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Abstract

Recently, there exist many rotating machineries which are operated above
the major critical speeds. It is necessary for such a rotating shaft to pass reson-
ance points under the rated speed with a small deflection safely at the start or
end of its operation.

In this paper, nonstationary vibration characteristics of a rotating shaft with
nonlinear spring characteristics are investigated concerning the following critical
speeds: a major critical speed, the critical speeds of subharmonic oscillations of
orders 1/2 and 1/3, and a critical speed of a summed-and-differential har-
monic oscillation. The rotating speed is changed with a constant acceleration.
Especially, the influences of the angular acceleration A, the initial angular posi-
tion ¥, of a rotor unbalance, the initial rotating speed w, and the initial distarb-
ance on the maximum amplitude are investigated.
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Chapter 1 General introduction

Rotating shafts are used in many kinds of machinery, such as turbines, machine tools,
motors and generators. As the weight of these machineries become lighter and their operating
speed becomes higher, various new kinds of vibration problem became to appear.

Every structures has natural frequencies and they vibrate with large amplitudes when a
periodic external force with a frequency near one of these natural frequencies works. Such a
phenomenon is called a resonance. In the fields of rotordynamics, such a resonance speed is
called a critical speed. In the design of rotating machineries, it is necessary to separate its
rated speed far from its critical speeds. If a rotating machinery is operated continuously near
one of its critical speeds, it is feared that the machinery is destroyed due to vibration.

A centrifugal force due to unbalance causes a periodic external force in a rotating ma-
chine. Therefore, a resonance phenomenon appears when the rotating speed coincides with
one of the natural frequencies. Such a rotating speed is a critical speed and it is also called a
major critical speed. Generally, in a rotating machinery, there exist many major critical
speeds corresponding to each mode of the system. It is not rare in modern machineries that
the operating speed is located in the higher speed side of some of these major critical speeds.
In such a case, the rotor passed multiple major critical speeds when it start or shut down the
operation. For example, the rotors of aircraft gas-turbine engines are operated at a rotating
speed above the second or third major critical speed. It is especially important for such a ma-
chinery whose rotating speed are changed frequently through critical speeds to pass safely
with a small deflection of the shaft.

It is known that nonlinear spring characteristics may appear in a restoring force of a ro-
tating shaft due to various causes, such as clearance in ball bearings, oil film in journal bear-
ings, and nonlinear phenomena occur at various rotating speeds besides the major critical
speeds. Such critical speeds are sometimes called a critical speed or a subcritical speed. It is
also important to know nonstationary vibration characteristics during passage through such
subcritical speeds.

Nonstationary vibration problems in a rotating shaft have already been studied by many
researchers. These studies are classified as follows depending on the characters of the system
and the conditions of acceleration: (a) a linear system and a nonlinear system, (b) a case of a
constant acceleration and a case with mutual interaction between the driving torque and the
rotor, (¢) a symmetrical system with no directional difference in shaft stiffness or rotor inertia
and a system such as an unsymmetrical rotor or an unsymmetrical shaft, and (d) a system
with concentrated masses and a system with distributed mass.

We can find literature surveys on this field in the books by F.M. Dimentberg?, I. Fern-
lund®, V.O. Kononenko®, R.M. Evan-Iwanowski®. In addition, R.M. Evan-Iwanowski%,
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Iwatsubo®, Yanabe”®, Matsuura® wrote survey articles on this topic. Including these reports
and the studies thereafter, we summarize the researches by classifing them to three groups.

The first group of research studied a nonstationary vibration of a linear system when the
rotor passes a major critical speed with a constant acceleration. The following researches have
been made.

In the early stage of the research, very simplified models are discussed theoretically.
F.M. Lewis'?), T. Poschl'), J.G. Baker'?, Yamada et al.'®, A. Dornig!¥, and R.L. Fearn et
al.'¥ discussed a nonstationary vibration problem in a one-degree-of-freedom system, which
corresponds to a projection of the motion of a rotor which is mounted at the center of an
elastic shaft. They obtained an exact solution or an approximate expression giving the maxi-
mum amplitude during the acceleration. Some of them used Fresnel integrals in their theore-
tical analysis. Shimoyama et al.'® proposed a method which gives natural frequencies and the
magnitude of eccentricity from the experimentally obtained time histories.

The most simple model which can represent a whirling motion is a two-degree-of-free-
dom system in which one disc is mounted at the center of a symmetrical shaft. F.M. Diment-
berg and I. Fernlund® obtained amplitude variation curves by a Fresnel integral and a nu-
merical integration, respectively. A.S. Qazi et al.!”) studied by an analogue computer. Yanabe
et al.'"®2% investigated variations of an amplitude and a phase angle by a numerical integra-
tion and derived an approximated expression.

In a case in which the position of a rotor is not at the center of a shaft or a case in which
a rotor is mounted at the overhung of a shaft, the deflection and the inclination of the rotor
couple each other and the gyroscopic moment works due to the inclination of the rotor. Such
a system with four degrees of freedom system are analyzed by Yu.A. Mitropol’skii) and
Yanabe et al.??. The former used the asymptotic method and the latter used a numerical in-
tegration.

In addition to these researches, phenomena in other types of systems with a symmetrical
rotor and a symmetrical shaft are also studied. Nonami et al.?»?% studied a system with an
internal damping. I. Koretysski*) and Nonami et al.?® studied a rotor system with elastic sup-
ports. Yanabe?”) and Nonami?®?”) investigated a system with distributed mass. Yanabe3931
investigated a nonstationary vibration when a rotor passes two critical speeds successively.
G.D. McCann et al.*» investigated a case of twisting motion. Iwata et al.>¥ reported about
supression of nonstationary vibration by controlling a supporting condition.

In an unsymmetrical rotor system with a difference in moment of inertia and an unsym-
metrical shaft system with a difference in stiffness, an unstable region exists in the neighbor-
hood of the major critical speed. In this region, no stable stationary solution exists. About the
nonstationary oscillation when the rotor passes such an unstable region, Aiba et al.34:3%
studies a system with a gyroscopic moment by the Runge-Kutta method, Kodera® studied a
system with distributed mass by an integral equation, and Ota et al.*”) performed experiments
on an unsymmetrical shaft and compared it with the result of a numerical simulation.

The second group investigated phenomena in systems which have the mutual interaction
between a driving source and a rotor motion. Concerning the nonstationary oscillations of a
rotor when it passes through a major critical speed, the following researches are performed:

V.O. Kononenko®) analyzed by the asymptotic method taking the energy of the driving
source into account. Matsuura®*9 studied a system in which an unbalance is comparatively
large and the driving torque is small. He discussed the nonstationary characteristics using
various estimation functions. Tsuchiya*> studied by the method of multiple scale. R.Gasch
and et al.*® discussed a vibration of a symmetrical shaft with distributed mass.

About an unsymmetrical shaft and an unsymmetrical rotor systems, Kawai et al.*” and
Iwatsubo et al.*®) investigated a case of concentrated mass and Kodera*” studied a case of
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distributed mass.

The third group studied nonstationary vibrations of nonlinear systems and the following
researches are made:

Yu.A.Mitropol’skii*") obtained an amplitude variation curve during passage through a
major critical speed by the asymptotic method which was proposed by himself. By the same
procedure, R.M.Evan-Iwanowski? and B.N.Agrawal et al.>") obtained an amplitude variation
curve during passage through a critical speed of a summed-and-differential harmonic oscilla-
tion. However, these researches showed only some representative amplitude variation curves
and the nonstationary characteristics are not discussed in detail from the physical point of
view.

As mentioned above, researches on nonlinear systems are very few comparing to those
on linear systems. However, a nonlinear system has more kinds of critical speed than a linear
system, and in addition, the shape or resonance curves in nonlinear system is more complex.
Therefore, it is necessary to investigate nonstationary phenomena in detail, especially from
physical point of view.

In this paper, nonstationary vibrations of a rotating shaft with nonlinear spring character-
istics during acceleration through various kinds of critical speed are investigated. The treated
system is a concentrated mass system constituted by a disc and an elastic shaft. The rotating
speed is changed at a constant rate. A major critical speed, subharmonic oscillations of order
1/2 and 1/3, and summed-and-differential harmonic oscillations are investigated. Especially,
the influence of the angular acceleration A, the initial angular position ¥, of a rotor unbal-
ance, the initial rotating speed w, and the initial disturbance on the maximum amplitude are
investigated.

Chapter 2 Equations of motion and nonlinear components

2. 1. Introduction

In this chapter, equations of motion of a system in which a disk is mounted on an elastic
shaft with a circular cross section is derived. Then, under the condition that the rotating
speed of the shaft changes with a constant acceleration, equations of motion for a deflection
motion and an inclination motion of a rotor which is mounted at the center of the shaft are
derived. In this case, a deflection motion and an inclination motion does not couple each
other and each of them can be expressed by a equation of motion of two degrees of freedom.
In the theoretical analyses in the next and the later sections, such equations of motion of two
degrees of freedom are used for simplicity.

Nonlinear spring characteristics which are expressed by the power series up to the third
order are considered. These characteristics are transformed to the polar coordinate express-
ion proposed by Yamamoto et al.’").

2. 2. Derivation of equations of motion

A vertical rotating shaft system in which a disc is mounted on an elastic shaft is con-
sidered. The coordinates are taken as shown in Fig. 2.1°9. The coordinate O—xyz is a rectan-
gular coordinate system whose z-axis coincides with the bearing center line. Let the geometri-
cal center of the rotor be M and it is assumed that the center S of the shaft coincides with this
point M. Let the coordinate system whose X-, Y- and Z-axes are paralell to the x-, y- and z-
axes, respectively, and whose origin coincides with the geometrical center M be M—XYZ.
The Z,-axis is taken in the tangential direction of the elastic line of the shaft, and the Z,-axis
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Plane A

Fig. 2.1. Coordinate systems

is taken in the direction of the polar moment of inertia of the rotor. The angle 7 between
these two axes represents a dynamic unbalance of the rotor. The plane A contains the point
M and is perpendicular to the elastic line or Z-axis. Let the line of intersection of the plane
A and the rotor be X,-axis and X,-axis, and let the lines perpendicular to them and on the
plane A and on the rotor be Y,-axis and Yj-axis. Then, the coordinate systems M—X,Y,Z,
and M—X,Y,Z, are defined. The line of intersection of the plane containing the dynamic un-
balance 7 and the disc is Y;-axis. The center of gravity G is located at the angle f in the di-
rection toward the X;-axis. The magnitude MG is the static unbalance e. Let the angle be-
tween the Z-axis and Z,-axis be 0, the angles between the Y-axis and MK which is the line
of intersection of XY plane and the disc be ¢,, and the angle between the Y,-axis and MK be
Pr-

As Eulerian angles representing the angular position of the rotor, the angles 8,, ¢, and
1, are adopted. The angular velocities in the MK, MZ and MZ, directions are represented by
6,, @, and 1y, respectively. Here, we transform these angular velocities to those in the MX,
MY and MZ-directions. The directions MK, MZ and MZ, have the following direction co-
sines for the coordinate system M—X,Y,Z,.
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MX, My, Mz,
MK (6,-direction) sing, cosy, 0
MZ (¢ ,-direction) —sin@, cosiy, sin@, siny, cos6,
MZ, (,-direction) 0 0 1

Therefore, the components of the angular velocity in the directions of the principal momen-
tum of inertia of the rotor MX,, MY, and MZ, are expressed as follows:

MXl : le = élsinl/)l - ¢1Sin91COS’(P1
MY, : wy, = 6,cosy, + ¢ sinfsiny, (2.1)
MZ, : wy = @,cos6, + .

The angular moments Ly, Lvy,, L, in each directions are given by

Ly, =lwy,, Ly,=lwy,, Lz = L,wy,. (2-2)

The variations of the angular momentum per unit time, Hy,, Hy; and H,,, are obtained from
Egs. (2.1) and (2.2) as

Hy, = Ia}x1 —(- Ip)wYIwZI
HYI = IC[)Yl - (Ip - I)CUZICUXI (2.3)

Hy = Loy,
By substituting Eq. (2.1) into (2.3), we get
Hy, = Ia%(élsinz/)1 — @,sinf,cosy;)
— (I= L) (6 cosyp, + @ sinbsiny,) (@ cosb, + 1)
Hy = Ié,d}(élcosw1 + @,sinf;siny,) (2.4)
— (I, — I) (0;siny, + @, sinfcosy;) (¢ cosb, + ;)
Hy = 1,4 (¢ cos6, + 1))

Next, we obtain the variations of the angular momentum per unit time in the direction of
the stationary coordinates x, y and z. We represent these quantities by H,, H, and H,. For
the transformation from Hy,, Hy, and Hy, to H,, H, and H, the direction cosines of MX,
MY, and MZ, for the x-, y- and z-axis are obtained as follows:
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MX, MY, MZ,
l1'= cos@cosPycosppy | L2'=— cosfcosP,ysiny, ’ 4
x l3'= sinf cos¥P,y
— sin®ssiny, — sinPicosyy
my = cos@;sinPicosypy | Mo =— cosBsinPysinyg, _ .
y ms = sin@sin®,
+ cosPsiny + cosPicosyp,
z n, =— sindcosyp, nz = sinfsiny, ns' = cosf,
Therefore,

H,= I'Hy, + L'Hy, + L Hy,
Hy= my' Hy, + my Hy, + my Hy,

H, = n/Hyx, + nHy, + n'Hy,.
By substituting Eq. (2.4) into this equation, we get the following expressions.

H,=1(=6,5,,— ¢,CpCpy Sy — 26,¢,C%C,y + 315,55 C1)
+ Ip {91¢1(C%1 C(pl - 5291 Crpl) - q‘)%(Scpl CmSm)
+ 91¢1(C91C¢1) - ¢1¢1(S¢1Sel)
+ ¢1(Sﬁl Cfpl CBI) + 1}}1(‘5‘61 C(pl)}
H,=1(0,Cpy = §1CpS,1Se — 26,9, C3 S, — 91C,1801 Cor)
+ Ip{91¢1(c%915¢1 - S2015cp1) + ¢%(C¢1Sm Cel)
+ 0.91(CuSpn) + @191(CpiS)
+ ¢1(SBIS¢1 C@l) + 1»Z}](‘Swﬂl‘gqol)}
H,=1(¢,5% +26,0,5,Cp)

+ Ip (_291¢1591C61 - 911/}1501 + ¢1C§1 + 9 Cy)

(2.5)

(2.6)

where the symbols Cy = cos6,, S, = sin6,, C,, = cosg, and S, = sing, are used. The
quantity ¢, is small in practical machineries, and we represent this by 8; = O(¢). This means
that the magnitude of 6, is the same order as a small parameter ¢. Let the projections of the
angle 6, to XZ and YZ planes be 6,, and 0, , respectively. They are expressed within the ac-

curacy of O(¢) as follows:



Nonstationary Vibration of a Rotating Shaft with Nonlinear Spring Characteristics 9

0,,= bicosp,, 60,,= O;sing, (2.7)

After substituting these expressions into Eq. (2.6), we get the following expressions within
the same accuracy.

H,=—16,,+ 1,7(0,6,)
H,=10,,+1,7.(6,6,) (2.8)
H,=16,

where O, = ¢, + y,.

Next, we consider the moments which work on the rotor. In the stationary coordinate
system O—xyz, let the deflections of the geometric center be M (which coincides with the
center of the shaft cross section S) be x and y, the projections of the inclination angle 6 of
Zy-axis on the xz and yz planes be 6, and ¢, respectively. The moments around x-, y- and
z-axis, M, M, and M, respectively, are expressed as follows:

Mtx=yy+66y Mty=_yx_69x Mtz=T (29)

where a, v and J are the spring constants, and T is the torque in the z-axis. This torque T'is a
summation of a driving torque and the torque made by the restoring force. By substituting
Eqgs. (2.8) and (2.9) into

H,=M,, H=M,, H=M

ty > z 1z

(2.10)

we obtain the equations of motion for the inclination oscillation. For the deflection motion,
we use the following equations.

migc=P, mys=P, (2.11)
P,=—(ax+y0,), P,=—(ay+yb) (2.12)
Finally, we get the following equations of motion:
mxs+ax+y0,=0
myq+ ay+ y6’y= 0
16+ 1,2 (6,6,) + yx+ 66,= 0 (2.13)
16,,—1,4(6,6,)+ yy+ 86,= 0
L6,=T
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As many variables in various kinds of coordinate systems are contained in this equation,
we restrict them to x, y, 6, and 6, in one coordinate. We can know that the relation @, = ©
holds approximately between the variables &, = ¢, + v, and @ = ¢ + . From Fig. 2.1, we
get the following relationship

Xo = x—esin(@— ), y; = y— ecos(O— p). (2.14)

Next, we derive the relationships between the angles 6,, 6 and 7. It is assumed that these
angles are small quantities of O(¢). Considering the relationships 6,cosg, = 6, and 6;sing,
= 6,,, we get the following relations within the accuracy of O(?).

0,,=—{—sin®+ (1/2) H*cosy siny} sint + H,cost

(2.15)
6;, = — (cos®@ + (1/2) 62 singsiny) sint + 6, cosT
Within the accuracy of O(¢), these relationships becomes
0, = sin@sint + O,cost 6, = — cosO sint + O,cosT. (2.16)

Substituting Egs. (2.14) and (2.16) into (2.13), we get the following equations of motion ex-
pressed by x, y, 0, and 0,.

m{x — e@cos(O — P) + eO%in(O — f)) + ax+ y6,=0

m(y — eB@sin(O — f) — eO%*os(O — )} + ay+ yH,=0

1{6cosOsint — O%inOsint + 6§ cos 7}
+ 1,{O(— cos@sint + 6,cos7) + O(OsinOsint + 6 ,cos7))
+yx+66,=0

1{@sinOsint + O%cos@Osint + 6 cost) (2.17)
— I,{O(sinOsint + 6,cos7) + O(OcosOsint + 6 ,cos7))
+yx+06,=0

16=T

This equation is changed into the following form using the approximate relationships
sint = rand cost = 1.

mi + ax+ y6, = me® cos(® — B) — meO%*sin(O — B)
my + ay+ y0,= me@sin(O — ) + meOcos(O — f)
10, +1,06,+ 1,06,+ yx+ 66, = (I1— 1)7(0%inO — OcosO)  (2.18)
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10,— 1,66, — 1,606, + yy+ 66, = (I— 1)1(—@%0sO — OsinO)
[&=T

When an external torque T is given, this equation contains five unknown quantities x, y, 6,
6,, and @. If we give some condition to the acceleration, the quantity @ is determined as a
function of time and this system becomes a four-degree-of-freedom system.

2. 3. Equations of motion of a two degrees of freedom system

For simplicity, hereafter, we treat a system in which a rotor is mounted at the center of
an elastic shaft and the rotating speed is changed at a constant rate. In such a case, a deflec-
tion and an inclination does not couple each other and y = 0 holds. Therefore, we can treat
the first and second equations and the third and fourth equations in Eq. (2.18) independ-
ently.

Concerning a deflection oscillation, we get the following equations of motion of a two
degrees of freedom system after the damping terms and the nonlinear terms are added.

mi + cx + ax+ N, = me@*sin® — me®cosO@
. . ) (2.19)
my + cy + ay+ N, = —me®?cos® — meOsinO

where c is damping coefficient and N, and N, represent the second and the third power terms
in restoring forces. As the angle 3 has no means now, we put = .
From the condition of a constant acceleration, we get

=1, O=it+aw, O=(1/2)i*+ ot+ 6, (2.20)
where A is an angular acceleration, w, is an initial angular velocity and @, is an initial angular

position. If the angular position of the dynamic unbalance 7 is measured from the x-axis in
xy-plane and represented by ¥, then the relationship

O=¥+7/2 (2.21)
holds. By this notion, we can express Eq. (2.29) as follows.

mi + cx + ax+ N, = meW¥W’cos W+ meWsin ¥
. . . (2.22)
my +cy + ay+ N,= me¥*sin¥ — me¥cos ¥

By adopting a representative length e, = mg/a (g the acceleration of gravity), we define the
following dimensionless quantities:

x'=x/e,, y=yle,, e =¢ele,, ¢ =c/Jma,

(2.23)
t'=tla/m, Ny’ = Ny /(aey), Ny = Ny/(aey)
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Using these quantities, we obtain the equations of motion in dimensionless form:

I

i4cx+ x4+ N, = e¥?cos¥V+ eWsin¥W
(2.24)

eW%in ¥ — eWcos W

ytey+y+N,

where the primes in the dimensionless quantities are omitted.
Concerning an inclination oscillation, we get the following equations of motion of a two
degrees of freedom system.

10,+1,60,+1,06,+ cb,+ 66, + N,,= (I— 1)7(O%inO — G cosO)
16,—1,66,— 1,06, + cb,+ 66,+ Nyy= (1= 1)1(—Oc0s® — Osin®)
(2.25)
By considering the condition (2.20), we get
10, +1L,Y0,+1,W0,+ c6,+ 66, + Nyy= (I— L)1(¥P*cos ¥+ YsinP)
10,— LY6,— 1,WO, + c6,+ 60, + Nyy= (I— 1)1(¥*sin ¥ — Pcos W)
(2.26)

By adopting a representative angle 7,, we define the following dimensionless quantities.

6, =06,/7, 0,=0/1, v=1/14, i,=1,/1, ¢=c/[d],

(2.27)

By these dimensionless quantities, the equations of motion are expressed as follows:
6,4+ i, W6, +iWo,+ ch,+ 6,+ Ny = (1 — i,)r(¥*cos ¥+ WsinW)
6,—i,W0,— i, W6, +c6,+ 6,+ Nyy=(1—iyr(¥*sin¥— Pcos V)
(2.28)

where the primes in the dimensionless quantities are omitted.

2. 4. Nonlinear terms

The nonlinear terms N,, N, and N,,, N,, have the same form. In order to avoid repeti-
tion, we consider the latter here. The results for the former are obtained by replacing the
variables from 6, and 6, to xand y.

The nonlinear terms are expressed as the sum of the terms up to the third power of the
coordinates 6, and 6,. The corresponding potential energy V'is expressed as follows:
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Fig. 2.2. The distribution of the potential energy

V="V,+V,

iYxVYy
y =0 7 Y

(i+=3) (i+j=4)

3 4
-1+ 6y Y e6i6j+ T p0i6]
L=

13

(2.29)

where V; and V), are the components corresponding to the linear and the nonlinear terms in
the restoring forces, respectively. The nonlinear terms N, and Ny, are derived from the

potential energy V), by differentiating partially.

oV,

Nf)x = agx

= (35907 + 26,00, + ¢,07)
+ (4ﬁ400x3 + 318316x29y + 2/3229,\70);2 + ﬁ138y3)

oVy
Ney =386,

y

= (&2,07 + 2¢1,0,0, + 3e4367)

F (831607 + 26,020, + 35,3007 + 45,,65)

(2.30)
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The distribution of the potential energy V is shown in Fig. 2.2. The potential energy V;
corresponding to linear spring characteristics is represented by a rotated paraboloid shown by
broken lines.

The potential enregy V given by Eq. (2.29) deviates from the surface V| irregularly due
to nonlinearity. However, this nonlinearity is divided into the regular components in the polar
coordinate expression. By substituting the transformation

0,= bcosp, O,= Osing (2.31)
into Eq. (2.29), we obtain the following expression.

V="V,+ (ePcosp + ePsing + ePcos3 ¢ + esin3¢)6°

+ (BO + pPcos2¢ + fPsin2¢ + fPcosd @ + [Psind @) 6*
(2.32)

= V,+ (eWcos(¢ — ¢,) + £Pcos3(¢ — @5)} 6°

+ (O + @cos2(@ — ¢,) + fPcosd(@ — ¢,)) 6°

é,

| v
’/\\\X{V'

\ i\ f‘(ﬂ 8,
\

|

=X
\

(c) B®@ (&) B® (e) B

Fig. 2.3. Equipotential lines of each nonlinear component
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The following relationships hold between the coefficients in Eq. (2.29) and that in Eq.
(2.32).

e = % (&3t epy), e = % (e21 +3eg3), &M =1e®? + (2

1 1 [ o
e = 4 (&30 T €12) e = 7 (&1t €03) e =e@? + £(?

BO =% B+ P+ 3Bos). BP =3 (Bio— Pos)

BO =3 (B + i), B =B+ @2, B =L (80— B+ Bor),
B =3 (Bu— By, PO =B+ g2 (2.33)
@, = tan~(e()/ (), 3¢, = tan~'(eQ)/ e®),

2, = tan"(BP/BR), 4, = tan~(e(/ e®),

From Eq. (2.32), we know that the potential energy V) is devided into the components
whose magnitude change » times (n = 0, 1, 2, 3, 4) while the direction ¢ changes 27 with
keeping 6 constant. Figure 2.3 shows the cross sections of the curved surface V with a plane
parallel to the 6,6 -plane. Each figure shows the case that £, ¢®, O, S and ™ exists,
respectively. The superscripted number n of the coefficient represent the number of times of
periodic variation in the magnitude of the term. We denote the nonlinear component, which
is represented by such terms, by the symbol N(n).

Chapter 3 A major critical speed™

3. 1. Introduction

As mentioned in chapter 1, almost all the previous papers treated a major critical speed
of a linear system. If the restoring force has nonlinear spring characteristics, resonance curves
incline and becomes a hard or a soft spring type.

In this chapter, a nonstationary phenomenon during passage through a major critical
speed with a constant acceleration is discussed for a rotating shaft system with nonlinear
spring characteristics. In the experimental apparatus, the nonlinearity is caused by ball bear-
ings. A theoretical analysis is carried out in a two-degree-of-freedom system, with paying at-
tention to the nonlinear components represented by polar coordinates. The deflection motion
of an elastic shaft is considered. The result is also compared with the phenomena in linear
systems.

3. 2. Equations of motion

The experimental apparatus to be described later is a four-degree-of-freedom system
whose deflection and inclination of the rotor couple each other. However, in the theoretical
analysis, for simplicity, we deal with only a deflection oscillation in the case where the rotor is
mounted in the middle of the shaft and the deflection and the inclination do not couple each
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Fig. 3.1. Coordinate systems

other. Coordinate systems are shown in Fig. 3.1. Let the driving torque 7, and using the
dimensionless quantities 7" = mT,/(al,) and K = me, /1, in addition to Eq. (2.23), we ob-
tain the equation of motion from the result of the previous chapter as follows:

¥+ cx+ x+ N, = eW’cos¥+ eWsin W
y+ey+y+ N,=elsin¥— eWcos¥ (3.1)
Y =T, — Ke(xsin¥ — ycos¥)

where the primes of the dimensionless quantities are omitted.

3. 3. Steady-state solutions and resonance curves

In this chapter, we investigate the amplitude when the rotating speed ¥(=w) is kept
constant. Denoting a natural frequency by p, we obtain the frequency equation as follows.

1-p?=0 (3.2)

This equation has two roots p = =+ 1. The positive root p = +1 represents a forward preces-
sional motion and the negative root p = —1 represents a backward one. When the rotating
speed w nearly equals the natural frequency p = +1, a resonance phenomenon occurs. The
steady-state solution has the following form with an accuracy of O(¢°).

x= Rycos(wt+ By), y= Rysin(wt+ () 3.3)
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The resonance curves are given by the following equations with an accuracy of O(¢).

[(—o+ 4BORY? + c*w?|R} = e?e?
a0 (34)
O —o+4BOR?

where o = @* — 1. The stability criteria can be obtained in the same manner as in the pre-
vious paper®® and are given as follows.

(0+ 12BOR2) (o + 4BORZ) + c2? > 0 (3.5)

As only 5 among the various coefficients in Eq. (5) is contained in Egs. (3.4) and (3.5), we
find that only component N(0) has an influence on this steady-state oscillation with an accu-
racy of O(e). Figure 3.2 shows an influence of component M0) (the coefficient 5©) on the

2
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o e=0.02
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a
él_

-0.2 z Numerical simulation

(Ees=Pli=€5=8=0)
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----- Unstable
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D,
(o]
ot
o

Fig. 3.2. Influence of component N(0) on the resonance curve
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Fig. 3.3. Influence of component M(2) on the resonance curve
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resonance curve. We see from this figure that the coefficient (9 determines the inclination of
the resonance curve. It is also seen that the maximum amplitude of the resonance curve in-
creases as (0 becomes large. Therefore, even if the magnitude of the unbalance e is constant,
it becomes dangerous to operate a rotating machine when component N(0) starts to increase.
In addition, it is imagined that passing through the critical speed in a nonlinear system is
more difficult than in a linear system.

The symbol O in the figure represents an amplitude obtained from the numerical simula-
tion performed to check the accuracy of the approximate solution (3.4). In these simulations,
the coefficients of nonlinear terms, except B, are set at zero. The results agree well with the
approximate solutions.

In the approximate solution (3.4), obtained with an accuracy of O(¢), only S is con-
tained. However, the components N(1) ~ N(4) influence the phenomena with an accuracy of
O(&?). These components are derived from the directional difference of the potential distribu-
tion shown in Fig. 2.3. Therefore, the orbit of the whirling motion in the neighborhood of the
major critical speed deviates slightly from a circle. As an example, Fig. 3.3, we show an orbit
and the fluctuation in the amplitude (the maximum and the minimum shaft deflection) in the
case where the coefficient 8 and (¥, belonging to component N(2), coexists with N(0). In
this case, the orbit is an ellips and the deflection r changes twice periodically while the shaft
whirls once.

3. 4. The case where the rotor passes through the critical speed with a constant acceleration

3. 4. 1. Transformation of the equations of motion

When a rotor passes through a resonance point with a constant acceleration A, and with
an initial conditions ¥ = w,, ¥= ¥, at t= 0, the angle Wis given as

Y= % A2 + wyt + (3.6)

For this case, the first and second equations in the equations of motion (3.1) can be solved
independently of the third equation. For convenience’s sake, we transform the first and sec-
ond equations in Eq. (3.1) into polar coordinates by Eq. (2.31). Then we obtain the follow-
ing equation.

F=—(1— @¥r—cr—(Ncosp+ Ngsing) + e?cos6 + eWsinb
L . . (3.7)
¢ =—cp — [2rg + (—N,sing + N cosp) — e¥?sinf + e¥cosb}/r

where 8= W —q. The complete form of the nonlinear terms are given as follows:
N,C+ N,S=3r2 (e + @) C* + (¢() + 3eP) C2S
+ (6@ — 3e@D)CS? + (e — () S?)
+4P (B0 + P + BO)YC* +2(BP + 28D)C°S
+2(B0 = 3pP)C?8? + 2(BY — 2B() CS?
+ (B0 = P + BO)S*) (3.8)
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—N, S+ N,C=r?{(¢{) + 3e®) C> — (¢ + 9¢@) C2S
+ (e — 96() €S> — (200 — 3:) %)
+ 27 ((BY + 2B@) C* = 2(BR + 4pB) C°S
— 12p()C?82 — 2(BR — 4BH) CS* — (B — 2B)S*)

Here the abbrebiated forms C= cos¢g and S = sin¢ are used.

3.4. 2. Results of numerical calculation

We investigate Eq. (3.7) numerically by the Runge-Kutta-Gill method. The state at the
instant when @ = 0 in a steady-state oscillation with a constant angular velocity ¥ = w, is
chosen as the initial condition. Therefore, ¥, = —p, holds. As it is thought that the compo-
nents N(1)~ N(4) are small in the experimental apparatus®® only the component f®, which
belongs to component N(0), is considered here.

3.4.2. 1. General features

A representative example of a nonstationary oscillation obtained by accelerating the
shaft speed (4 > 0) is shown in Fig. 3.4. Both the changes in the amplitude r (Fig. 3.4(a))
and in the angular velocity of the whirling motion ¢ (Fig. 3.4(b)) are similar to those in a li-
near system!®). The curve for ¢ shows a characteristic change, which can be explained as fol-
lows. Figures 3.4(c) and 3.4(d) show trajectories observed in a coordinate system O—uv ro-
tating with the same speed as that of the rotor. The following relationships hold.

u=rcos(¢p — ¥)=rcos(—0), v=rsin(¢p— ¥)=rsin(—0) (3.9)

As seen from this equation, —6 = ¢ — ¥ and —0 = @ — ¥ present an angular position of
the deflection r and angular velocity of the whirling motion of the shaft respectively, in the
rotating rectangular coordinate system.

In the steady-state oscillation (¥ = w = constant), the rotor is at rest on the uv-plane
and the position vector OC in Fig. 3.1 has a constant length r = R, and a constant angular
position —8 = f,. If the angular velocity w is changed quasi-statically, the end of this vector
traces the curve L. In Fig. 3.4(c), w, and wjy are rotating speeds corresponding to points A
and B on Fig. 3.4(a), respectively.

When the rotating speed is accelerated from w, = 0.8, for example, the geometrical
center C, which starts from point a, moves along the curve L,. Then, once its amplitude
becomes large very rapidly, it converges to point b, which corresponds to the steady-state sol-
ution for ¥ = o along the spiral trajectory L,. Since the rotating speed ¥ increases linearly,
we know from the relation —% = —6 that the variation of ¢ in Fig. 3.4(b) corresponds di-
rectly to the variation of —6. The variation of —6, that is, the angular velocity of whirling
motion in the uv-plane, can be determined from Figs. 3.4(c) and 3.4(d). The center of the
spiral deviates from the origin O. Therefore, when the origin O is inside the trajectory (that
is, when ¥ is less than about 1.75 in Fig. 3.4(d)), the sign of —@ does not change, although
its magnitude varies. This situation corresponds to the range from @© to @ in Fig. 3.4(b). In
this case, the degree of variation of the angular velocity during one whirling motion depends
on the degree of deviation of the center of the spiral from point O. In Fig. 3.4(d), this varia-
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tion is not so large when ¥ = 1.54 but it becomes very large when ¥ = 1.74. When ¥ =
1.77, for example, the origin O is located at the right side and outside of the spiral. Therefore
in the vicinity of this rotating speed, the direction of rotation of the position vector OC is dif-
ferent on the right and left sides of the trajectories. Namely, the sign of the quantity —6
changes during one cycle of whirling motion. The rapid change from @ to @ in Fig. 3.4(b)
corresponds to the change which is observed when the origin O shifts from the inside to the
outside of the trajectory in the uv-plane at about ¥ = 1.75 in Fig. 3.4(d).

3.4.2. 2. Influences of angular acceleration A

In Fig. 3.5, we show an influence of the angular acceleration 4 on the nonstationary os-
cillation. The magnitude of unbalance in Fig. 3.5(a) is different from that of Fig. 3.5(b). We
discuss Fig. 3.5(b) as an example where the peak of the resonance curve expands too much
to be observed experimentally. When A is small, in Fig. 3.5(a), the amplitude slowly traces
the resonance curve and then jumps to the resonance curve of smaller amplitude at about ¥
= 1.58, where the resonance curve of larger amplitude disappears. Although the feature that
the maximum amplitude r,,,, decreases as A increases is similar to that of a linear system, the
rate of decrement is considerably smaller than the case of a linear system (Figs. 3.6 and 3.7).
The difference between the linear system and the nonlinear system appears markedly when
the maximum amplitude of the resonance curve is large. In Fig. 3.5(b), the amplitude 7 in-
creases along the resonance curve without jumping to that of smaller amplitude when the an-
gular acceleration is smaller than 0.0028. As A increases, the maximum amplitude 7, de-
creases abruptly at about 4 = 0.0028 ~0.0029. The existence of such a critical acceleration A
= /g is one of the features of the nonlinear system. Therefore, in Fig. 3.5(b), an acceleration
larger than this critical value 4, is necessary to pass safely through the critical speed with a
small amplitude. In the nonlinear system, whether or not it is possible to pass through the
critical speed depends on the magnitude of this critical value A,.

In Fig. 3.6, the maximum amplitude r,,, is shown as a function of the angular accelera-
tion A for various magnitudes of unbalance. When A = 0, r,,,, corresponds to the maximum
amplitude R, of the resonance curve of steady-state oscillation. The curve r,,, shows a
characteristic change. In the case where R, is small, as in the case of e = 0.020, r,,,, first de-
creases linearly, then decreases abruptly at a certain value, and becomes almost constant as
the angular acceleration A increases. In the case where R,,,, is large, as in the case of ¢ =
0.028, r,,, decreases abruptly at A = 4, and then the rate of decrement becomes small as 4
increases. The change in the latter case is shown clearly in Fig. 3.5(b).

For comparison, we show a similar figure for a linear system in Fig. 3.7. In such a case,
Tmee decreases rapidly at small values of A and then decreases gradually. There exists no criti-
cal value corresponding to A,. From the comparison of Figs. 3.6 and 3.7, it is concluded that

it is easier to pass through the critical speed in a linear system than in a nonlinear system.

3.4.2.3. Influences of the nonlinear component N(0)

In Fig. 3.8, we show A, for various values of 5. The value A, increases with S and it
becomes more difficult to pass through the critical speed as N(0) increases.

From Figs. 3.2 and 3.8, the following is concluded. As the component N(0) increases,
(a) the resonance curve inclines more intensely, (b) the maximum amplitude R, of the res-
onance curve increases, (¢) the minimum angular acceleration A, necessary to separate from
the resonance curve with larger amplitude becomes larger, and then (d) it becomes more dif-
ficult to pass through the critical speed.
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Fig. 3.10. Experimental apparatus

3.4.2. 4. Influences of the other nonlinear components N(n)

Similar to the case of a steady-state oscillation, the shaft deflection r changes due to
component N(n) (n= 1~ 4) and the nonstationary waves representing the amplitude change
shown in Figs. 3.4 and 3.5 have vibratory components of higher order. For example, in the
case of where N(0) and N(2) coexist, as in Fig. 3.3, the change in amplitude becomes that
shown in Fig. 3.9. These components of higher order are caused by the distortion of the
spiral trajectory shown in Fig. 3.4 to the elliptic shape due to N(2).

3. 5. Experimental apparatus and experimental method

An experimental apparatus is shown in Fig. 3.10. A disc R was mounted at the position
a:b=1:4 on an elastic shaft S with a circular cross section. The upper end of the shaft was
simply supported by a self-aligning double-row ball bearing (# 1200). The lower end was sim-
ply supported by a self-alining double-row ball bearing (#1204) or fixed-supported by a
single-row deep-groove ball bearing (#6204). However, in the case of the latter, the restoring
force of the shaft had nonlinear spring characteristics due to the angular clearance of the
bearing. The dimensions of the rotor were as follows: the diameter is 481.3 mm, the thickness
is 5.55mm, the polar moment of inertia 7, = 0.228 kg - m?, and the diametral moment of
inertia /= 0.114 kg - m? The dimensions of the shaft were as follows: the length /= 700 mm
and the diameter d= 12 mm.

A small disc was mounted at the middle of the shaft and its deflection, x and y, were
measured in two directions perpendicular to each other. The mass of this disc was negligible.
By processing the detected signals in an electronic circuit, we obtained the value r = Jx* + ).
This signal r was sent to a personal computer. The rotating speed was detected by a rotary
encorder attached to the shaft. The pulse from the rotary encorder, whose frequency was
proportional to the rotating speed, was transformed (D/A-transformation) into a voltage sig-
nal and then it was also sent to a personal computer. In the personal computer, the voltages,
which were proportional to the amplitude 7, and the rotating speed were sampled. On the
CRT of the personal computer, the amplitude change was shown in coordinates whose ordi-
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nate and abscissa represented the amplitude » and rotating speed ¥, respectively. The result
was recorded by an X-Y plotter. In the following figures, the ordinate represents the shaft de-
flection (mm) which was obtained after calibration.

3. 6. Experimental results

3. 6. 1. Angular acceleration

In Fig. 3.11, changes in angular velocity ¥ for various angular acceleration are shown. It
is ascertained that the rotor was accelerated with a constant angular acceleration.

3. 6. 2. Experimental results in a nonlinear system

We performed experiments in a nonlinear system with a single-row deep groove ball
bearing. The amplitude change is shown in Fig. 3.12. The sampling frequency f, shown in the
figure was decided from the angular acceleration and the memory size of the personal com-
puter. In every experiment, the acceleration, the acceleration was started from a rotating
speed below 800 rpm and the deceleration from that over 2000 rpm. The sampling of the
data was begun at a different rotating speed. The edge of the resonance curve represents the
starting point of data sampling. A detail of the resonance curve is shown in Fig. 3.12(b).
From this enlarged figure, we see that these curves have a component whose amplitude
changes twise during one cycle of whirling motion. The following possible reasons are given
for the occurrence of this component: the existence of the above-mentioned component
N(2), the directional difference of fit between a bearing pedestal and bearing, the difference
between output voltages from sensors in the x- and y-directions due to small differences in
installation conditions, and so on. In assembling this experimental apparatus, great care was
taken to ensure that the upper and lower bearing centers coincided. Therefore, isotropic non-
linear components N(0) should be large and the other components N(1)~ N(4) small**).

Figure 3.12(a) shows the amplitude change in the case of acceleration 4 = +3.91 rpm/s.
These are small accelerations and the amplitude curve almost coincides with the resonance
curve of the steady-state oscillation except when jumpings occurred.

As shown in Fig. 3.12, a hysteresis phenomenon due to the inclination of the resonance
curve is observed. Although the angular acceleration are very different among each case in
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Fig. 3.12, the amplitude changes along the resonance curve and the maximum amplitudes
during the acceleration are almost the same.

The variation of the maximum amplitude r,,,, is shown as a function of angular accelera-
tion A(>0) in Fig. 3.13. For comparison, the results in a linear system with self-aligning
double-row ball bearings are shown. There exists a remarkable difference between these two
systems. Namely, r,,,, decreases rapidly in the range of small angular acceleration in the li-
near system, but it does not change in the experimental range in the nonlinear system. In this
experimental apparatus, because the magnitude of the nonlinear component N(0) could not
be measured quantitatively, the angular acceleration 4, shown in Fig. 3.6 is undefined. How-
ever, it is thought that the angular acceleration range of Fig. 3.13 lies below such a critical
value. The angular acceleration 4 = 200 rpm/s corresponds to 4 = 0.0013 in a dimensionless
form.

Figure 3.14 shows a result for the case in which the unbalance was large and the maxi-
mum amplitude of the resonance curve exceeded the measureable range. In such cases, it is
almost impossible to pass through the critical speed within the acceleration shown in Fig.
3.13. In Fig. 3.14, the experiment was stopped when the shaft touched the guard ring pre-
pared to limit the amplitude for safety.

3. 6. 3. Results in a linear system

Experimental results in a linear system are shown in Fig. 3.15. When the angular ac-
celeration is changed from A = 3.91 to 77.4 rpm/s, the maximum amplitude r,,,, in accelera-
ting the rotating speed decreases considerably. For the same absolute value of acceleration,
the maximum amplitude obtained in the process of increasing the rotating speed is larger
than that in the process of decreasing. The change of r,,, with 4 is shown in Fig. 3.13. The
magnitude of r,,, decreases rapidly in the small range of angular acceleration. This behavior
is qualitatively similar to that of the numerical result shown in Fig. 3.13. It is also concluded
from Fig. 3.13 that the amplitude decreases more easily in the linear system than in

E ' Nonlinear system
1.5k
st

o 4
1.0
- 5 _

5 Linear system
5

=
= 0.5+

je}
=
Acceleration(Aa>0)
0 : ' 1
50 100 150 200

Angular acceleration X rpm/s

Fig. 3.13. Changes in the maximum amplitude r,,,, for angular acceleration A
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the nonlinear system, and that it is easier to pass through the critical speed in the linear sys-
tem than in the nonlinear system.

3. 7. Conclusions

(1) In the nonlinear system, due to the change of the resonance curve of the steady-state os-
cillation into the hard or soft spring type, a hysteresis phenomenon appears in a nonstation-
ary oscillation.

(2) In the nonlinear system, the maximum amplitude r,,, shows a characteristic change
when the angular acceleration A increases. In the case of increasing the rotating speed in a
system with a resonance curve of a hard spring type, the maximum amplitude shows the fol-
lowing changes. When the maximum amplitude of the steady-state oscillation is compara-

2
g X =177.4 rpm/s
fs =400 Hz
-
o8]
51
3
a
&
1889 1209 1489 1689 ‘ 1888
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Fig. 3.14. Amplitude change during the passage through the major critical speed
(comparatively large unbalance, nonlinear system)
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Fig. 3.15. Amplitude change during the passage through the major critical speed
(a linear system)
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tively small, the maximum amplitude decreases abruptly at a certain value of A after pre-
viously decreasing linearly in the range of small angular acceleration, and then it gradually
begins to decrease further. When the maximum amplitude of the steady-state oscillation is
considerably large, the rotor cannot pass through the critical speed with an angular accelera-
tion smaller than a critical value Z,. In this case, r,,,, decreases abruptly at this value A,, and
then decreases gradually. This critical value 4, depends on the magnitude of the nonlinear
component N(0).

(3) As the nonlinear component N(0) increases, the inclination of the resonance curve of
the steady-state oscillation becomes stronger and, at the same time, its maximum amplitude
increases. A larger angular acceleration is necessary to depress the maximum amplitude in
the transition.

(4) When a nonlinear component N(n) (n = 1~4) exists, the radious of the trajectory
changes n times while the rotor whirls once in the passage through the critical speed.

(5) In the experiments on the nonlinear system, where the shaft was supported by a single-
row deep groove ball bearing, the maximum amplitude r,,, was almost constant for various
values of acceleration. However, in the experiments on the linear system, where the shaft was
supported by a self-aligning double-row ball bearings, the maximum amplitude decreases
rapidly in the range of small angular acceleration and then became almost constant.

(6) In general, it is more difficult to pass through the critical speed with a small amplitude
in the nonlinear system than in the linear system.

Chapter 4 A critical speed of a 1/2-order subharmonic oscillation®®

4. 1. Introduction

The majority of the reports on the nonstationary oscillations of rotating shaft systems
during acceleration through critical speeds discussed problems about a major critical speed of
a linear system. Nonlinear systems have the following characteristics that differ from linear
systems: (a) in addition to a harmonic oscillation at the major critical speed, various kinds of
oscillations, such as subharmonic oscillations and summed-and-differential harmonic oscilla-
tions, appear at resonance points called subcritical speeds, (b) resonance curves at these res-
onance points incline.

In this chapter, we shall investigate a nonstationary oscillation when a rotor passes the
critical speed of a 1/2-order subharmonic oscillation of a forward precession mode in the
case of constant deceleration. In particular, we shall discuss the effects of an angular accelera-
tion and initial conditions, such as an angular velocity and an angular position of the shaft at
the start, on the maximum amplitude of the nonstationary oscillation. The result is also com-
pared with the result on the major critical speed in the previous chapter.

The asymptotic method has been generally used in the study of nonstationary oscilla-
tions. However, we use digital data processing techniques such as the fast Fourier transforma-
tion in the analysis of data obtained in numerical simulations and experiments.

4. 2. Equations of motion

The experimental apparatus used in this chapter is a four-degree-of-freedom system
where a deflection and an inclination of the rotor couple each other. But, for simplicity, we
use a two-degree-or-freedom model representing an inclination oscillation. This system is
realized by a rotor system where a rotor is mounted at the center of the shaft and its deflec-
tion and inclination do not couple. Figure 4.1 shows a rotor model and coordinate systems.
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Fig. 4.1. A rotor model and coordinate systems

The equations of motion of this system is given by Eq. (2.28), that is,
6,+i,W0,+ i W0, +cO,+ 6,+ Ny, =(1—i)r(¥*cos¥W+ Psin¥)

6,—i,W0,—i,¥0,+ cO,+ 0,4+ Nyy= (1 — i,)t(¥sin¥— Wcos¥)
(4.1)

4. 3. Steady-state response

Firstly, we discuss the response in the case where the rotating speed ¥ is constant. This
constant rotating speed is represented by w. In this case, the angle ¥in Eq. (4.1) is given as
follows:

V=0, ¥Y=0, ¥Y=owt+Y¥ (4.2)
The natural frequency p of this system is obtained from the following frequency equation:
G(p) =1+ i,op—p*=0 (4.3)

Two roots of this equation is denoted by p(> 0) and p,(<0). A p— w diagram for the case
i, = 0.25 is shown in Fig. 4.2. In this figure, the abscissa of intersection A of curve p, and
straight line p = w is the major critical speed, and that of intersection B is the critical speed of
the 1/2-order subharmonic oscillation in the forward precessional mode. We can write an ap-
proximate solution within an accuracy of O(¢) as follows®?

6. = Rcos6,+ Pcosf, + e(acosb,+ bsinby)
(4.4)
6, = Rsin6,+ Psinf, + &(da'sinf,;+ b'cost;)
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Fig. 4.2. p— w diagram

where 6,= ¥/2 + 6,= (1/2)wt + ¥,/2+ 6;and 6,= ¥+ B= wt+ ¥ + B. In these equ-
ations, the terms multiplied by ¢ are compensation terms of order O(¢). The steady-state sol-
ution R = R,, 6,= Jy, can be obtained by the same method as in the previous paper™® as fol-
lows:

Ry=0 (4.52)
(G, + 4BO(RE + 2P+ ((1/2)co)> = (2eWP)? (i)

(1/2)co y
G, + 4BO(RZ+ 2Py " N (i)

(4.5b)

204 = —tan’!

where P=— (1 = i)tw?/ G(w), G, = G(1/2* w). The stability criteria for the solution R, =
0 of Eq. (4.5a) is given as

(G, + 85O P2)2 — (172)cw) + (2eMP)? > 0 (4.6)
and that for R; # 0 of Eq. (4.6) is given as
BO (G, + 4BO(RE + 2P%)) > 0 4.7)
4. 4. Nonstationary response during Acceleration through the critical speed
We discuss a nonstationary phenomenon during acceleration through a critical speed of

a subharmonic oscillation of order 1/2 of a forward whirling mode with a constant accelera-
tion. In this case, the following relations hold:
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Y=1, ¥Y=Altow, ¥=5i7+ o1+ ¥, (4.8)

(NI

4.4.1. Method of analysis

The main theoretical method used in the discussions of nonstationary phenomena was
the asymptotic method. But as shown in the book by Evan-Iwanowski®, its first order solu-
tion contains comparatively large error. In addition, the state that the subharmonic oscillation
is not appearing cannot be used as an initial condition. Because of such reasons, we adopted
the following method which is different from the asymptotic method used widely. First, the
relation given by Eq. (4.8) is substituted into Eq. (3.1) and then the equations of motion is
integrated numerically by Runge-Kutta-Verner method. The obtained time histories are
treated using digital signal processing technique in the obtained time history, we cannot
determine the amplitude variation of nonstationary subharmonic oscillation directly from the
numerical data. Therefore we use the following data processing procedure which enables us
to distinguish a desired component from others.

First, numerical data of the time history on the inclinations 6, and 6,, obtained by nu-
merical integration, are transformed from the time domain into the frequency domain by fast
Fourier transform (FFT). From the spectrum distribution, those spectrum components re-
lated to the subharmonic oscillation are separated from others by filtering and then trans-
formed inversely into the time domain again. Then the time history becomes a simple one
containing only a subharmonic component. In the whirling motion of rotating machinery, not
only the frequency but also the direction of precession is important. In the ordinary FFT
method which treats only real numbers, it is impossible to separate a forward component and
a backward component if they have the same frequency. In order to discuss and clarify the
nonstationary characteristics, it is necessary to separate the forward component from the
backward component. For this purpose, we used the following data processing procedure. In
the theory of fast Fourier transformation, there exists a transformation between complex
numbers and complex spectrum. In order to use this complex-FFT, we defined a complex co-
ordinate system in the whirling plane or 6,0 -plane. The 6,- and 6,-axes are taken as the real
and imaginary axes, respectively. We produce complex discrete data Z, from real sampled
data X, and Y, in the 0, and 6, directions as follows:

Z,= X, +iY,, k=1,2,..,N (4.9)

where iis the imaginary unit. The complex-FFT is defined by the following expression:

N—1
G-+ I Zwr, §=0,1,..,N-1 (4.10)
where W = exp(—2xi/N). The quantity C;is a complex number which represents jth order
amplitude spectrum of time series data which repeat periodically at intervals of N data. Such
a spectrum is periodic with the period N. In the range of —N/2~ N/2, a positive frequency
corresponds to a forward whirling motion and a negative frequency corresponds to a back-
ward whirling motion. In the case of the steady state oscillation, each spectrum C; corre-
sponds to the amplitude of oscillation. However, because the amplitude of the subharmonic
component varies in the nonstationary process, the quantity C; does not represent the ampli-
tude of the oscillation component directly. Therefore, after removal of the positive spectra C;
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corresponding to the 1/2-order subharmonic oscillation of the forward precession mode (this
processis called filtering), they are transformed inversely from the frequency domain to the
time domain. In this inverse complex-FFT process, the following equation is used.

N—1

Z,= ) CW*, k=0,1,.,N-1 (4.11)
k=0

In this data processing, a Blackmann-Harris time window is used for the purpose of eliminat-
ing leakage error. After a time history is again obtained from the filtered spectrum by the in-
verse FFT, it is divided by the same time window to compensate its multiplication to the orig-
inal time history. As such a time window is close to zero at both edges, some quantitative
error is included in the neighborhoods of the start and the end of the finally obtained time
series. Figure 4.3(a) shows a variation of the amplitude /6,* + 6,? before data processing,
Fig. 4.3(b) shows the amplitude spectrum distribution obtained by complex-FFT, and Fig.
4.3(c) shows the amplitude variation curve after data processing.

4. 4. 2. Maximum amplitude during acceleration through the critical speed

Figure 4.4 shows a resonance curve of a steady-state solution R, obtained from Eq. (4.5)
and amplitude variation curves of nonstationary oscillations during acceleration with various
angular acceleration A. A positive value is given to S so as to make the resonance curve a
hard-spring type which is qualitatively the same shape as that obtained in the experiments
mentioned later. Concerning the resonance curve R, a solid line represents a stable solution
and a broken line represents an unstable solution. In Fig. 4.4, the stability is not distinguished
for the solution of zero amplitude. However, it is unstable between two intersection points
which are the cross points between the resonance curves Ry # 0 and R, = 0 (¥-axis), and it
is stable outside of them. The nonstationary responses during acceleration through the critical
speed of 1/2-order subharmonic oscillation are classified into two groups. One is the case
(for example, when 4 = 0.00037) where r* increases along the stable resonance curve, and
the other is the case (for example, when 4 = 0.00038) where the rotor can pass the critical
speed with a comparatively small amplitude. In the former case, the amplitude will increase
unlimitedly as long as the stable resonance curve exists. In the latter case, although the ampli-
tude starts growing toward the stable resonance curve R, in the beginning, it soon decreases
toward the stable resonance curve of zero amplitude. Therefore, we call the former a non-
passable case and the latter a passable case. In a passable case, we can define the maximum
amplitude during acceleration as shown in Fig. 4.4 and we can represent it by #’,,,.. In a non-
passable case, we represent r',, =  for convenience. The following parameters are con-
sidered to influence the maximum amplitude: the angular acceleration A, the initial rotating
speed w, from which the acceleration starts, and the initial angular position ¥, if the unbal-
ance at w. In the following, we shall discuss the influences of these parameters. The values of
i ¢ 7, B0 and &M in the following numerical calculation are the same as those in Fig. 4.4.

Initial rotating speed w, influences the maximum amplitude. However, for simplicity and
to decrease the amount of calculation, we fix this value at a certain rotating speed which is
relatively close to the critical speed in the following numerical analysis. Figure 4.5(a) shows a
relation between the angular acceleration 4 and the maximum amplitude 7', in the case of
acceleration (A>0) for ¥, = 120° and 180°. The symbols @ and A are the values obtained by
simulations and the curves were drawn by connecting these data. From this figure, we see
that r’,,,. depends markedly on A, and the rotor cannot always pass the critical speed with an
angular acceleration below a certain value of A. In addition, it is noteworthy that, unlike the
case of the major critical speed reported previously™®, ', . does not decrease monoto-
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nously as 4 increases and the rotor can pass the critical speed without the occurrence of sub-
harmonic oscillation at a certain value of A. From this figure, we see that ', also depends
on ¥, Therefore, we show the influence of ¥, on r’,,,. in Fig. 4.5(b) where 4 is treated as a
parameter. The 7', ., varies markedly depending on ¥,. For angular acceleration beyond a
certain value, the maximum amplitude does not become infinite and the rotor can always pass
the critical speed with finite amplitude for any value of ¥, (for example, the cases in which 1
= 0.00038, 0.0004). For small angular acceleration, a range of ¥, exists where the critical
speed cannot be passed with finite amplitude and this range expands as 1 becomes small (for
example, when 4 = 0.00035, 0.00037). For example, in the case of A = 0.00035, the rotor
cannot pass in the range of ¥, = 0°~71° and 230° ~ 360°. Because r’,,,, varies depending on
Y, we show the maximum value of the maximum amplitude 7', by a broken line in Fig.
4.5(a). As shown in Fig. 4.5(b), the curve representing r*,,,. touches the W-axis at a certain
value of ¥, In the case of acceleration, #’,,,, takes a value in the shaded zone. We represent
the value of angular acceleration to which this broken line approaches asymptotically by 4,. If
we accelerate the rotor at a rate beyond this critical value, the rotor can always pass the criti-
cal speed with finite amplitude.
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Figure 4.6(a) and 4.6(b) show the influence of 1 and ¥, respectively, in the case of de-
celeration. When the resonance is a hard-spring type, the rotor can always pass the critical
speed with finite amplitude with any value of A. As the absolute value of the angular acceler-
ation increases, the maximum value of r’,, . decreases. Although the maximum amplitude
. also depends on the initial angular position ¥, in this case, the character of this depend-
ence is different from the case of acceleration. Namely, unlike that shown in Fig. 4.5(b), the
maximum amplitude is almost constant except for a narrow zone near a certain value of ¥,

4.4. 3. Trajectory during acceleration on the coordinates rotating
with an angular velocity (1/2)¥

We shall explain why the initial angular position ¥, influences the maximum amplitude
ey After extracting a component of subharmonic oscillation, we observe the oscillation on
the coordinate system O—uv rotating with the angular velocity (1/2)¥. As mentioned
above, the inclination 6,, 0, contains various kinds of components. We express the inclination
corresponding to the 1/2-order subharmonic oscillation by 6,, and 6,,. The transformation

from 6,; and 6, to the rotating coordinates u and v is given by

u= 6,cos(¥/2) + 6,;5in(¥/2)
(4.12)
v=—=0,sin(¥/2) + 6,,cos(¥/2)

When the rotor is rotating with a constant angular velocity ¥ = w, we can transform Eq.
(4.12) to u= Rcosd;, v= Rsind;.

Figure 4.7 shows an example of trajectories on the wv-plane. Those are the trajectories
for the initial angular position ¥, = 0° and 60° in the case of constant angular acceleration 4
= 0.00037. The arrows on the trajectories represent the direction of movement of the solu-
tion (the representative point). As can be seen from Fig. 4.5(b), the case ¥, = 0° corresponds
to a non-passable case and the case ¥, = 60° corresponds to a passable case.

Fig. 4.7. Trajectories on the uv-plane and separatrices
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Here, we discuss the case that the shaft is rotating with the constant rotating speed ¥ =
3.22 corresponding to the symbol X (points a and b) on the trajectories in Fig. 4.7. When ¥
(=w) is constant, the stationary solution of 1/2-order subharmonic oscillation is represented
by a fixed point called a singular point in the uv-plane. The symbol @ and O in Fig. 4.7 rep-
resent a stable and an unstable solution at w = 3.22, respectively. Points A (a spiral point), B
(saddle point) and C (a spiral point) represent a stable solution R, = 0.730, an unstable sol-
ution R, = 0.310, and a stable solution R, = 0, respectively. In addition, among the trajec-
tories, which start from various initial values, those which pass unstable stationary solution B
are shown. The trajectory in the shaded zone converges to stable solution C corresponding to
the solution with zero amplitude, and that in the other zone converges to stable solution A
corresponding to the stable solution with nonzero amplitude. The boundary lines between
these zones are separatrices. The zone in which the initial position exists determines the stable
solution to which the trajectory converges.

Next, we discuss the case where the rotating speed changes with a constant angular ac-
celeration ¥ = A. At every rotating speed, the solution (the representative point) moves to-
ward the point corresponding to the stable stationary solution of that instant at every rotating
speed. For example, when the stability of the stationary solution of zero amplitude changes
from stable to unstable during the acceleration, the representative point departs from the
origin and then moves toward the stable solution with a finite amplitude (refer Fig. 4.4). If
the rotating speed increases further, the solution of zero amplitude changes to a stable one
again and the shaded zone shown in Fig. 4.7 appears. This shaded zone expands as the rotat-
ing speed increases. In the case ¥, = 0°, as the angular velocity ¥ increases, the representa-
tive point moves toward the stable singular point with a finite amplitude without entering this
shaded zone. Conversely, in the case of ¥, = 60°, although the amplitude increases initially,
it decreases toward the origin after the representative point enters the shaded zone. As ex-
plained above, whether the representative point enters the shaded zone or not depends on
the growing speed of the trajectory, and this growing speed varies depending on ¥,

The reason for the difference in this growing speed is as follows. If the rotor traces an
orbit containing only a harmonic component precisely when the rotating speed enters the res-
onance region of subharmonic oscillation, that is, the region where the stationary solution of
zero amplitude is unstable, initial values given to the subharmonic oscillation component are
zero on the uv-plane. Therefore, in such a case, the representative point continues to stay on
the unstable saddle point if no other disturbance works, and no 1/2-order subharmonic oscil-
lation occurs. However, in reality, the amplitude and the phase of the solution of the har-
monic component change step by step as a function of the rotating speed, and the rotor al-
ways follows this harmonic component. The rotor lags slightly behind the position corre-
sponding to the steady-state solution and it enters the resonance region in such a condition.
This small discrepancy causes a small disturbance in the subharmonic oscillation. It is con-
sidered that the direction of this disturbance varies depending on the initial angular position
W

From such a consideration, we compared trajectories which start from various angular
positions at the constant rotating speed w = 3.10. At this rotating speed, the origin corre-
sponding to the zero-amplitude steady-state solution is an unstable singular point on the uwv-
plane. The initial position, which corresponds to an initial disturbance, is selected at various
angular positions ¢ but at the same distance from the origin. The result is shown in Fig. 4.8.
In this figure, the symbol @ represents the initial position and the symbol O is marked at the
same time interval on the trajectories. The origin is a saddle point. Therefore, if the represen-
tative point is exactly on the origin, it continues to stay there, and the nearer the representa-
tive point is to the origin, the slower it moves. For example, when the initial position is near
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the separatrix whose direction is toward the origin as in the case of a = 45°, the representa-
tive point approaches the origin once, and then leaves it, moving toward a stable singular
point corresponding to a resonance curve of finite amplitude. Conversely, in the case of a =
135°%, it moves toward a stable singular point without approaching the origin. Therefore, it is
understood that the amplitude grows slowly in the former case because it takes long time in
movement near the origin, and the amplitude grows rapidly in the latter case.

The same situation appears in the case of constant acceleration. As mentioned above,
the direction and magnitude of the initial disturbance given at the entrance of the resonance
region of subharmonic oscillation depends on the initial angular position ¥,. Therefore, it is
understood that a large difference appears in the growing speed of the amplitude depending
on the initial angular position ¥,.

4. 5. Experimental apparatus and experimental results

4.5. 1. Experimental apparatus

The experimental apparatus and the measurement system are shown in Fig. 4.9. The
constitution of this experimental apparatus is the same as that used in the previous chapter,
but its dimension was changed in order to have a critical speed in a rotating speed range con-
venient for experiments. The dimensions of the rotor were as follows: the diameter was
400 mm, the thickness was 7.9 mm, the mass was 7.90 kg. The dimensions of the shaft were
as follows: the diameter was 12 mm, the length was 700 mm. The rotor was mounted at a po-
sition 175 mm above the lower end.

The measurement system is different from that used in the previous paper. The deflec-
tions of the rotor were measured by detecting disk edge displacement in the x- and y-direc-
tions. The rotating speed was detected by a rotary encorder attached to the upper end of the
shaft. The outputs of these sensors were amplified by operation amplifier circuits and sent to
a personal computer through an A/D-converter. This A/D converter had a distinguishable
minimum deflection of 0.002 mm.
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4.5. 2. Experimental results

A resonance curve of the 1/2-order subharmonic oscillation which appeared in the
neighborhood of w = 2p, is shown in Fig. 4.10. The abscissa represents rotating speed (rpm)
and the ordinate represents total amplitude (mm), that is, the summation of the amplitude of
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a harmonic oscillation and that of a subharmonic oscillation. The symbols O ©, and @, ©
represent amplitudes in the x- and y-directions, respectively. The arrow indicates a jump phe-
nomenon where the amplitude changes discontinuously. The shape of this resonance curve is
a hard-spring type and it agrees well with that obtained in the theoretical analysis.

In our experiments, it was impossible to set the angular position ¥, as we desired and
also impossible to measure it at the start of acceleration, so the initial angular position was
random. We observed nonstationary responses by performing experiments many times under
the same conditions of assembly, acceleration and initial angular velocity.

Figure 4.11 shows experimental results of time histories in the x- and y-directions and of
angular velocity ¥. These were digital quantities sampled by the computerized measurement
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system. The angular acceleration of Fig. 4.11(a) was A = 22.8 rpm/s and that of Fig. 4.11(b)
was 19.4 rpm/s. The initial angular velocity was w, = 2100 rpm and the sampling frequency
was 300 Hz in both cases. In this figure, there are 512 data between the scale lines of the ab-
scissa. It is seen from the envelopes of time histories that Fig. 4.11(a) is a passable case and
Fig. 4.11(b) is a non-passable case. It is ascertained from the curve ¥ that the shaft was ac-
celerated with a constant angular acceleration.

With the same procedure as that adopted in the numerical analysis, we extracted the
component of the 1/2-order subharmonic oscillation from such waves as those shown in Fig.
4.11. The amplitude variation curves obtained by such data processing are shown in Fig.
4.12. From the same angular acceleration A = 23.4rpm/s, a passable case and non-passable
case are shown. In addition, in order to show approximately a stable resonance curve of a
steady-state oscillation, we measured the amplitude change during very slow acceleration.
The value A = +4.0rpm/s was the smallest acceleration that this apparatus could give. In
this case, the initial angular velocity was w, = 2450 rpm, and this was the rotating speed
where a subharmonic oscillation occurred with a large amplitude and the shaft was accel-
erated and decelerated from this rotating speed. In this figure, different types of nonstation-
ary responses were obtained with the same angular acceleration A = 23.4rpm/s. This dif-
ference in the amplitude variation curve was due to the difference in the initial angular posi-
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tion ¥, given in experiments. It is seen that the experimental results in Fig. 4.12 are ex-
plained well by the theoretical results in Fig. 4.5 where r’,,,, varies remarkably depending on
the angular position ¥ of the unbalance even with the same angular acceleration.

Figure 4.13(a) shows the relationship between the angular acceleration A and the maxi-
mum amplitude ’,,,, in the case of acceleration. In this figure, the arrow indicates a nonpass-
able case, namely the case that the amplitude increased along the resonance curve. The
broken line is an envelope of maximum amplitudes r’,,,,, that is, it shows maximum values of
r' e We denote the value of A which this envelope approaches by A,. From this figure, it is
seen that, even at the same angular acceleration, the maximum amplitude varies within a cer-
tain value. When the angular acceleration was less than A, = 26 rpm/s, both a passable case
and non-passable case appeared. In experiments, as the angular acceleration became small,
the probability of a non-passable case became large. This experimental result agree qualita-
tively with the theoretical result in Fig. 4.5. Figure 4.13(b) shows the relationship between the
angular acceleration A and the maximum amplitude #',,,, when the rotor was decelerated
from w, = 2600 rpm. The broken line is the envelope of r’,,.. It is seen from this figure that
the system was passable at any value of angular acceleration in the case of deceleration. The
maximum amplitude also varies depending on the initial angular position ¥ in this case. This
experimental result agrees well with the theoretical result shown in Fig. 4.6(a).

4. 6. Conclusions

A. From the theoretical discussions:

(1) Unlike the case of a major critical speed, the maximum amplitude r’,,,, during accelera-
tion or deceleration through the critical speed of the 1/2-order subharmonic oscillation de-
pends not only on the angular acceleration ¥ = 1 but also on the angular position ¥, of the
unbalance at the start of acceleration.

(2) In order to pass the critical speed with finite amplitude in the case of acceleration
(4> 0), an angular acceleration larger than the critical value 4, is necessary. If the rotor is ac-
celerated with an angular acceleration smaller than this critical value, the amplitude increases
along the resonance curve and the rotor cannot pass the critical speed for a certain range of
¥,. The smaller the angular acceleration becomes, the wider this range of ¥, becomes.

(3) In the case of deceleration (4 <0), the rotor can always pass the critical speed with any
value of angular acceleration. As the absolute value of angular acceleration increases, the
maximum value of the maximum amplitude ', decreases. The maximum amplitude is al-
most constant for ¥, except near a certain value of ¥.

(4) The maximum amplitude depends on the initial angular position ¥, because the initial
disturbance caused when the rotating speed enters the resonance region varies depending on
¥, and the speed of amplitude growth is different depending on the relative position of the
representative point to the origin (a saddle point) on the uv-plane.

B. From the experimental discussions:

(1) With the same angular acceleration, the maximum amplitude during acceleration or de-
celeration through the critical speed varied remarkably within a certain value. In some cases,
the rotor could pass the critical speed without any subharmonic oscillation appearing.

(2) In the case of acceleration, the range of variation of the maximum amplitude during ac-
celeration expands as the angular acceleration A decreases. In some cases, when the accelera-
tion is less than a critical value A, the rotor could not pass the critical speed.

(3) In the case of deceleration, the rotor could always pass the critical speed with finite am-
plitude.
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Chapter 5 Critical speed of a summed-and-differential harmonic oscillation®”

5. 1. Introduction

Concerning nonstationary oscillations during acceleration through critical speeds of
summed-and-differential harmonic oscillations, Evan-Iwanowski® and Agrawal and Evan-
Iwanowski®® obtained nonstationary solutions by the asymptotic method. However, the main
purpose of their studies was the theoretical determination of approximate nonstationary re-
sponse curves. In addition, the obtained solutions in their analyses give amplitude variation
curves only in the cases that the acceleration was started from a condition that a summed-
and-differential harmonic oscillation was appearing in its resonance region. Their results give
no solution about the case that a rotor is accelerated from a rotating speed where a summed-
and-differential harmonic oscillation does not appear.

In this chapter, a nonstationary oscillation when a rotor passes a critical speed of a
summed-and-differential harmonic oscillation with constant acceleration or deceleration is
discussed. Among various kinds of summed-and-differential harmonic oscillations, one due
to the same asymmetrical nonlinear spring characteristics as the 1/2-order subharmonic oscil-
lation treated in the previous chapter is investigated. In this kind of oscillation, two vibration
components, whose frequencies are nearly equal to the natural frequencies respectively, occur
in addition to the harmonic component [+w] when the rotating speed approaches a value
which is equal to the difference of the two natural frequencies. It is known that the shape of
the resonance curve of this steady-state oscillation is similar to that of the 1/2-order subhar-
monic oscillation®"). However, as the number of vibration components differs, the characteris-
tics of nonstationary oscillation may differ from those of the subharmonic oscillation. In this
research, influences of angular acceleration and initial conditions (for example, an rotating
speed and an angular position of unbalance) on the maximum amplitude of the nonstationary
oscillation are investigated. In addition, the result is compared with those of the major critical
speed and the subharmonic oscillation of order 1/2.

5. 2. Equation of motion and steady-state oscillations

Similar to the case of chapter 4, an inclination motion of the rotor is discussed in the fol-
lowing theoretical analysis. The equation of motion is the same as Eq. (4.1) and given by

O,+ i, ¥0,+ i, W0, + c6,+ 0,+ Ny, = (1 — i,)r(¥2cos ¥+ Wsin¥)
6,—i,¥0,— i, %0, + ch,+ 0,+ N,y=(1— i)r(¥*sin¥— Pcos¥)
(5.1)

Here, we discuss the steady-state response under the condition of constant rotating
speed (¥ = w). In this case, the relations

V=ot+ ¥, Y=o, ¥=0 (5.2)

hold, where ¥, is the initial angular position of 7 at = 0. The frequency equation of this sys-
temis G(p) = 1+ Lwp— p? = 0. We represent two roots of this equation by p,(>0) and
P»(<0). They represent natural frequencies of forward and backward whirling modes, re-
spectively. The change of natural frequency p with the rotating speed w for i, = 0.25 is
shown in Fig. 5.1. In this figure, let the point of intersection of curve p;— p, and straight line
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p= w be A, its abscissa be w,, and the natural frequencies at » = w, be Pro @and pyg. In the
neighborhood of w,, stationary oscillations whose frequencies are near the natural frequen-
cies p;, p, appear in addition to the harmonic oscillation [+w]. This kind of oscillation is
called the summed-and-differential harmonic oscillation of [Py — ps] type®. We represent
their total phases by 6,,, 6, 6,. The frequencies 6 s 6, can be expressed approximately within
an accuracy of

0r = (Pro/ wo)w = (Pro/ p) (= wy)

_ (5.3)
0y = (Dso/ W) 0 = (Ppo/ W) ¥ (= w,)

With reference to these equations, the total phases 0, 0, are written as follows:

(pfo/ wy) ¥+ 6f Wt + (pfo/ wy) ¥, + 6f
(5.4)
0, = (Poo/ o) ¥+ Oy = wyt + (pyo/ o) ¥y + 6,

From the comparison of Egs. (5.3) and (5.4), we find that the quantities 6, — P Wy, 0, — w,,
which are the differences between the correct frequency and the approximate frequency, are
) 5 6,, The values d;, 6, change slowly because ¢ ,and b » are small quantities of order O(e).
The total phase angle of the harmonic oscillation component is given as follows:

=Yt B=wt+ ¥+ f (5.5)
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Fig. 5.1. Natural frequency p as a function of the rotating speed
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where f is the phase difference between this harmonic component and the angular position ¥
of the unbalance 7. Therefore, the solution of summed-and-differential harmonic oscillation
is expressed, within an accuracy of O(¢)*”, as follows:

6, = Rycos6,+ R,cosf, + Pcosb,,

+ e(ascos6,+ bysinb;+ a,cos6, + b,sinb,)
(5.6)
0, = R;sinf,+ R,sin6, + Psin6,

+ e(ajsin6, + bicosb,+ dsinf, + bjcosb,)

Substituting this into Eq. (5.1) and supposing that the amplitudes R;, R,, 4, etc., are quan-
tities which vary slowly with time, we obtain the following equations within the order O(¢) by
the harmonic balance method.

R,=(1/A) (—cw,R,— 2¢(R,Psiny) (2)

R,=(1/A,) (—cw,R, + 2¢ MR, Psiny) (®) (5.7)
= (1/A) (G, + 4BO(R? + 2R} + 2P?) — 2eOP(R,/ R)) cosp) '

—(1/A, Gb+4ﬁ(0) 2R? + Ri+2P2 —2eMP(R/R cosy C
b { ( I ff 2N, }
where

Ar= Qo= i), A= (2o, — L), G=G(w), G,= G(w) ’(5 8)
p=08—0,, P=—(1— i)t G(w), '

The steady-state solutions R, = Ry, R, = Ry, ¥ = ¥, can be obtained by R;= 0, R, =0,
= (. The stability of these stationary solutions can be ascertained by the same procedure as
that in the previous paper®”.

5. 3. Nonstationary response during acceleration through the critical speed

5.3. 1. Process of analysis

The rotor is accelerated with a constant acceleration. Let the acceleration be A(=¥), the
initial rotating speed w,, and the initial angular position of the dynamic unbalance 7 of the
rotor be ¥, (refer Fig. 4.1).

Y= (1/2)A* + w,t+ ¥ (5.9)

This condition is inserted into Eq. (5.2). The nonstationary time histories observed in 6,, 6,
directions are calculated by the Runge-Kutta-Verner method. The rotor is accelerated from a
certain rotating speed which is outside of the resonance region where the summed-and-dif-
ferential oscillation occurs. At this initial rotating speed, only a harmonic oscillation appears.
In the nonstationary time history, a component whose frequency is near the rotating speed ¥
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and two components whose frequencies are near p; and p, coexist. Therefore, the radius of
rotor inclination /67 + 6 becomes very complex as shown in Fig. 5.2(a). These data on 6,,
0, are processed by the complex FFT in the same way as the previous chapter. A obtained
spectrum is shown in Fig. 5.2(b). We extracted the spectrum component near the frequency
prand p, by filtering, and obtain the amplitude variation curve shown in Fig. 5.2 by transfor-
ming them into the time domain by inverse FFT. In the case of Fig. 5.2, data were sampled at
an interval corresponding to 1/20 of the period at w,, and 2!* data were processed by FFT.

N
o

, Rfo,Rbo

Amplitude v&F+67
(=1
o

2.0 2.2 2.4 2.6
Rotating speed r

(a) Radius variation obtained by a numerical integration and
the amplitudes of the steady-state resonance curve

-1

10
S
2
=
=
<
-2
10+
1(53 1 ﬂ B i
-3 -2 0 1 3
Frequency

(b) Spectrum is shown
Fig. 5.2. Signal processing by the comples-FFT (Numerical analysis)



48 Y. Ishida, T. Ikeda, T. Yamamoto and S. Murakami

0.8
ip=0.25 Ws=2.0 —— Stable
¢=0.015 A =3,0x10"" ——— Unstable
T=0.4

061 g1
£=0.1

0.4+ Steady-state
oscillation Reo

Amplitude f’,rg,Rfo, Rso

rdmax | ¢/ ymax /.
L

2.2 2.3 2.4 2.5
Rotating speed yr

Fig. 5.3. Amplitude variations during acceleration through a critical speed for two different
initial angular positions ¥, (acceleration)

Therefore the sampled range varied according to 4. For example, in the case of 1 = 3.0 X
107% in Figs. 5.2 and 5.3, the sampled range was ¥ = 2.0~ 2.77. In this case, the frequency
ranges —1.1~—0.75 and 1.3 ~ 1.8 were extracted.

5. 3. 2. Maximum amplitude during acceleration through the critical speed

Figure 5.3 shows resonance curves of steady-state solutions Ry, Ry, calculated in section
5.2 and amplitude variation curves r}, rj, of nonstationary oscillations during acceleration for
two initial angular positions ¥,. In the resonance curves, a solid line represents a stable solu-
tion and a broken line represents an unstable solution. (In Fig. 5.2(a), the resonance curves
which overlap the amplitude variation curve (87 + 6 are denoted by white lines.) In Fig.
5.3, the stability of the trivial solution is not distinguished. However, it is unstable between
A, and A, which are the intersections of the resonance curves with the ¥-axis, and it is
stable outside of them. Similar to the case of the 1/2-order subharmonic oscillation, the non-
stationary responses during acceleration through the critical speed of summed-and-differen-
tial harmonic oscillation are classified into two groups. One is the case (for example, ¥, = (")
where the amplitudes increase along the stable resonance curve, and the other is the case (for
example, ¥, = 120°) where the rotor can pass the critical speed with a small amplitude. We
call the former non-passable case and the latter a passable case.

The amplitudes start to increase with a delay after the rotating speed enters the unstable
zone of the trivial solution through point A,. (This phenomenon is called penetration.) The
amplitudes 7} and r}, of components whose frequencies are nearly equal to p;and p,, respec-
tively, increase almost with the same velocity. In a non-passable case, the amplitude converge
to the stationary resonance curves varying periodically after taking the maximum values al-
most at the same time. The discrepancies between the amplitude variation curves and reson-
ance curves are due to an error in the approximate solutions of the resonance curve. In a
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passable case, however, after their amplitudes takes the maximum values (7}) .0 (7 ) meo they
converge to the trivial solution. In a non-passable case, althogh it drops down when it reaches
the end of the stable resonance curve with a very large finite amplitude, we use symbols
(" max = 5 (P )max = © for convenience. Because as mentioned above, we thought that the
difference between a very large amplitude and infinity is not so important from a practical
point of view.

Next, we investigate the influence of the following three parameters on the maximum
amplitude (r}),.. the angular acceleration A, the initial rotating speed w,, and the initial an-
gular position ¥, of the unbalance 7. Treatment of (7}),,, is avoided due to its similarity to
(%) mar- Figure 5.4(a) shows relations between the maximum amplitude (77,),,., and the angu-
lar acceleration A (4> 0) for various values of ¥, The initial rotating speed is set at w, = 2.0.
The full line and the dash-dotted line show the cases of ¥, = 120° and 180°, respectively.
The broken lines represent the maximum and minimum values of amplitude variation curves
obtained when the parameter ¥, changed from 0°~360° with the interval of 30°. Thus,
() max €xists within the shaded zone, bounded by the broken lines. These broken lines take
several maxima and minima, becoming infinite for some ranges of small A. At the angular ac-
celeration A corresponding to an infinite upper bound of (7)), the rotor cannot pass the
critical speed with finite amplitude for some values of initial angular position ¥,. The maxi-
mum value of angular acceleration of such non-passable case is denoted by 4. At A for which
upper bound on (r}),,, is finite, the rotor can always pass the critical speed for any value of
¥,. In the case of 1/2-order subharmonic oscillation in the previous chapter, the upper
bound of the maximum amplitude t’,,. decreases monotonously with the angular accelera-
tion A, and the range of 4 is divided into two by a critical value A,. Namely, if A is larger than
Ao, it can pass for any value of ¥, with finite amplitude, and if A is less than 4,, it cannot pass
for some values of ¥, But in the case of summed-and-differential harmonic oscillation
treated here, there exist several passable (finite-bounded) sub-ranges (for example, 1 =
2.91~298, 2.79~2.83 in Fig. 5.4(a)) under a non-passable sub-ranges (for example, 1 =
2.98~3.03).

Next, Fig. 5.4(b) shows the influence of the angular acceleration 4 on the maximum am-
plitude (r},),..- The initial rotating speed w; is treated as a parameter. The initial angular po-
sition is fixed at ¥, = 180°. It is found from this figure that the curve varies remarkably when
w, deviates by only £0.1% from the value 2.0. Nevertheless, these differences among the
variation curves do not necessarily imply a variation of the angular acceleration A, which is
the maximum angular acceleration in a non-passable case. If the figure corresponding to Fig.
5.4(a) is drawn for various values of w,, we know that the value of 4, does not differ greatly
even if the initial rotating speed o, changes. In the experimental apparatus mentioned later,
the error in the adjustment of the rotating speed is about £0.1 %. Therefore, when we draw
an experimental diagram corresponding to Fig. 5.4(a), the unshaded zones in the angular ac-
celeration range below 4, disappear due to the slight adjustment error in the initial rotating
speed w,. In order to compare with the experimental results, we must consider Figs. 5.4(a)
and 5.4(b) combined. If the envelope of these curves is drawn, the upper bound of the maxi-
mum amplitude (7}),.. decreases monotonously for A, similar to the case of the 1/2-order
subharmonic oscillation, and we can determine the critical value 4;(4,Z 4,) above which the
rotor can always pass the critical speed with finite amplitude.

The influence of ¥, on the maximum amplitude (7}),,., is shown in Fig. 5.4(c), where
the angular acceleration 4 is treated as a parameter and the initial rotating speed is fixed at w,
= 2.0. The following cases are shown: 2 = 2.94 X 10~ in a passable sub-range between non-
passable ranges in Fig. 5.4(a); A = 3.00 X 10™* in a nonpassable range; and A = 3.16 X 107
in a passable range. In the case of subharmonic oscillation, all of these curves are in contact
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with the abscissa ( ¥;-axis) and there always exists a value of ¥, for which the maximum am-
plitude r'max is nearly zero. This means that the lower bound of r'max is always zero in the
case of 1/2-order subharmonic oscillation. However, in the case of summed-and-differential
harmonic oscillation, for most of the A’s these curves do not make contact with the abscissa,
and therefore (r}),,,, does not become zero for any value of ¥; (for example, A = 3.00 X
1074, A= 3.16 X 10~ in Fig. 5.4(c)).

In Fig. 5.5, (7). 1s plotted as a function of 4 for the case of deceleration (41 <0), with
¥, as a parameter, and with the initial rotating speed fixed at w; = 2.55. The curves for ¥, =
90r is represented by a solid line, while for other values of ¥ the curve shifts vertically within
the band shaped zone, bounded by the dashed lines. This is different from the 1/2-order sub-
harmonic oscillation case, where the corresponding shaded zone has the abscissa (7} )0 =
0) as a bound.

5. 4. Phase space and trajectories

5.4. 1. Phase space with a constant rotating speed

As shown in Eq. (5.7), the stationary oscillation of summed-and-differential harmonic
oscillation is determined by three quantities, that is, amplitudes R;, R, and phase difference
Y. Although we showed the ratio of these amplitudes is constant in the stationary solution,
that does not hold in the nonstationary solution. Therefore, the nonstationary solution is rep-
resented by a point in the three-dimensional space called phase space. We can represent its
position by the cylindrical coordinates R, (radius), R, (height), and v (angle). Between such
cylindrical coordinates and rectangular coordinates (x, y, z), the following relations hold:

x= Ricosy, y= Rsiny, z=R, (5.10)

The trajectories in this phase space, which represent time histories of R;, R, and v, can be
obtained by integrating Eq. (5.7) numerically. As R,> 0, the trajectories exist above the xy-

[aw]
N

@Ws=2,55

Max imum value

/ of (r§)max

[en]
[

Maximum amplitude (r4)max

Minimum value
of (7r3)max

07323 3.0 3.0 3.0 3.6 X107
Angular acceleration A

Fig. 5.5. Variations of the maximum amplitude with respect to the angular
acceleration A (deceleration)



52 Y. Ishida, T. Ikeda, T. Yamamoto and S. Murakami

(a) Orthogonal projections of the trajectories passing through the saddle point B

q
C
x//

(b) Perspective projections of the trajectories starting from ordinary points P and Q
Fig. 5.6. Trajectories in the phase space (w = constant)
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Fig. 5.7. Trajectories in the phase space corresponding to the nonstationary response
during acceleration

plane. The phase space at w = 2.80 is shown as an example in Fig. 5.6. Because there exist
two stable solutions (including a trivial solution) and one unstable solution at this rotating
speed as shown in Fig. 5.2, three singular points A, B, and C appear in the phase space. In
Fig. 5.6, the symbol @ is a singular point representing a stable stationary solution and the
symbol O is one representing an unstable stationary solution. Among the trajectories in this
phase space, only those passing through the unstable singular point are shown by fine full
lines in Fig. 5.6(a). There are six such trajectories, but three of them almost overlap and seen
to be one trajectory. In the two-dimensional phase plane used in the case of 1/2-order sub-
harmonic oscillation, the trajectories passing through the unstable singular point become sep-
aratorices which divide the phase plane into two types of zone. The representative points in
each zone move towards the stable singular point in the same zone. In the three-dimensional
phase space, there exist curves surfaces corresponding to separatorices in the two dimensional
phase plane. The trajectories shown in Fig. 5.6(a) are the intersection lines of these curved
surfaces. The representative point on such trajectories moves to the directions designated by
arrows as time passes. From these lines, we can imagine how the representative point moves
from a given point in the phase space. In Fig. 5.6(b), the trajectories from the ordinary points
P and Q (symbol X) are drawn as an example.

5. 4. 2. Trajectories during acceleration passing through the critical speed

When the rotor passes the critical speed with a constant acceleration ( ¥=1), the singular
points A and B in Fig. 5.6 move in the phase space and the representative point expressing a
nonstationary solution pursues one of stable singular points A (moving) and C. Such a trajec-
tory can be drawn from the data obtained by the FFT-procedure mentioned previously. As
an example, two trajectories are drawn in Fig. 5.7 — trajectory I for a passable case and II for
a non-passable case. Here we discuss a case where the rotor is accelerated from a speed lower
than the critical speed. There are three regions of ¥ that determine the number and type of
the singular points. For ¥ in the region below point A, in Fig. 5.3, there is a stable singular
point at the origin (a trivial solution); for ¥ between A, and A,, there are an unstable singu-
lar point at the origin and a stable one away from the origin; and for ¥ above A,, there are
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three singular point — a stable one at the origin, and a stable one and an unstable one away
from the origin, as shown in Fig. 5.6. When the rotor is accelerated from a rotating speed in
the first region where only the harmonic oscillation [+w] appears, the representative point
expressing a nonstationary solution of the summed-and-differential harmonic oscillation stays
very close to the origin in the beginning, and it starts to separate as soon as ¥ passes the ro-
tating speed A,. The distance of the representative point from the origin at the rotating speed
A, corresponds to the initial disturbance for nonstationary solutions. The velocity with which
the solution separates from the origin is determined by the relative position of the representa-
tive point with respect to the origin (that is, the magnitude and the direction of the initial dis-
turbance). When ¥ passes the rotating speed A,, the number of singular points becomes
three as shown in Fig. 5.6, and the representative point start to approach one of the two
stable singular points. The relative position of the representative point with respect to these
singular points determines which stable singular point it will approach. In a passable case, the
representative point approaches the origin C, and in a non-passable case, it approaches the
stable singular point A. The relative position of the representative point with respect to the
origin at the rotating speed A, depends on the initial angular position of ¥, and the initial
rotating speed w,. Therefore, the maximum amplitude (7}),,., changes due to ¥, and w, as
shown in Fig. 5.4.

The relations between the maximum and minimum values of (77}),,,, and the angular ac-
celeration A, shown in Figs. 5.4 and 5.5, are different from that of the 1/2-order subharmonic
oscillation, although the shapes of the resonance curves are similar. In the case of 1/2-order
subharmonic oscillation, the trajectories of nonstationary oscillations are expressed in the
two-dimensional phase plane. At a rotating speed between A, and A, in Fig. 5.3, the station-
ary trivial solution is unstable and is expressed by a saddle point at the origin in the phase
plane. When the initial angular position ¥, varies from 0° to 360°, the representative point at
the rotating speed A, draws a closed roop containing the origin. As the rotating speed is in-
creased beyond A, the representative point’s location on this loop will determine its future
trajectory and it will take one of the following courses: (a) approach the origin with decreas-
ing velocity; (b) move towards the origin and then move away from it; (¢) move away from
the origin with an increasing velocity. In case (a), for example, the representative point is on
a separatrix and the maximum amplitude during acceleration becomes almost 0. As a whole,
the maximum amplitude during acceleration varies from almost 0 (case (a)) to a certain finite
value (case (b) and (c)). This variation range is not influenced by A because the location of
the above-mentioned loop at A, does not differ much by A. However, the region in which the
representative point is attracted to the origin appear after the rotating speed passes the point
A,, and this region expands more rapidly as 4 increases. Therefore in the range of large A, the
representative point is enclosed in this region and the upper bound decreases monotonously
as A increases.

On the other hand, in the case of summed-and-differential harmonic oscillation, the tra-
jectory of a nonstationary solution is expressed in a three-dimensional phase space. When the
initial angular position ¥, varies from 0° to 360°, the representative point at the rotating
speed A, draws a closed loop near the origin. However, because the representative points on
the loop do not always have the cases (a), the maximum amplitude varies between a finite
value and a finite or an infinite one. In addition, because the location of the loop changes in
the phase space depending on the angular acceleration A and on the initial rotating speed w,,
the upper and lower bound of (7},),,, vary complicatedly as shown in Figs. 5.4(a) and 5.5.

The representative point moves very slowly near the unstable singular point at the origin
(the trivial solution) in phase plane and in phase space. When the rotor passes the point A in
Fig. 5.3 during acceleration, the representative point is located very near the origin. There-
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fore, it moves very slowly near the origin and it seems that the response remains near the un-
stable trivial solution for a while in the response diagram. This period corresponds to pene-
tration.
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Fig. 5.8. Steady-state resonance curve of the summed-and-differential harmonic
oscillation (experimental result)
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Fig. 5.9. Amplitude variations of the summed-and-differential harmonic oscillation during
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5.5. Experimental apparatus and experimental results

5.5. 1. Experimental apparatus

The experimental apparatus and the measurement system are the same as that in the pre-
vious chapter (Fig. 4.9). But the dimensions of shaft and disk are different from them. The
dimensions of the rotor were as follows: the diameter was 300 mm, the thickness was 14 mm,
the mass was 7.78 kg. The dimensions of the shaft were as follows: the diameter was 12 mm,
and the length was 700 mm. The rotor was mounted at a position 175 mm above the lower
end.
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Fig. 5.10. Influence of the angular acceleration on the maximum amplitude
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5.5. 2. Experimental results

A resonance curve of the summed-and-differential harmonic oscillation which appeared
in the neighborhood of the rotating speed w = p, — p, is shown in Fig. 5.8. The symbol O, ©
and ©, ® represent amplitudes in the x- and y-directions, respectively. The abscissa repre-
sents rotating speed (rpm) and the ordinate represents total amplitude (mm), that is, the sum
of the amplitude of the harmonic oscillation and that of the summed-and-differential har-
monic oscillation. The arrow indicates a jump phenomenon. The steady-state trivial solution
is unstable at about 1730 ~ 1820 rpm.

Figure 5.9 shows experimental results on amplitude variation curves during acceleration
through a critical speed. It shows the amplitude variation curves of each component near the
frequencies p, and p;. These curves were obtained by the FFT-procedure used in the theore-
tical analysis. A passable case and a non-passable case are shown for the same angular ac-
celeration 4 = 18.1rpm/s, and initial rotating speed w, = 1500 rpm. (The initial position ¥,
are different in these two cases). In addition to show a stable resonance curve of a stationary
oscillation, we measured the amplitude variation curve with a very low acceleration (A =
4.1rpm/s was the lowest acceleration that this apparatus could attain. And this curve repre-
sents stable resonance curve approximately).

Next, we examined the influence of angular acceleration on the maximum amplitude. In
our experiments it was impossible to set or measure the initial angular position ¥, and there-
fore it was set at random between 0°~ 360°. We observed nonstationary response by repeat-
ing the experiment many times under the same condition of assembly, acceleration and initial
angular velocity. The apparatus had about +0.1 % error in the rotating speed (for example,
there is about * 2 rpm error at o, = 1500 rpm).

Figure 5.10 shows the relationship between the angular acceleration 4 and the maximum
amplitude (73),,,, in the case of acceleration. The symbol (r}),,,, represents the maximum am-
plitude of the vibration component with frequency near p;. This corresponds to (77,),,,. in the
theoretical analysis. In this figure, an arrow indicates a non-passable case in which the ampli-
tude increased along the resonance curve. The broken line is the envelope of maximum am-
plitudes. Therefore, the maximum amplitude (r}),,,, are contained within the shaded zone.
We could not verify the existence of several maxima and minima of the shaded zone, such as
those shown in Fig. 5.4(a), due to the above-mentioned apparatus error in the adjustment of
the initial rotating speed w, But, as expected from the discussion in Section 5.3.2, the ex-
perimental results are similar to those of the 1/2-order subharmonic oscillation. That is,
when the angular acceleration was larger than a certain critical value 4, (= 22rpm/s), the
rotor could always pass the critical speed; and if 4 was less than 4, both a passable case and
non-passable case appeared.

Figure 5.11 shows the relationship between A and (73),,,, in the case of deceleration. The
experimental result agrees qualitatively with the theoretical result in Fig. 5.5. The zone in
which (73),,.. exists has the shape of a band.

5. 6. Conclusions

Regarding the nonstationary phenomena of a summed-and-differential harmonic oscilla-
tion in a rotating shaft system with nonlinear spring characteristics, the following results are
obtained.

(1) The maximum amplitude (77}),,,, during acceleration or deceleration through the critical
speed depends not only on the angular acceleration A but also on the initial angular position
Y, and the initial rotating speed w,.

(2) Unlike the case of 1/2-order subharmonic oscillation, when the initial angular position
Y, varies from 0° to 360°, there exist an upper bound and a lower bound to the maximum
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amplitude (77),,.,» and the value of (r}),,,, varies within these two bounds. These values don't
decrease monotonously as the angular acceleration A increases.

(3) In the case of acceleration (4> 0), there exist several regions of angular acceleration 4,
in which the rotor can always pass with finite amplitude, under the angular acceleration with
which the rotor cannot pass for some values of ¥, (nonpassable region).

(4) In the case of deceleration (41 <0), the rotor can always pass the critical speed with any
value of angular acceleration A. But the maximum amplitude (r7}),,, has an upper and a
lower bound, unlike the case of the 1/2-order subharmonic oscillation.

(5) In the experiments of acceleration, the upper bound of the maximum amplitude (7}) 4,
decreases monotonously as 2 increases and the existence of the critical value 4, is ascertained.
In deceleration, there exist an upper bound and a lower bound for (77,),,4.

(6) The discrepancy between the simulation results and the experimental results in accelera-
tion can be explained by noting that a slight fluctuation in the initial rotating speed w, has a
big influence on the maximum amplitude.

Chapter 6 A critical speed of a 1/3-Order subharmonic oscillation®"

6. 1. Introduction

It is known that nonlinear oscillations, such as subharmonic oscillations and summed-
and-differential harmonic oscillations, appear in hydraulic turbine generators®® and steam
turbine generators®?. Recently, it was reported that subharmonic oscillations of order 1/2,
1/3 and higher occurred in aircraft gas-turbine engines®*% and space shuttle high-pressure
fuel turbo pumps®”69, due to angular clearances in the bearings. For example, in aircraft en-
gines whose rotating speeds are changed frequently, it is very important to clarify the nonsta-
tionary vibration characteristics during acceleration through critical speeds.

As reported in many papers mentioned above, many types of subharmonic oscillation
can appear in rotating machines. In the previous chapters, we treated nonlinear oscillations
due to unsymmetrical nonlinearity. In this paper, firstly, we discuss a 1/3-order subharmonic
oscillation of forward precession due to symmetrical nonlinearity. Its resonance curve does
not bifurcate from that of a trivial solution and exists separately. As the shape of this reson-
ance curve is completely different from the shape of a 1/2-order subharmonic oscillation, it is
expected that its nonstationary characteristics are different from those reported previously.

Secondly, we investigate nonstationary characteristics of the other kinds of subharmonic
oscillations, such as 1/2-order and 1/3-order subharmonic oscillations of backward preces-
sion. Then we compare the characteristics of all kinds of oscillations due to the second and
third power terms of coordinates.

6. 2. Equations of Motion and Steady-State Oscillations

In the theoretical analysis, we treat the inclination oscillation of a rotor which is mounted
at the center of an elastic shaft. The equation of motion is the same as that treated in chapters
4 and 5.

6, + ip‘f’HY +i,¥0,+ c0,+ 0, + Ny = (1 — i))7( Y2cos¥+ Wsin¥)

6,—i,¥60,—i,¥6,+ cl,+ 6,+ Noy= (1 — i,)7(¥?sin ¥ — Pcos¥)
(6.1)
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We discuss the case of constant rotating speed. If the initial angular position of rat =0
is ¥, then the angle ¥is given as follows:

V=uwt+ ¥, Y=w, ¥=0 (6.2)

Figure 6.1 shows a natural frequency p as a function of the rotating speed w for the case i,=
0.10. The point of intersection A of curve p and straight line p = +(1/3)w gives the reson-
ance point of a 1/3-order subharmonic oscillation of a forward precession. In the following,
we use the symbol [+(1/3)w] to represent this kind of oscillation. The sign + indicates a for-
ward precession. The points C and D denote the resonance points of the subharmonic oscilla-
tions [—(1/2)w] and [—(1/3)w], repectively. The signs — indicates a backward precession.

The solution in the neighborhood of the resonance point B is assumed to be approxi-
mately as follows:

0, = Rcost;+ Pcosf, + ¢ (acost;+ bsinf,+ - - -}
(6.3)
6,= Rsin6,+ Pcos6,, + & {a’cosh;+ b'sin@,+ -« - -}

where 6,=1/3 - wt+ 6;and 6, = wr+ f.

For the steady-state solution P= P, and 8 = 3, for the harmonic component, we use the
following approximate solution within an accuracy of order &°.

Bo=n, Py=—F/G (6.4)

where G =1+ i,0? + o™
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The steady-state solutions R = R,, d,= 0y, for the subharmonic oscillation [+(1/3)w] in
the accuracy of O(¢) are given by the following equations:

[(cw/3)* + (G, + 4BO2PF + RY)PIRG = 3BPPRE)? () 65
or Ry=0 (ii) (6-2)

where G;= 1+ i,w(1/3* w) — (1/3 - w)®. It is shown in the previous report'” that, among
various kinds of nonlinear components in polar coordinate expression, only the isotropic
component N(0) (coefficient S() and the anisotropic component N(2) (coefficient )
whose magnitude of potential distribution changes 2 time while the shaft whirls once around
the origin have an influence on this type of oscillation. Although the resonance curve given
by Eq. (6.5) has a comparatively large quantitative error, it is possible to improve the accu-
racy by considering a vibration component of backward precession [—(1/3)w] in the analysis.
Figure 6.2(a) and Fig. 3 show modified resonance curves obtained by such analysis. These
curves are obtained in the system with a hard spring type (that is, a system with (> 0). The
parameters have the values shown in the figures. The coefficients of nonlinear terms are zero
except for ™ and $®* which have an influence on the resonance curves within an accuracy
of & The solid and broken lines represent stable and unstable solutions, respectively. Unlike
the cases of the 1/2-order subharmonic oscillation and the summed-and-differential har-
monic oscillation, the resonance curve is separated from the trivial solution which is stable in
every rotating speed.

6. 3. Nonstationary Response during Acceleration through a Critical Speed

We discuss the case in which the rotor is accelerated at a constant rate. The following re-
lationship holds with respect to the angular position of the unbalance.

Y=, ¥Y=h+o, ¥=1/DI*+ i+ ¥ (6.6)

6. 3. 1. Method of analysis

If we adopt a steady-state solution as an initial value in the same way as in the previous
reports, the rotor can pass the critical speed without the occurrence of a subharmonic oscilla-
tion for any value of acceleration. This is because a stable trivial solution exists for any rotat-
ing speed in the case of a 1/3-order subharmonic oscillation. Generally speaking, the rotor
can pass a critical of a 1/3-order subharmonic oscillation much more easily than it can pass
that of the 1/2-order subharmonic oscillation.

However, it may happen in the practical operation of rotating machinery that the rotor
enters a resonance speed region with some residual vibration which was generated when the
rotor passed another resonance point. In such a case, there is a possibility that the amplitude
jumps to a resonance curve with nonzero amplitude. For this reason, we discuss nonstation-
ary oscillation taking the initial disturbance into consideration. Among many types of initial
disturbances, we consider one due to a constant amplitude deviation from a harmonic solu-
tion at the start of acceleration.

As many vibration components with various frequencies coexist in the obtained time his-
tory, we cannot determine the amplitude variation of nonstationary subharmonic oscillation
directly from the numerical data. Therefore we use the same data processing procedure used
in the previous chapters. Figure 6.2(a) is an amplitude variation curve before the complex-
FFT signal processing and Fig. 6.2(b) is an spectrum distribution.
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6. 3. 2. Maximum amplitude during acceleration through a critical speed of a 1/3-order sub-
harmonic oscillation.

Figure 6.3 shows amplitude variation curves for two different cases of acceleration. We
see that a subharmonic oscillation may possibly appear during acceleration if an initial dis-
turbance is given at the start. As mentioned above, such an amplitude variation curve con-
tains some error due to data processing in the neighborhood of the initial velocity w,. As in
the case of a 1/2-order subharmonic oscillation and summed-and-differential harmonic oscil-
lation reported previously!?'1) two types of amplitude variation curves are obtained. One is
the case (a non-passable case) in which an amplitude increases along the resonance curve to
the large-amplitude region, and the other is the case (a passable case) in which the amplitude
converges to the stable trivial solution after once increasing toward a resonance curve with
nonzero amplitude. In the passable case, we can determine the maximum amplitude ', as
shown in the figure. In the following, we designate the nonpassable case by r’,,,,. = « for con-
venience. In this example, although the same initial disturbance is given, the case with smaller
acceleration is passable and the case with larger acceleration is nonpassable.

Figure 6.4 shows effects of some parameters. In these figures, the initial angular velocity
w, is selected at w, = 3.50 and the initial disturbance is given as an amplitude deviation AP
which is 20 % of the amplitude of steady-state harmonic solution at w,. In order to avoid er-
rors due to division by time window, we determined the maximum value in the range w> 3.6.
Only the cases of acceleration are shown because the amplitude of nonstationary oscillation
does not increase infinitely along the resonance curve in the case of deceleration.

Figure 6.4(a) shows the relationship between an angular acceleration A and the maxi-
mum amplitude r',,,, for various initial angular positions of unbalance ¥,. It is known from
the dash-dotted line for ¥, = 0° and the solid line for ¥, = 60° that the variation of »’,,,, for
A is complex, and a passable case and a nonpassable case appear repeatedly as A increases.
And such curve depends remarkably on the initial angular position ¥,

Figure 4(b) shows an effect of ¥, on r’,,, for various angular acceleration values 4. For
the acceleration 4 = 2.1 X 1073, a nonpassable case appears for some ranges of ¥,. However,
there exists an acceleration for which the rotor can pass the resonance point for every angular
position ¥, not only in the higher speed side (A = 9.8 X 107%) but also in the lower speed
side (4 = 1.8 X 107%). When the angle changes from 0° to 360° with a constant acceleration,

’

r . Changes two times periodically. As 7', depends on ¥,, we obtain the maximum
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value of r’,,,, and denote it by a broken line in Fig. 4(a). Therefore, the maximum value may
exist in the shadowed region under the broken line if we consider the variations of 4 and ¥,.
The lower part of this figure is not shaded because we cannot determine the maximum ampli-
tude when it is less than the initial disturbance. As the frequency of free vibration is close to
the frequency of the subharmonic oscillation under investigation, we cannot separate them by
such signal processing. The values of acceleration which the broken line approaches asympto-
tically are denoted by A, and A, (4, <4,). When A takes a value between these two critical
values, a nonpassable case appears depending on ¥. In the higher acceleration range (4, <A)
or in the lower acceleration range (4, <A), the rotor can pass the critical speed with a finite
amplitude for any value of ¥,.

6. 4. An explanation of the phenomena by a phase plane

As seen in the previous chapter, a 1/3-order subharmonic oscillation may occur due to
an initial disturbance although a stable trivial solution exists at any rotating speed. However,
the rotor can pass the critical speed for any initial angular position ¥, of unbalance if the ac-
celeration is larger than the critical value A, or smaller than the critical speed A, (see Fig.
6.4(a)). Such a characteristic is different from those in the cases of a 1/2-order subharmonic
oscillation and a summed-and-differential harmonic oscillation, where the rotor can pass the
critical speed for any initial angular position ¥, only when the acceleration exceeds a certain
critical value.

In this section, we shall explain such characteristics, using a phase plane.

6. 4. 1. Trajectory of a transient oscillation when the rotating speed is constant (¥ = w =
constant)

First, we consider the case in which the shaft is rotating with a constant angular velocity
¥ = . We transform an amplitude R and a phase J;into new variables 1 and v by the fol-
lowing relationships:

u= Rcosd;, v= Rsino, (6.10)

Then, a rectangular coordinate system 0 — wv is defined by these variables u, v. In the fol-
lowing, we call this phase plane the uv-plane. This plane represents the subharmonic oscilla-
tion observed on the plane rotating with the angular velocity 1/3 - w. Strictly speaking, the
trajectory should be discussed in a phase space constituted by the four coordinate axes u, u,
v, and v. However, as u and v are expressed approximately as functions of u and v if the
velocities u and v are small, we can discuss in this two-dimensional wv-plane. In this phase
plane, the steady-state solution of a 1/3-order subharmonic oscillation is represented by a
point whose coordinates are given as follows:

Uy = R,cosdy , vy = Rysindy, (6.11)

If the arbitrary point in this plane is given as an initial value, the solution approaches
some singular point corresponding to a stable steady-state solution in the course of time. If
plural stable steady-state solutions exist, they depend on the initial position and the initial
velocity to which the trajectory converges. Figure 6.5 shows the uv-plane at w = 3.85. (In
this figure, a nonstationary phase plane called the u’v’-plane, which will be defined later, is
also shown in duplicate). Three unstable steady-state solutions (Saddle point) exist and are
shown by the symbol O. Four trajectories pass each saddle point as shown by solid lines. The
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arrows designate the direction of movement of a representative point. Among these trajec-
tories, those which have a direction toward the saddle point divide the uv-plane into several
regions. They are called separatrices. We can imagine a trajectory of a transient solution ap-
proximately on such a phase plane by referring to the distribution of singular points and tra-
jectories passing through the saddle points. For example, a solution moves along a trajectory
which passes a saddle point and converges to a stable singular point in the same region. The
solution in the region with no shade converges to the origin which corresponds to a stable tri-
vial solution (a stable spiral point). In the other three shaded regions, a solution converges to
the stable singular point (which is located outside the figure) in respective regions.

0.3F

v,V

0.2

-0.1

-0.2

-0.3 >
0.3 0.2 0.1 0 0.1 0.2 0.3

Fig. 6.5. Trajectories on u'v’-plane and uv-plane

6. 4. 2. Trajectory of a nonstationary oscillation when the rotating speed is changed with con-
stant angular acceleration (¥ = constant).

In this section, we observe a nonstationary oscillation during acceleration in the u'v’-
plane which is rotating with an angular velocity ¥/3 (¥ = constant) and compare the trajec-
tory with separatrices in a uv-plane corresponding to a certain instantaneous rotating speed.

In time histories on 6, and 6, the components corresponding to the frequency ¥/3 are
represented by 6, and 6,,. These components are transformed from the coordinates ¢,, and
6,, fixed in space to the coordinates «’ and V' rotating with acceleration by the following rela-
tionships:

u' = 6,cos(¥/3)— 0,sin(¥/3)
‘ " (6.12)
v’ = 0,sin(¥/3) + 6,,cos(¥/3)

The components 6, and 6,; are separated from 6, and 6, by the above-mentioned complex-
FFT method and then transformed into " and v’ by Eq. (6.12).

The trajectories are shown in Fig. 6.5. As shown in Fig. 6.4(a), the maximum amplitude
of the 1/3-order subharmonic oscillation 7', during acceleration through the resonance
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point changes in a complex way. In this figure, three trajectories for different A with the same
initial angular position ¥, = 0° are shown. These trajectories are drawn for ¥ = 3.60 ~ 4.15.
The position representing the solution when w = 3.85 is shown by the symbol @. The trajec-
tory converges to the origin when 4 = 2.0 X 107 and it extends to a stable singular point
corresponding a large amplitude steady-state solution when A = 4.5 X 1073, In the case of A
= 9.0 X 107, if the numerical integration is continued further, it becomes clear that the tra-
jectory converges to the origin. The shapes of separatrices change in the u'v'-plane as ¥ in-
creases. Using this figure, we can explain why the rotor can pass the resonance region with fi-
nite amplitude in the cases of large and small acceleration ranges as follows: The region with
no shade expands as the angular velocity increases. Therefore, if the angular acceleration is
very large, this region with no shade expands at a rate faster than the growth rate of the solu-
tion, and consequently, the solution comes to be included in this region in which every solu-
tion converges to the origin (for example, the case of A = 9.0 X 107°). If the acceleration is
not so large, the trajectory grows rapidly and is not included in this region. The trajectory
converges to the stable solution with large amplitude in the shaded region (1 = 4.5 X 107%).
If the acceleration is very small (4 = 2.0 X 107?), the residual free vibration is damped out
and becomes small when saddle points appear. It is enclosed in the unshaded region from the
start.

6. 5. Other Subharmonic Oscillations

Besides the subharmonic and summed-and-differential harmonic oscillations in chapters
4 and 5, and the subharmonic oscillation discussed in this chapter, a 1/2-order subharmonic
oscillation of backward precession [—(1/2)w] and a 1/3-order subharmonic oscillation of
backward precession [—(1/3)w] may appear in such a system. The shapes of the resonance
curves of these oscillations are similar to those for some of the oscillations which have already
been discussed. In this chapter, we summarize the results of these oscillations and compare
their characteristics.

6.5. 1. A 1/2-order subharmonic oscillation of backward precession

The amplitude of steady-state oscillation is given by the following equations:

(G, + 4BO(RE + 2P + (car/2)* = 366012 P>
(6.13)
or Ry=0

where G, = 1 + i,w(—w/2) — (—w/2)% The shape of the resonance curve is the same as
that of the 1/2-order subharmonic oscillation [+(1/2)w]. However, the effective nonlinear
components in polar coordinate expression are of a different kind. Contrary to the case of os-
cillation [+(1/2)w] which is under the influence of the coefficients S and &), the coeffi-
cients #) and ) influence this oscillation [—(1/2)w]. The relationship between the angular
acceleration 4 and the maximum amplitude r,,, is the same as that of the oscillation [+(1/
2)w]. However, the effect of the initial angular position ¥, upon ', is different. While ¥,
changes from 0° to 360°, r’,,,, changes 3 times periodically in the oscillation [~(1/2)w], as
shown in Fig. 6.6, although it changes once in the oscillation [+(1/2)w].
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6. 5. 2. A 1/3-order subharmonic oscillation of backward precession

The amplitudes of steady-state oscillation are given by the following equations:

[(cw/3)? + (G, + 4BO(2P* + R})P*|R§ = (12D PRG)?

or Ry=0

(6.14)

where G, = 1 + L,w(—w/3) — (—w/3)". The shape of this resonance curve is the same as
that of the oscillation [+(1/3)w]. While the coefficients (» and B influence the oscillation
[+(1/3)w], the coefficients S and B have influence on this oscillation. Although the
characteristics of these oscillations are similar, the relationships between ¥, and 7', are dif-
ferent. The maximum amplitude r’,,,, changes 4 times periodically in the case of this oscilla-
tion [—(1/3)w], while the angle ¥, changes from 0° to 360°".
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Table 6.1. Comparison of nonstationary characteristics passing through critical speeds
of harmonic, subharmonic, and summed-and-differential harmonic oscillations

Kinds of Oscillation [+0] [+120] [-12w] [+1/30] [-13a) [pf - pb}
Influential Nontinear Components | B only Ba, & B, ¢ 5O, §O B9, 0 O, ¢
Variation Range of I''max One O~aA* 0~4 0~A 0~A A~B*
definite or or or or or
due to changes of parameters ' 0~eo 0meo 0meo 0o Ao
(with & = Const.) value
Increase in slow | Increase in slow
Vasiation of (7" ‘max)max for A Decrease Decrease Decrease acceleration range | acceleration range Not
monotonously | monotonously | monotonously | Decrease in fast | Decrease in fast | monotonous
acceleration range | acceleration range
Periodicity of Fmax for ', None Once Three times Twice Four times once
Range of A where the rotor cannot
. < < < A < <
pass for a certain ¥ L) h<hy <y <h<hy h<h<hy A<k

* A, B : Finite values

6. 5. 3. Comparison of the results

The results of all kinds of subharmonic oscillations, a summed-and-differential harmonic
oscillation [p;— p,], and a harmonic oscillation at the major critical speed are summarized in
Table 6.1.

From this table, we see that the periodicity in the relationship between the maximum
amplitude 7’,,,, and the initial angular position ¥, corresponds to the periodicity of the nonli-
near coefficients. When ¥, changes from 0° to 360°, r’,,. changes once in the oscillation
[*+(1/2)w] caused by &), once in the summed-and-differential harmonic oscillation caused
by ¢, two times in the oscillation [+(1/3)w] caused by @, three times in the oscillation
[~(1/2)w] caused by £, and four times in the oscillation [—(1/3)w] caused by . The
reason for this result is that the symmetry of the phase plane is determined by the potential
distribution.

6. 6. Conclusions

Concerning the nonstationary characteristics of a rotating shaft during acceleration
through a critical speed of a 1/3-order subharmonic oscillation of forward precession, the
following results are obtained.

(1) The maximum amplitude r’,,,, depends not only on angular acceleration A but also on
initial angular position ¥, of the unbalance and the initial disturbance.

(2) For the passage with a finite amplitude, there exist two critical values of acceleration 4,
and 4,. With an angular acceleration between these values (4; <4 <A4,), the rotor cannot pass
the critical speed for some values of ¥,

(3) The reason for the existence of the two critical values 4, and 4, is explained as follows:
In the case in which the angular acceleration is very small, the 1/3-order subharmonic com-
ponent in the residual vibration due to disturbance is damped sufficiently when the angular
acceleration reaches the critical speed. The representative point is located in the attractive re-
gion of a stable spiral at the origin. In the case in which the angular acceleration is very large,
the attractive region of the stable spiral expands faster than the growth of the trajectory and
finally the solution comes to be included in this attractive region.

(4) From the comparison with the cases of a major critical speed, subharmonic oscillations
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[+(1/2)w], {[=(1/2)w], [(1/3)w], and a summed-and-differential harmonic oscillation [
— Py}, it becomes clear that the periodicity of the maximum amplitude ', for the angular
position ¥, is related to the periodicity of nonlinear components in polar coordinate express-
ion.
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