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Abstract

Second-order wave effects on the behaviour of ocean platforms have been
studied theoretically and experimentally, with particular interest in sum-fre-
quency oscillations of tension leg platforms. These investigations are reviewed
in this paper based on the recent works by the author and his co-workers”™.
The paper consists of two parts.

In Part 1, the complete second-order diffraction theory is formulated for
predicting second-order wave loads on arbitrary three-dimensional bodies float-
ing in regular waves. Green’s second identity is exploited to express the second-
order forces due to the second-order potential in terms of the first-order quan-
tities alone. The resulting expressions for the second-order forces are evaluated
from numerical first-order solutions based on the hybrid integral-equation
method. Numerical examples are presented for a variety of geometries and
compared with previous theoretical and numerical solutions as well as with
model test results. Agreement is seen to be satisfactory, illustrating the validity
of the proposed approach.

In Part 2, the results are presented of the model tests which were per-
formed in regular waves to measure the second-order sum-frequency oscilla-
tions and tether forces of tension leg platforms. These test results are used to
validate the predictions based on the complete second-order diffraction theory
developed in Part 1. It is found that the vertical-plane motions and resulting
tether forces of the tension leg platforms include second-order sum-frequency
resonant components which are comparable in magnitude with first-order
wave-frequency responses. The correlation between predicted and measured re-
sults is overall satisfactory, confirming the validity of the theoretical predictions.

Key words: Nonlinear wave load, second-order diffraction force, wave

springing, sum-frequency oscillation, floating body, tension leg platform, verti-
cal-plane motion, tether force
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Part 1. Second-Order Diffraction Theory for Floating Three-Dimensional Bodies

1. 1 Introduction

The wave loads acting on floating structures in irregular seas include the second-order,
high- and low-frequency force components at sum- and difference-frequencies of the wave
group, which arise from nonlinearities due to effects of finite wave elevation and finite body
motions. These second-order forces may not be large in magnitude compared with first-order
excitation at wave frequencies, but can never be ignored due to the possibilities of exciting
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resonance frequencies of lightly damped systems. Difference-frequency forces can excite
large horizontal excursions of moored structures and large vertical-plane motions of floating
structures of small water plane area. Sum-frequency forces can excite resonance oscillations
in vertical modes of tension leg platforms.

The prediction of the second-order forces on floating bodies is usually made on the basis
of potential flow assumption. The forces can be obtained by integrating the hydrodynamic
pressure over the submerged body surface and by retaining terms to second order in wave
slope in a consistent perturbation expansionA). The resulting expressions for the second-order
forces involve the contribution from the second-order velocity potential. To obtain this con-
tribution, one may use two alternative approaches. The first, hereafter designated the direct
approach, obtains the forces directly from the integral of the second-order pressure over the
submerged body surface””. The second, the indirect approach, uses a reciprocal relation to
obtain the second-order forces without the need for explicitly evaluating the second-order
potential. Through the use of Green’s second identity, the expressions can be obtained for the
integrated second-order forces and moments in terms of first-order quantities alone®*). The
direct approach requires the complete solution to the second-order diffraction problem, but
once this is evaluated, second-order local quantities such as pressures and surface elevations
are readily obtained, in addition to integrated forces and moments. The indirect approach re-
quires only the knowledge of the first-order solution, and is relatively simple in comparison
with the direct one. The formulation can be extended to evaluate the second-order pressure
distribution'"”.

The most difficult and time-consuming part of the solution, common to both ap-
proaches, is the efficient and accurate evaluation of the free-surface integral with a highly os-
cillatory and slowly decaying integrand, which comes from the nonhomogeneity of the sec-
ond-order free surface condition. Various authors have therefore suggested a methodology
for the effective evaluation of this integral. For example, Eatock Taylor and Hung'" adopted
an asymptotical method based on the explicit integration of the leading asymptotic in the far
field. Matsui'”"”, in his calculation of the difference-frequency forces in irregular waves,
evaluated exactly the integral over the entire local-wave-free outer domain. He replaced the
infinite integral by a finite-interval integral with a rapidly converging series as integrand. To
improve the convergence of the series, Euler’s transformation was employed. An alternative
and more attractive method has been developed recently by Kim and Yue””, who per-
formed the integration analytically in the infinite local-wave-free domain.

The solution of the second-order diffraction problem has been extensively studied for
the case of a fixed vertical cylinders)’g)’g)’l1)’14). The method can readily be extended to the
second-order forces on axisymmetric bodies” and arbitrary three-dimensional bodies'”. In
the extension to the case of floating bodies, additional difficulties arise in the evaluation of
the double spatial gradients of the first-order potentials involved in the second-order body
surface condition. Molin and Marion'® obtained some results for floating bodies, but the de-
tail of the calculation method cannot be known. More recently, Kim and Yue” formulated a
complete second-order diffraction theory, where the second-order sum- and difference-fre-
quency forces were given for fixed and freely floating axisymmetric bodies.

In the following, a more general numerical procedure is developed that allows an effi-
cient and accurate evaluation of the second-order diffraction forces on arbitrary three-dimen-
sional bodies floating in regular waves. The indirect approach is employed to evaluate the
forces without the need for the complete solution to the second-order boundary-value prob-
lem. The resulting expressions for the second-order forces are evaluated from numerical first-
order solutions based on the hybrid integral-equation method. The methodologies are dis-
- cussed in some detail for the effective evaluation of the free-surface integral and the double
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spatial gradients of the first-order potentials involved in the second-order body surface condi-
tion. Numerical examples are presented for a variety of geometries and compared with pre-
vious theoretical and numerical solutions as well as with model test results.

1. 2 Statement of Boundary-Value Problem

Consider the first- and second-order diffraction of plane regular incident waves by a
floating three-dimensional body. The body is allowed to move in response to the first-order
wave exciting forces at wave frequency alone. Mean and double-frequency motions caused by
the second-order forces are supposed to be completely restrained.

A space-fixed Cartesian coordinate system oxyz is defined as shown in Fig. 1.1 with the
oxy-plane on the mean free surface and the oz-axis measured positive vertically upwards.
With the assumption of ideal and irrotational flow, the fluid motion is defined by a velocity
potential @, which can be expressed in the form of the Stokes expansion

Fig. 1. 1 Coordinate system and fluid
boundaries

P = 0V + £ + O’ (L.1)

where ¢ is a perturbation parameter proportional to wave slope. The first-order velocity
potential for a regular wave of frequency w is

@) = Re[¢ Ve ™ (1.2)
which can be decomposed into incident and diffraction components
oM =0 + @) = Re[(4" + ¢5))e ] (1.3)

at time ¢. For an incident wave of amplitude { travelling in the direction 6 = g, the first-order
complex incident potential is

¢(1) — __E,.‘E cosh k(z+ h eik(xcos a+ ysin a) (14)
! %) cosh kh

where gis the acceleration due to gravity, A is the water depth, and k is the wave number that
satisfies
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2
k tanh kh=a)?E y (1.5)

The problem of the first-order diffraction potential is classical, and a variety of numerical
methods of solution is now available.

The first-order body motion vector at a point x relative to the centre of gravity can be
defined by

xD = U+ W x x = Re [X(l)e”i“”] (16)
where
Ul = Re[u(l)e—iwt] o owih = Re[w(l)e"iwt] (1.7a,b)

are the translation and rotation vectors, respectively, with the components U'" = (B1,5,,83),
1 - = =
w = (E4,=5,24), and

E;=Re [‘S]e_i‘”t] , J=1t06 (1.7¢)

The associated second-order velocity potential is defined by

o? = ® + o (1.8)
which fulfills"
Vo =0 in the fluid domain V (1.9a)
vVo® .p=0 on the seabed S, (1.9b)
00?  Fo? _ oo . ( o )
gaz+al2—2vq>vat
3 ( oo™ | 1 Faol )aq)(l)
T \Tor T 7 ) (1.9¢)

on the free surface Sy

Vo® - n=—[x" - v)veD] - n
ax® oH®
+(T—-V(I>(1)) - (W9 xn) +( 5%) m
on the body surface S, (1.94d)

where n is the normal vector directed outwardly from the body, referenced to the body axes.
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The matrix H? is given by

=2 =2
5‘45"" g O 0
D I e m m2 =2
_I__l( = 2 2._.4._.5 :14+ f=irs 0 (1.10)
- = _— =2 =2
—25,Es —2EsEg i+ 25

Eq. (1.10) implies that roll Z,, pitch Z5 and yaw E¢ are taken in that order. The second-
order incident potential may be obtained by substituting Eq. (1.4) into the right-hand side of
Eq. (1.9¢), yielding

®P = Re[¢e ™ + 671 (1.11)

where

(2) _ i3(1)§2 cosh 2k(Z+ h) i2k(x cos a+ ysin a)
2 8 skl

(1.12)

The constant 6,2 is determined from the requirement that the mean water level be z = 0 in
an otherwise undisturbed incident wave, giving

o_ __ gk’
01’ = ~7sinh 2kh (1.13)

The analogue expression for the second-order diffraction potential is
®F) = Re [ ¢7e "] (1.14)

By substituting Egs. (1.3), (1.6) ~ (1.82 and (1.11) into Eq. (1.9), the equations governing

the second-order diffraction potential ¢(D) read

VP =0 in V (1.152)
Véy - n=0 on Sg (1.15b)
o (2) 4 2

gZD ____{(gg @) — @ onsS; (1.15¢)
v (g) -n= —V¢(,2) n+ ﬂ(z) on S, (1.15d)

where

. 1
a(2)=—l§)—{v¢(l) VO~ gD —Lg0 (ﬁa?i_ 2 tanhzkh¢(1>)
Z
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1 (P80 o o
+§¢, ( 37 k“tanh”khg); )] (1.15¢)

1 1w® v Ciox® (D
A = -5 [(x(l) . V)V(;ﬁ(l)] - n— i(w Xm) * (lwx '+ Vg

+%"(E2)x) n (1.15%)
with
E+& 00
9= | =288 E+E 0 (1.16)

“25456 _2§5§6 fi‘*‘ 52

In addition, ¢‘3’ must satisty the radiation boundary condition ensuring the outgoing wave at
infinity. It is shown later that the second-order forces can be evaluated without the need for
explicitly solving the boundary-value problem (1.15).

1. 3 Expressions for Second-Order Forces

The wave forces exerted on the body can be obtained by integrating the hydrodynamic
pressure over the submerged body surface. By retaining terms up to second order in the inte-
grated pressure, the first- and second-order forces on vertically wall-sided bodies are found
to be?

F=p /s,, 0 Tnds (1.17)
o=, /So[ig’;-z—) +3 VOV P+XD .y (Q%’?)] nds
— %8 fo 6% nat + WO x (m%g) — BB A (3 + i) Fes
(1.18)
where Z;(Rl) is the first-order relative wave elevation defined by
g =190y o _pe (e (1.19)

along the mean waterline Cy, p is the fluid density, m is the mass of body, Ay is the water
plane area, (x,yy) are the coordinates of the centre of flotation, and e, (j = 1,2,3) are the unit
vectors in the direction of the space-fixed coordinate axes.

The terms in Eq. (1.18), depending on quadratic products of the first-order effects, can
be decomposed into a mean (F(,:)) and time oscillatory component (Ff,z)) respectively, such
that
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FO = Re [Q / / (lv¢(1> VD iV D - x‘l)*)nds

_p8 9§ NOMOY dl——’%“L w® ¢ g

- % Ay (xf§4 + )’fgs)&;%] (1-20)
1 .
F = re[[£[[ Sa(iw(” Vg0 — Vg - xV)nds
— B8 2y gy — A1) ¢ (D
4 C“
- %gAW (x84t Yfgs)gs%]emawt] (1.21)

where * denotes the complex conjugate. The calculation of F? and F{ is straightforward for
any body for which the first-order solution is known.
The remaining term in Eq. (1.18), namely

F2 —of / a(b(z)ndS (1.22)

can be evaluated in the manner suggested by Lighthill® and Molin”. To do this, use is made
of the auxiliary first-order radiation potential 1, associated with a unit oscillation of the body
in the direction e; at double frequency 2w. By applying Green’s second identity, and making
use of Egs. (1. ISa ~ d) and radiation boundary condition for ¢(,§), F( ) can be expressed in
terms of the first-order quantities alone, such that

FEJZ) = Re[(Fql +Foy+Fo+F qlV)emizwt + pA o Ve (1.23)
where
F, =— Zipa)//s ¢(12)ndS (1.24)
3
R, = (2: oo / WVe? - n dS) (1.25)

j—l

Fon= ( 21pw/f 1,0/,8( )dS) (1.26)
K, =l_§1 (2100 /Spw,a@)ds) e (1.27)

The calculation of F; and F; is straightforward as ¢(,2) is known and v, can be obtained from
the first-order solution. The difficulty, however, arises in the evaluation of F;; involving the
double spatial gradients of the first-order potentials, for which accurate solutions are difficult
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to obtain by existing numerical methods. Moreover, in order to evaluate F;, the integration
must be performed over an infinite area of the free surface, but this is not trivial because the
integrand displays a highly oscillatory and slowly decaying behaviour.

1.4 Evaluation of Double Spatial Gradients of First-Order Potentials

The double spatial gradients of the first-order potentials involved in F;; can be reduced
to single gradients by virture of Stokes’ theorem

//SV X (px” X V) - nds =7§C Wx"x V) - a (1.28)

where the vector dl is directed as indicated in Fig. 1.2. Using the well-known formulas of
vector analysis, and by virtue of the assumption of irrotational and ideal flow, it follows
that'”

| - V)VED| - nds
ol |
=J LG v =60 - v - )
— 1w Xm) - V¢<”]d5—-fc v(zpjx“)xw(”) - dl (1.29)

which allows the double spatial gradients of the potential ¢'” to be replaced by single gra-
dients of ¢ and the auxiliary potential . The details of derivation of Eq. (1.29) are given
in Appendix A.

Fig. 1. 2 Definition of geometry for
Stokes’ theorem

For wall-sided bodies that intersect the free surface at right angles, the vector dl is hori-
zontal and defined by

Al =(n X e;)dl (1.30)
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The line integral on the right-hand side of Eq. (1.29) can then be given by
() ¢ v 4D - GNP 1.31
Cw(z/)jx XVg)y - dl = Cwi/), (x7 - n) o7 e 5, | 4 (1.31)
Combining Egs. (1.15f), (1.29) and (1.31) with Eq. (1.26), F;; can be rewritten in the form
3
Fon= L fiooff [ - m(vy, - V6% -V - V) - V)
1= 0
+ iy (w" Xn) - x“>+i7“’(l_z(”x) : n] ds
: w98 98
—z,owfc 'wj[(x ) (x )5, ] dl] (1.32)

which is more desirable for numerical evaluation.

1.5 Evaluation of Free-Surface Integral

For the evaluation of the free-surface integral of Eq. (1.27), it is convenient to separate
the free surface Sy into the discretised domain S, close to the body and the infinite outer do-
main Sp,. The integral over the discretised domain can then be evaluated by numerical quad-
rature, while it is handled asymptotically for the infinite domain as described later.

1. 5.1 |Integralin near field
The free-surface integral consists of a summation of integrals of the general form

/fslllffD1¢(1l)Dz¢(zl)dS (1.33)

where D, and D, are differential operators defined by Eq. (1.15¢). Either one or both of the
potentials ¢(11) and ¢(21) are diffraction potentials. These integrals in the discretised domain can
be evaluated accurately by numerical quadrature (e.g., a four-point Gaussian quadrature) if
the integrand involves only the single spatial gradients of the potentials.

In order to evaluate the integrals involving the double spatial gradients, it is useful to re-
duce the double derivatives to single derivatives by virtue of Green’s theorem in two-dimen-
sions. This yields

_ //SH [a(wf«f%l)) ogy) . a(wd) aga”] s

ox  Ox ay y
- by 1.34
Co+ c,fpjgﬁl on, ( ’ )

where Cy is a fictitious circular boundary separating the free surface into the two domains,
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and 7, denotes the normal directed outwardly from Cy and Cy (refer to Fig. 1.1). As the in-
tegrand of Eq. (1.34) involves only single derivatives of ¢(1) and vy, the integral may be
evaluated accurately from solutions based on conventional numerical first-order analysis.

1. 5.2 |Integral in far field

The integrals (1.33) over the infinite outer domain may be evaluated by means of an
asymptotic method as employed by Matsui'>*'? to calculate the difference-frequency forces
in bichromatic waves. This is briefly redescribed for the special case

-/ /S w2 ds (1.35)

For the sake of compactness, the wave flow is assumed to be symmetric with respect to 6 =
0. Away from the body the potentials may be written as

@

= Lo [40H ) + X AR (K] cosn0 =gl g (136)

b= Lo [ @HO0n) + T @K (x0n)] cosno =y + < (137)
n= m=1

where ¢, = 1 for n= 0, otherwise ¢, = 2, H\" is the Hankel function of the first kind of order
n, K, is the modified Bessel function of the second kind of order #, and k,,, x and x,, denote
the real positive roots of the equations

2

k,tan k,h= —% (1.38)
g .
2
K tanh xh =ig— (1.39)
2
K tan Kyl = —f‘—g’— (1.40)

The second terms of Eqs. (1.36) and (1.37), ¢, ¢*, represent local (evanescent) modes that
decay exponentially with the radial distance, and the far-field asymptotics of the potentials
are given only by the first terms, ¢Z, ", which represent propagating waves.

The integral (1.35) may now be evaluated over two intervals, (,,7,) and (r;, ©), where 7,
is the radius of the fictitious boundary Cy, and the radius 7, is chosen so that the influence of
local modes vanishes in the latter interval

27 7] 0
1=/ ao| [ e rdrt /rlsz(;bg)zrdr

+ /‘: |y - Y| ) (1.41)
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The first integral in Eq. (1.41) over the finite interval (7,,7) can be computed numerically.
The last integral is made negligibly small by a suitable choice of the partition radius r,.
The second integral over the infinite domain

27 ®
L=/ da | vty rar (1.42)

may be evaluated in the following manner. The integral is first executed over the azimuthal
angle 6. By substituting Egs. (1.36) and (1.37) into Eq. (1.42) and integrating over 6 using
the method of stationary phase, one obtains

L=mxn i io nEmAA0) [ (0) I(n,m, [0 — m|)

n=0m=
+ o+ (0)(n,m,n+ m)] (1.43)
where
I(nm,1) = [ Bk HD (k) H (er)rdr (1.44)
n

At large radius one may use the large argument asymptotic form of Hankel function'”

H(l) ~ 2 %h ei(x-'xn) 1.45
n (X) X n(x) ( * )

where

—19(4n’ =3%) - - - [4n" — (25 — 1)

h(x)=1+ v (4n°

L B (1.46)
and y, = (2n+1)7/4. When this is substituted into Eq. (1.44), one obtains

I(n,m,l)= / F(redr (1.47)

r
where
2 (2 \7
Kr) =% (;55) 2e_r""*'”*’h,,(kr)hm(kr)h,(icr) (1.48)
q=2k+«x (1.49)

By virtue of the periodic nature of the exponential function of pure complex argument, the
infinite integral (1.47) can be replaced by a finite-interval integral
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I(n,m,1) =/rl +TG(r)eiqrdr (1.50)
where
G(r) =520(—1)“F (r+ S—;Z) (1.51)

Since F(r) decreases as 7%, it is difficult to obtain a converged solution by direct summation
of the series (1.51). The convergence may, however, be improved if the series is replaced by
Euler’s transformation’”

LDE= (- S 5 (152)

where
F,= F( +S;”) (1.53)
and A°F, is the s-th difference of F, given by
F,= 120(-1)’ (g) F._, (1.54)

One may note that the convergence rate of the series (1.52) is more rapid for F; that decays
more slowly with increasing s. The convergence can further be improved if Euler’s transfor-
mation is applied after the first few (say M) terms of the series (1.51) are directly summed

o M-

stM A
LDE= Y GO L

2 By (1.55)

The finite integral of Eq. (1.50) can then be evaluated to any desirable degree of accuracy by
applying numerical quadrature (e.g., a Newton-Cotes 9-point rule).

1. 6 Results and Discussion

1. 6.1 General numerical procedure

The theory described in the foregoing was applied to develop a general numerical proce-
dure for computing the second-order wave exciting forces on arbitrary three-dimensional
bodies floating in regular waves. The expressions derived for the second-order forces were
evaluated from numerical first-order solutions based on the hybrid integral-equation method,
described by Matsui and Kato'®. Fig. 1.3 illustrates typical idealisations for the hybrid inte-
gral-equation method. The fluid region was divided into two regions by introducing a ficti-
tious vertical cylinder enclosing the body. The boundary surfaces inside the fictitious cylinder
were discretised into quadratic isoparametric elements with 8 nodes, while an analytical
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solution based on the eigenfunction expansion in cylindrical coordinates was employed for

the infinite outside region. Based on the results of systematic convergence tests (Tables 1.1

and 1.2), the double series of eigenfunction expansion were truncated at 9th Fourier harmon-
ics in 6 and at 14 evanescent modes in z. The double symmetry of the body geometry was ex-

ploited.

[

()

)

CAONA
MRSV NARY
AR
OOOOOGRIRANR
AOOEKINAN A\
DX
.w..».«»ﬁ%.voooﬁ ATATATA

=l
: ...ﬁﬁﬁ%%&ﬂ.ﬁ!!h-
NS
_:.oo“v“.o.o%% (X AR
(XX
B

e
e

A=Aty
A

()

()

(b)

Fig. 1.3 Boundary element idealisations for (a) vertical cylinder, (b) floating

hemisphere, (c) circular dock (draft=25cm), (d) circular dock

(draft=15 cm), (e) tension leg platform
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Table 1.1 Second-order horizontal force F® and moment M(yz) on fixed vertical
cylinder computed with increasing N and M (where N and M denote
maximum terms of Fourier-series and evanescent modes in double
series of eigenfunction expansion)

N | M 1F21/ (pga¢®) M5/ (pga¢?)
ka=10ka=25ka=10 | ka =25
5 10 1.6050 4.5931 3.5870 15.035
T 10 1.6050 4.5955 3.5870 15.043
9 10 1.6050 4.5955 3.5870 15.043
5 12 1.6097 4.5917 3.5942 15.006
7 12 1.6097 4.5941 3.5942 15.014
9 12 1.6097 4.5941 3.5942 15.014
5 14 1.6088 4.5892 3.5951 14.998
7 14 1.6088 4.5915 3.5951 .15.006
9 14 1.6088 4.5915 3.5951 15.006
Analytical 1.6454 4.6444 3.6263 15.069

Table 1.2 Second-order horizontal force and moment on fixed vertical cylin-
der computed with increasing mesh subdivisions (where N,
denotes number of elements on cylinder surface)

Ns |FP)|/(pga?) 1M$P|/(pga?(?)
ka=10|ka=25ka=101ka=25

72 1.5920 4.5151 3.5623 14.675

128 1.6084 4.5877 3.5931 14.979

200 1.6088 4.5915 3.5951 15.006

Analytical 1.6454 4.6444 3.6263 15.069

1.6.2 Comparison with analytical solutions for fixed vertical cylinder

Although the present numerical procedure has been developed without any restriction
on the body shape, the geometry studied first is a uniform vertical circular cylinder fixed at
the seabed and having a depth-to-radius radio of 4/a = 10.0. This case was selected to check
the validity of the numerical procedure by comparison with the analytical solution for the sec-
ond-order double-frequency force'”. Some results of couvergence tests are presented in Ta-
bles 1.1 and 1.2, where the double-frequency horizontal force and moment on the cylinder
were computed with increasing mesh subdivisions and numbers of terms in the eigenfunction
series. These results are found to ensure good convergence of the present numerical solu-
tions. Fig. 1.4 shows the computed results for the transfer function of double-frequency hori-
zontal force, which are compared with the corresponding analytical solutions. Agreement
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Fig. 1.4 Comparison between analytical and numerical results for second-order horizontal force on

fixed vertical cylinder; (a) in-phase component, (b) out-of-phase component

Table 1.3 Contribution of free-surface integral to second-order

horizontal force on fixed vertical cylinder (r,/a=1.2,

ka=1.0)

ri/a

Local wave effects
included

Local wave effects
excluded

3.425+42.40614
3.2284-2.5381
3.128+2.5461
3.069+4-2.570¢
2.99742.5961
2.960+4-2.607¢
2.938+2.6144
2.916+42.620:
2.907+2.6231

4.236+1.5641
4.236+1.5641
4.23641.5641
4.236+1.564:
4.23641.5641
4.2364+1.5641
4.236+1.5641
4.236+41.5641
4.236+1.564¢

between analytical and numerical predictions is seen to be excellent over the frequency range

examined, confirming the validity and accuracy of the present numerical procedure.

In order to show the effectiveness of the proposed method for evaluating the free-surface
integral, Table 1.3 gives the results for the contribution of the free-surface integral to the sec-
ond-order horizontal force on the cylinder. Both the results including and excluding the local
wave effects are presented with increasing the partition radius ry. It can be noted that the in-
tegral excluding the local wave effects takes a stationary value, irrespective of r;, demonstrat-
ing the effectiveness and high accuracy of the method discussed in the preceding section for
evaluating the integral in the infinite local-wave-free domain. As the local wave effects decay
exponentially with the radial distance, the integral including these effects is found to ap-
proach quickly to the asymptotic value with increasing r,.
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1. 6.3 Comparison with results of Kim and Yue for fixed and floating hemisphere

The geometry studied next is a hemisphere fixed and floating near the free surface and
having a depth-to-radius ratio of #/a = 3.0. Figs. 1.5 ~ 1.8 show the computed results for
the double-frequency horizontal and vertical forces on the sphere. This case has also been in-
vestigated numerically by Kim and Yue”, whose results are also plotted in the figures for
comparison. Agreement is observed to be satisfactory, illustrating again the validity of the

present numerical procedure.
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1. 6.4 Comparison with model test results for fixed circular dock and tension leg platform

To give experimental evidence on the va-
lidity of the present numerical procedure, the
model tests were conducted to measure the sec-
ond-order wave forces on a fixed circular dock
and a tension leg platform (TLP). The principal
dimensions of the experimental models are
presented in Table 1.4 and in Fig. 1.9. The tests
were made in the wave tank at Nagoya Univer-
sity. This facility has a width of 2m, a nominal
water depth of 1 m, and a distance of approxi-
mately 15m between wavemaker and beach.
The models were fixed near the free surface at
the distance of approximately 6m from the
* beach, through a load cell with a nominal ca-
pacity of Skgf for force and 2kgfm for mo-
ment. The tests were carried out in regular
waves for ranges of wave frequencies (0.54~
1.56 Hz) and amplitudes (1.5~ 5 cm). The sec-
ond-order force components at double fre-
quency were filtered out from the measured
time histories of forces by a harmonic analysis
based on the Fast Fourier Transform algorithm.

Figs. 1.10 ~ 1.21 show the comparison of
computed and measured second-order horizon-
tal and vertical forces, and moment about the

40.0cm
20.75e¢m | 14.25¢m

o fozem !

|
— =
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|
|
|
|

e

| 51l.lcm
1

Fig. 1.9 Layout of tension leg platform
model

horizontal axis passing through the centre of flotation (x = y = z = 0). Both the results com-
puted with and without the second-order potential effects are presented and compared. It is
observed that the contribution of the second-order potential is significant over the entire fre-
quency range. An approximate second-order theory neglecting these effects is found to sub-
stantially underestimate the heave and pitch excitation forces. The correlation between theory
and experiment is considered to be generally satisfactory, in view of the small magnitudes of
the forces being measured. Significant discrepancies observed in the high-frequency range are
thought to be caused by the reflections of standing waves from the side walls of the tank™".

Table 1.4 Principal dimensions of experimental models

e Value .
Description (Symbol) Cironlar dock TiPp Unit
Column diameter (2a) 30 10 cm
Draft (d) 15 and 25 20.75 cm
Spacing between column centre lines (L) - 51.1 cm
Water depth (h) 100 120 cm
Wave direction (&) 0° 0° and 45°
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1.7 Conclusions

An efficient and accurate numerical procedure was developed to compute the second-
order diffraction forces on floating bodies of arbitrary form in regular waves. Green’s second
identity was exploited to obtain the forces without the need for explicitly evaluating the sec-
ond-order potential. The resulting expressions for the second-order forces were evaluated
from numerical first-order solutions based on the hybrid integral-equation method. The
methodologies were discussed in some detail for the effective evaluation of the free-surface
integral with an oscillatory and slowly decaying integrand, and the double spatial gradients of
the first-order potentials involved in the second-order body surface condition. The validity of
the numerical procedure was confirmed by comparison of computed results with previous
analytical and numerical solutions as well as with model test results for the fixed circular dock
and tension leg platform. The present numerical procedure may readily be extended to calcu-
late the sum- and difference-frequency forces in irregular waves'>.

An important finding in the present numerical studies is that the second-order sum-fre-
quency forces are dominated by the contribution of the second-order potential. An approxi-
mate second-order theory using second-order contributions due to the first-order potentials
only was found to substantially underestimate the second-order heave and pitch excitation
forces, which may cause the vertical-plane resonant oscillations of tension leg platforms.

Part 2. Second-Order Sum-Frequency Oscillations of Tension Leg Platforms

2.1 Introduction

The deep water tension leg platform (TLP) is designed such that the natural periods of
the vertical-plane motions (typically 1~ 3 seconds) are substantially below the wave periods.
Also, the damping of the system is low. Besides the wave frequency responses, the resonant
vertical-plane oscillations and resulting tensions in the tethers, caused by any source of high
frequency excitations, then become critical for the design of the TLP. It is now widely recog-
nized that the second-order sum-frequency wave exciting forces, often called ‘springing’
forces, are a primary source of such high-frequency resonant excitations. Thus, besides the
need for better estimates of the damping forces, a reliable prediction of these nonlinear wave
excitations is critical for the design of the TLP tethers against fatigue damage.

During the last fifteen years, considerable progress has been made on the development
of the second-order wave diffraction theory and computations”®”. Despite such progresses,
it is only recently that the complete calculations of the second-order sum-frequency wave ex-
citations on a full TLP have been reported*". A primary reason is theoretical and compu-
tational difficulties in obtaining the solution of second-order sum-frequency potential. Thus,
the previous calculations of springing forces on the TLP have been based on some simplifying
approximations. For example, Yoshida er al.*” have taken into account only the second-order
contribution due to change of the wetted body surface along the waterline. Petrauskas and
Liu*” have completely neglected the effects of second-order potential. De Boom, Pinkster
and Tan’" have included the second-order incident potential contribution but neglected that
of the diffraction counterparts. Consequently, large discreancies were observed between pre-
dicted and measured results for the high-frequency wave excitations and responses of the
TLP. For example, measured rms values of the tether forces reported by Petrauskas and
Liu™ were three or more times larger than predictions using experimental damping values.

The complete calculation of the nonlinear sum-frequency wave excitations on a TLP was
first attempted by Kim and Yue™. Based on their complete second-order diffraction theory
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for axisymmetric bodies”, they obtained the sum-frequency wave loads on a single TLP col-
umn and applied those results to the dynamic analysis of a full TLP through a simple ap-
proximation method (e.g., multiplying the single-leg results by the number of columns to esti-
mate the wave loads on the full TLP). The computed rms values of the tether force were
found to be two to three times higher than that predicted by an approximate second-order
theory using second-order contributions due to first-order potentials only. However, the wave
interaction between columns and the pontoon effects are ignored in their estimation.

The full three-dimensional analyses of the second-order sum-frequency wave loads on a
fixed TLP have been reported more recently by Kim®" and Matsui, Suzuki and Sakoh").
Through comparison of the full TLP results with approximate evaluations based on the re-
sults of a single column (Kim and Yuem) and four columns only (Chauzﬁ)), Kim®" has shown
that both the wave interaction between columns and the effect of pontoons are important to
the calculation of the springing forces on the TLP. Matsui et al.” have attempted also com-
parison of their numerical results with the model test results obtained by themselves. Satisfac-
tory agreement was observed between computed and measured results, promising the useful-
ness of the complete second-order diffraction theory for predicting the sum-frequency wave
excitations and responses of the TLP.

In the following, the complete second-order diffraction theory for general three-dimen-
sional bodies, developed in Part 1, is applied to predict the sum-frequency oscillations and
tether forces of a full TLP in regular waves. The equations of motion for the high-frequency
motions of the TLP are formulated, taking into account the geometric nonlinearities of the
tether system. It is shown that the second-order contributions due to these nonlinearities pro-
vide additional forcing functions exciting the second-order motions of the TLP. In order to
validate the theoretical predictions, a series of model tests has been performed with small
scale models of a single- and four-column TLP. Comparisons are made between analysis and
experimental data, from which the applicability of the theory is examined.

2.2 Theory

2. 2.1 Equations of motion

Herein the motions of a TLP in regular waves are considered. The motions may be char-
acterised by the six degrees-of-freedom: surge (E,), sway (£,), heave (=3), roll (), pitch
(E5) and yaw (E¢). In regular waves of frequency w, the motions of the TLP may be de-
scribed in the form

Ek=Re[ (De=ivfp g™ 42 k=1,2, - -,6 (2.1)

at time . The first term in Eq. (2.1) represents the wave-frequency responses due to the first-
order wave exciting forces. The second term represents the sum-frequency responses due to
the second-order wave exciting forces at twice the wave frequency. The last term represents
the mean responses due to the wave drift and will not be considered here.

The equations of motion of the TLP may be derived by adding the effects of the tether
system to the well-known equations of motion for a freely-floating structure. Omitting the
detail of derivation, this leads to the equations of motion

6

»zl[-—w"‘(mkﬁ M) —ioNg =5 i’ N{PIE")
L

+ Kyt Ly| §7=F%, k=126 (2.2)



246 T. Matsui

for the first-order wave-frequency motions, and

6
Y [~4w2(mkj+ M) —2oN? — 38

<4 23y (2 2
L 30 40 NGOIED)

+ Kyt Ly| &) =9 + &), k=1,2,---,6 (2.3)

for the second-order sum-frequency motions. In Eqs. (2.2) and (2.3), my; are the inertia coef-
ficients, Mk(,l), Mk(jz) are the (frequency-dependent) added inertia coefficients, N,fjl), Nk(,.z) are
the linear (frequency-dependent) added damping coefficients, Ak(jl), Ak(jz) are the nonlinear
viscous damping coefficients, K,; are the hydrostatic stiffness coefficients, L,; are the mooring
stiffness coefficients, f,fé@, f,ff;? are the first- and second-order wave exciting forces, and gkif,)
are the second-order forcing functions exerted by the tether system.

The frequency-dependent added inertia and damping coefficients, and the first-order
wave exciting forces may be obtained from conventional first-order diffraction-radiation com-
putations. The method to calculate the second-order sum-frequency wave exciting forces has
been elaborated in Part 1 and will not be repeated here. The remainder of this section de-
scribes how the terms in Egs. (2.2) and (2.3) depending on the tether system may be derived.

2. 2. 2 Effects of tether system

a) Assumptions

Consider a floating body anchored to the seabed by N vertical tethers of the lengths 7,
the extensional rigidities k,, and the initial tensions Ty, (m = 1,2,...,N), as shown in Fig. 2.1.
It is assumed that the tethers are massless and that the effects of hydrodynamic forces acting
on the tethers are negligible.

Fig. 2.1 Sketch of tether system. / %
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b) Kinematics of mooring points

The mooring points on the body are denoted by the position vectors x,, relative to the
body-fixed co-ordinate axes with an origin at the centre of gravity of the body. The displace-
ment vector X,, of the point x,, refered to the space-fixed co-ordinate axes, may be ex-
pressed as

X, =X i+ Xonj+ Xs,k =U+ (D —I)x,, (2.4)

where i, j, k are the unit vectors in the directions of the space-fixed co-ordinate axes, U is the
displacement vector of the centre of gravity,

COSE5COSE
D =] cosE sinEg + sinE,sinEcos= ¢
SinE,sinEg — cosE SinZE5c08E 4
—COSEsSINE SINE
COSE4COSE¢ — SINE,SINESINE  —SINE 4COSE (2.5)
SINE4CO8E¢ + COSE,SINESInE  cOSE4COSE 5
and [ is the 3 X 3 unit matrix. Eq. (2.5) implies that roll, pitch and yaw are taken in that

order?.
For the present purpose, it is convenient to use the perturbation expansion

X,, =eXP + X2 + 0(e) (2.6)

where ¢ is the usual perturbation parameter proportional to the wave steepness. The first-
and second-order motion vectors Xg), Xﬁf) of the point x,, may then be written as

X0 =x i+ X505+ Xk =00+ W xx, (2.7)

X =x2i+ X5+ XDk =U0P + W x %, + H%,, (2.8)

where UV, U are the first- and second-order displacement vectors of the centre of gravity,
W(l), W are the first- and second-order small rotation vectors, and

—(1)2 ;| =(1)2
2 (1) (1 —(1)2 | =(1)2
H()_ _,g),_(g) “%(”g,) +“(6)) 0 (2_9)
(1) (1 _(1)=(1 _(1)2 | —(1)2
~£’~2) "(5)"‘%) —%(Hg) _|_...g))

Egs. (2.7) and (2.8) give the relations between the displacements of the mooring points and
the motions of the body.
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¢) Tether tensions
The extension e, and the resulting fluctuation of tether force 7,, may be obtained from

en=Lk+X,| =1, =JX0,+ X5, + (L, + X3,)" =L, (2.10)
T, =k,e, (2.11)

Introducing Egs. (2.6) ~ (2.8) into Eq. (2.10) and collecting terms of the lowest powers of ¢,
it follows that

e, =cé) + &éD) + 0(83) (2.12)
where

A =X, =X+ g (KR X (2.13)
Hence

T, =T+ &7, + O(&) (2.14)
where

1 =X, 1D =k [0+ S (7 X (215)

Eq. (2.15) implies that not only the second-order vertical motions but also the quadratic pro-
ducts of the first-order horizontal motions contribute to the second-order tether forces.

d) Resultant tether forces and moments
The resultant tether forces G exerted on the body may be obtained from

N
G=—Y (Ty,+ T,)sn (2.16)
m=1

where s, is the unit vector in the direction of the tether in the displaced position

1
Sn =T g (ke + X,) (2.17)

Introducing Egs. (2.6) ~ (2.8) and (2.12), (2.13) into Eq. (2.17), it follows that

Sw =k + &5 + €52 + O(&%) (2.18)
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where

o X0 x.
S’ =

i (2.19)

(2) 1) v (1) (2) (1) v (1) (1)2 (1)2
(2)=(X1 X x{ )+(X2 x4 Xm). + X5 a0
R U A L (S A (2.20)

Substituting Egs. (2.14), (2.15) and (2.18) ~ (2.20) into Eq. (2.17), and collecting powers
of ¢, the expressions for G may be derived in the form

G =GV + GV + £GP + O(&) (2.21)
where
0 N

G? =— Z:I Ty k , (2.22)
¢ =— };:v (TOmX(l) +T0m (1) (1)

o, 7, At T BXon e X (2.23)
GO =— 7 (Y;OmX@) + TZO'"X<2>,+k X3 k)

m=1] m

N1 Ton) [ x 0 x5 + xOx

_mz=1—l; km—‘—l—m— o X+ X000 X3,
1 1)2 1)2
Z(Xfm) +X; )) ] (2.24)

A similar approach may be used to derive the corresponding expressions for the result-
ing moments Q of the tether forces on the body. These moments are obtained from

Q== ¥ ()X [(Tout Ts,] (225)

In Eq. (2.25), Dx,, represents the displaced position vector of the mooring point x,,, refered
to the co-ordinate axes parallel to the space-fixed co-ordinate axes but with an origin at the
centre of gravity. Using Eqs. (2.4) and (2.6) ~ (2.8), Dx,, may be written as

Dx,, =x,+ ¢ (W“> X x) + & (W‘2> X X, + _a‘z)x,,,) + O(&)) (2.26)

Substituting Egs. (2.14), (2.15), (2.18) ~ (2.20) and (2.26) into Eq. (2.25), the final ex-
pressions for Q may be derived in the form

Q =09+ QW + £2Q® + 0 (2.27)
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where
N
Q¥ =— 7Y x,XT,k (2.28)
m=1

1 X T 0: . Tom1 (1)
Q()=_ Z [X (IOmX()+ lmX()+kX k)
m=1

WO X x,, X Ty k] (2.29)

TOm

N ) T
Q¥ =— 7 [x x (_1_ X + Lo
m=1 m

o O 4k, X2 k)

2 N1 T
+ W xx, x TOmk] ) {T(k’" —%")xm
m=1\*m m

[X(I)X(l)l + X)X + % (Xf,})z + X;,{)Z)k] + W xx,

x (Zomx s 4 Tomy 05 1k 0 1)+ H®x,, % Tk 2.30
l 1mi 1 J

The expressions for the resultant tether forces and moments obtained above may be
combined more conveniently in the form

G, =GO+ eGP+ £GP+ 0(eY), k=1,2,--+,6 (2.31)

G represents the resultant forces and moments due to the initial tensions, which are bal-
anced with the surplus buoyancy. Using Eqs. (2.7) and (2.8), G and G may be expressed
in terms of the motions of the body as

GO =-LE", @ =-L,zE7+GS) (2.32)

where G5 represents the terms consisting of the quadratic products of the first-order body
motions. ——Lkl”(") in Eq. (2.32) correspond to the static restoring forces due to the tether sys-
tem. G{) provides the additional forcing functions exciting the second-order motions. The
equations of motion of a TLP may then be obtained by adding these effects to the well-
known equations of motion for a freely-floating structure, as shown in Egs. (2.2) and (2.3).

2.3 Experiment

2.3.1 Testset-up

To validate the theoretical approach described in the foregoing, a series of model tests
has been performed in regular waves with small scale models of a single- and four-column
TLP. The principal particulars of the models are presented in Fig. 2.2 and in Table 2.1. Each
model made of acrylite was anchored to the tank bottom by four vertical tethers, composed
of a combination of stainless wires and steel springs. At the bottom end of each tether, a ring-
shaped strain-gauge force transducer was attached to measure the tension in the tether.
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On the top of the deck, a white wooden pole was installed on which two black points were
marked as the targets to trace the movement of the model by means of a contactless image
tracking system. The tests were made in the wave tank at Nagoya Univesity. This facility has
a width of 2 m, a nominal water depth of 1 m and a distance of approximately 15 m between
the wavemaker and the beach. The models were set up about half way along the length of the
tank. The depth of the tank is not large enough to scale the water depth and the tether
lengths of the prototype structure. The axial stiffnesses of the tethers were therefore adjusted
such that the resonant vertical-plane oscillations due to the springing forces are well excited
within the frequency range at which the wavemaker can produce stable waves.
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Fig. 2.2 TLP models and test set-up: (a) single-column model, (b) four-column model.
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Table 2.1 Principal particulars of TLP models

L Value .

Description Single-column | Four-column Unit
Spacing between column centre lines - 51.1 cm
Column diameter 30 10 cm
Operating draft 30 20.75 cm
Submergence depth of COG 16.724 4.217 cm
Total mass 13219 9495 g

Pitch moment of inertia 3831000 7221700 g-cm?
Displacement 21206 11351 g
Number of mooring tethers 4 4 -
Length of the tether 125 99.25 cm

Axial stiffness of a tether 889 1011 gf/cm
Pre-tension in a tether 1997 464 gf
Water depth 120 120 cm

2. 3.2 Generation of waves

Some remarks will be given here on
the generation of waves in the wave flume.
For the precise measurement of the sec-
ond-order forces and responses, it is of
primary importance to produce the waves
correctly to second order. If the wave-
maker is controlled by the usual linear
control signals, the unfavorable second-
order free waves (FWs) are generated by
the presence of the wavemaker. Sand and
Mansard”” have suggested that FWs may
be eliminated by adding the second-order
corrections to the linear control signals.
However, it can be shown that this is not
necessary if the model is set at some dis-
tance from the wave generator. Note that
FWs propagate more slowly than the sec-
ond-order bounded waves (BWs) locked
in the first-order waves. (The group veloc-
ity of FWs is about half that of BWs in

deep water.) When the wave generator is controlled by the linear control signals only, BWs
arrive first at the model position, while at that time FWs are still on half way between the
wavemaker and the model. Thus, if the experiment is carried out before FWs reach the
model, the data without the influence of FWs may be acquired. In this study, this simplified
method using the linear control signals only was adopted to avoid the unfavorable effects of
the second-order FWs. Fig. 2.3 shows a comparison of the generated second-order incident

—  THEORY
©  EXPERIMENT

Fig. 2.3 Second-order incident wave amplitude:
computed and measured (Q(l),§(2)=ﬁrst—
and second-order

wave

amplitudes,

k=wave number, h=water depth).
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wave amplitudes (normalised with the first-order wave amplitudes squared) with Stokes’s sec-
ond-order wave theory. Agreement is good, confirming the effectiveness of this simplified
method to generate waves.

2. 3. 3 Free oscillation tests in still water

Prior to the tests in waves, free oscillation tests were performed in still water to measure
the natural frequencies and the dampings for the surge, heave and pitch modes. The linear
and nonlinear damping coefficients were determined from the ratios between two subsequent
amplitudes of oscillations which were best fitted by means of the least square method. For
details see Appendix B.

2. 3.4 Tests in regular waves

The tests were carried out in regular waves for ranges of wave frequencies (0.5 ~ 1.5 Hz)
and amplitudes (1.5 ~ 5 cm). The following quantities were measured:

® Motion responses of moored TLP models by means of a contactless image tracking sys-
tem.

@ Tether forces of moored TLP models by means of ring-shaped strain-guage force trans-
ducers.

® Incident wave height by means of a servo-type wave prove positioned 2.5 m in front of
the model.

The signals recorded by a cassette-type data recording system were converted to digital
data by means of a A-D converter. A harmonic analysis based on the Fast Fourier Transform
algorithm was performed to filter out the first and second harmonic components of waves,
forces and responses.

2.4 Discussion of Results

2. 4.1 Natural frequencies and dampings

The surge, heave and pitch natural frequencies and the corresponding damping coeffi-
cients for the four-column TLP, measured from free oscillation tests in still water, are
presented in Table 2.2. These damping values were used to predict the motions and tether
forces of the model. Free oscillation tests were performed only for the four-column model.
For the single column TLP only the potential dampings obtained from the wave diffraction-
radiation calculations were used to compute the motions and tether forces.

Table 2. 2 Measured natural frequencies and damping coefficients for four-column TLP model

Damping coefficient

Mode | Natural frequency

Linear Nonlinear
Surge 0.175 Hz 0.6076 gf-s/cm | 0.8125 gf-s?/cm?
Heave 2.494 Hz 5.2515 gf-s/cm | 4.2198 gf-s?/cm?
Pitch 2.394 Hz 962.50 gf-cm-s | 154440¢gf-s?/cm
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2.4.2 Motion responses and tether forces

The measured motion responses and tether forces of the TLP models were compared
with the theoretical calculations based on the second-order wave diffraction theory. The fre-
quency-dependent added inertia and damping coefficients, and the first- and second-order
wave exciting forces on the TLP models were computed using the wave diffraction-radiation
code based on the hybrid integral-equation method'?. Figs. 2.4 to 2.9 show the comparison
for the heave and pitch responses and the tether forces of the single-column TLP. It is ob-
served that while the first harmonic components show relatively moderate variations with the
wave frequency, the second harmonic components exhibit sharp peaks at the frequencies of
1.18 Hz and 1.26 Hz. The fact that these frequencies coincide with half the heave (2.36 Hz)
and pitch (2.56 Hz) natural frequencies of the model suggests the occurence of the resonant
oscillations excited by the springing forces at twice the wave frequency. Similar tendencies are
also observed in the response curves for the four-column TLP model shown in Figs. 2.10 to
2.14, where the second harmonic components take peak values at the frequencies that coin-
cide with half the pitch (2.39 Hz) and heave (2.49 Hz) natural frequencies of the model. Figs.
2.15 and 2.16 illustrate the examples of measured time histories of response and tether ten-
sions near the resonant frequencies. The existence of significant second harmonic compo-
nents are clearly observed, which are comparable in magnitude with the first-harmonic wave-
frequency responses. Except in the vicinity of the resonant frequencies, the computed results
are found to correlate well with the experimental data. However, the large discrepancies ob-
served near the resonant frequencies suggest the need for improved estimates of the damping
forces (including mechanical and hydrodynamic).

In order to investigate the influence of the damping values on the motion and tether
force predictions, Figs. 2.17 to 2.21 show the comparison of the results computed with
measured damping values and those with potential dampings only. Except in the vicinity of
the resonant frequencies, the effects of the viscous dampings are found to be negligible. This
implies that in these frequencies the accuracy of prediction of the responses depends almost
on that of the wave exciting forces. The excellent agreement between theoretical and ex-
perimental predictions in these frequencies illustrates the validity of the method to predict the
second-order wave exciting forces, described in Part 1.
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The effects of the additional second-order forcing functions due to the tether system
were also investigated as shown in Figs. 2.5 to 2.14. It is observed that these effects are quite
significant on the heave response at low frequencies. This is due to large horizontal vessel
motions at these frequencies and relatively shallow water depth considered here (see Eq.
(2.24)). However, the effects on the tether forces are found to be so small.

2.5 Conclusions

A series of model tests has been conducted in regular waves to measure the second-
order sum-frequency oscillations and tether forces of TLPs. These test results were compared
with the predictions based on the complete second-order diffraction theory developed in Part
L. Satisfactory agreement was observed between analysis and experimental data, confirming
the validity of the theoretical predictions. The conclusions arising from the present study are
summarised as follow:

® The vertical-plane motions and resulting tether forces of the TLPs include the second-
order sum-frequency resonant components, which are comparable in magnitude with
the first-order wave-frequency responses.

@ The nonlinear sum-frequency wave exciting forces, often called ‘springing’ forces, pro-
vide an important source of excitation of such resonant oscillations. These excitation
forces can be predicted well based on the second-order wave diffraction theory.

® The theoretical approach described in this paper provides an effective means for pre-
dicting the vertical-plane oscillations and tether forces of TLPs, although further resear-
ches are needed for better estimates of the damping forces.

Finally, it should be remarked that, due to the size limitation of the wave tank available,
the tethering condition studied here may not be realistic. (The water depth is relatively shal-
low and the tether stiffnesses are relatively low compared with a typical design of TLP.) At
the present it is not definite whether the same conclusions are derived for more realistic
tethering conditions. This is a matter of future investigation. '
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Appendices

A. ProofofEq. (1.29)
Using the well-known formulas of vector analysis, the integrand on the left-hand side of
Eq. (1.28) can be written in the form

VX (px x vy - n
= [ij X (XX V) + v x (xV x V¢<1>)] ‘n
=[X(1)(ij VD) — VgD - ij)] ‘n
+wj[(V¢”) V) — (D - VgD

+X(1)(V . v¢(1)) __V¢(])(V . X(l))] n (Al)

By virtue of the assumption of irrotational and ideal flow, and from Eq. (1.6), it follows that
V-V =V =0 (A.2)
Vox=v @+ w"Xxx)=0 (A.3)
(V¢(1) . V)x(l) - =(V¢(1) -V) (u(l) +w®x x) 'n

=wx (Vg -V)x - n
=wx VgD .n =nxw® . vgh (A.4)

Making use of Egs. (A.2) ~ (A.4), Eq. (A.1) can be reduced to

VX (g0 x Vg0 n = - m)(Vy; - Vg
_(X(l) V) - V¢(1)) - (W(l) X n) - V¢(1)
_ wj[(x(“ V)V ¢<1)] ‘n (A5)
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Substitution of Eq. (A.5) into Eq. (1.28) leads to Eq. (1.29).

B. Damping Evaluation from Free Oscillation Decay Test

The equation of motion for a single degree-of-freedom system undergoing free oscilla-
tion can be described as

(m+ Myj+ Ny + NIy |y +(K+ L)y=0 (B.1)

where m is the inertia coefficient, M is the added inertia coefficient, N is the linear added
damping coefficient, N is the nonlinear viscous damping coefficient, K is the hydrostatic stiff-
ness coefficient and L is the mooring stiffness coefficient. Let the subsequent amplitudes of
oscillation be denoted by y, ¥, * * *, Yo 1, Y Yu+ 1» * * ° - The ratio of two subsequent am-
plitudes can then be expressed as

A

Into ¥ Ve _ [__ aN ] 2N
Yur1F Y. P 2(m+M)[1 30m+ 3 O Ve 1) (B.2)

Eq. (B.2) may be rewritten in the form

Zu+1 — 2y =—-{ 1 —exp [ *—2—(—517@]—]%)” Z,
~Zexp | 5 N2 (B.3)

where z, = y, + v, 4 ;- With the known inertia and added inertia coefficients, m and M, the
linear and nonlinear damping coefficients, N and N, can be determined from the curve z, 4 ;
— z, versus z,, which are best fitted by means of the least square method, as shown in Figs.
B.1 ~ B.3.
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