

Fig. 2.1 Experimental arrangement and coordinates.
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As shown in Fig. 2.1, a sphere with a diameter of 60 mm was supported by a brass rod
14 mm in diameter and 221 mm in length, which had been fixed to the stay in the cross-
section of the main streamlines. This sphere is movable in y and z directions, so it is easy to
adjust the cross-sectional position of the sphere to ensure that its center is located on the axis
of the plume. The location of the sphere downstream of the grid plane was 600 mm. Axisym-
metries of the velocity field and the concentration field were ascertained by a preparatory test
in the cross-section 4 mm upstream of the stagnation point of the sphere. The Reynolds num-
ber Re,, which is defined by Re, = U,d/v, was about 5960; calculated from the main stream
velocity U, = 12.9 cm/s, the diameter of the sphere d = 60 mm and the kinematic viscosity v
of water at 10°C, which is 1.307 X 10~°m?*/s. Furthermore, to maintain the steadiness of the
mean velocity field, the depth of the water was kept at 160 mm.

Another important parameter which gives much influence to the fine scale structure of
concentration field is the molecular diffusivity of dye D. Although the precise value of mole-
cular diffusivity is unfortunately unknown, here the molecular Schmidt number S, = v/D is
supposed to be about 3.8 X 10°%7),

For the mean velocity measurements, we used a Laser Doppler velocimeter” " (KANO-
MAX, Model 27-0900 series) equipped with a frequency shifter (KANOMAX, Model 27-
0980), and for the turbulence intensity a normal “I”-shaped hot-film probe was chosen (TSI,
Model 1210-60W; sensor element diameter, 152 um). To measure the mean concentration
and the concentration fluctuation we adopted an optical fiber probez'zs), by means of which
the concentration levels can be determined from the Lambert-Beer’s law. A brief sketch of
the sensor of the optical fiber probe is given in Fig. 2.2. Laser beam produced by a semicon-
ductor laser diode, passing through the optical fiber of ¢0.1 mm is reflected at the tip of the
probe by the chromium-coating, and is then led to the sensing part, where the light is ab-
sorbed by the diffusing material. The light power spectrum of semiconductor laser has a peak
value at a wavelength of 670 nm, where the diffusing material, the Lionol blue dye solution is
found to have its best absorbability. The output laser light, carrying information about the
concentration field, is guided to a photo-diode, by which the light signals are converted into
electric ones. The sampling volume of the probe is estimated at 2.4 X 10~%cm’, and the spac-
ing between two fibers at the tip of the probe is about 0.3 mm. Because the Kolmogorov scale
is 1 mm or so (see section 4.2 in chapter 4), this probe is expected to be sufficiently resolutive
to investigate the fine structure of the diffusion field around the Kolmogorov scale.

CrFilm Fiber Optics #014 Polyimide Cover 8017

1~4

Diffusing N

Matter S\~  Sampling Volume : V, = 2.4x 107% cm?
"-EE}— Photo Diode

Fig. 2.2 Schematic sketch of the light probe for concentration measurement.
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Several important parameters” >??*?% of the velocity field and the concentration field
in the absence of the sphere were measured at the sphere position with the following results:
u/Uy=1.4%, L/d=0.19, br/d = 0.16, where L represents the longitudinal integral length
scale which was obtained by means of the auto-correlation analysis of the turbulent velocity,
and by is the half width across the plume. In this experiment, measurements were made only
when these parameters were constant.

Fig. 2.3 shows the photograph for the plume passing by the sphere. It can be supposed
that the diffusing plume is markedly distortion near the stagnation point.

Fig. 2.3 Photograph for the plume passing by a sphere. Note that the stretching
and folding of the diffising material in front of a sphere.

2.3  Experimental results and discussions

2. 3.1 Mean velocity field

For the mean velocity field, detailed measurements of U and W were conducted at vari-
ous zenithal angles as shown in Figs. 2.4(a) and (b). The solid line in the figure indicate the
mean velocity profiles of the potential flow around the sphere. From these figures, it is found
that the profiles of both U and W are in good agreement with those of the potential flow in
the range 8 < 67.5°>®). This may be cecause the boundary layer developing on the wall of
the sphere is laminar and the measurement of velocity was made outside of the boundary
layer (the thickness of the boundary layer is estimated to be less than 1 mm). As 6 increases,
especially in the region affected by the flow separation (which is likely to take place at about
6 = 90°), the velocity profiles near the surface begin to deviate from those of the potential
flow.

The mean flow streamlines obtained by means of interpolation to experimental data are
shown in Fig. 2.5. For clarity, the broken-line square window in the figure has been enlarged
and shown at the upper left. Here, ¥ denotes the Stokes’ stream function which is defined by

W= f ¥ U, sin 6dr (2.1)

where U, is the tangential component of the mean velocity. Arrows in the figure represent
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——— Potential Flow
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Fig. 2.4(a) Radial distributions of the horizontal mean velocity component U at each 6.

Potential Flow’ 135.0°
{ 112.5°

900
L’M 675
E 450
1.5
205£ 0=22F5
;n
050 05 1.0 15

(r-a)/d

Fig. 2.4(b) Radial distributions of the vertial mean velocity component W at each 6.
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Fig. 2.5 The streamlines of the mean flow.
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the mean velocity vectors. The mean flow separation is found to occur near the top of the
sphere (6 = 90°), and there is a kind of separation bubble-like structure on the surface inside
the separated flow region” "

From the data of the velocity field, the deformation tensor of the flow could be calcu-
lated, which is defined by

oU U V. aUu oW ]
27 5x oy Tox oz Tox
— | oV aUu av aVv ow
s=|-+5F 25 2+ (2.2)
ow v Jdw oV aw
_ax+6z 6y+az 28z ]

The orientation and the magnitudes of the three principal components of the normalized
deformation tensor are shown in Fig. 2.6(a), where we express their magnitudes by the
lengths of the arrows, and their directions by the orientations of the arrows in the figure, ex-
cept for the components normal to the paper, i.e., the y components whose magnitudes are
denoted by the radii of the broken circles. The relationship between the length of the arrow
and the magnitude of the principal component could be determined from the reference arrow
shown in the upper left of Fig. 2.6(a), which denotes a magnitude of 10. From Fig. 2.6(a), it
is found that for < 90° the flow is suppressed radially, and stretched both zenithally and
azimuthally. It is also obvious that the normal distortion rates of suppression of the flow near
the stagnation point are on the order of 10; hence, the plume passing by the sphere may be
markedly distorted. The support for this speculation is also given in Fig. 2.3.

Figure 2.6(b) gives the same diagram for the potential flow field around the sphere as
one for the measured flow field (shown Fig. 2.6(a)). It is found that as long as 6 is smaller
than 60 degree, the directions of the principal axes and the magnitudes of the principal com-
ponents of the deformation tensors are almost the same as those of the potential flow except
very close to the surface of the sphere.

Here in order to understand more specifically how strongly the flow is distorted near the
sphere, we investigated the distribution of the magnitudes of the tree principal components of
the normalized deformation tensor along the stagnation streamline. The results are shown in
Fig. 2.7, where it is noted that because the flow is axisymmetric in this case, the y, z compo-
nents could be considered as the same one and this figure has been drawn from the mean vel-
ocity data. It is clear in Fig. 2.7 that the distortion rate is rapidly increasing as the sphere is
approached, and that it is reasonable to infer that the diffusion field should receive appreci-
able effect of the flow distortion close to the sphere.

2. 3.2 Fluctuation velocity field

Figures 2.8 (a) and (b) show the distributions of the velocity rms value along the stagna-
tion streamline and along the circumference of a circle of r/d = 0.53, respectively. Since the
relative intensity of turbulence is quite small (less than 2.5%), we can refer to these results as
the distribution of turbulence rms value in the local tangential direction of the mean stream-
line. In Fig. 2.8 (a), the data were normalized by the far upstream rms value }, at (x + a)/d
= —2.0 where the disturbance by the sphere is negligible. And further the results in the ab-
sence of the sphere2'27) are also plotted for comparison. It is clear from Fig. 2.8 (a) that
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(b)

Fig. 2.6 Distribution of the normalized deformation tensor around the sphere.
(a): in case of the measured mean velocity field.
(b): in case of the potential flow field.
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as the sphere is approached, u’ begins first to increase at about (x + a)/d = —0.5 as compari-
son with the case without the sphere and then decays again close to the surface by the block-
ing effect”™. These phenomena can be qualitatively explained by means of the turbulence en-
ergy equation as follows.

The energy balance equation for the longitudinal turbulence on the stagnation line in cy-
lindrical coordinate is

a(d22) = au, ou,  uu, Ou ou,
Uxi——/—l = —uf - ui =+ ‘ + uyu,
ox ox ox o Ox ox

1 ou 1 A(PE)
o du p ox

'(aux)z (8ux)2 1_(auxﬂ
o] )t (2.3)

where we use the coordinate system (o, ¢, x) for convenience instead of a usual cylindrical
coordinate system (r, 6, z) and denote the radial and angular coordinate in the y-z plane by o
and ¢, respectively. The mean and fluctuating velocity components in (o, ¢, x) direction are
defined as (U,, Uy, U,) and (u,, U, W), respectively. Furthermore, the stationary and axi-
symmetry of the mean flow are assumed in Eq. (2.3). In the right hand side of this equation,
the first term states the production of the streamwise turbulence energy, the second and forth
term are the turbulent and viscous diffusion term respectively, and the fifth term expresses
the viscous dissipation. In the third term on the right-hand side of Eq. (2.3), p(0u,/ox)/p
plays a role which returns an anisotropic turbulence to an isotropic one through the interac-
tion of the pressure and the velocity fluctuations, and (—dpu,/dx)/o expresses the transport
of turbulence energy by the pressure fluctuation. The production term has a positive con-
tribution because of dU,/dx < 0 on the stagnation line, and it is clear that the dissipation
term is always negative. On the other hand, the signs of two transport terms through the vel-
ocity fluctuation and the viscous stress are considered to change locally. The effect of the
pressure-velocity cross correlation term (—dpu,/dx)/0 may be neglected in the far upstream
region where the distance from the sphere surface is greater than the integral scale of tur-
bulence L, but within that distance it probably has a negative contribution due to the block-
ing effect”™ of the surface so that the streamwise turbulence will decay.

Now, we consider qualitatively the change of u on the stagnation streamline in Fig. 2.8
(a), by dividing it into three regions on the basis of Eq. (2.3). In the first region ((x + a)/d <
—0.5) far upstream from the sphere, the viscous dissipation is considered to cause mainly a
decrease in the longitudinal turbulence component because the turbulence field in upstream
flow is approximately isotropic and the turbulence production is zero here. In the next region
(—0.5 < (x + a)/d < —0.2) where the distance from the sphere is relatively small but still
larger than the scale of turbulence L, the energy of the mean flow is transferred to the
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Fig. 2.7 The principle components of the normalized deformation tensor on the stagnation streamline.
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Fig. 2.8 The distribution of the streamwise velocity fluctuation rms value.

(a): on the stagnation line.
(b): along the circumference of a circle of r/d=0.53.
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turbulence through the vorticity distortion by the mean motion, and thus it is expected the
downstrem variation of 1, will turn into an amplification. Finally, within the distance smaller
than L (—0.2 < (x+ a)/d < 0), the blocking effect of the body surface surpasses the vor-
ticity distortion effect so that u, decreases again as the sphere is approached.

Now we turn our attention to the circumferential distribution of the turbulence rms value
shown in Fig. 2.8(b). In the figure, the abscissa is the zenithal angle from the stagnation point
(see Fig. 2.1), and u, of the ordinate denotes the rms value of velocity component in the
mean stream direction. From the figure, we can clearly find the maximum value of i around
6=10°.

2. 3.3 Mean concentration field

Figure 2.9 shows the profiles of the mean concentration along y axis in the given 5 cross-
sections, where the abscissa and ordinate are non-dimensionalized by the half-width of the
mean concentration profile b and the mean concentration on the centerline of the plume I',,
respectively. And the solid line in the figure expressed the Gaussian distribution. It is found
that at the region of —0.69 < x/d < —0.51, the profile becomes to get out of the self-similar
shape in the downstream direction. Although not presented here, we also investigates the
variation of profile of the mean concentration along z axis, and found that its variatio shows
the same tendency as one given in Fig. 2.9.

In Fig. 2.10, the mean concentration distribution along the stagnation streamline of the
flow has been given, accompanied by the one in the absence of the sphere”””. Comparison

Gaussian Curve

Ox/d=-051
) -0.54
1.2r A -0.69
v -0.94
O -1.94

y/Bpry

Fig. 2.9 The cross-sectional profiles of the mean concentration upwind of the sphere.
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lets us conclude that there is no perceptible difference between them over the major part of
the x range measured. However, in the vicinity of the stagnation point, there is a slight rising
of the mean concentration magnitude in the case of a sphere being put in the flow against the
plume. We suppose that this phenomenon may be associated with the intermittency of the
concentration signals, but in the present paper no satisfactory explanation could be given
even when the gradient diffusion model has been introduced to the turbulent diffusion terms.

x10_2
3
O with Sphere

) /\ without Sphere
|
C 5

‘} [
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-5 -4 -3 -2 -1 0

(x+a)/d

Fig. 2.10 The downstream variation of the mean concentration on the stagnation line.

Figure 2.11 gives us the radial profiles of the mean concentration at various zenithal
angles. The mean concentration magnitudes near the sphere surface can be found to become
greater than those far away from the surface as @ increases. In the meantime, the plume
becomes narrower and narrower as a result of the streamwise stretching of the flow. When 6
is greater than 90 degrees, the radial position of the maximum mean concentration moves
outwards away from the sphere surface because of the flow separation, whereas the near sur-
face profiles still has such a flat shape that one can say that the uniformalization of the con-
centration field by the molecular diffusion has already fairly progressed near the surface.
Using the data on the mean concentration field, we have obtained the contour lines of the
mean concentration field which have been shown in Fig. 2.12. It is shown that near the stag-
nation point, the contour lines are approximately parallel to x axis. However, the most inter-
esting finding from Fig. 2.12 is that in the separated flow area, some maximum magnitude
domains exist. The cause of these domains remains unclear at present, but if we make a com-
parison of these contours with the mean streamlines, it is reasonable to postulate that these
domains have close relations with the vortex-like structures in the mean streamlines.

2. 3. 4 Fluctuation concentration field

Figure 2.13 shows the variation of the concentration fluctuation rms value along the stag-
nation streamline. Where y, is the value at (x + 4)/d = —2.0. The conclusion we can draw
from this figure is that in the vicinity of the stagnation point, the concentration fluctuation
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Fig. 2.12 The contour lines of the mean concentration field.

rms value decreases rapidly as the sphere surface is approached. To find an explanation for
this phenomenon, we shall examine the balance equation of yz in the following discussion.
Eq. (2.4) gives the balance equation of ¥ on the stagnation line,
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Fig. 2.13 The variation of the concentration fluctuation rms value on the stagnation streamline.
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where the term on the left-hand side of the equation is the convection term, while the first
term on the right-hand side denotes the turbulent diffusion, and the second the dissipation of
y Because the gradient of the mean concentration along x axis is small, the production term
—2u,y (0I'/0x) has been removed from the equation. It is reasonable that we neglect the
molecular diffusion too.

Among the causes of the rapid attenuation of ) near the stagnation point, there are
three important factors: the rapid decrease of the x-wise mean flow velocity (effect of con-
vection), the distortion of the flow and the blockage effect”™” produced by the sphere surface,
which are supposed to accelerate the molecular diffusion (effect of dissipation), and the
transportation of the concentration fluctuation intensity by the turbulent velocity (effect of
turbulent dlffusmn) However, it must be pointed out that the above three factors should be
acting upon y as a whole instead of individually.

Figure 2.14 shows the profiles of the concentration fluctuation rms values along y axis in
the given 5 cross-sections. We can find that when x/d is greater than —0.69, the profiles pos-
sess double peaks which are likely to be closely associated with the rapid attenuation of y” in
the vicinity of the stagnation point shown in Fig. 2.13. One more finding of interest from Fig.
2.14 is that the position at which the double peak type of profiles comes into being, that is
x/d ~ —0.69 ((x+ a)/d ~ 0.2), shows a surprising agreement with the one at which the vel-
ocity fluctuation 1 starts its attenuation again after it passes the peak magnitude.

The radial profiles of the concentration fluctuation rms values at the given angles have
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Fig. 2.14 The cross-sectional profiles of the concentration fluctuation rms value upwind of the sphere.

been shown in Fig. 2.15. When 6 is smaller than 18 degrees, attenuation of the concentration
fluctuation occurs near the surface of the sphere, but when 6 is greater than 22.5 degrees, this
kind of attenuation vanishes completely. It is also found that, at the positions of § greater
than 112.5 degrees, the radial position of the maximum magnitude moves away from the
sphere surface, though it still coincides with the position where the radial mean concentration
gradient attains its peak value. This phenomenon can be attributed to the result of the flow
separation.

By interpolating the experimental data, we can draw the contour lines of the concentra-
tion fluctuation field, which have been given in Fig. 2.16. Just as in the mean concentration
field, similar maximum magnitude domains clearly exist in the concentration fluctuation field
as well.

2.4  Conclusions

(1) When the relative rate of the turbulence to the mean velocity is small enough as in the
present research, the profiles of the mean velocity will show nearly the same shape as in the
potential flow if 6 is small enough that the separation effect remains negligible.

(2) The distribution of x components of the velocity fluctuation on the stagnation line pos-
sesses a unique shape, for as the stagnation point is approached, the magnitude of ' in-
creases more than in the absence of the sphere around (x + a)/d = —0.5; then, after it has
passed its peak value, it steeply decays again near the stagnation point. On the other hand, in
the circumferential distribution of rms value of turbulence velocity component in the mean
stream direction at r/d = 0.5, there exists the maximum value around 6 = 10°

(3) The mean concentration distribution on the stagnation line has no remarkable difference
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Fig. 2.15 The radial profiles of the concentration fluctuation rms value at various zenithal angles.
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Fig. 2.16 The contour lines of the fluctuating concentration field.

from the one in the absence of the sphere except in the vicinity of the stagnation point. The
concentration fluctuation distribution has a rapid attenuation near the stagnation point, and
as a result, the cross profiles of y" posses double peaks.

(4) In the separated flow region, there are some maximum magnitude domains both in the
mean concentration field and in the concentration fluctuation field.
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3. Distortion Effects of Flow due to a Sphere on the Structure
of Axisymmetric Diffusion Plume

3.1 Introduction

In this chapter, reported are mainly results on the characteristics of conventional and
conditional pdf, the concentration detecting frequency and the auto-correlation function of
the concentration fluctuation signal.

Here we notice that there is almost no report on the conditional statistics of the concen-
tration field in particular around the three dimensional body, although we can find some ref-
erences with regard to a two-dimensional body, for example a circular cylinder” . Fur-
ther, in general there are still very few studies on the characteristics of the pdf profiles of
passive scalar concentration fields 738 In such situation, to elucidate the diffusion mech-
anism around the body, it is important and necessary to examine more in detail the character-
istics of concentration pdf (for example, see references 3-7) and 3-8)). The research reported
in this chapter was made taking account the above scientific requirements.

Nomenclature of chapter 3

X,y,Z : mean streamwise, horizontal and vertical coordinates (see Fig. 2.1)

r, 6, ¢ : coordinates in the sphere frame (see Fig. 2.1)

Uy : mean velocity of main stream

I initial concentration at the nozzle exit

T,y :  conventional mean concentration and concentration fluctuation rms value

), {y» : conditional mean concentration and concentration fluctuation rms value

S, S¢ : conventional and conditional skewness factor of concentration fluctuation signal
F,, F} : conventional and conditional flatness factor of concentration fluctuation signal
LI :  conventional and conditional pdf of concentration

D : molecular diffusivity (mz/ sec)

Wy : concentration detecting frequency

d, a : diameter and radius of the sphere

G :  spatial concentration correlation coefficient

¢ :  temporal auto-correlation coefficient of concentration at one spatial point

Ly, Ar : integral and dissipation length scale for concentration field
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superscript
~ :  instantaneous value
other notations will be defined each time

3.2 Distortion of material lump due to a sphere

As shown in Figs. 2.6 and 2.7, a large distortion of mean flow field occurs near the stag-
nation point. Here, we will consider how the size of a material lump changes along the stag-
nation stream line by such a distortion of mean flow field (see Fig. 3.1). Supposing a material
lump has its streamwise size of d, at some point upstream the stagnation point at the time =
0, the size of this Jump after the time ¢ will be estimated as follows,

d,= dyexp(—ai) (3.1)

where o means the non-dimensional compression rate (= |(dU/dx)(d/ Up)|) and that is sup-
posed to be constant.

Since in the actual mean flow field a is a function of the position on the stagnation line,
we should take the Lagrangian integration along the pass of fluid particle as follows,

d,= dyexp | - /O ta(t’)dt’]. (3.2)

Now as the starting position of lump, we chose the location where the mean flow begins to
have the distortion effect due to a sphere (here we chose (x + a)/d = —1, x = —90 mm). In
this case, d, represents the streamwise length scale of the material lump at x = —90 mm. Fig.
3.1 shows the change of d, as the lump approaches to the stagnation point in each case of

de=2mm

d¢ (mm)

do=0.2mm

0 | ! | |
40 08 -06 04 -0.2 0

(x+a)/d

Fig. 3.1 Change of size of substance lump by the mean flow distortion.
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dy = 2,1,0.5,0.2mm. From the figure, it is found that d, becomes about 0.27 mm at x =
—31mm ((x + a)/d= —0.017) in case of dy = 2 mm. As referring to later, the integral length
scale of the concentration field shows almost constant value at the far downstream region
from the stagnation point, and its value is about 2 mm. This means that the integral length
scale of lump at the upstream region will be distorted to about 0.27 mm on average in the vi-
cinity of the stagnation point. Subsequently, considering only the effect of mean flow distor-
tion it can be expected that the change of concentration in the integral length scale of lump at
the upstream region can be detected by the present micro-fiber probe of core diameter

100 um even at the region very close to the stagnation point such as x = —31 mm. However,
in case of d, = 0.5mm, d, becomes about 0.063mm at x = —31mm. So it becomes im-
possible to detect the change of this scale of structure at x = —31 mm by the present probe.

And further it is noted that since this kind of distortion of the flow field the coalescence of
the material lines occurs in accompany with the progress of molecular diffusion, so that the
smeariness will increase (see references 3-10) and 3-11)).

3.3  On the method of conditional analysis for the concentration data

There are two useful methods, i.e. Gaussian Fitting method and Threshold Level
method” #1912 t6 obtain the intermittency factor and conditional pdf. Here we note that
these two methods are closely connected with each other. Although we can choose the most
suitable value by examining the dependency of the concentration detecting frequency on the
threshold, here the threshold was determined by the following equation according to the ref-
erence 3-12),

TH= E, + 150, (3.3)

where Ej is the output voltage of the measuring circuit when I' = 0 and o, denotes the stan-
dard deviation of noise. We ascertained that the intermittency factor calculated by using the
above threshold show a good agreement with one by the Gaussian Fitting method.

3.4 Experimental results and discussions

As shown in section 3.2, the large distortion of the flow field occurs in particular near
the stagnation point. We can expect that such distortion gives a remarkable effect on the in-
ternal structure of the diffusing plume.

The downstream change of the concentration detecting frequency wr on the stagnation
line is shown in Fig. 3.2, where the ordinate is non-dimensionalized by using the local mean
velocity U and the diameter of sphere d. The concentration detecting frequency wr is defined
as follows.

wr = the number of times that the measuring
probe detects the concentration field
per unit time period (one second) 3.4)

Whe we define N, as the number of points of intersection between the threshold line and the
concentration signal, wr can be expressed by

Wr = (thh/z)/T: (3~5)
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Fig. 3.2 Change of the concentration detecting frequency on the stagnation line.

where T'is the time period of measurement. It is here noted that so as to non-dimensionalize
wr we chose the local velocity U as the reference velocity instead of the main stream velocity
Us. This selection is useful to extract the change of spatial structure of the diffusing plume ex-
plicitly (practically if we use Uj as the reference velocity, the non-dimensionalized concentra-
tion detecting frequency shows the monotonous decrease downstream along the stagnation
line so that we can not see explicitly any change of the spatial structure of diffusing plume).
As found from Fig. 3.2, at the far region from the sphere the non-dimensionalized concentra-
tion detecting frequency shows almost constant value. However as the sphere is approached
at the region downstream from (x + 4)/d = —1, that increase gradually and takes the peak at
some position near the stagnation point ((x + 4)/d ~ 0.20), then decreases rapidly. The
above change of non-dimensionalized concentration detecting frequency can be understood
as follows. At first, from the position (x + a)/d = —1, the structure of the plume begins to be
compressed by the effect of distortion of mean velocity field (here we call it “the direct effect
of distortion”). The compression of the plume structure causes the increase of the non-
dimensionalized concentration detecting frequency. This phenomenon can be explained by
the following sample model. Now we suppose the material striae at the far upstream region
from the stagnation point. Since the trajectory of fluid particle can be calculated by integrat-
ing the mean velocity field, we can easily estimate the change of the non-dimensionalized
concentration detecting frequency caused only by the distortion effect of the mean velocity
field. Its result is the broken line in Fig. 3.2, and that shows definitely monotonous increase
as the sphere is approached. On the other hand, we can expect naturally the effect of the
change of turbulence structure by the distortion (we call this effect “the indirect effect of dis-
tortion”). However, as shown in Fig. 3.2, the calculation result agrees very well with the ex-
perimental data until the x position where the non-dimensionalized concentration detecting
frequency takes the peak value. This means that the direct effect of distortion is more domi-
nant on the change of detecting frequency than the indirect effect of distortion. Next as the
sphere is approaching more, the coalescence of the material lumps (or layers, 1ines3'1°)’3'13))
occurs, and further even though such coalescence does not come about, the present probe
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can not discriminate between two lumps if the gap between two lumps become less than
0.3 mm. The compression of the flow field and the above situation may lead to the rapid de-
creasing of the non-dimensionalized concentration detecting frequency very near the stagna-
tion point. Figs. 3.3(a) ~ (c) show the radial changes of the conventional pdf profile around
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Fig. 3.3 (a) Change of conventional pdf profile of concentration on the stagnation line.
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Fig. 3.3 (c) Radial change of conventional pdf profile of concentration at 6 = 135°.
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the sphere. On the stagnation line of § = 0°, the height of the spike at ' = 0 fall down and its
position move to the higher positive concentration as the sphere is approached. This phe-
nomenon can be understood in terms of the increase of smeariness caused by the coalescence
of the material lumps by the molecular diffusion. Further, from the figure it is found that at 6
= 112.5° and 135°, the conventional pdf profile shows different characteristics in each region
i.e. recirculating wake region, separated shear layer and outside the recirculating wake region.
At first, in the recirculating wake region, the diffusing matter tends to stay there in particular
in neighborhood of the wall in the long time, so that the molecular diffusion makes fairly pro-
gress and the conventional pdf becomes lognormal”™®>>'". On the other hand, outside the re-
circulating wake region, the diffusing plume becomes so intermittent that the conventional
pdf becomes to have a peak near I' = 0, and shows a very small value in other concentration
region. The above characteristics of pdf profile are known to be typical for the intermittent
phenomena. Further, in and around the separated shear layer, there exists the strong vortical
motion which entrains not only the concentration structure in the recirculating wake region
where the molecular diffusion has fairly advanced but also the intermittent plume outside the
recirculating wake region. Consequently, the conventional pdf in the separated shear layer
shows the combined characteristics inside and outside the recirculating wake region, i.e. the
double-peaks profile. In particular we can observe clearly such characteristics at 6 = 135",

The change of conventional and conditional skewness factor of concentration signal S,,
S¢ are shown in Fig. 3.4, where S, and S are defined by

5= [o(T— ? f(0)dr (3.6)
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Fig. 3.4 Distribution of conventional and conditional skewness factor on the stagnation line.
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At the far region from the sphere, S, and S{ keep almost constant values. Near the stagnation
point, these are rapidly decreasing as the sphere is approached. The above result can be sup-
posed from the changes of conventional pdf (in Fig. 5.3(a)) and conditional pdf (in reference
3-10)).

Figure 3.5 gives the changes of conventional flatness factor F, and conditional flatness
factor F; on the stagnation line. F, and F; are defined by

L 4 o =
F, = [o(T :3 fhyar (3.8)

_ Jo@ =D)'f*(@)dt
o

Fr (3.9)

In the same way as S, and Sy, it is also obvious that F; and F; take almost constant value at
the far region from the sphere, and decrease near the stagnation point. Such changes of F,
and F; are not inconsistent with changes of conventional and conditional pdf of concentra-
tion signal. Fig. 3.6 shows the radial distribution of S, around the sphere except 6 = 0°. At 6
< 112.5% S, increases as the position departs from the sphere. On the other hand, At 6§ =
112.5°, (in the separate flow region) we can observe very interesting change of §;. At first, in
the vicinity of the wall, S, shows the small value but not zero (order of 1.0), so that we can
conclude that the conventional pdf of concentration here is not a symmetric Gaussian dis-
tribution. In fact, it has been already ascertained by authors®'" that the conventional pdf in
the vicinity of the wall shows the lognormal distribution. Next, at a little way off from the
sphere, a high level of concentration layer which is not diluted so much by the molecular dif-
fusion yet comes sometimes to the measuring point. Eventually, the conventional pdf dis-
tribution becomes to deviate from lognormal distribution so that the right hand side of log-
normal distribution swells up like the distribution at » = 34 mm in Fig. 3.3(b) (6 = 112.5°).
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Fig. 3.5 Distribution of conventional and conditional flatness factor on the stagnation line.
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Fig. 3.7 Radial change of conditional skewness factor for the concentration field at each 6.

However, if the measuring point enters into the separated shear layer apart from the sphere, a
plume having a high conditional concentration come to the measuring point intermittently
from the outside, so that the conventional pdf distribution becomes to have double-peaks like
ones explained before. At that time, since the peak which appears near I' = 0 becomes to
balance with a lognormal bulge at I' # 0, conventional skewness factor will decrease again.
At the outside of the separated layer, the plume is highly intermittent and the large spike
near I = 0 appears in the conventional pdf distribution. Naturally we observe a very high
value of S; at the outside of the separated layer.

Figure 3.7 gives the radial distributions of S; around the sphere except 6 = (°.
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Fig. 3.8 Radial change of conventional flatness factor for the concentration field at each 6.

It is obvious that the radial change of Sj is much smaller compared with one of §,. Further,
we can also observe the distributions of Sy is similar to ones of S, at § > 112.5°.

Figure 3.8 shows the distribution of F at each value of § except on the stagnation line. At
0 < 112.5°, F, goes up as the position departs from the sphere. On the other hand, at § >
112.5°, the radial changes of F, are very similar to ones of conventional skewness factor .

The radial distributions of F; at each value of 6 are given in Fig. 3.9. From the figure, it
is clear that at § < 112.5° the change of F} is much smaller than the change of F,. At 6§ >
112.5°, F} shows the very similar radial change to F;.

On the stagnation line, the effect of the distortion of the flow appears also clearly on the
distribution of concentration auto-correlation coefficient.

The change of the concentration correlation coefficient Cr(&) for two spatially separate
points located on the stagnation line is shown in Fig. 3.10, where G(£) is obtained by using
the Taylor’s hypothesis of frozen pattern in the following. At first we introduce the auto-
correlation coefficient Cr for the concentration fluctuation signal with the time delay r at a
fixed spatial point, which is defined by

f(x, ) =T} {I(x, t+ 1) —T)
(C(x, 9 — 1)

Ci(r) = (3.10)
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Fig. 3.9 Radial change of conditional flatness factor for the concentration field at each 6.
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Fig. 3.10 Change of two point correlation coefficient for the concentration field on the stagnation line.
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The Taylor’s hypothesis of frozen pattern of concentration field can be expressed by
[(x,t+=TI(x~— U 9. (3.11)
Then we obtain

L(x, hl(x, t + o) =T(x, HI(x' — Uz, 9
=[(x)['(x = Ur). (3.12)

Considering Eqs. (3.11) and (3.12), Eq. (3.10) can be rewritten as follows,

(f(x) =D {f(x = Uy —T)
(L) -1y

G(n) =
= C(—Ur) = C(Ur) (3.13)

where Cr(&) is the spatial correlation coefficient for the two points with the streamwise dis-
tance & = Uz In Fig. 3.10, the product of the local mean velocity U and the time difference =
is taken as the abscissa. Since it was ascertained by the experiments that the relative intensity
of turbulence is enough small except x = —31 mm (see chapter 2 and references 3-10), 3-11)
and 3-14)), the Taylor’s hypothesis is approximately true and Ut may be regarded as the spa-
tial distance for the two point correlation coefficient. From this figure it can be observed that
as the stagnation point is approached the extent and magnitude of correlation coefficient are
reduced, and this tendency becomes quick in particular near the stagnation point. From the
concentration correlation coefficient, the integral length scale of concentration field can be
calculated by

L= T Cu(8)dE. | (3.14)

The change of L on the stagnation line is given in Fig. 3.11. In the same figure, the dissipa-
tion scale of concentration field A is also shown. Ay can be here calculated from the following
equation,

1 (ar/ay’
T (3.15)

where Taylor’s hypothesis is also used. As shown in Fig. 3.11, both L and A, decrease
rapidly near the stagnation point.

From Fig. 3.11, the ratio of L to A; can be easily calculated and its change on the stag-
nation line is given in Fig. 3.12. As found in Fig. 3.12, at the region far away from the
sphere, Ly/Ar shows the almost constant value, but it decreases rapidly near the stagnation
point. This means that the reduction of L by the flow distortion is much larger than one of
Ar near the stagnation point. This phenomenon may be caused by the coalescence of the dif-
fusing lumps® ™ which received large distortion, because by the coalescence the concentra-
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Fig. 3.12 Change of ratio of integral length scale to dissipation length scale
for the concentration field on the stagnation line.

tion structure of small scale is much reduced while the effect of such coalescence on the inte-
gral scale can be expected to be relatively small.

From results in this chapter and references 3-10) and 3-11), we can suggest two impor-
tant effects of the flow distortion on the change of concentration structure near the stagnation
point as schematically shown in Fig. 3.13(a) and (b). At first, by the distortion of mean vel-
ocity field the material lumps (like layer or line) are compressed in the x direction and
become slim. This compression effect by the distortion of the flow (we call it ‘the first effect’)
is shown in Fig. 3.13(a). On the other hand, at the same time that the material lumps
becomes slim, the gaps between them are also reduced. Consequently, the merging of ma-
terial lumps (we call it ‘the second effect’ or ‘smeariness effect’3'10)) occurs, as shown in Fig.
3.13(b). In actuality, we expect that the above two effects synthetically bring about the
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Fig. 3.13 Effects of flow distortion on the structure of diffusion field.

change of the structure of a diffusing plume. It is noticed that although we can also consider
the indirect effect by the flow distortion i.e. the change of turbulence, this effect is quite small
in comparison with the direct effect like compression by the flow distortion, as explained for
Fig. 3.2. ‘

Here it is of necessity to give some comments on the influences of the probe resolution
and molecular diffusion on the results by data-analysis in this study. Although the limitation
of resolution of the probe hinders the clear understanding of the effect of molecular diffusion,
we will here try to make some specific estimation of the effect of molecular diffusion by using
the same calculation as § 3.2. If we set the material lump with the size of d; ~ 0.2mm at x =
—90 mm, which is the same order of the resolution of the probe, the size of lump becomes
about 0.025mm at x = —31 mm by the distortion of the mean flow (see Fig. 3.1). On the
other hand, the broadening length of the edge of lump by the molecular diffusion can be esti-
mated as (2DA#)"? = [2 X (1.307 X 107%/(4 X 10%)} X 60/129]"* = 0.0175 mm, where At
is the moving time of fluid particle by the mean velocity from x = —90 mm to x = —31 mm,
ie. At = d/ U, = 60/129. Since the molecular diffusion progresses into both side of the space
between the neighboring lumps, the length filled up by the molecular diffusion is 2 X
0.175mm = 0.035 mm. This length is clearly larger than the above distorted size of lump
0.025mm at x = —31 mm. So there is a good possibility that the gap between neighboring
lumps is completely filed up only by the molecular diffusion.

3.5 Conclusions

The conventional and conditional statistics regarding the pdf of concentration fluctuation
are investigated in detail for the axisymmetric point-source plume which develops in the tur-
bulent flow distorted by the sphere. The results obtained in this chapter are summarized as
follows.
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On the upstream stagnation line, the non-dimensionalized concentration detecting fre-
quency wrd/U shows almost constant value far away from the sphere. As the sphere is ap-
proached on the stagnation line, wrd/ U begins to increase from the position of (x + a4)/d ~
—1 mainly because of the effect of the mean flow distortion due to the sphere, takes the peak,
then changes to rapid decrease in the vincinity of the stagnation point (at (x + a)/d < —0.2).

The ratio of the integral length scale to the dissipation length scale for the concentration
field on the stagnation line shows the rapid decrease near the stagnation point as the sphere is
approached. Further, with regard to the skewness and flatness factor, the conventional values
gives all the rapid decrease near the stagnation point. On the other hand, at the downstream
region from the separation point of the flow the radial distributions of the conventional and
conditional values of skewness and flatness factor present a different tendency from ones on
the stagnation line. As the position moves apart from the sphere, they all show the increase at
first, and take the maximum inside of the separated shear layer. Outside of shear layer, they
fall down once, and then increase again.
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4. Fractal Feature of a Diffusing Plume and Effects of the Distortion
of Flow due to a Sphere

4. 1 Introduction

So as to experimentally clarify the effect of the distortion of flow due to a sphere on the
axisymmetric point source diffusing plume, we have carried out detailed investigations on the
elementary statistical characteristics of the flow and the diffusion field so far (see chapters 2,
3 and references 4-1), 4-2)). In this chapter, we apply the fractal analysis, which has been
rapidly developed to study scalar diffusions, to reveal the stochastic structure of the plume.

Since the concept of fractal was first proposed by Mandelbrot*™, several years elapsed
and the study of fractal has become a global subject, together with that of chaos. Particularly,
the fractal study in hydrodynamics aspect has become increasingly active. In the light of these
works, it is revealed that a variety of fractalities involved in turbulence. For example, the tur-
bulence-nonturbulence interface in boundary iayersM) and the iso-concentration surface in
passive scalar diffusion field*> have been shown to be fractal-like by many researchers. So
are the interfaces generated by Kelvin-Helmholz instability and the surfaces of clouds®® in
the atmosphere. The common feature of these surfaces is that their fractal dimensions are al-
most the same, i.e. D= 2.36 £ 0.05. However, there is no investigation on the fractality
of passive scalar plumes such as we have been studying, despite of its fundamental signific-
ance. So, we attempt to reveal the fractality of the point source diffusing plume evolved in
the grid-generated turbulence by analyzing the data of concentration sampled with our own
optical fiber probe (see section 2.2 in chapter 2). Furthermore, we are going to clarify the ef-
fect of the distortion of flow due to a sphere on the fractality of the diffusing plume. In the
consequent sections, the results of our analysis and brief discussions will be given.

Nomenclature of chapter 4

X, ¥,z : main streamwise, horizontal and vertical coordinates (see Fig. 2.1}

r, 8,4 : coordinates in the spherical frame (see Fig. 2.1).

Up, v @ mean velocity of the main stream and the velocity fluctuation rms value.
r,y : conventional mean concentration and concentration fluctuation rms value.
(I, {(yy) : conditional mean concentration and concentration fluctuation rms value.
v kinematic viscosity of water.

Dy :  fractal dimension.

i :  Kolmogorov scale.

d, a : diameter and radius of the sphere.

Ly, Ar ¢ integral length scale and dissipation scale of the concentration field.

TH . threshold level.

Other notions are interpreted as they appear.

4.2 Kolmogorov length scale and the resolution of the probe

The experimental setup and flow outline were explained in detail in chapter 2. Here
mainly discussed is the relationship between the Kolmogorov length scale and spatial resolu-
tion of fiber probe.

We could estimate the Kolmogorov scale of the flow as follows.
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3 1/4
n=w/e ", 4.1

where ¢ expresses the dissipation rate of kinematic energy of the turbulence, and may be cal-
culated from equation (4.2)*7.

e ~ —(3/2)Uyd(w)’/ dx, (4.2)

The magnitude of & could be calculated using equations (4.1) and (4.2), but we have to ac-
count that & should be dependent on the relative position respect to the sphere. If we focus
on the area free of the disturbance of the sphere, i.e. x = —250 ~ —90mm, 7 could be
shown to be 1 mm or so. The resolution of the probe we used is 0.31 mm, and it is about 1/3
of the magnitude of #, so this probe is able to recognize the sub-Kolmogorov scale structures
of the dlffusmg plume. It should be noted that the Schmidt number of the dye solution is
about 3.8 X 10°, and the so-called Batchelor scale of the diffusion field is estimated as =
nSc"? ~ 1/60. Consequently, although this probe is able to recognize the sub-Kolmogorov
scale structures, it is not able to recognize the structure in the B range, which was named by
Prasad & Sreenivasan®®. In another word, it is only able to catch a fraction of the structures
in the range between the Kolmogorov scale and the Batchelor scale. Note, this probe is ex-
pected to be sufficiently resolutive to catch the structures within the range between the Kol-
mogorov scale and the integral length scale, the so-called K range4"8). For more details on the
flow, see chapter 2.

It is worthwhile considering the physical meaning of the signal measured by the optical
fiber probe. As motioned above, the sampling volume of this probe could be taken as the cy-
lindrical passage of the laser beam between two fibers. In our case, the diameter of this cy-
lindrical passage d; is 100 um, and the length L, ~ 0.31 mm. Because L, is much larger than
d, in this case, we only consider the effect of L, Consi~der the probe frame shown in Fig. 4.1.
We could then write the instantaneous concentration I';,(#) as the following integration over
the sampling volume.

1 “r

1 (" 2
= ALp /O [/ /r(xp’ypxzp’ t)dxpdzp] dyp

1 [
-1 /0 P (ypi)dy,, (4.3)

where the integration of x, and zp are only operated within the cross-sections of the cylindri-
cal passage of laser beam, whlch is expressed by A in the equation, and T'(x, o Yo Zps ) denotes
the instantaneous concentration at any point of space. Note that we have used the notion that
the beam intensity is proportional to the cross area of the passage and the Lambert-Beer law
in the derivation of equation (4.3). I'(y,,?) in the above equation is the average concentration
over the cross-section of beam, which is defined as follows.

’ ]_ =
Tpd =g / /F(xp’ywzp’t)dxpdzp (4.4)
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Fig. 4.1 Model of sample volume by the fiber probe.

From equations (4.3) and (4.4), we could see that the signal of the probe is only the integral
average of I''(y,,£) over the length of the sampling volume. This means that what we get with
this probe is approximately the overlapped version of all the diffusion structures in the planes
whose normals are in parallel with the beam passing through the sampling volume. If we
compare our case with the laser sheet method with LIF used by Prasad et al.*®), L, may
correspond to the thickness of laser sheet.

4.3 Algorithm of fractal analysis

The scheme we adapted for the determination of the fractal dimension is the so-called
box-counting algorithm*>*9*1% which divides the E-dimensional space into cubic elements
sized &, and plots the number of the cubes involving the focused object, N(¢), against &, and
give the slope of the N(€) ~ &, which is directly related to the fractal dimension of the object.
If the object is a fractal, then we have the following relation.

N(e) ~ & 77, 4.5)

where the subscript E in Dz means the E-dimensional Euclidian space.

In this study, we dealt with the set of iso-concentration points which is shown in Fig. 4.2
(a) and (b). The unit pulses shown in Fig. 4.2 (b) are generated at the intersecting points be-~
tween the iso-concentration threshold line and the concentration signal. The experimental
data analyzed here are the discrete time series which are obtained by the A-D transformation
(sampling frequency is 5000 Hz) of the analogue concentration signal measured at the fixed
spatial point. Since at the region far from the sphere the mean velocity is much larger than
the turbulent fluctuation, the Taylor’s hypothesis of the frozen turbulence seems to be ap-
proximately true, i.e., the spatial structure of the diffusing plume is almost directly reflected
on the time series measured at the fixed point. Then the series of the unit pulse correspond to
the one-dimensional interesting points between the iso-concentration surface (which exists if
the concentration field is continuous) and the straight line. Since the actual iso-concentration

surface is embedded in the three-dimensional space, its dimension Dy can be estimated
py +34)
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Fig. 4.2 Examples of the concentration signal and a set of iso-concentration points.
(a): Concentration signal.
(b): Set of iso-concentration points.

Df3 = Dfl -+ 2. (4'6)

To compare our results with other studies, the fractal dimension of the iso-concentration sur-
face reported here is always the value of Dj; which was calculated by the above equation
(4.6) from the measured one-dimensional dimension D;;. When estimating the fractal dimen-
sion from the curve of In N(¢) vs. Ineg, it is important to decide the region of the size of ¢ in
which the constant slope of In M(¢) vs. In ¢ can be observed. Although there is no established
way to decide this constant slope region, as one trial in this study, from the observation of the
actual curve of In N(¢) vs. Ineg, the integral length scale of the concentration field L; was
chosen as the maximum of the constant slope region, and the diameter of the laser beam
(about 0.1 mm) passing though the gap between two glass fibers as the minimum of this re-
gion. As shown later, we can observe the good linear relation between In N(¢) and Ine at 4,
= & = L; notwithstanding the change of the threshold, so that we want to emphasize the
fractal dimension computed in the region of ¢ over the probe’s spatial resolution L, could be
accurately determined in the present study. Another important factor to compute the fractal
dimension is the data segment length. We investigated the effect of the data segment length
on the fractal dimension, so that it was confirmed that if the data segment length for comput-
ing the dimension is larger than the ten times of the integral length scale of the concentration
field Lr, the fractal dimension does not depend on the data segment length, as shown in Figs.
4.3 and 4.4. In Fig. 4.3, the parameter SI indicates the number of data included in one
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Fig. 4.4 Effect of the data segment length on the fractal dimension.

segment. When the value of SI is multiplied by the sampling time 0.2 msec, we obtain the real
time length of the data segment.

4.4 Results and discussions

Figures 4.5 (a) ~ 4.5 (f) show the curves of In N(¢) vs. In¢ for the set of iso-concentra-
tion computed by the box-counting method at various x locations on the forward stagnation
line of the sphere. At each x location, the change of curves of In N(¢) vs. In ¢ for various thre-
shold level has been investigated. In these figures, Ly denotes the integral scale of the con-
centration field, and Dy, is the fractal dimension calculated from Dy, by Eq. (4.5). The two
upward arrows drawn upon the abscissa in the figures indicate the high cutoff (which corre-
sponds to the integral length scale of the concentration field) and the low end (which



176 I. Nakamura, Y. Sakai, H. Tsunoda and S. Liu

10 I O TH=C>42.04'5 Deg=227

X=-250mm A DAL 226

8 % O DO+ 227

\\ O sy 228

® MO+ 227

A R0 228

m O+08” 229

L R(prielc o 2.31

© <LK 2.32

A OHOXTY 2.33

B > 2.35

0 4 W © PO-0Xrs 236
=4 -2 0 2 6

In(&/1L)

© I OTH=M+204% 01229
x=-100mm A OALE&S 227
8 O O+1.6ea> 227
O LAY 227
6 ® (M2 229
«g A DOH0AS 228
c N 08D 231
4 * 0.6 231
© 049> 23
2 A DO 234
7 > 2.35
o4 i © -0 235
/A 0 2 4 6
In(e/ L)
Fig. 4.5 (b) The curves of In N(¢) vs. In¢ at x = —100 mm.
10 l O THRD 204> D225
X=-40mm A D+.89> 223
8 %E | O OHea> 230
% " O LGS 228
*“« ® M. XI> 230
3 6 A OH0QY 227
4 u 08T 2.28
< AA
4 % s & BT 229
=]=)s]s] © (M04KT> 230
2 Ry ARAL L ‘gﬁ\\ & TS 231
B > 2.32
. ) © 0205 233
% 2

0 2
In(g/Lp)

Fig. 4.5 (c) The curves of In M(¢) vs. Ine at x = —40 mm.



Diffusion of Turbulent Plume around a Sphere

O TH=¢">+20<15, Dy72.23
ATHHM+1.8¢TY, 226
OTH=HBKTY, 226
OTHHMHALTY, 226
© TH™+1.2<TY, 2,26
A TH=TH.0<Y>, 226
B TH=>408<YY, 228
& TH= 4067y 2.27
O THECH0ACTY, 231
A TH=M02<rYy 233
B TH= 2.33
© TH=a>-02<7> 235

0 2 4 6
In(e/1)

Fig. 4.5 (d) The curves of In N(¢) vs. In e at x = —36 mm.

10 I O TH=>42047" Dgy2.15
X=-33mm A 18T 225
8 N O <+160% 2.3
N O DL 225
6 NS ® (MH+XY> 225
< A OHOTY 2.30
£ i B D+08> 225
' v [y © OO0 2.28
éam Ji]al gg SN O D+04LTS 2.27
) Qg AARBA AaFT : N ’
3%&? 50 OOOS A I>+0. X 2.27
B> 2.30
0 4 5 7 60 0K 232
In(e /L)
Fig. 4.5 (e) The curves of In N(¢) vs. Ine at x = —33 mm.
10 g
I O THaM 4y’ > Dg5=233
X=-31mm A 2T, 216
8 | O <7y, 22
® ™80 232
ggg o A rH06, 231
& PN .2 7 ] QLT 229
= :AAA‘ As ©  HOXY, 233
c ...... Hy
£ DAM s @ 0L, 232
A
N 0po
0000 AOECI)XAEA%EAA O OOQUry, 236
2
t
94 - 0] 2 6
In(e/ L

Fig. 4.5 (f) The curves of In N(¢) vs. Ine at x = —31 mm.

177



178 I. Nakamura, Y. Sakai, H. Tsunoda and S. Liu

corresponds to the diameter of the laser beam) of the constant slope region in the curve of
In N(¢) vs. Ine. When the threshold TH is very large (TH > (T) + 2(y)), the number of iso-
concentration points in the segment becomes too small to decide the value of Dy. So we
omitted the analysis of these cases of very large threshold. However, we can suppose4'6) that
the fractal dimension goes down as the threshold increases over (I') + 2(y)). On the other
hand, it was also ascertained that as the threshold TH becomes smaller than (I') — 0.2(y") the
constant slope region of the curve of In N(¢) vs. In e reduces gradually and vanish. Here it is
noted that in the present experiments4'1) on the stagnation line at the region far from the
sphere, the intermittency factor Ir ~ 0.75 and (y)/(I’) ~ 1.2, so we can estimate the value of
(T) — 0.2(y) as () — 0.2{(y) ~ 0.76¢T") = 0.76T /I =T'. In considering the above estimation,
we find that the present results under the threshold of (I') — 0.2(y"} are not contradictory to
other report by Sreenivasan & Meneveau” ™, where they found that the fractality of the iso-
concentration surface of the passive scalar in the turbulent jet vanishes around at the thre-
shold of the mean concentration I'.

From Figs. 4.5 (2) ~ (f), as the whole tendency it is found that when the threshold TH
is larger than (I') + 1.2(y"), the curve of In N(¢) vs. In & shows a good linear relation at the ¢-
region less than the integral scale Ly, but deviates from the straight line at the e-region larger
than L. In sections 3.4 and 4.2, it was shown that at x = —250mm ~ —90 mm, Ly is about
2.0mm and % is about 1.0 mm. In Figs. 4.5 (a) and (b), the downward arrow indicates the
position of ¢ corresponding to the Kolmogorov scale 7. Since the difference between 7 and
Ly is small, the above results show that the fractality only in the small part of the K-range
(between 7 and the integral length scale L (about 10 mm) for the velocity fluctuation) could
be caught in the case of the large threshold. However, in the most range of the threshold ()
+ 0.4{y) < TH < (I') = 1.2(y)), we can observe that the constant slope region extends to
the larger size of e. From this result, the fractality in the wider part of the K-range can be rec-
ognized.

The dependency of the fractal dimension on the threshold at the various x positions on
the stagnation line has been examined, and its result is shown in Fig. 4.6. From Fig. 4.6 and
the values of Dy; given in the right hand side of Figs. 4.5 (a) ~ (f), it is found that, for the
threshold between (I') — 0.2(y") and () + 2.0(y), the fractal dimensions do not almost
change, and their magnitudes show the constant value of about 0.3.

Figure 4.7 shows the change of the fractal dimension as approaching to the sphere on the
stagnation line. The fractal dimension keeps the almost constant value, so we conclude that
the distortion of the flow due to the sphere in this experiment has almost no effect on the
magnitude of the fractal dimension. Next, we will discuss about the above result. Now, we
consider the fractal set of points (for simplicity, the set of points embedded in one-dimen-
sional space), which dimension (box-dimension) is Dy;. So by applying the box-counting
method for this set of points, the following equation holds

N(e) ~ & . (4.7)

Here we assume that this fractal set receives the uniform distortion of compression so that the
initial size of box ¢ reduces to ¢ as the new size of box for this compressed set of points and
apply the box counting method again, we naturally obtain

N(g) = N(¢) ~ & . (4.8)

This is because the number of box covering the set of points does not change by the uniform
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distortion. Let a = ¢/e. then the Eq. (4.8) can be expressed as
NE) ~ & Pn=g™Pn g~ Pn ¢Pn (4.9)

where the parameter a is the real number which represents the magnitude of distortion. The
Eq. (4.9) means that the uniform distortion does not influence the fractal dimension of the
set of points on the one-dimensional line. On the other hand, in the case of the non-uniform
distortion, the situation is different from the uniform case. Next, we will consider the effect of
the non-uniform distortion. Since it is very difficult to deal with the effect of the non-uniform
distortion in a strict sense of mathematics, here we will make some modelling of the
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non-uniform distortion. We supose that the original set of points can be divided into 7 sub-
sets, and each subset receives the uniform distortion locally, but the distortion parameter o is
different between each subset. By applying the box-counting method again for these subsets,
the same type of equation as the uniform distortion case holds also for the i-th subset,

Ny&) ~ ¢ 7, 4.10
)

where ¢ and ¢ are respectively the size of box before and after the distortion, and N; is the
number of box to cover the i-th subset of points. Here we introduce the proportion constant
a; for the Eq. (4.10). Then we obtain

Ni(&) = aze . (4.11)

It should be noted that the proportion constant a; is different between each subset of points.
On the other hand, by applying the box-counting method to the whole set of points, it is eas-
ily found that the number of box with size ¢ needed to cover the whole set is the sum of
N;(¢). This leads to

n

N(e) = ; Ni(e) = ; ag o

‘ Yoo je (4.12)
i=1

The above equation means that even in the case of non-uniform distortion the fractal dimen-
sion (box-dimension) does not change from the set before the distortion to one after the dis-
tortion. It should be here noticed that, for the actual physical sets which can be regarded as
fractal sets, the scaling law of N;(¢) ~ & P holds only in the finite region of ¢ i.e. &,;, < € <
€mar And this region of e is expected to change due to the distortion. Here we assume that
this region of & for each subset becomes b; = [&; in,€; max) after the distortion. In order to find
the fractality in some region of ¢ for the whole set, it is necessary that the following equation
holds

b= b # 0, (4.13)

where the symbol (;b; denotes the intersection of b, Therefore, there is the possibility that
the non-uniformity of the distortion is too large for the above equation to hold so that the
fractality can not be observed. However, even in this case we naturally expect that the frac-
tality still exit locally. Next, we will see the results of the spatial region where the fractal
structure can be observed. From Figs. 4.5(a) and 4.5(b), it is clearly found that there is a big
difference on the spatial region of fractality between at x = —250 mm and x = —31mm (the
spatial region of the fractality at x = —31 mm is ten times smaller than one at x = —250 mm).

The fractal dimension Dy, for the iso-concentration surface is found to be about 2.3 in
this work and this value agrees well with the result Dy; = 2.36 * 0.05 reported by Sreeniva-
san et. al.*>. It must be noted here that the In N(¢) ~ In ¢ distributions in Fig. 4.5 have a li-
nearity which corresponds to the fractal dimension 2.3 even in a smaller scale region than the
Kolmogorov time scale. This value 2.3 is smaller than the B-range fractal dimension
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Dy; = 2.75 which has been suggested by Prasad & Sreenivasan®™ and Sreenivasan & Mene-
veau®™®. This disagreement between our value and theirs may be possibly due to the finite
spatial resolution of our concentration measuring probe. Prasad & Sreenivasan®® showed ex-
perimentally that the fractal dimension in the B-range depends on the thickness of the laser
sheet in their LIF measurement (note that the sheet thickness corresponds to the sampling
length L, in our measuring probe). If we accept the result by Prasad & Sreenivasan, it is not
expected that the fractal dimension in the B-range could be obtained by the probe whose
sampling length L, is shorter than # but longer than #;. Since our sampling length L, (about
0.31 mm) is Ionger than 173 (about 0.016 mm), this effect of L, would be one of the reasons
of the disagreement’*®. We also consider, as mentioned in the §4.2, that the measured
structure of the iso-concentration surface has less complexity than the original one because it
is the result of the superposition of the many sectional structures*® in the sampling volume.
However, these conjectures have no mathematical fundamentals and thus we will need a fur-
ther consideration.

Our another interesting result is that the concentration field can have a fractal feature,
even though there exists no clear inertial sub-range (the —5/3 power range) in the spectrum
distributions for the velocity and concentration fluctuations. Fig. 4.8 shows the velocity spec-
trum distribution measured at x = —196.5 mm. No appreciable region of the —5/3 power law
can be found from the figure. We have reported that the inertial sub-range could not be seen
also in the concentration fluctuation spectrum®?. In spite of these facts, however, the fractal
structure does exist certainly in the set of the iso-concentration points as shown in Fig. 4.5.
We infer this reason as follows. The fractal structure in the diffusion field could be formed
more efficiently by the non-linear Lagrangian relative motion of fluid particles*? (the cas-
cade process through stretching and folding, see figure 4.9), rather than by the self-similarity
in the velocity field (the inertial subrange). Therefore, this non-linear particle motion would
be a source of the observed fractal feature of the iso-concentration points set,
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Fig. 4.9 Cascade model by the stretching and folding.

because the non-linearity causes the diffusion structure of plume to be chaotic. It is con-
cluded from the above argument that the fractal feature in the concentration field can exist
even though there does not exist a clear region of the —5/3 power law in the velocity spec-
trum.

It is also interesting to note that the concentration field has a fractal feature even in the
case that its spectrum does not have the region of the —5/3 power law. Recently, assuming
that the concentration signal is approximated by a series of rectangular pulses, Hunt & Vas-
silicos*™" showed the following relation between the fractal dimension Dy, of the material
surface in the diffusion field (consider the case of two dimensional surface) and the slope f of
a linear part in its concentration spectrum“"“)""lz),

Dp=3+p. (4.14)

If we apply their theory to our result, § = —1.7 = —5/3 can be obtained readily from D, =
Dy; — 1 = 1.3. However, it is not expected that the above relation would be appropriate to
our case, because Fig. 4.2 shows clearly that our concentration signal is completely different
from a rectangular series. In order to check their theory, we analyzed the concentration signal
which was digitalized by the following equation with a threshold level TH,

~ 1 ifl" > TH
P | (4.15)
0 otherwise

The resultant spectrum for [ is shown in Fig. 4.10. It is found from the figure that this spec-
trum has a clear linear part over a wide wave-number range and its slope is nearly —5/3.
Now, we describe a simple modeling for the cascade process of the diffusion field shown
in Fig. 4.9. It is assumed in this model that the cascade process consists of only the stretching
and the folding of the material lump. As shown in Fig. 4.9, the material lump is stretched by
the turbulence distortion until its length surpasses the turbulence integral scale, and then the
folding process of the lump by the turbulence eddy starts. After a series of such processes is
repeated again and again, a complex convoluted diffusion structure (a filament or a striation



Diffusion of Turbulent Plume around a Sphere 183

2
3
<4 Slope=-5/3

2 /

5

®

_1_6_.
-7 | | + i

0 1 2 3 4 5

Log(fr/U)

Fig. 4.10 Spectrum of the digitalized concentration signal.

structure4'1)’4'13)) will be formed finally. Since such formation of the diffusion structure always
involves the entrainment of the ambient fluid, the mixing rate of the diffusing matter in the
structure would become smaller and smaller as the process proceeds. The set of points ob-
tained from the one-dimensional intersection of this structure with a straight line is very simi-
lar with the Cantor set. In fact, the fractal dimension of the 1-scale Cantor set with a scale
factor 1/8 is

Dy= —log2/log(1/8) = 0.333, (4.16)

and this value is found to be almost the same with the fractal dimension of the set of the iso-
concentration points obtained from our analysis.

4.5 Conclusions

(1) The set of the iso-concentration points can have a fractal feature, even though there
exists no range of the —5/3 power law in the distributions of the velocity and concentration
spectra. This fractal dimension Dy was found to be about 0.3, independently of the threshold
level, and this value agreed well with the K-range fractal dimension which have been ob-
tained in high Reynolds number turbulent flows*>*¥.

(2) The fractal dimension of the set of the iso-concentration points was shown to keep a
nearly constant value on the front stagnation line. This can be explained by assuming a uni-
form or a partially uniform distortion of the material lump.
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