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Abstract

In three dimensional electromagnetic field calculations, the magnetic vector
potential is the most orthodox and popular solution variable. However, there
exists the problem of how to select the most suitable gauge for the problem
considered, since the electromagnetic field is invariant under the gauge transfor-
mation. In this paper, formulations implicitly using the Lorentz gauge and the
Coulomb gauge magnetic vector potential are presented and numerically tested
for three dimensional eddy current problems. In addition, two applications of
the formulations to practical problems are presented.

1. Introduction

The magnetic vector potential associated with the electric scalar potential is the most or-
thodox and popular solution variable for three dimensional electromagnetic field calcula-
tions.""™ The electric field intensity and the magnetic flux density, which are the fundamen-
tal quantities of electromagnetic field, are expressed in terms of the magnetic vector potential
and the electric scalar potential which reduce the degree of freedom of solution variables by
two. Moreover, the potentials enable us to discriminate the electric field due to magnetic in-
duction from the electric field due to electric charge, and the numerical calculation becomes
transparent.*) However, when the vector potential is applied to a three dimensional electro-
magnetic field problem, it is necessary to impose the gauge condition on the vector potential
in order to obtain a unique solution. Furthermore, since the electric field is expressed as the
sum of the vector potential and the scalar potential, the gauge transformation can be applied
and consequently there can exist many formulations. Therefore, it is very important to select
the most suitable gauge for the problem.

In this paper, formulations are given for typical gauges: the Lorentz gauge and the Cou-
lomb gauge. They are numerically tested for three dimensional eddy current problems, and
applications to practical problems are presented.



2 T. Morisue

2. Helmholtz’s Theorem for a Vector Field

When vectors are placed at all points of a space, the space is called a vector field. As-
sume that the vector field is simply connected, unbounded, and smooth everywhere, and van-
ishes at infinity. By Helmholtz’s theorem, the vector field w(#) is written as'”

v(r) = rot u(r) — grad f(7),

u(r) = / _rotv(r) dr, f(r)= Q—div v(r’), dr’ (2.1)

Aalr—rT 4rlr—rl
For self-containedness, the theorem is proved as follows. Consider the equations:
rot rot u(r) =rot v(r), divu(r)=0 inQ. (2.2)
Equation (2.2) has a unique solution: Since rot rot = grad div — "2, it follows from (2.2)

¢ v(r
172u(r) = —rot v(r), therefore, u(r) =/ rot v(r’)

o dmir— 1%

From rot [v(r) — rot u(r)] = 0 and the simply- connectedness of Q follows

di '
v(r) =rot u(r) — grad f(r) , therefore, f(r) =/ v v(r) dr’

o 4nlr—ri

Q.E.D. From the Helmholtz theorem, a vector field can be expressed by a vector potential
and a scalar potential, and in order to determine the vector field uniquely it is necessary to
specify its rotation and divergence.

3. Electromagnetic Field Equations in Free Space

EIectromagnetlc field equations in free space are given by the following Maxwell equa-
tions” and constitutive relations:

rot E+ 9B/ot=10 (3.1), divB=0, (3.2)
rot H— dD/ot = |, (3.3), divD=py, 3.4
B = lL{oH, D = eoE (3.5)

where B, H, E, D, jo, 0o, 14y, and g, are the magnetic flux density, the magnetic field intensity,
the electric field intensity, the electric flux density, the current density, the electric charge
density, the permeability of free space, and the permittivity of free space, respectively. From
(3.2) and the Helmholtz theory, B is expressed as
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B=rot A (3.6)

where A is called the magnetic vector potential. From (3.1) and (3.6) follows
E=— 0A/ot — grad ¢ 3.7)

where ¢ is called the electric scalar potential. Using rot rot = grad div — 7, the remaining
equations (3.3) and (3.4) are written in terms of A and ¢ as

PA — uog,0° Aot — grad (div A + uggo 0/ ot) = — uojy » (3-8)

V¢ + div 0A/ 0t = — py/e - (3.9)

The vector A is not determined completely by the magnetic field B. Since, for any scalar
function &, rot grad & = 0, we can add to A the gradient of an arbitrary function &. Accord-
ing to (3.7), however, we have to replace ¢ by ¢ + 9E/ot if we replace A by A — grad &, in
order that E should not be changed. This freedom in the choice of the potentials can be used

to simplify the field equations (3.8) and (3.9). If A, and ¢, represent certain possible values
of A and ¢, we determine & from the equation

VPE — wyeg0°E/ 0" = div Ay + 1920060/ Ot (3.10)

If we now put A= A,—grad &,

¢ = ¢y + 0&/ot,
we obtain div A + uggy0d/ot =0 . (3.11)

(3.11) represents a relation between the potentials and is called the Lorentz relation. The
field equations (3.8) and (3.9) then become simply

VPA — uoeg0° A/ 08 = — pgjy (3.12)
V26— toge0 ¢/ 0 = — oo/ g - (3.13)

A and ¢ satisfy, therefore, the inhomogeneous wave equation. They are coupled by the
Lorentz condition (3.11) only.

The different possible choice one can make for A and ¢, leaving £ and B unchanged, are
called gauges, and the invariance of E and B under these transformations is called gauge in-
variance. In particular, the class of gauges satisfying (3.11) will be called the Lorentz gauge.
Another important gauge which will be called the Coulomb gauge is determined by

divA=0 (3.14)

with the field equations (from (3.8) and (3.9)):
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(3.15)

VPA ~ 1yegd° A/ — uoeograd 9g/dt = — wojy ,
(3.16)

[72¢= — o/ -

(3.16) is the Poisson equation. The scalar potential is then determined from the charges as if
the latter were at rest. (Hence the name Coulomb gauge.)

4. Electromagnetic Field Equations in a Material

We assume the following constitutive relations in a material.
B=uH, D=¢E, j=o0E (4.1)

where 4, ¢, and o are the permeability, the permittivity, and the conductivity of the material,
respectively. u, € and o are all constant in the material. The field equations in the material

are written in terms of the potentials as

V’A — 1o0A/ ot — ued* A/ ot — grad(div A + uog + uedg/ )

V2 + div 0A/ 9t = — py/e . (4.3)
We define the Lorentz gauge in the material as
div A + uo¢ + ueodg/ot =0 (4.4)
with the field equations (from (4.2) and (4.3)):
V?A — uodA/ot — ued* A/ ot = — uj, (4.5)
(4.6)

V’¢ — uodg/ot — ued’ ¢/ ot = — pyle .
The Coulomb gauge in the material is the same as (3.14), with the field equations (from
(4.2) and (4.3)):

2 A — uodA/ ot — ued’ A/ ot" — grad(uog + uedg/ ot)
(4.7)

==l
Vg =— oy/e. (4.8)
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5. The Lorentz Gauge Formulation for 3D Eddy Current Problems

In usual eddy current problems in which low frequencies are used, the following relation
is satisfied:

|oD/ot| < |oE| . (5.1)

We, therefore, set D/t = 0 in the following discussion. The field equations then become, in
the material (from (4.5) and (4.6)):

V?A — uodA/ot = — uj, (5.2)
¢ — uodg/ot=0," (5.3)

and in free space (from (3.12) and (3.13)):

VPA=— Moo » (5'4)
Pg=0." (5.5)

(*) Since rot H = j = oF, we obtain div(oE) = adiv E = 0, therefore, div E = 0. Then, p =
div D = ediv E = 0. There, therefore, exists no charge inside the material. However, in
general, there exist charges on the surface of the material.
(**) In a usual eddy current problem, there exists no charge in free space.

The interface conditions between the material and free space are given as follows.

A =A4,, (5.6); =4, (5.7)

1/urot A, X n=1/uy rot A, X n, (5.8)

(A, . n)/on + pog, = A(A, . n)/on (5.9)

n.(0A;/ot + grad ¢)=0,C" (5.10)

[ n.(0As0t + grad gy ar=0 (5.10Y
r

where suffix 1 and 2 denote the material and free space, respectively, and I"and n are the in-
terface and a unit normal vector at the interface pointing into free space, respectively. By
Stokes’s theorem, (5.6) involves By . n= B, . n, and (3.7), (5.6) and (5.7) give E; X n= E,
X n. (5.9) expresses the continuity of the gauge across the interface. (5.10) indicates that
eddy currents do not run out from the material, and (5.10)" indicates that the total of surface
charges is zero.

(***) Since div E = 0 in the material (see (*)), [rE, . n dI" = 0. Therefore, (5.10) is inde-
pendent except one point on the interface, leaving ¢; within a constant.

(#) (5.10) and (5.10) make up the complete interface conditions for the flux of the scalar
potential. (If the scalar potential is given at least at one point on the interface, e.g. from ge-
ometrical symmetry, (5.10)" is not necessary.)
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The boundary conditions at infinity are given as

= 5, GanptY; = ? 5.12

Ay, (n=0(/1rl%y, (5.11) s 6 (1) =0(1/IrI) (5.12)

as r — « . (“O” means “order of”.)
(##) The vector potential A due to the current density j is

A(r) = /Q wi(r)/Axlr— 1l dQ,

where €, is the current region. Since £, is bounded in the eddy current problem and the cur-
rent paths are closed loop, A becomes like a dipole field at infinity, and is expressed as
(5.11). The scalar potential ¢ due to the charge density o is

¢(r)=/Q o(r)/Amelr — 1l dQ, .

As far as (5.10) is satisfied, the situation is the same as A, and ¢ is expressed as (5.12).
The system of equations (5.2) through (5.12) yields a unique solution, and satisfies the
Lorentz gauge:

div A, + uog, =0, and divA4,=0 (5.13)

(note that ¢, = 0 in free space). First, we prove that the formulation given above satisfies the
Lorentz gauge (5.13). From (5.2) follows

rot (1/urot Ay) — 1/u grad (div A, + uog)
+ 0 (0A /ot + grad ¢) =, . (5.14)

(3.3) can be written as

div [0 (0A/0t + grad ¢,)] — o d(div A; + uog,)/dt=0. (5.15)
Taking the divergence of (5.14) and subtracting (5.15) gives (note that div j, = 0),

V’p, — uodp,/ot=0 inQ, (5.16)
where p; = div A; + uod¢;. From (5.4) follows

rot (1/uy rot Ay) — 1/u, grad div A, = j, . (5.17)
Taking the divergence of (5.17) gives

Pp,=0 inQ, (5.18)
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where p, = div A,. (5.6) and (5.9) give
pi=p, onl. (5.19)

(Q1, Q,, and I denote the material region, free space region, and the interface between the
material and free space region, respectively.) (5.8), (5.10), (5.14) and (5.17) give

since, by Stokes’s theorem, (5.8) means n . rot (1/u rot A;)) = n . rot (1/u, rot A,) on I.
From (5.16) follows

0= | py[div(1/pgrad p;) — o dp;/dt] dQ,
Q
-~ /Q [1/p (grad py)* + 0/2 9p3/0t] dQ;

+ /r py. 1/u. dpy/on dr. (5.21)

From (5.18) and (5.11) follows

0=/ paldiv (1/s grad py)] 42,

__ /Q 1o (grad p,)° dQ, — fr b, . 1/pty Opy/on dT, (5.22)
We obtain from (5.19), (5.20), (5.21) and (5.22)

[, (n (erad piy* + of2 apij ) a2y

+ /Q 1/ (grad py)’ d2, =0 . (5.23)
Since the potentials are zero at t = 0 (t denotes time),

opi/ot= 0 att=0. (5.24)
From (5.11), (5.23) and (5.24) gives

p;=0 inQ,, pp=0 inQ,, and Jpi/dt=0 inQ,,

therefore, dp;/ot=0 inQ;, att=0. (5.25)
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From (5.25) we obtain (5.13). Q.E.D.
Second, we prove the uniqueness of the solution. Suppose we have two solutions and let
(A%, ¢*) be the difference between them. From (5.13), (5.14) and (5.17) follows

rot (1/urot A*) + 0 (0A*/ot + grad ¢,*) =0, (5.26)
rot (1///(0 rot AZ*)=O . (5.27)

Now let us define A’ as
A;(r, 1) = A/(r, ) + grad y,(r, 1) (5.28)
where (7, 1) = [ g(r, t) dt. From (5.26) and (5.28)
0

rot (1/urot A/*)+ 0 0A/*/ot=0. (5.26)

We obtain from (5.26) and (5.27)
0 =/ A/* . [rot (1/urot A/*) + 0 DA */at] dQ,
Q

- /Ql [1/u (rot A/*) + 0/2 9(A/*Y/01] dQ,
—/FA/* - (1/urot A* X nj)dr, (5.29)
0= /Qz A rot (1/ug rot As%) dQ,
- /QZ 1/ (rot A% dQ, — /r A (g ot A* X ny) dT

— [ A% (Uporot A% X ny)dr- (5.30)
=
where I* is the boundary at infinity. Since

/ grad w* . (H* X ny) dTl'= / div [y,* (H* X ny)] dI
r r

~ /r wi* div (H* X ny) dl = 00" (5.31)

where H;* = 1/urot A* = 1/urot A;*, and the boundary integral at infinity in (5.30) van-
ishes from (5.11), we obtain from (5.29) and (5.30) (and (5.6), (5.8), and (5.28))
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/Q [1/u (rot A/*Y: + 6/2 0(A;*)/0t] dQ,

+ /Q 1/ (rot Ay dQ, =0 . (5.32)

(###) The first integral in the right hand side in (5.31) is zero since I'is the closed surface of
the material. The second integral is also zero as is shown below: We assume that I' is a
smooth surface. Then, at every point on I there exists a tangential plane, and we can define
local Descartes coordinates with the z axis coinciding with the normal vector #. In this coor-
dinates

div (H* X n;) = oH,*y/9x — dH;*x/0y = n, . rot H*.
And, from (5.10) and (5.26) gives n; . rot H;* = 0.

Applying to (5.32) the same discussion as in the preceding section gives
AF=0 inQ, (5.33); rotA¥=0 inQ,, (5.34)
forallt = 0. From (5.13), (5.28), (5.33) and (5.34) gives

VP * — uoop*/ot=0 inQ,, (5.35)
Ay =grad &* and V’&*=0 inQ,. (5.36)

From (5.6), (5.28), (5.33) and (5.36)
—grad ¢ * =grad &,* on . (5.37)
From (5.37) follows

— Yi*(r, t) = &*(r, t) + (), and
— Oy, *(r, t)/on = 9&,*(r,t)/on on I, (5.38)

and from (5.11) and (5.36)
[ o&rjon,ar=[ verde,—o. (5.39)
r Q,
From (5.35), (5.36), (5.38) and (5.39) gives

[ i(erad vy + woi2 a(piy /) a2

+ /Q (grad &%) dQ, = 0. (5.40)
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Applying to (5.40) the same discussion as in the preceding section gives
Y*=0 inQ,, and grad §,*=0 inQ, (5.41)

for all t = 0. From (5.28), (5.34), (5.36) and (5.41), we obtain the uniqueness of A,, A, and
¢,. The uniqueness of ¢, is easily derived from (5.5), (5.7), (5.12), and the uniqueness of ¢,.
Q.E.D.

6. The Coulomb Gauge Formulation for 3D Eddy Current Problems

In this chapter, we assume, as in the preceding chapter, dD/dt = 0. The field equations
in the material are written as (from (4.7) and (4.8)):

VA — no 0A/ot — wograd ¢ =— u j,, (6.1)
P6=0, (6.2)
and in free space (from (3.12) and (3.13)):

VA== oo, (6.3)
7Pg=0. (6.4)

The interface conditions between the material and free space are given as follows:

A=A, 6.5 =6, (6.6)
1/urot A; X n=1/u,rot A, X n, (6.7)
9d(A;. n)/on=0(A,. n)/on, (6.8)
n. (9A,/9t + grad gp) =0, (6.9)
/rn. (94,0t + grad ¢) dT=0. (6.10)

The boundary conditions at infinity are given as:
A, (1 =0(1/Ir1%, (6.11); gy(n) = O(1/IrP) (6.12)

as r - o,

Remark. See the comments (*) through (##) in Chapter 4. These are also applied to the
above formulation.

Remark. The Coulomb gauge condition is not explicitly included in the system of equations
(6.1) through (6.12) as well as the Lorentz gauge condition is not explicitly included in (5.2)
through (5.12).
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The system of equations (6.1) through (6.12) yields a unique solution, and satisfies the

Coulomb gauge. This is proved in the same way as in Chapter 4.

7. The Boundary Integral Equations for the Lorentz Gauge and
Coulomb Gauge Formulations

In this chapter, we consider a time-harmonic 3D eddy current problem:
djot=jw, j= -1, w=2af (7.1)

where f is the frequency. In the Lorentz gauge formulation, the field equations in the material
are written as (from (5.2), (5.3) and (7.1)):

VA+KA=—uj,, and Vg+Kk¢=0 (7.2)

where k> = — jouo. The Green function, or the fundamental solution to the Helmholtz equa-
tion (7.2) is written as:

G(r, ry=exp (kir— r')/4=lr—rl. (7.3)

The boundary integral equation corresponding to the Helmholtz equation is expressed in De-
scartes coordinates as:

¢ &) = fQ u(r). G(r, ) dQ’ — fré(r') L 9G(r, )/on’ dI”

+/ OE(r)/on’ . G(r, r) dI” (7.4)

where c =1, r £ Q; = 1/2, r e I; u = joy, Ujoy, Hjos» OF 0o/ €; and & = Ax, Ay, Az, or 4. The
field equations in free space are written as (from (5.4) and (5.5)):

V’A=— uyj,, and V¢=0. (7.5)

The Green function, or the fundamental solution to the Poisson (and the Laplace) equation
(7.5) is written as:

G(r,ry=1/4xlr—rl. (7.6)

The boundary integral equation corresponding to the Poisson equation is expressed in
Descartes coordinates by the same form as (7.4).

In the Coulomb gauge formulation, the field equations in the material are written as
(from (6.1) and (6.2)):
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VPA—KA—uograd g=—uj,, (7.7)
7¢=0. (7.8)

(7.7) is inconvenient for the boundary integral formulation since it requires the volume inte-
gration of the unknown scalar potential. We, therefore, introduce the variable defined as:

A=A+ 1/jograd ¢ (7.9)

((7.9) is not a gauge transformation since ¢ is not changed). From (7.7), (7.8) and (7.9) fol-
lows

PPA + KA =—uj,. (7.10)
The interface conditions change into:

A/ —1/jw grad ¢, = A,, (6.5

1/ud[(A; — 1fjo grad ¢y) . £]/on

= 1/po (A, . £)/0n+ (1/u— 1/up)d(A; . n)/at;
i=1,2 (6.7

where ¢; and ¢, are independent tangential unit vectors,

[(A/ — 1/jw grad ¢,) . n]/dn = A(A;. n)/on, (6.8Y
n.A;/=0. (6.9

The remaining interface conditions and boundary conditions are the same as in Chapter 6.
The boundary integral equation for (7.10) is the same as for (7.2), and that for (7.8) is the
same as for (7.5). The field equations in free space are the same as (7.5).

8. Discretization of the Boundary Integral Equations

For numerical calculations, the boundary integral equations and interface conditions
should be discretized. In this paper, the discretization is carried out by using the zero-order
boundary elements. In a zero-order boundary element, the potential and the flux (the normal
derivative) of the potential take respectively only one value. The node point of a zero-order
element is located at the center of geometry. The integration is carried out by using the
Gauss-Legendre formula'® for i # j and the analytical formula given below for i = j, where i
and j denote the i-th and the j-th boundary element, respectively. The analytical formula as r
— r' tends to 0 is given as (we assume that the boundary elements are rectangular):
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[ 1/4alr—r1dry =1/ [Lilog (Lo + V(L + L3)/Ly)

+ Lylog((L, + /(L] + L})/L,)] , and (8.1

| aG(r, ry/an ary =0, (8.2)
I;

rely, rel;

where [; = [-L; £ x = L, =L, = y = L,]. (8.1) is derived in Appendix 1 and (8.2) fol-
lows from that d/dn’ = n’ . grad and #’ is perpendicular to » — r’. We define the matrices G
and H as:
G =gi], and H=[hy], Lj=1, -+ ,N;
g = [ G(rr)dIy, and
[}

hy=1/2 8+ [ 0G(r, r))/on; dT; (8.3)

L
where &; = 1 fori=j,=0fori # j, and N is the total number of the boundary elements.
The coefficient matrix of the linear simultaneous equations corresponding to the boundary

integral equations and interface conditions takes the form shown in Fig. 1 in which qx =
0Ax/0n, qy = 0Ay/dn, qz = 0Az/dn, and qv = J¢/dn.

Ax Ay Az ¢ 91X q1Y d1Z 41V 42X (a2Y Q22 qoV

-
H, -Gy
H,y -G,
R1
Hl ""Gl
H,' -G,
5
H, A -G,
H, -G,
R2
H, -Gy
H,! -G,
—+
dd |dd |dd d d d d d d
R3
dd (dd |dd d d d d d d ‘i-
d d d d d d d R4
d d d d d d gg
d | dla d | d |a RS

Fig. 1 The coefficient matrix.
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The coefficient matrix is a 12N X 12N square matrix in which R1, R2, R3, R4 and R5 (see
Fig. 1) correspond to the boundary integral equations in the material, the boundary integral
equations in free space, eq. (5.8) (eq. (6.7)), eq. (5.9) (eq. (6.8)), and egs. (5.10) and (5.10)
(egs. (6.9) and (6.10)), respectively. The coefficient matrix is made up of 12 X 12 (= 144)
block matrices. The block matrix is a N X N square matrix, and the d-block matrix, the dd-
block matrix and the blank block matrix denote the diagonal matrix, the bidiagonal-like ma-
trix and the zero matrix, respectively. (In RS in Fig. 1, the first N —1 rows correspond to eq.
(5.10) (eq. (6-9)) and the Nth row corresponds to eq. (5.10) (eq. (6.10)).

9. Numerical Experiments

Numerical experiments for the Lorentz gauge and Coulomb gauge formulations were
carried out for a test problem shown in Fig. 2. The problem is the three dimensional eddy
current calculation of an aluminum sphere placed in a one-turn square coil. The coil and the
equator of the sphere are in the same plane. The physical properties used are as follows:

u=uy=47X10" H/m, o0=25x%10"S/m,
f=50and 100 Hz, I,=1/(4xX107)+j0A. (9.1)

The computation was carried out by using the boundary integral equation method described
in Chapter 7 and 8. The discretization of the surface of the sphere is shown in Fig. 3. The
total number of boundary elements is 800, and the shape of the element is spherical quad-
rangle. The interpolation used is of zero-order.

The computed results are shown in Fig. 4 through Fig. 7 and Table 1 through Table 8.
The correspondence between the figures and the tables are as follows: Fig. 4 — Table 1 and
2, Fig. 5 — Table 3 and 4, Fig. 6 — Table 5 and 6, and Fig. 7 — Table 7 and 8. As is seen
from the figures, there are almost no discrepancies in the computed results by the Lorentz
gauge and Coulomb gauge formulations. (The dotted lines completely overlap the solid lines
in the figures.) For example, in Table 3 and 4, the value of eddy current at the point 8 =
1971/40 and ¢ = /40 on the surface is (6: zenith angle and ¢: azimuth angle):

J,=[0.3149746213 + j1.460785998] X 10° A/m

for the Lorentz gauge, and
J, = [0.3160025548 + j1.460745861] X 10° A/m’
for the Coulomb gauge.

On the other hand, the computation time using an IBM-RS/6000-320H (11.7 MFLOPS) is:

383 sec for the Lorentz gauge, and

823 sec for the Coulomb gauge.
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The computation time with the: Coulomb gauge is about twice as large as with the Lorentz
gauge. This is due to the calculation of the normal derivative of grad ¢, by using the bound-
ary integral equations. (See (6.8)".)

It may be concluded from the numerical experiments that the Lorentz gauge is preferable
for the formulation using the boundary integral equations.

The computer program in FORTRAN for the Lorentz gauge formulation is given in Ap-
pendix 2. (The length of the FORTRAN program for this test problem is: 820 statements for
the Lorentz gauge, and 1,320 statements for the Coulomb gauge.)

One-turn K\
Square Coil X
To \/

— 56 | mm —

N z

Aluminum
Sphere

20 mm
Fig. 2 The geometry of a sphere-square coil system.
s 7 ‘ NS
Z JTTAN
/ J LT T VAN \
S]] |\

RN 7]
NNEEEERNNNyy,
NSNSV VYT 7
AN NNV LTI
\\\ // /
%&\WL/'

Fig. 3 The discretization of the sphere surface.
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Frequency = 50 Hz

Radius = 20 mm

1.0 - Im{Je]

0.8 - Lorentz gauge

...... Coulomb gauge

Re[Jo}

e

0 1 L L 1 >y
0 5 10 15 20 om

Fig. 4 The computed eddy current density J¢ on the y axis in the plane z =0, f = 50 Hz.
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Fig. 5 The computed eddy current density J¢ on the surface of the sphere at 8 = 197/40, f = 50 Hz.
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Fig. 6 The computed eddy current density J¢
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Fig. 7 The computed eddy current density J¢

on the surface of the sphere at 6 =
197/40, f = 100 Hz.
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Table 1. The computed eddy current density J; on the y axis in the plane z = 0, f = 50 Hz.

T. Morisue

The Lorentz gauge

Table 2. The computed eddy current density J, on the y axis in the plane z = 0, f = 50 Hz.

.3556917303D+08
.7090489624D+08
.1057710487D+09
.1399261455D+09
.1731206002D+09
.20560939161D+09
.2355717745D+09
.20642629817D+09
.2908562248D+09
.3150165697D+09
.3363816172D+09
.3545571975D+09
.3691124413D+09
.3795739865D+09
.3854188218D+09
.38060635762D+09
.3808354986D+09
.3688809472D+09
.3524017671D+09

The Coulomb gauge

1 i ] ] [} 1

.3556923199D+08
.7090538446D+08
.10577273887D+09
.1399305714D+09
.1731299855D+09
.2051116558D+09
.2356027045D+09
.2643137109D+09
.2909354530D+09
.3151353578D+09
.3365535710D+09
.3547985206D+09
.3694413060D+09
.3800121665D+09
.3859880426D+09
. 3867866897D+09
.3817361225D+09
.3699916797D+09
.3538720911D+09

[ 2NN T B |

.4694851213D+08
.9426377534D+08
.1423140489D+09
. 1914707088D+09
.2421100654D+09
.29461551740+09
.3493801980D+09
LA008103159D+09
.4673284584D+09
.5313842236D+09
.5994516863D+09
.6720494148D+09
.7497490414D+09
.8331946760D+09
.0231265472D+09
.1020398228D+10
.1125883561D0+10
. 1239847831D+10
L13757056788D+10

7D+08
7D+08
9D+09
60+09

.2420779318D+09
.2945661053D+09
.3493132714D+09
.4067304156D+09
.4672482170D+09
. 5313230849D+09
.5994450692D0+09
.6721483725D+09
.17500254893D+09
.8337463125D+09
.9240828953D+09
.1021930556D+10
.1128238020D+10
.1243527133D+10
.1383327668D+10
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Table 3. The computed eddy current density J, and electric scalar potential ¢ on the surface of the
sphere at 6= 1977/40 and 6 = 7/40, f = 50 Hz.

Electric Scalar Potential

Eddy Current Jp at

L B | i

Table 4. The computed eddy current density J; and electric scalar potential ¢

Electric Scalar Po

[ B T

Eddy Current Jp at

The Lorentz gauge

.9416397789D-08
.2465244988D-07
.3047210469D-07
.2465245122D-07
.9416398618D-08
.9416398618D-08
.2465245122D-07
.3047210469D-07
.2465244988D-07
.9416397789D-08

.2014843904D+08
.2014862432D+08
.2014892411D+08
.2014922390D+08
.2014940919D+08
.2014940919D+08
.2014922390D+08
.2014892411D+08
.2014862432D+08
.2014843904D+08

/40

]3396(0 77D-06
073273620-00
43? 206432D-06
507329616D-06

.]3396809700-06
.1339680970D-06
.3507329616D-00
.4335296432D-06
.3507327362D-06
.1339679577D-06

the Surface

.4964578022D+08
.4964954609D+08
.4965563941D+08
.4966173272D+08
.4966549860D+08
.49665498600+08
.4966173272D+08
.49065563941D+08
.4964954609D+08
.4964578022D+08

at the Surface

[ ]

9 =

L4927368809D-03
.1290459036D-02
L15961202810-02
.1282235240D-02
LA4938373529D-03
.4938373529D-03
.1292235240D0-02
.1596120231D-02
. 1290459036D-02
.4927368809D-03

.3149746213D+09
.3148039903D+09
.3145322567D+09
.3142653078D+09
.31410236960+09

3141023696D+09

- 3142653078D+00

.3145322567D+09
.3148039903D+09

-.3149746213D+09

sphere at 6 = 1927/40 and 6 = 7/40, f = 50 Hz.
The Coulomb gauge

/40

33789976D-09

71
.1867650740D-08
23

08543800D-08

.1867651597D-08
.7133795307D-09
.7133795307D-09
.1867651597D-038
.2308543800D-08
.1867650740D-08
.7133789976D-09

.2014837856D+08
.2014858694D+08
.2014892411D+08
.20149261280+08
.2014946967D+03
.2014946967D+08
.2014926128D+08
.2014892411D+08
.2014858694D+08
.2014837856D+08

tential at

the

.1348173421D-06
.3529564537D-06
.4362783092D-06
.3529566792D-06
.1348174815D-06
.1348174815D-06
.3529566792D-06
.4362783092D-06
.3529564537D-06
.1348173421D-06

the Surface

[

i

.4964578058D+08
L4964954631D+08

4965563941D+08

.49661732500+08
.4966549825D+08
.A49606549825D+08

4966173250D0+08

L 4965563941D+08
4964954631D+08
. 4964578058D+08

Surtface

[ T T B

1

2SN AR SRS Ras R e N o)

-

.3160025
L31544010698D+09
L 3145336119D+09
L3136299711
‘91307227300+09

g =
158156273D-04
652793044D-04
992842395D-04
662145184D-04
2163939559D-01
IOJOBQ«GQD 04
5662145184D-04

699284°390D 04

L5602793044D-04
.2158156273D-04

H48D+09

D+09

3130722385D+09

A31?62997110 09
.31453361190+09
.3154401698D+09
.31060025548D+08

19w/40

310905
.2519191983D-01
L9633351612Dh-02
.96333516120h-02
.2519191993D-01
.3109059977D0-01

.95808423060-02

2512185532D-01

9977D-01

25121855320-01

1 9589842306D-02

.1460785998D+10

-.1438707743D+10

[ )

t

[ )

'

2311935423060 -
.2527521818D-01
L806651728650-02
.96651729650-02

.1403470607D+10
.1368672324D+10
.13472941910+10
.1347294191D+10
.136867
.1403470607D+10
.1438707743D+10
.1460785998D+10

2324D+10

on the surface of the

197 /40

962164533
252051240

-9
4

1D-0
3D-01
p-01

2527521818D-01

.3119354236D-01
.2520512403h-01
.9621645331D-02

.14060745861D+10
~. 143868
.1403470612D+10

204T7D+10

1368687123D+10

L 1347334320D+10
.13473343200+10
.1368697123D+10
.14034706120+10
.1438682847D+10
.1460745861D+10
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Table 5. The computed eddy current density J, on the y axis in the plane z = 0, f = 100 Hz.

The Lorentz gauge

-.8989397302D+08 -.3504600342D+08
-, 1795367795D+09 -.7142514718D+08
-.26869840830+09 -.1104739427D+09
-.3569510629D+09 -.1535355998D+09
-.4440500235D+09 -.2019632817D+09
=.0295142126D+09 -.2571232928D+09
-.6128063474D+09 -.3203982593D+09
-.06932725554D+09  -.3931904450D+09
-.7701213018D+09 -.4769254737D+09
-.8424014431D+09 -.5730569075D+09
-.9089791625D+09  -.8830724069D+09
-.90685134539D+09  ~.8085025894D+00
=.10194296800+10 -.95093426690+09
-.1059890472D+10 “‘}]1)O%OL%QD+ 0
-.1087762388D+10 -.L293 56545D+10
-.1100571439D+10 - 407394 51D+10
-.1005402138D+10 -.1725346750D+10
-.1068601487D+10 -.1977935950D+10
-.1025085362D+10 -.2277432036D+10

Table 6. The computed eddy current density J, on the y axis in the plane z = 0, f = 100 Hz.

The Coulomb gauge

-.8989414945D+08 -.3504523735D+038
-.1795382594D+09 -.7141913595D+038
-.2686637844D+09 -,1104543175D+09
-.3569650534D+090 -.1534912933D+09
-.4440804197D+09 -.2018823464D+09
-.5295730601D+09 -,2569953837D+09
-.6129112910D+09 -.3202178311D+09
-.6934482567D+090 -.3929607279D+09
-.7704008180D+09 -.4766633028D+09
-.8428274322D+09 -.5727984990D+00
-.9096047562D+09 -.6828801871D+09
-.9694026124D+09 ~.8084732097D+09
-.1020656813D+10 -.9512079671D+09
-.1061539080D+10 -.1112801867D+10
-.1089922536D+10 -.1295088768D+10
-.1103336429D+10 -.1500039229D+10
-.1008868840D+10 ~-.1729612797D+10
-.1072902132D+10 -.1984849218D+10
-.1030809184D+10 -.2292216592D+10
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Table 7. The computed eddy current density J; and electric scalar potential ¢ on the surface of the
sphere at 0= 197/40 and 6 = 7/40, f = 100 Hz.
The Lorentz gauge

Electric Scalar Potential

Eddy Current

Table 8. The computed eddy current density J; and electric scalar potential ¢

Electric Scalar Potential

[

8 =

.30632824897D-07

.9510859221D-07

L1175606885D-06

.9510859756D-07

.3632825228D-07

.3632825228D-07

.9510859756D-07

.1175606885D-06

.9510859221D-07

.3632824897D-07

Jp at

.5449102033D+08

.5449174016D+08

.5449290488D+08
.5449406959D+038
.5449478943D+08

.5449478943D+08

.5449406959D+08

.5449290488D+08

.5440174016D+08

.5449102033D+08

m/40

LU B

the

[ IR T S R ]

.2631658360D-00
.6889772427D-06
.8516220856D-00
.6889776936D-06
.2631661147D-06
.2631661147D-06
.6889776936D-006
.8516229856D-06
.6889772427D-06
.2631658360D-06

Surface

.69149002558D+08
.0915649630D+08
.6916858419D+038
.69180672100+03
.6918814284D+08
.6018814284D+08
.6918067210D+03
.69016858419D+08
.6915640630D+08
.6914902558D+08

at the Surface

g =

L1927655916D-02
.5048493540D-02
.62443704830-02
.5055575374D-02
.1932043459D-02
.1932043459D-02
.5055575374D-02
.6244370483D-02
.H048493540D-02
.1927655016D0-02

01638150880 +09

-.9161801247D+09

[ B B

.9150625807D+09

.91396404900+09
.9132932332D+09
L01329323320+09
.0139640490D+09
L9150625807D+00
.9161801247D+09
L0168815088D+09

sphere at 0= 192/40 and 6 = 7/40, f = 100 Hz.
The Coulomb gauge

g =

.2758158499D-08
.7220953738D-08
.8925591739D-08
.7220957077D-08
.2758160568D-08
.2758160568D-08
L7220957077D-08
.8925591739D-038
L1220953738D-08
.2758158499D-08

Eddy Current Jp at

[T S T B

1

.5449074979D+08 "

.5449157296D+08
.5449290488D+08
.5449423680D+08
.54495059897D+08
.5449505997D+08
.5449423680D+08
.5449290488D+08
.5449157296D+08
.5449074979D+08

/40

the

[T B

.2692451710D-06
.7048931483D-06
.8712961267D-06
.7048935989D-06
.2692454495D-06
.2692454495D-06
.7048935989D-006
.8712961267D-06
.7048931483D-00
.2692451710D-06

Surface

.6914906221D+08
.6915651894D+08
.69168584200+03
.6918064946D+08
.6918810622D0+08

-.69188100622D+08

.8918064946D+08
.6916858420D+08
.6915651894D+08
.6914908221D+08

at the Surface

[ S |

9 =

L8385558026D-04
.2196430179D-03
.2717171815D-03
.2200159362D-03
. 8408619198004
.8408619199D-04
.22001593620-03
L2T17171816D-03
2196430179D-03
.2385508026D-04

.9208805599D+0¢
.9186613716D+09
.9150679717D+09
L01148061547D+09
.9092754386D+09
.00927543860+09
.9114861547D+09
.9150679717D+09
.9186613716D+09
.9208905599D+09

191/40

. 1800004664D-01

L4977337187D-01
L61598972819D-01
.4991333384D-01
.1908686475D-01
.1908696475D-01
.4991333384D-01
.6159972819D-01
SAQTT3I371870D-01
.1800004964D-01

.2500291202D+10
L2456224377D+10
.2285895265D+10
.23164439700+10
.2273777567D+190
L2273777567D+10
L2316443970D+10
L2385885265D+10
.24506224377D+10
.2500291202D0+10

on the surface of the

19m/40

.1923221543D-01
.5038124700D0-01
.6235122582D-01
.5052141630D-01
.1931925896D-01
.1931925896D-01
.5052141630D-01
.6235122582D-01
.5038124700D-01
.1923221543D-01

.2500060887D+10
.2456082156D+10
.2385895392D+10
.2316586269D+10
.2274007677D+10
L2274007677D+10
.2316586269D+10
.2385885392D0+10
.2456082156D+10
.2500060887D+10
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Fig. 8 A gapless magnetic circuit.

10. Application to a Magnetostatic Field Problem

Three dimensional magnetostatic field calculations for gapless magnetic circuits are very
sensitive to discretization. A very small change of the element size causes us a great deal of
computational errors. In this chapter, a gapless magnetic circuit like a power transformer is
considered. The geometry of the circuit is shown in Fig. 8. The permeability of the iron is as-
sumed to be constant. We will use the boundary integral equation based on surface magneti-
zation currents which is given as: '

A+ 1/x) k(r)= /Q Jo(r)y X (r=rYyX n(n/4n lr— 71> dQ

+ /Fk(r’) X (r— 1) X n(R)j4alr—r1 dr (10.1)

where k= M X n, M, and yx are the surface magnetization current density, the magnetization,
and the susceptibility, respectively. (10.1) is derived from the vector potential A as follows:
From (7.4) and (7.6), together with (5.6), follows

A0 = [ wirya v = 11 a2,

+ /F [0A,(r)/on’ — AA, (r)/on]/4x r— r1dT, reQ,. (10.2)

Let nbe [1 0 0], then, from (5.8)

0Ay/0x = 1/u, 0Ay/0x + (1 — 1/u,) 0Ax/dy , therefore,
OAy/0x — O/ 9x = (1= 1/u)(9Ay/0x — OAx/ay)

= (1= 1/u) Biz = y/u, . pott, Hiz = poMz.. (10.3)

We obtain in the same way,
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0A 2/ 0x — 0A,z/dx = — uMy . (10.4)

From (5.9) gives (in a magnetostatic field problem, the Lorentz gauge reduces to the Cou-
lomb gauge since the electric scalar potential does not exist)

0A x/0x — dAx/dx =0 . (10.5)
(10.3), (10.4) and (10.5) give
aAI/an"' aAZ/aIl=,uo M X nzluok (10.6)

Substituting (10.6) into (10.2) gives

AR = /g Uojo(r)/4m Ir— 71 2,

+/ tok(r) /4w lr—r1drl. (10.7)
r
Taking the rotation of (10.7) gives

By(r) = /Q Uojo(r') X (r—= r)/4z r— r* dQ,

+ /r Uok(r'y X (r— r)/4 \r— P dr . (10.8)

Multiplying n(r) into (10.8) and taking the limit r (¢ Q) — I"gives (10.1). Q.E.D.

The evaluation of the second term in the right hand side of (10.1) over the subregion I
containing a singular point: » — »* —~ 0, is carried out analytically as follows: Let r = [—¢ 0
0, ”=1[0yz],n(r)=[100],and I, = (—a =y = a,—f = z = fB). Then,

= /r eX (r—r) X n(A)fdxlr—r* dl
. a  of
= " L /Hﬁ e/Am (& +y +7°) dydz e
= /j /io 1/4m)(1+y> + 2% dydz e=1/2 ¢ (10.9)

where e denotes either [0 1 0] or [0 0 1]. The singular integral takes the value of 1/2, inde-
pendent of the size of the subregion containing the singular point. The size of I, therefore,
may give a serious influence on the numerical computation.

The computed results. (10.1) was applied to the problem shown in Fig. 8. The permeability of
iron is assumed to be 1,000 1. The inner radius R of the torus is 0.8 m, and the cross section
radius r is 0.2 m. The solenoid has a radius of 0.21 m, and spans an angle of /16 radian. The
applied magnetomotive force is 16 ampere-turn. The torus is divided into 64 sections in the 8
direction and 16 sections in the ¢ direction. The computed results are shown in Table 9 and
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Fig. 9. ¢ in Table 9 denotes the width in the ¢ direction of the singular element in which the
integration is carried out analytically (see (10.9)). “Sum” in Table 9 denotes the row-wise
sum of the matrix elements derived from the second term in the right hand side of (10.1).
Remark. k6 (the 6 component of k) is negligibly small, compared with k¢ (the ¢ component
of k): kf/k¢ < 0.002 for = 1,000 y,, and < 0.0002 for x = 10,000 w,.

A method of reducing the computational error. As is seen from Table 9 and Fig. 9, a small
change of the width of the singular element induces a great numerical error. The gapless
problem, therefore, is very sensitive to the discretization. The proposed method is made up of
two steps, and in the first step the optimal value of 2zr/d is searched by trial and error,
checking the computed ampere-turn. For the case of Table 9, the optimal value is 48, since
the corresponding computed ampere-turn is 13.26712 and is the closest to the applied am-
pere-turn: 16 AT. In the second step, the matrix elements are adjusted to satisfy the follow-
ing equation for k (= [k k6]) = [k¢ 0]

k(r) = /rk(r’) X (r— 1"y X n(r)j4a lr— rI*dr (10.10)

(10.10) is equivalent to that the respective row-wise sum of the matrix elements is equal to 1.
The computed result corresponding to this adjustment is shown in Table 9 by symbol*. (A
slightly smaller number: 0.9999990 was used in the computation.) The computed results by
using this method are shown in Table 10 and Fig. 10 for the relative permeability of 2,000,
4,000, and 8,000.

Conclusions. 3D magnetostatic field calculations for gapless magnetic circuits are strongly af-
fected by the discretization. In this chapter, this fact is analyzed for an iron torus like a trans-
former by using a boundary integral equation based on the surface magnetization current
method. The main cause of the computational error is the imperfect cancelation of the per-
meability-free terms in the boundary integral equation (10.1) due to the improper size of the
analytical integration region containing a singular point. A method of decreasing the compu-
tational error is presented.

Table 9. The width of the singular element vs the computed ampere-turn in the iron torus.

2mr/d Computed AT Sum
40 3.35184 0.9962248
42 4.18826 0.9971786
44 5.49706 0.9980887
46 7.84141 0.9989594
48 13.26712 0.9997943
50 39.58445 1.0005965
52 —43.53237 1.0013687
48* 15.97702 0.9999990
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A/m
2,400
2nr/6 = 4B*
2,000
2nr/§.= 48
1,600
1,200}
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800}
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0 1 i 1
0 w/h n/2 3n/4 n

Fig. 9 The computed surface magnetization

current density, kg.

A/m

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

25

ur = 8,000

ur = 4,000

T

ur = 2,000

1

0

1 1

0

n/Y4

]
/2 3n/k "

Fig. 10 The computed surface magnetization
current density k¢ vs the relative per-

meability pr.

Table 10. The computed ampere-turn vs the relative permeability (2771/0 = 48*).

e Computed AT Sum
2,000 15.96108 0.9999990
4,000 15.92928 0.9999990
8,000 15.86607 0.9999990
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11. Application to an Electromagnetic Field Problem

In this chapter, the TEAM workshop problem: “Coil Above A Crack, A Problem In
Non Destructive Testing”'” is analytically solved by using the principle of superposition for a
linear system and the Fourier transform method.

Description of the problem. A block of austenitic stainless steel contains a rectangular slot,
representing a flaw shown in Fig. 11. A differential probe moves across the surface of the
block. The probe shown in Fig. 11 is a cylinder with an inducing solenoid and two smaller re-
ceptive solenoids. Each of these two solenoids is in a branch of a Wheatstone’s bridge. The
voltage at the bridge point is proportional to the difference of magnetic flux in the two recei-
vers. An amplifier and a dephasor generate signals and send these to the two pairs of plates
in an oscilloscope, representing the real and imaginary parts of the differential impedance be-
tween the block and the receivers. Variation of the signals is obtained by moving the prove
above the face containing the flaw.

The solution method. Like a stress concentration problem in structural mechanics, the prob-
lem seems to require either a very fine FEM (or FDM) mesh near the flaw or an analytical
approach. In this paper, the analytical approach is used. The principle of superposition for a
linear system and the Fourier transform method are used as the solution method.

There are two driving forces in the problem:

Jo : The exciting current density in the inducing solenoid,

30

330

Active Coil B
5 Bottom of the box

Receptive
coils B1 and B2

Fig. 11 The block with a flaw and the probe.
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# : The electric scalar potential along the surface of the flaw.
(The scalar potential should exist to cancel out the solenoidal vector potential, since the nor-
mal component of the eddy current at the surface of the flaw is zero.) Since the system is li-

near, the problem is decomposed into the following two problems each of which has only one
driving force:

ProblemI : ji=j and ¢, =0, (11.1)
ProblemII : j,=0 and ¢ =4. (11.2)

Since the width of the flaw is very small (0.5 mm), Problem I may be regarded as the problem
without flaws. Furthermore, since the diameter of the inducing solenoid (44 mm) is about 1/7
of the lengths of the block (330 X 285 X 30 mm), the block may be regarded as an infinitely
wide plate with a finite thickness. Under these assumptions, Problem I reduces to an axisym-
metric problem. In Problem II, the electric scalar potential ¢ is not known in advance. ¢ is
determined by the following equation:

(jwA;, +grad ¢) . n=—jwA, . n (11.3)

where the magnetic vector potential A; is already obtained in Problem I. In Problem II, the
block may, as in Problem I, be regarded as an infinitely wide plate with a finite thickness,
since the flaw is very small (40 X 10 X 0.5 mm) compared with the block. Under this as-
sumption, the Fourier transform method is effective to solve the problem.

The solution to Problem I. The geometry of Problem I is axisymmetric (see Fig. 12), there-

fore, there exists no electric scalar potential, and the vector potential has only one compo-
nent:

A=[Ar A0 Az] = [0 A6(r, z) 0] (11.4)
The field equation in the conductor is written in cylindrical coordinates as:

9/0r [1/r 9/dr (tA6)] + °A6/Iz" — jwugoAO =0, (11.5)
and the field equation in free space is written as:

9/dr [1/r 9/dr (tA6)] + 0°A6/0z" = — pyjof . (11.6)

The solution is obtained by using the Bessel-Fourier Transform method. The Bessel-Fourier
transform is defined as:

&&= [ e (ery ar, (11.7)

i) = [ e(9)En.(&r) d (1L.8)
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where J,(.) is the Bessel function of the first kind and the first degree, and has the following
properties:

d/dr [1/r d/dr (13, ()] = — L1 (1),

/: d/dr [1/r d/dr (ru(r))]rdy(r) dr = — /: u()rd, (1) dr . (11.9)

""" TR #N coil
e,
o
B #1 coil

Solenoid To #
I3

B 41 coil

B > T
Conductor
20

Fig. 12 The geometry of Problem 1.

We obtain from (11.5) through (11.9)
— EA0* + d*A6*/dZ — jougoAG* =0 , (11.5)

— EAG* + APAO*/dZ” + upj0* =0 (11.6Y

where * denote the Bessel-Fourier transform (see (11.7)). First, we consider the case of a
one-turn inducing coil carrying 1 + jO A current:

JoO(r, 2) = O(r — 11)0(z — 7;) (11.10)

where d(.) is the Dirac delta function, and (r;,z,) is the coil location. From (11.10) and
(11.7)

joﬁ*(’g', Z) = r1J1(§1‘1)(§(Z - Zl) . (11.11)
From (11.6) and (11.11) follows

dA6*(ry, z)/dz‘ — dA6*(1,, z)/dz‘

Z=Z1 Z=21_O

=~ por1J1(8ry) (11.12)
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(11.5) and (11.6)’ give
A0*(&, z) = a(E) exp(—&z) for z > z;,
A0*(&, z) = b(&) exp(Ez) + c(§) exp(—&z) for 0 <z <z,
A0*(&, z) = d(&) exp(nz) + e(&) exp(—nz) for z; <z <0,
A0*(&, z) =1(&§) exp(&z) for z < z (11.13)

where 5° = & + jwu,o. The coefficients a(&) through (&) are determined by the interface
conditions (5.6) and (5.8), and by (11.12). Applying the inverse Bessel-Fourier transform
(11.8) to (11.13) gives Af(r, z). Second, the solution to Problem I is obtained from the
above result and the principle of superposition as:

N o e
Al(r,z) = kgl / . [d(k, &) exp(nz) + e(k, &) exp(—nz)]&
X I(&r) dE (11.14)
where N is the total number of the coil-turns, r, and —z, are the radius of the inducing sole-

noid and the thickness of the block, respectively. The solenoid ampere-turn is N X (1 + jO)
A. The coefficients a(k, &) through f(k, &) are given as:

a(k, &) exp(—&zk) —exp(ézk) —exp(—&zk)
b(k, &) —exp(—&zk) —exp(§zk)  exp(—&zK)
c(k, &) 0 1 1
a5 o) 0 3 £
e(k, &) 0 0 0
f(k, £) 0 0 0
0 0 0 T T
0 0 0 1
~1 —1 0 0
. i . . (11.15)
exp(17zo) exp(—nzo)  —exp(&z) 0
nexp(nzo)  —mexp(—nzo)  —&exp(&zo) 0
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The computed eddy currents are shown in Fig. 13 and Fig. 14 for a frequency f = 5 kHz, and
a conductivity o= 0.14 X 10’ S/m.

The solution to Problem II. We assume that the vertical component of the eddy currents in

the block is negligible since the inducing solenoid current has no vertical component. Conse-
quently, the potentials are expressed as:

A = [Ax Ay Az] = [Ax(X, ¥, z) Ay(X,y,2z) 0], and (11.16)
= 6(x,y) . (11.17)

We use the Coulomb gauge for Problem II. The equation for the scalar potential is written
from (6.2) and (11.17) as:

A/m?
1000 -
Solenoid Ampere Turns = 1 + jO A
Frequency = 5 kHz
Thickness of the Block = 30 mm
800 |-
600 - -Im[J6)
400 - -Re{J8]
200
0 1 i 1 ]
0 25 50 75 100

Distance from the axis of the solenoid mm

Fig. 13 The computed eddy current density on the surface of the block without flaws.
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Alw?
1000 ~

Solenoid Ampere Turns = 1 + jO A
Frequency = 5 kHz

Thickness of the Block = 30 mm
800

at 22 mm from the axis of the solenoid

600

400

200

22.5 30.0

Distance from the surface of the block mm

Fig. 14 The computed eddy current density inside the block without flaws.

*g/ox’ + 0°9/dy’ = 0. (11.18)

The scalar potential, therefore, does not diffuse in the vertical direction under the assumption
(11.17), and exists only in the region denoted by Conductor I in Fig. 15. The equation for
the vector potential is written in the conductor, from (6.1) and (11.16), as:

P*Ak/ox” + 0°Ak/dy’ + 0°Ak/9Z" — jop,0Ak — uyodg/dk =0, (11.19)
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and in free space, from (6.3), (11.2) and (11.16), as:

0°Ak/ox’ + 9*Ak/dy’ + 9*Ak/97' =0 (11.20)
where k is x or y. First, we consider the solution of ¢ to the following boundary condition:

P V)| g = Hx %) (11.21)

(This is called an impulse response.) Applying to (11.18) the Fourier transform with respect
to the x coordinate gives

— B¢ + d*¢*/dy* =0 (11.22)
where

# (& y) = /:o $(x, y) exp(jéx) dx . (11.23)

The inverse Fourier transform of ¢%(§, y) is written as:

b0 y) = 1/27 [ §(E,y) exp(—iéx) d& (11.24)
Flaw ! Free space III
~-L 0 L . x
_________ D I,.... .. ..
o Conductor II
Z2
v

Fig. 15 The geometry of Problem II.

Since the Fourier transform of d(x — %) is exp (f&x,), from (11.21) and (11.22) follows ¢*(&,
y) = exp (j&x,) exp(—&y) for £ = O and y > 0, therefore, ¢(x, y) is written fory > 0 as:
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v =1/8

-a

Fig. 16 The step response of the electric scalar potential (The equi-potential lines).

§(xv) = Ut [ " exp(~£y) cos| (x = xo)] dé (11.25)

(From the geometrical symmetry, ¢(x, —y) = — ¢(X, y), y > 0.) We obtain from (11.25) and
the principle of superposition the solution of the scalar potential to Problem II as:

#(x,y)= /_L $(%0, 0) [1/7 /: exp(—&y) cos[&(x — Xo)] d&] dxq ,
—w <x<w, y>0 (11.26)

where 2L is the length of the flaw (see Fig. 15). The solution corresponding to the boundary
condition:

#(x,0)=1, —a<x=a; =0, [xl2za (11.27)
is given as (see Appendix 3):

px,y)=1/n [tan_l((a —x)/y) + tan—l((a + x)/y)] - (11.28)
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#(x, y) is symmetric with respect to the y axis. The equipotential lines are shown in Fig. 16.
(The solution corresponding to the boundary condition (11.27) is called a step response.)
Next, we consider the solution of A to a given scalar potential. Applying the double Fourier

transform to (11.19) and (11.20) gives
— EAK* — 5’ Ak* + A*Ak*/dZ” — jouy0Ak*
— o[ dg/K]* =0,
— EAK* — 5’ Ak* + d°Ak*/dz" =0

where k =x or y, and

Ak )= [ [ AKGxy, 2) expli(ex + ny)] dxdy,

[og/ak1*(& m) = ||~ a6(x,y)/ 0k exp[i(ex + ny)] dxdy

From (11.19) and (11.20) follows:

AK*(E, 1, 7) = ak(&, 7)) exp(—az) for z 20,
AK*(E, 1, 2) = TK(E, 7)) exp(az) for z < z,,
AK*(E, n, z) = bk(&, 1) exp(fz) + ck(&, ) exp(—fz)
+Fk(§, n,2z) for 0 2z2 7z,

Ak*(E, n, z) = dk(&, 1) exp(Bz) + ek(&, 1) exp(—pz)

for z, 2z 2 z

v

where o’ = & + %, fF =&+ 7" + jouyo, and

Z

Fk(&, 1, z) = po o[ 9¢/ k] * /

P[50

Remark. For the scalar potential given by (11.28),

[1 0]exp[(z — z")P] [ (1) ] dz,

[0¢/ 0x]*(&, 1) = 4 sin(&a) n/(E* + 1) ,
[0/ 2y]*(E, 1) = —4 sin(a) §/(E" + 1) .

(11.19Y
(11.20Y

(11.29)

(11.30)
(11.31)

(11.32)

(11.33)

(11.34)

(11.35)

The coefficients ak(&, #) through fk(&, #) are determined by the interface conditions: (6.5)
and (6.7). For Problem II, these conditions reduce to that Ak* and dAk*/dz are continuous
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across the interfaces. AK(x, y, z) is obtained by the inverse Fourier transform of Ak*(§, #, z):

Ak(x,y,2) = (1/27° [ [ AK*(E 7, 2) exp[=i(&x + ny)] d&dn. (11.36)

Remark. For the scalar potential given by (11.28), Ax and Ay are expressed as follows:

Ax(X,y,z) = —l/arZ/: /Ow Ax*(&, n, z) sin(&x) sin(ny) d&dn,

AY(x, Y, 7) = 1/ /; /: AY*(E, 1, 7) cos(&x) cos(y) dédy . (11.37)

Since the scalar potential on the surface of the flaw is not given in advance, we assume it in
the form of:

PV |y g~ L, () (11.38)

where u(x) = 1, forx;, < x < x3and =0, forx < x_,orx > x. (L =x_; <x =1L,1i
=1, - -+, N.) We, then, calculate the step responces to u;(x): Ak;(x, y, z) and ¢;(x, y). The
coefficients ¢;,i=1, - - - N, in (11.38) are determined by (11.3).

The computed results. The computation was carried out for the simplified block shown in Fig.
18. (Conductor II in Fig. 15 may be negligible for high frequencies since the skin depth is
about Smm at the frequency of 5kHz.) The response of the eddy current to a step electric
scalar potential is shown in Fig. 17 for a frequency f = 500 Hz. The admittance matrix of the
eddy current density to the step electric scalar potential applied to the surface of the flaw is
shown in Fig. 18. The matrix is derived from the data shown in Fig. 17: The flaw is divided
into 8 sections, and each section has the same length. The matrix is a 8 X 8 square matrix and
the entries of which are made up of the averages of the data (Fig. 17) over the successive in-
tervals of 5mm length. An example of the electric scalar potential across the flaw necessary
to cancel out the eddy current due to the inducing solenoid (see Problem I) is shown in Fig.
19. In Fig. 20, the response of the electromotive force of the receptive solenoid to a step elec-
tric scalar potential applied to the surface of the flaw is given, and the differential electromo-
tive forces in the receptive solenoids corresponding to the two different movements of the
probe are shown in Fig. 21. The experimental results by Takagils) are shown in Fig. 22. It
may be concluded from Fig. 21 and Fig. 22 that the computed results agree well with the ex-
perimental results, despite using the thin block for the computation. (In the experimental re-
sults there appear the edge effects due to finite dimension of the block, while in the com-
puted results there is no edge effect since the block is regarded as an infinitely wide plate.)

Conclusions. The method using the principle of superposition and the Fourier transform is
effective to the eddy current problem in non destructive testing. It provides us with higher ac-
curacy and less computation time than the conventional FEM (FDM) or BIEM.
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10%4/0?
6.0 -

Frequency = 500 Hz

Thickness = 2 mm

Electric Scalar Potential
=1+ 30 Volt, |x| s 2.5 mm;
=0 vVolt, |x| > 2.5 um; y = 0

3.0 Re[Jy}

AT THE SURFACE OF THE BLOCK AND
ON THE LINE: y = 0.5 mm

-3.0 -

=-5.0 b (Im[Jy] is negligibly small.)

6.0 1 1 1 L ! 1 1 x
0 2 4 6 8 10 12 14 mm

Section Number 1 2 3 4 5 6 7 8 2 um

Admittance Matrix: [J]= Y [V], [(J1 = [Jl,JZ,---,JB]T, {v] = [VI,VZ,-—-—,VS]T

Jk: mean current demsity in the k-th section, Vk: electric scalar potential in
the k-th section

Y (x IOBA/mZIV )t

3.854 -1.402  -0.2549 ~0.1053 O 0 0 0
-1.402 3.854  ~1.402 -0.2549 -0.1053 0 0 0
-0.2549 -1.402 3.854 -1.402  -0.2543 -0.1053 O 0
-0.1053 ~0.2549 -1.402 3.854  -1.402 -0.2549 -0.1053 0

0 -0.1053 -0.2549 -1.402 3.854 -1.402  -0.2549 -0.1053

0 0 -0.1053  -0.2549 -1.402 3.854  -1.402 -0.2549

0 0 0 ~0.1053 -0.2549 -1.402 3.854 -1.402

0 0 0 0 -0.1053  -0.2549 -1.402 3.854

Fig. 18 The admittance matrix.
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Alm® EDDY CURRENT DUE TO 10 7V ELECTRIC SCALAR POTENTIAL
300 THE INDUCING SOLENOID 6 ACROSS THE FLAW

Distance between the axis of
the inducing solenoid and the
center of the block = 50 mm

200 + 4 Im(V]

-Im[Jy]

Re[V]

-Re[Jy}
LA e S D Y

0 1 S 0 1 1
-20 0 20 mm -20 0 20 mm
Distance from the center of the block Distance from the center of the block

Fig. 19 An example of the electric scalar potential across the surface of the flaw necessary to cancel out
the eddy current due to the inducing solenoid.

x 10 Volt.m EMF = juf, B.n 42, w = 27 x 500 rad/s

2.0k V =1+ jO Volt, x| € 2.5 mm;
=0+ jO Volt, |x| > 2.5 mm, y = 0

0 1 L x
0 50 100 mm

Position of the axis of the receptive solenoid

Fig. 20 The response of the electromotive force of the receptive solenoid to a step electric
scalar potential applied to the flaw.
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Im

Solenoid Ampere Turns = 1 + jO A
Frequency = 5 kHz

Thickness of the Block = 2 mm

x 10_8 Volt-m

L 1 i 1 L I 1 1
-1.2 ~1.0 0.2 0.4 0.6 0.8 1.0 1.2
I--0.2 5
15 10
12.5
~0.4
~0.6
movement parallel to the flaw
-0.8L
Solenoid Ampere Turns = 1 + jO A
0.3+ Im
. Frequency = 5 kHz
10 12.5
15 Thickness of the Block = 2 mm
0.2
5
20
0.1
-8
30 x 10 7 Volt.m
L L 1 1 1 40 1 L I ! 1 Re
-0.5 -0.4 -0.3 -0.2 -0.1 0,60 0.1 0.2 0.3 0.4 0.5

~0.1}
-0.2

movement perpendicular to the flaw
-0.3L

Fig. 21 The computed differential electromotive force in the receptive solenoids.
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Im
A
Frequency = 5 kHz
40
30
50 Re
o -
0470 ”
20 80 %0
10 100
movement parallel to the flaw
Im
A

Y&

movement perpendicular to the flaw 100

Fig. 22 The experimental results by Takagi of the differential electromotive force
in the receptive solenoids.
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12. Conclusions

The magnetic vector potential associated with the electric scalar potential is a most or-
thodox and popular solution variable for three dimensional electromagnetic field calculations.
However, there exists the problem of how to select the most suitable gauge for the problem
to be solved, since the electromagnetic field is invariant under the gauge transformation. In
this paper, two solution methods are formulated for the Lorentz gauge and the Coulomb
gauge. The methods include the gauge condition implicitly, and, therefore, are very conveni-
ently applicable to the boundary integral equation method as well as to the finite element
method or the finite difference method. The methods satisfy the gauge condition over the en-
tire region and yield a unique solution to the problem. This fact is verified theoretically and
by numerical experiments. Two examples of the application of the solution methods are
presented.
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Appendix 1
(8.1) is derived by using the following integral formulas:
J1/J(8 + ) de=log[e + (£ + )], >0, a>0;

Jlice = ay/e+a) dg= (& - 2)
+a logfa/( + J(& — a))] :

(1%
o

(AL1)

L,

-L - L
1 € € 1 s X

-

-Liy

Fig. 23

lim b 2,2
gi= X Ur[[ [T1ed +y) dxy

+ / e / 168 + v dxdy] (Al1.2)
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= 2 2 2
/ 1/J(x + v°) dy = log[L, + J(x* + L})] —log x .

/g " log[La + (< + 12)) — log ] dx

L
— [ loglLy + J(* + L] dx — (x log x = x)| "

/ ) log[L, + J(x* + L3)] dx = x log[L, + J(x* + L))] 'I;

- le /(L) + L) + X + L2 dx..
/ " R + 1) + % + 17 dx =

i +13)
[ e LaE L) de= (8 - L)
+ L, loglLy/(& + (& = Ly [{ 1)

= L + L; log[Ly/(J(Li + L3) + L]

/: 1)+ v2) dx = log[e + J(£ + y9)] — log y .
[ Bos(e+ (€ + )~ log y] dy

=/€ “logle + (£ +y7)] dy — (v logy — Y)II;2
/g logle + (£ + y))] dy = y log[e + (£ + )] ’152
= [ VIl )+ E vy

/E z yz/[e\/(g2 + y2) + &+ y2] dy

W& +13)
=/ T IE- o+ o) ds

J2¢
2 2
= (& = &)+ elogel(e + J(& = i[5 T
=L, + elog[e/(J(€ + L3) + L] — ¢

— elog[e/(J2 e+ &) .

(A1.3)

(Al.4)

(AL5)

(AL.6)

(A1.7)

(A1.8)

(A1.9)

(A1.10)
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S eloge=0. (A1.11)

(A1.2) through (A1.11) give (8.1).

Appendix 2

A FORTRAN program for the Lorentz gauge formulation using the boundary integral
equations are shown in Table 11. Several remarks are listed below:
Remark 1. [Ar A6 Ad] is related to [Ax Ay Az] as:

Ar = Ax sinf cos¢ + Ay sin@ sing + Az cosf,

A6 = Ax cosf cos¢g + Ay cosf sing — Az sin0,

Ag¢=— Axsing + Ay cos¢ . (A2.1)
Remark 2. Symmetry relations:

Ay(x,y,z) =— AX(Y, X, Z) . (A2.2)
Therefore, the independent components of A are Ax and Az.

Ax(—x,y,z) = Ax(X,y,2), Ax(x,—y,z)=—Ax(X,Y,1z),

Ax(x,y, —z) = AX(X, ¥, 2) ; (A2.3)

Az(—x,y,z)=— Az(x,y,2), Az, —y,z)=—AzXx,y,z),

Az(x,y, —z) = — Az(X, Y, z) ; (A2.4)

$(—X¥,2)=— (X ¥,2), #X Y, 2)=—¢(%Y,2),

#(x% ¥, —2) = (%, ¥, 2) - (A2.5)

Remark 3. From (A2.5) follows that ¢(0, y, z) = ¢(x, 0, z) = 0. Therefore, the interface con-
dition (5.10) ((6.10)) is not necessary, and, consequently, the calculation of the electric sca-
lar potential in free space is not required.

Remark 4. The treatment of a singular point:

[exp(jklr— r'D)]/lr—r1 = 1/lr—r'1 +jk (A2.6)

aslr— 'l = 0.
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Table 11. FORTRAN program of the Lorentz gauge formulation using the boundary

integral equations.

program eddy3600

3d eddy currents in a sphere

magnetic vector potential & electric scalar potential
Lorentz gauge )

boundary integral equation method

eddy3600, 1992.03.23

implicit real*8(a-h,o0-2)

complex*16 gx(100,100),hx(100,100),g2z(100,100),hz(100,100)
complex*16 vg(100,100),vh(100,100),area(10)

complex*16 a(600,600),b(600),aw(600,50)

complex*16 ax(10,10),ay(10,10),az(10,10),vv(10,10),ep(10,10)
complex*16 ar(10,10),at(10,10),ap(10,10)

complex*16 cl,c2,¢c3,c4,¢5,¢6,¢c7,¢8,¢9,cl0

complex¥16 pcl,pc2,pc3,pcd,pch,pcb,pcT,pecd

complex*16 qcl,qc2,qe¢3,q9c4,qc5,qcb,q9¢7,qc8

dimension ggx(100,100),hhx(100,100)

dimension ggz(100,100),hhz(100,100)

dimension e(3),w(3)

dimension xw(3,3),yw(3,3),2v(3,3)

dimension xv(3,3),yv(3,3),2zv(3,3)

dimension anx(3,3),any(3,3),anz(3,3)

dimension bnx(3,3),bny(3,3),bnz(3,3)

dimension st(3),zeta(10),ss(10),cc(10)

pi=atan(1.d0)%4.d0

anu=4.d-T%pi

sigma=2.5d+7

freq=10.d1

along=.028d0

radius=.02d0

nl=10

write(6,*
write(6,%
write(6,*

‘3D Eddy Currents in an Aluminum Sphere’

—

write(8,%) 'radius = 20 am, mu = 4.d-7%pi H/m, sigma = 2.5d+7 S/n"’

write(8,%)
write(6,%) 'frequency = 100 Hz'
write(6,%)

write(B,%) 'one-turn square coil (56 mm x 56 mm), lo = 1.d+7/4pi

write(6,*
write(6,
write(8,
write(6,
write(6,
e(3)=saqrt(3.d0/5.d0)

e(2)=0.4d0

e(l)=-e(3)

w(1)=5.d0/9.d0

v(2)=8.d0/9.4d0

w(3)=5.d0/9.d0

‘BIEM using Magnetic Vector Potential’

'Lorentz Gauge'

3

3¢ 36 3¢
o e e e

s

omega=2.d0%pixfreq
signu=sigma*anu
oms=omega¥amu*sigma
pp=sqrt{oms/2.d0)
cl=cmplx(-pp.pp)
c2=cmplx (-pp,-pp)

A
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c3=cmplx(0.d0,0.d0)
¢10=cnplx(0.d0,omega)
dt=pi/(2.40%n1)
dth=dt/2.d0

dp=dt

dph=dth
beta=radius*radiuskdthxdph/ (4.d0%pi)
dl=radius*dth

do i=1,nl
tt=dt*(i-.540)
d2=radius*sin(tt)=*dph
pl=sqrt(di%d1+d2%d2)
p2=dl%log ((d2+pl)/d1)+d2xlog((dl+pl)/d2)
zeta(i)=p2/pi
area(i)=c2%d1%d2/pi
ss(i)=sin(tt)
ce(i)=cos(tt)

end do

nll=nl+1

nl2=nl-1

nh=nl/2

nnl=nls*nl

nnh=nl%nh

isl=nnl

is2=isl+nnh
is3=is2+nnh
is4=is3+nnl
is5=isd4+nnh
isb=is5+nnl
is7=is6+nnh
n=is7+nnh

Green matrix

do i=1,nl

tt=dt* (i-.5d0)
zk=radius*cos (tt)
ri=radius¥sin(tt)
do j=1,nl

pp:dp$ (J—Sdo)
xi=ri*cos (pp)
yi=ri%sin(pp)
l=i+nl*(j-1)

do ii=1,nl
t2=dt%(ii-.5d0)
t1=t2+e (1) *dth
t3=t2+e (3) %xdth
ctl=cos (t1)

ct2=cos (t2)

ct3=cos (t3)
stl=sin(tl)
st2=sin(t2)
st3=sin(t3)
zz=radius*ctl
zw(l,1)=zz
zv(l,2)=zz
zv(1,3)=zz
anz(1,1)=ctl
anz(1,2)=ctl
anz(1,3)=ctl
zz=radius*ct2
zw(2,1) =22
zv(2,2)=zz

zw(2,3) =22
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anz (2,1)=ct2
anz(2,2)=ct2
anz(2,3)=ct2
zz=radius*ct3
zw(8,1) =2z
zw(3,2) =z2
zw(3,3) =2z
anz(3,1)=ct3
anz (3,2)=ct3
anz(3,3)=ct3
rl=radiusxstl
r2=radius*st2
r3=radius*st3

do jj=1,nl
p2=dp*(jj-.5d0)
pl=p2+e(1)*dph
p3=p2+e(3)*dph
cpl=cos(pl)
cp2=cos (p2)
cp3=cos (p3)
spl=sin(pl)
sp2=sin(p2)
sp3=sin(p3)
xw(1,1)=rlxcpl
xw(1,2)=rl%cp2
xw(1,3)=rl%cp3
xw(2,1)=r2%cpl
xw(2,2)=r2%cp2
xw(2,3)=r2%cp3
xw(3,1)=r3%cpl
xw(3,2)=r3%cp2
xw(3,3)=r3%cp3
yw{l,1)=rl%spl
yw(l,2)=rl*sp2
yw(l,3)=rl%sp3
yw(2,1)=r2%spl
yw(2,2)=r2%sp2
yw(2,3)=r2%sp3
yw(3,1)=r3%spl
yw(3,2)=r3%sp2
yw(3,3)=r3%sp3
anx(1,1)=stlxcpl
anx (1,2)=stl%cp2
anx(1.3)=stl%cp3
anx(2,1)=st2%cpl
anx (2,2)=st2%cp2
anx (2,3)=st2%cp3
anx (3,1)=st3%cpl
anx (3,2)=st3%cp2
anx (3,3)=st3%cp3
any (1,1)=stl%spl
any (1,2)=stl%sp2
any (1,3)=stl%sp3
any (2,1)=st2%spl
any (2,2)=st2%sp2
any (2,3)=st2%sp3
any(3,1)=st3%spl
any (3,2)=st3%sp2
any(3,3)=st3%sp3

11=ii+nlx(jj-1)
st(1)=stl
st(2)=st2
st(3)=st3

if (l.eq.1l) then

T. Morisue
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pl=0.d0

ql1=0.d0

pcl=c3

qcl=c3

goto 100

else

do k=1,3

do m=1,3
xv(k,m)=xvw(k,n)
yv(k,m)=yv(k,m)
zv(k,m)=zv(k,m)

bnx (k,m)=anx (k,n)
bny(k,m)=any (k,m)

bnz (k,m)=anz(k,m)

end do

end do

p=0.,d0

q=0.d0

cd=c3

ch5=¢3

do k=1,3

do m=1,3

xx=xi-xv(k,n)
yy=yj-yv(k,m)

zz=zk-zv (k,m)
rr2=xx¥xx+yyiyy+zz¥zz
rr=sqrt(rr2)
rr3=rrirrirr

cb=exp (c2%rr)
p=p+w(k)xw(m)*st(k)/rr
cd=c4+w(k)*w(m)*st(k)*cb/rr
qq=bnx (k,m)*xx+bny (k,m)%yy+bnz(k,n)*zz
g=q+w (k) *xvw{n)*st (k) *qq/rr3
c5=ch-wik)#w(m)*st (k) *cb6%(c2-1.d0/rr)%qq/rr2
end do

end do

pl=p%beta

ql=-q%*beta

pcl=cd*beta
qcl=chxbeta

goto 100

end if

continue

do k=1.3

do m=1,3
xv(k,n)=-xw(k,m)
yv(k,m)=yw(k,m)
zv(k,m)=zw(k,n)
bnx (k,m)=-anx(k,mn)
bny (k,m)=any (k,m)
bnz(k,m)=anz(k,n)
end do

end do

p=0.d0

q=0.d0

cd=c3

c5=¢c3

do k=1,3

do m=1,3
xx=xi-xv(k,m)
yy=yi-yv(k,mn)
zz=zk-zv (k,n)
rr2ExxExxtyy¥yy+zz¥zz
rr=sqrt(rr2)
rr3=rr¥rr¥rr
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cb=exp{(c2%rr)

p=p+w(k)*v(m)*st(k)/rr
cd=cd+w(k)xw(m)%st(k)*cb/rr

aq=bnx (k,m)*xx+bny(k,mn)%*yy+bnz(k,n)%zz

q=q+w (k) *w(m) *st (k) *qa/rr3
c5=ch-w(k)*w(m)*st(k)*cb%(c2-1.d0/rr)%qq/rr2
end do

end do
p2=p*beta
q2=-q%*beta

pc2=cd*beta
qc2=cb*beta

do m=1,3

xv(k,m)=-xvw(k,m)
yv(k,m)=-yw(k,n)
zv(k,mn)=zw(k,m)
bnx(k,m)=-anx(k,n)

bny (k,m)=-any (k,n)

bnz (k,m)=anz (k, m)

end do

end do

p=0.d0

q=0.d0

cd=c3

chb=c3

do k=1,3

do m=1,3

xx=xi-xv(k,m)
yy=yj-yv(k,m)

zz=zk-zv (k,m)
rr2=xXx¥xx+yy¥yy+zzszz
rr=sqrt(rr2)

rr3=rrxrr¥rr

cB=exp(c2%rr)

p=p+w (k) *w(m)*st(k)/rr
cd=cd+w(k)*w(m)*st(k)xcb/rr
qq=bnx (k,m)*xx+bny (k,m)*yy+bnz(k,n)%zz
q=q+w (k) *v(m)*st (k) *qq/rr3
c5=ch-w(k)*w(nm)*st(k)%cb%x(c2-1.d0/rr)%qq/rr2
end do

end do

p3=pkbeta

a3=-a%beta

pc3=cd*beta

qc3=cHxbeta

do m=1,3
xv(k,m)=xw(k,m)
yv(k,m)=-yv(k,m)
zv(k,m)=zv(k,mn)
bnx{k,m)=anx (k,n)
bny(k,m)=-any(k,n)
bnz(k,m)=anz (k,n)
end do

end do

p=0.d0

q=0.d0

cd4=c3

c5=c3

do k=1,3

do m»=1,3
xx=xi-xv(k,m)
yy=yJj-yv(k,m)
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zz=zk-zv (k,m)

rr2XxkXX+yy*yy+zzizz

rr=sqrt(rr2)

rr3=rrirrrr

cb=exp(c2%rr)

p=p+w (k) *v(m)*st(k)/rr
c4=cd+vw (k) 2w (m)tst(k)*cb/rr

qq=bnx (k,m)*xx+bny(k,m)*yy+bnz(k,m)*zz
q=q+v (k) *w(m)*st (k) *qq/rr3
c5=ch-w(k)*w(m)*st (k) *cb%(c2-1.d0/rr)*qq/rr2
end do

end do

pd=pxbeta

q4=-qxbeta

pcd=c4*beta

qc4=c5xbeta

do m=1,3
xv(k,m)=xw{k,m)
yv(k,m)=yw(k,m)
zv(k,m)=-zw(k,n)

bnx (k,m)=anx (k, m)

bny (k,m) =any (k,m)
bnz(k,m)=-anz(k,m)

end do

end do

p=0.d0

q=0.d0

cd=c3

¢5=¢3

do k=1,3

do m=1,3

xx=xi-xv(k,m)
yy=yj-yv(k,m)

zz=zk-zv (k,n)
rr2=xx¥xx+yy¥yy+zz zz
rr=sqrt{(rr2)
rr3=rr¥rrirr

cb=exp (c2%rr)

p=p+w (k) sw(m)*st(k)/rr
cd=cd+y (k) xw(m)*st (k)*cb/rr
qq=bnx(k,m)#xx+bny (k,m)*yy+bnz (k,n)*zz
q=q+v (k) *w(m)*st (k) *qa/rr3
chzc5-wlk)%w(im) st (k)xcb%(c2-1.d0/rr)%aa/rr2
end do

end do

pS=p%beta

gb=-q%*beta

pch=cdxbeta
qc5=e5%beta

do k=1,3

do m=1,3
xvik,m)=-xw(k,n)
yv(k,m)=yw(k,n)
zv(k,m)=-zv(k,n)

bnx (k,m)=-anx(k,m)

bny (k,m)=any (k,m)
bnz(k,n)=-anz(k,n)

end do

end do

p=0.d0

q=0.d0

cd=c3

c5=¢3
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do k=1,3

do m=1,3

xx=xi-xv(k,m)

yy=yj-yv(k,m)

zz=zk-zv (k,m)

Fr2IxxExX+tyyxRyy+zzizz

rr=sqrt(rr2)

rr3=rr¥rr¥rr

cb=exp(c2%rr)

p=p+w (k) *w(m)*st (k) /rr
cd=cd+w(k)*vw(m)*st (k) *cb/rr

aq=bnx (k,m) *xx+bny (k,m)*yy+bnz(k,n) *zz
q=q+w (k) *w(m)*st(k)*qq/rr3
c5=c5-w(k)*w(m)*st(k)*cbx(c2-1.d0/rr)%qq/rr2
end do

end do

pB=pxbeta

qb=-q*beta

pcB=cd*beta

qcb=c5*beta

do m=1,3

xv(k,m)=-xw(k,n)
yvi(k,m)=~yvw(k,mn)
zvik,m)=-zw(k,m)
bnx(k,m)=-anx (k, un)
bny{k,m)=-any (k,n)
bnz(k,m)=-anz (k,m)

end. do

end do

p=0.d0

q=0.d0

cd=c3

ch5=¢c3

do k=1,3

do m=1,3

xx=xi-xv(k,m)
yy=yi-yv(k,n)
zz=zk-zv(k,m)
rr2Xx¥xxtyyiyy+zzizz
rr=sqrt{rr2)

rr3=rrirr*rr

cb=exp(c2%rr)

p=p+w (k) *vw(m)*st(k)/rr
cd=cd+v(k)*vw(m)*st (k) %cb/rr
aq=bnx (k,m) *xx+bny (k,m)%yy+bnz (k,n) %xzz
gzq+w (k) *v(n)*st (k) *qq/rr3
ch=ch-wik)*w(m)*st(k)%cb%(c2-1.d0/rr)%qq/rr2
end do

end do

p7=p%beta

q7=-q%beta

pc7=cd*beta

qc7=chbxbeta

do m=1,3
xv(k,m)=xv(k,m)
yv(k,m)=-yw(k,m)
zv(k,m)=-zw(k,n)
bnx(k,m)=anx(k,m)
bny (k,m)=-any (k, n)
bnz(k,n)=-anz(k,m)
end do

end do
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p=0.d0

q=0.d0

cd=c3

cb=el

do k=1,3

do m=1,3

xx=xi-xv(k,m)

yy=yji-yv(k,m)

zz=zk-zv(k,n)
rr2IXXE¥XXTYyRyy+zzizez
rr=sqrt(rr2)

rr3=rrrrirr

cb=exp(c2%rr)

p=p+w (k) *w(n)*st(k)/rr
cd=cd+wik)*w(m)¥st (k) *cb/rr
qq=bnx (k,m)*xx+bny (k.mn)*yy+bnz (k,n) *zz
q=q+v (k) *w(m)*st(k)*aqq/rr3
ch=c5-wik)*w(m)#st (k)*cbx(c2-1.d0/rr)%qq/rr2
end do

end do

p8=pxbeta

q8=-qxbeta

pc8=c4%beta

qc8=c5%beta

ggx(1l,11)=pl+p2-p3-p4+p5+pb-p7-p8
hhx(1,11)=ql+q2-q3-q4+q5+396-q7-q8
ggz(1,11)=pl-p2+p3-p4-p5+pb-p7+p8
hhz(1,11)=ql~q2+q3-q4-q5+q6-q7+q8
gx(1,11)=pcl+pc2-pc3-pcd+pch+pcb-pcT-pcd
hx(1,11)=qcl+qc2-qc3-qcd+qch+qcb-qc7-qcd
gz (l,-11)=pcl-pc2+pc3-pcd-pcH+tpcb-pcT+pcd
hz(1,11)=qcl~qc2+qc3~qcd~qch+qch-qc7+qc8
vg(l,11)=pcl-pc2+pc3-pcd+pch-pchb+pcT-pch
vh(l,11)=qcl-qc2+qc3-qcd+qchH-qcbrqc7-qcd
end do

end do

end do

end do

do i=1,nl

do j=1,nl

ij=i+nl®(j-1)

ggx (i3, 13)=gegx(ij,ij)+zeta (i)
hhx(ij,ij)=hhx(ij,ij)+.5d0
ggz(ij,1i)=ggz(ij, i) +zeta (i)
hhz(ij,i3)=hhz(ij,ij)+.5d0
gx(iJ,1J)=egx(iJ,ij)+zeta(i)+area(i)
hx (i3, 13)=hx(ij,ij)+.5d0
gz(ij,1d)=gz(ij,1j)+zeta(i)+area(i)
hz(ij,13)=hz(ij,ij)+.5d0
veg(ij,1J)=ve(ij,ij)+zeta(i)+area(i)
vh(ij,ij)=vh(ij,ij)+.5d0

end do

end do

matrix forming

do i=1,nnl

do j=1,nnl

Ji=j+ish

a(i,j)=hx(i,J)

ali,jj)=-gx(i,J)

end do

end do
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do i=1,nnl
ii=i+is3

do Jj=1,nnl
ji=j+is3
a(ii,j)=hhx(i,J)
a(ii,jj)=-gegx(i,J)
end do

end do

do i=1,nl

do j=1,nh
k=i+nlx(j-1)
ki=k+isl

do ii=1,n1l
do.jJj=1,nh
kk=ii+nl1%(jj-1)
km=ii+nl#(nli-jj-1)
J1=kk+isl

j2=kk+isb

T. Morisue

a(ki,jl)=hz(k,kk)-hz(k,kn)
alki,j2)=gz(k,km)-gz(k,kk)

end do
end do
end do
end do

do i=1,nl

do j-=1,nh
k=i+nl%x(j-1)
ki=k+is2

do ii=1,nl

do jj=1,nh
kk=ii+nl%(jj-1)
km=ii+nl*(nll-jj-1)
Jl=kk+is2

j2=kk+is?

a(ki,j1)=vh(k,kk)~vh(k,km)
a(ki,j2)=ve(k,km)-vg(k,kk)

end do
end do
end do
end do

do i=1,nl

do Jj=1,nh
k=i+nlx(j-1)
ki=k+is4

do ii=1,n1

do jj=1,nh
kk=1ii+n1%(jj-1)
km=ii+nl%(nl1-jj-1)
Jjl=kk+isl

j2=kk+is4

a(ki,j1)=hhz(k,kk)-hhz(k,ka)
a(ki,j2)=ggz(k,kn)-gegz(k,kk)

end do
end do
end do
end do

do i=1,n1l

do j#1,nh

k=i+nlx(j-1)
kit=k+ish
km=i+nl*(nl1-j-1)
Jjl=k+is3
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j2=km+is3

j3=k+is4

jd=k+ish

j5=km+ish

iB=k+ish
a(kit,jl)=ce(i)*cec(J)
a(kit,j2)=-cc(i)*ss(j)
a(kit,i3)=-ss(i)
a(kit,j4)=cc(i)*cc(j)
a(kit,j5)=-cc(i)%ss(J)
a(kit,jb)=-ss(i)

end do

end do

do i=1,nl

do j=1,nh
k=i+nl%(j-1)
kip=k+is5+nnh
km=i+nl%(nll-j-1)
Jjl=k+is3

Jj2=km+is3

j3=k+is5

J4=km+ish
alkip,jl)=-ss(Jj)
alkip,Jj2)=-cc(J)
alkip,j3)=-ss(J)
a(kip,jd4)=-cc(J)

end do

end do

do i=1,nl

do j=1,nh
k=i+nl%(j-1)

ki=k+isB
kn=i+nl%(nl1l~-j-1)
jl=k+is2

j2=k+is3

J3=kn+is3

Jjd=k+isd

J5=k+isbh

j6=km+ish

J7=k+isb
a(ki,jl)=signu
a(ki,j2)=ss(i)xcc(y)
alki.i3)=-ss(i)xss (i)
a(ki, j4)=cc (i)
a(ki,j5)=ss(i)xcc(Jj)
a(ki,jd)=-ss(i)%ss(J)
alki,j7)=cc(i)

end do

end do

do i=1,n1l

do j=1,nh
k=i+nl%(j-1)

ki=k+is?
kma=i+nl¥(nll1-j-1)
Jl=k

Jj2=kn

J3=k+isl

Jj4=k+is?
a(ki,jl)=cl0%ss(i)%cc(j)
a(ki,j2)=-clO%ss(i)*ss(j)
a(ki,j3)=cl0%cc (i)
alki,j4)=1.d0

end do
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857 end do

658 ¢ @ memememmeeemeeeooeoo-o
659 ¢ column swapping

660 do i=1,n

661 do j=1,nnh

662 jj=j+is5+nnh

663 aw(i,d)=a(i,jj)

664 end do

665 end do

666 do i=1,n

667 do ii=1,nl

668 do jj=1,nh

669 kk=ii+nl1%(jj-1)

870 km=ii+nl*(nh-J3j)

671 j=kk+is5+nnh

672 a(i,j)=-aw(i,km)

673 end do

674 end do

675 end do

676 € @ st
677 ¢ external field

678 ne=100

679 dl=2.d0%along/nc

680 do i=1,nl

681 zk=radius%cc (i)

682 rizradius*ss (i)

683 do j=1,nl

684 xiz=rixce (J)

685 yizrizss (j)

686 Pi=i+nl*(j-1)+is3
687 yyl=yj-along

688 yy2=yj+along

689 yzl=yylxyyl+zk*zk
690 yz2=yy2xyy2+zkuzk
691 p=0.d0

692 q=0.d0

693 do k=1,nc

694 xkk=dl*%(k-.5d0)-along
695 xx=x1-xkk

696 XXK2TXKEXX

697 ri=sqrt(xx2+yzl)

698 r2=saqrt(xx2+yz2)

699 p=p+1.d0/r1

700 q=q+1.d0/r2

701 end do

702 qp=(q-p)*d1/(4.d0%pi)
703 b(ij)=cmplx(qp,0.d0)
704 end do

705 end do

T0B € ot
707 ¢ linear simultaneous equations
708 nn=n-1

709 do i=1,nn

710 il=i+1

711 do j=il,n

712 c5=a(j,i)/a(i,i)

713 do k=il,n

714 a(i,k)=a(j,k)-c5%a(i,k)
715 end do

716 b(Jj)=b(j)-c5xb (i)
717 end do

718 end do

719 b(n)=b(n)/a{n,n)

720 do i=1,nn

721 ii=n-i

722 il=ii+1



723
724
725
7286
721
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
162
763
764
765
766
167
768
769
770
771
772
773
774
775
776
7171
778
779
780
781
782
783
784
785
786
787
788

[e]

o

Computational Electromagnetism and Gauges

1,n
b(ii)-a(ii,Ji)*b(J)
b(ii)/a(ii,ii)

vector potential and scalar potential
do i=1,nl

do j=1,nl
jm=nll-j
k=ienl(j-1)
km=i+nl%(jm-1)
ax(i,J)=b(k)
ay(i,j)=-b(km)
end do

end do

do i=1,nl

do j=1,nh
k=i+nix(j-1)
az(i,j)=b(k+is1)
vv(i,j)=b(k+is2)
jm=nll-j
az(i,jm)=-az(i.J)
vv (i, jm)=-vv{i,J)
end do

end do

magnetic vector potential Ar, At, and Ap
do i=1,nl

do j=1,nl

ar(i,3)=ax(i,i)*ss(i)*cc(j)+ay (i, ji)*ss(i)*ss(j)+az(i,Jj)*cc
at (i,3)=ax(i,i)xce(i)*cc(j)+ay(i,j)l*cc(i)sss(j)-az(i,j)*ss

ap(i,j)=-ax(i,jless(§)vay{i,j)*kcc(y)
end do

end do

format(2d18.10,3x,2d18.10)

electric scalar potential
write(6,%)

write(6,%) 'Electric Scalar Potential at the Surface
write(6,%)

do j=1,nl

write(6,600) vv(1l,j),vvinl,J)

end do

eddy current Jp

yrite(6,%)

write(6,%) 'Eddy Current Jp at the Surface'’
write (6,%)

do i=1,nl

ddp=radius%ss(i)*dp%2.d0

do j=2,nl12
c5=(vv(i,j+1)-vv(i,j-1))/ddp
cb=-ax(i,j)%ss(J)+ay (i,J)*cc(J)
ep(i,j)=sigma%(-cl0xcb-c5)

end do

ch=(vv(i,2)+vv(i,1))/ddp
cb=-ax(i,1)*ss{(1)+ay(i,1)*cc (1)
ep(i,1)=sigma*(-cl10%cb-c5)
e5=-(vv(i,nl)+vv(i,nl2))/ddp
cb=-ax(i,nl)%ss(nl)+ay(i,nl)*cc(nl)
ep(i,nl)=sigmax(-c10%cB-c5H)

end do

do j=1,nl

write(6,600) ep(l,j),ep(nl,J)

'

(i)
(i)
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789 end do

T R e e et
791 write(6,%)

792 call time

793 stop

794 end )

795 € e oo
796 subroutine time

797 itime=mclock () /100

798 write(6,800) itinme

799 800 format ('#x%*%% Time Accounting : ',i10,' sec ¥x%xx')
800 return

801 end

* % % End of File * x %

Appendix 3
From (11.25), after a simple calculation, we obtain (y > 0)
[ exp(—y) cosl(x — x0)] d = y/[¥" + (x = x0)] (A3.1)
From (11.26), (11.27) and (A3.1) follows
b(%, y) = 1/x /_ VIV + (x — x0)?] dx,
= 1/x [tan” '((a — x)/y) + tan"'((a + x)/y)] . (A3.2)

Note. /1/(1 + xz) dx = tan”'x.



