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Abstract

In the paper, a new type of hybrid structure consisting of cables and rigid struc-
tures is proposed. In the hybrid structure, cables are used as tensile members, rigid
structures are used as compressive members. Rigid structures in the hybrid structure
may have arbitrary shapes, such as lines, circles, cubes, and so on. Initial stress is
introduced in the system to provide enough geometric stiffness, so that the proposed
hybrid structure is named “Hybrid Structure Stabilized by Tension”.

In the first step of the paper, kinematic relations and equilibrium relations are
formulated for cables and rigid structures and then for the hybrid structure. The ki-
nematic equations and the equilibrium equations are called basic equations. In the
basic equations, the degrees of freedom of rigid structures are not considered by
using the displacements of the centers of gravity as usual, but by using the displace-
ments of the nodes on their surfaces which are connected with cable members. To
this end, generalized inverse is effectively used in the paper.

By using these basic relations, the following items about the hybrid structure
are studied.

(1) Classification of stable and unstable hybrid structures

(2) Introduction of pre-stress for stability and initial stiffness

(3) Stress and displacement analysis under static loads

(4) Vibration analysis

(5) In order to examine the validity of the theoretical analyses, experiments on a
hybrid structure model are done as follows: i) the introduction of pre-stress, ii)
static loading experiment.

Keywords: hybrid structure, tension structure, cable structure, rigid structure, gen-
eralized inverse, equilibrated stress, pre-stress introduction, stability,
static analysis, vibration analysis
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1. Introduction

Under the increasing demands for long span spatial structures and light weight spatial struc-
tures, cable structures, membrane structures and tension structures, have been developed rapidly in
recent years. Tension structures consist of both tensile members and compressive members. Cables
are often used as tensile members while rods with large cross sections or posts can be used as
compressive members.

In the unstable state there exists a structural problem for cable structures, tensegric structures,
hybrid structures, etc., and the primary structural characteristics of the problem are in the existence
of rigid body displacement without stain and in the possibility of the introduction of pre-stress to
change an unstable into a stable state. The reason why these structures in the unstable state, so
called “unstable structures”, can be adopted for real structures is that a positive geometric stiffness
matrix can be constructed by introducing the pre-stresses. In the paper, the term “rigid body dis-
placement” means “displacement without strain”, and is used for the inextensional displacement in
the internal mechanism.

Theoretical methods to investigate the structural behaviors of unstable structures have been
proposed in the context of a discrete multi-degrees-of-freedom system"”, the investigation of self-
equilibrated stress system and structural behaviors of truss structures stabilized by cable tension”
and others. In the design field, a variety of tensegrity system has been proposed5'7’, and the most
successful application is the cable dome proposed by Geiger”.
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In the paper, an analytical method for examining structural behaviors of a hybrid structure
which consists of cables and rigid structures (see Fig. 1) is proposed by extending the above men-
tioned methods. In the analytical method, the Moor-Penrose generalized inverse for the rectangu-
lar coefficient matrices is effectively used for the theoretical treatment of the followings: (1) the
classification of stable and unstable hybrid structures, (2) the existence condition and the analyti-
cal method of self-equilibrated stress systems, (3) stability condition of hybrid structures after the
introduction of pre-stress, (4) the stress and displacement analysis under static loads and (5) the
vibration analysis. In order to examine the validity of the proposed analytical method, an experi-
ment on a hybrid structure model is reported, taking into consideration the introduction of pre-
stress and the deformation under the static load.

2. Basic Equations for Hybrid Structure

In this chapter, the kinematic equations and equilibrium equations for hybrid structure are
formulated. For a cable member, kinematic equations can be derived by using the coordinates of
the nodes of the member, equilibrium equations can be derived by using the axial force of the
member and the forces on its nodes. The kinematic equations for a rigid structure are derived by
using the displacement components of the nodes on the surface rather than its center of gravity. In
order to eliminate the freedom of the center of gravity, a theoretical method based on the general-
ized inverse is proposed. The equilibrium equations of a rigid structure are derived by considering
the rigid structure to be in the equilibrium state with the axial forces of cable members. In the

Fig. I Examples of rigid structures

Fig. 2 An example of hybrid structure
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equilibrium equations, forces on the nodes which are connected with cable members are used.

By collecting the kinematic equations for all the cable members and all the rigid structures,
and collecting the equilibrium equations of all the cable members and all the rigid structures, the
basic equations for hybrid structure are obtained.

2.1 Kinematic equations

Consider a hybrid structure which consists of cables and rigid structures as shown in Fig. 2.
Cables and rigid structures are connected at nodes on the surface of rigid structures. Pre-stress is
introduced and all cable members are in the tension state. Let a be a cable member (a = 1,2,..., m,,
m, is the total number of cable member), and b be a rigid structure (b = 1,2,..., m,, m, is the total
number of rigid structure).

Fig. 3 (a) shows a cable member a whose nodal points are i and j in a Cartesian coordinate
system. Let the coordinates of i and j be represented in the vector form as

X,
X =il X7 4y
Z;

@)

_1
A, _Z—(xj —xi) 3)

(x5, ¥3, 23)

[

(xi, Yi, zi)

(a) A cable member (b) A rigid structure

Fig. 3 Kinematic relation
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the second derivatives of /, with respect to ¢ take the form

-2 MJ( J =1, @

J

R x;',']l J foa Xf]l X, J=z; )
X; X;
Egs. (4) and (5) are kinematic relations of cable member a.

In the case of a rigid member which means the elongation is zero, [, = [, =0 holds, and then
Eqs. (4) and (5) become

(—m;f][,.’ii]=o 6

] ¢

+&, =0 @)

a
J

where

1 ST AT X 1 . . N\T/. .
(D(y:[—lu l(,]l.’Jz‘(x/—x,) (xj—x,.) @®)
X [\
J a

Consider a rigid structure b which has nodes k (k = 1, 2,..., ky» k, is the total number of nodes
on rigid structure b) shown in Fig. 3 (b). Let x, be the coordinate vector of node k and © the
rotation vector of the rigid structure with respect to x,y,z axes. Let x, be the coordinate vector of an
arbitrary point ¢ in the rigid structure, and X the velocity vector such as

Xy X, 9,\‘ X
X, =y | x.=|y.| ©=[6,| X= @‘J ©)
2 2. 0.

Then the velocity of node k can be represented by

X =% +6X (x—x,) (10)
which takes the form

X, =HX (k=12,..k,) (11)

where
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1 00 0 T ~2¢ ~(yk—yc)
H, =10 1 0 —-@r=zp 0 Xp—xp | G=12,. k)
001 yrve —(xk~xc) 0

165

(12)

Writing Eq. (11) for all nodes, and then collecting them into a single matrix equation, we obtain

%, = HX
in which
X, H,
X, = H=
x"b H,

(13)

14)

H is a 3k, x 6 matrix. The necessary and sufficient condition to have solution can be used in order

to eliminate X in Eq. (13), that is”

[1-HH'| %, =0

(15)

where H' is the Moore-Penrose generalized inverse matrix of H. Eq. (15) is the first order kine-

matic equation of rigid structure b.
Differentiating Eq. (13) with respect to t leads to

%, = HX + HX
which can be written as
HX =(%, - HX)
the necessary and sufficient condition to have solution of Eq. (17) gives us

|1-HH'|(%, - HX) =0

From Eq. (13), we get
X=H%,

The introduction of Eq. (19) into Eq. (18) leads to
p—mﬂg+@:o

where

(16)

)

(18)

(19)

(20)
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&, =— |I-HH'| HH'), @1

Eq. (20) is the second order kinematic equation.
Writing Eq. (6) for all cable members and Eq. (15) for all rigid structures, and then collecting
them into a single matrix equation, after deleting boundary nodes, we get

Ax=0 (22)

where X is the coordinate vector of all nodes except boundary fixed nodes, A a m x n matrix, n the
total number of degrees of freedom, and m is

m [7
m=m,+3% k, (23)
In a similar manner, from Eq. (7) and Eq. (20), we get

Airb=0, B=[d, & 24)

Egs. (22) and (24) are the first and the second order kinematic equations respectively for hybrid
structure.

2.2 Equilibrium equations

Let us denote the tensile force of a cable member a by n, and nodal forces by f;, and f,, as
shown in Fig. 4 (a):

f ix f/\
fiu = fi)' f_‘/'a = f/\ (25)
f iz @ fj a

The equilibrium equation for @ member can be written as
- A'U fiu
!x ]: . 26)
a Ja
Let us consider a rigid structure b as shown in Fig. 4 (b). Let f, be the force vector of node k,

and F be the vector which includes both forces and moments applied at an arbitrary point c in the
rigid structure as

fk=[fk_‘. fu fk:]r (k=12...k,) 27)

F=[F_\. FyF . m, m, m:]r (28)

The equilibrium equation of rigid body b can be written as
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F+Gf, =0 (29)
where
f1
fy= : 30)
fkb
1 0 0 1 0 0
0 1 0 0 1 0
0 1
G= 0 1 0 0 (31)
0 -Gz y-y, 0 ~@r, ) Yk Ve
12 0 —Qpxg) e zkb‘zc 0 *(xkbkxc)
—0 ) Xy X o .. ~0k, V) Tky ~Fe 0

By comparing G with H we get G = H'.
Consider a rigid structure to be in the equilibrium state with nodal forces, F = 0 is satisfied. In
this case, Eq. (29) becomes

Gf, =0 (32)

By using generalized inverse, we get the solution of Eq. (32).

(a) A cable member (b) A rigid structure

Fig. 4 Equilibrium relation



168 M. Wu et al.

£, =[1_ G*G]n 33)

where 1 is an arbitrary vector. Because of G = H', Eq. (33) can be written as

f,=[1- HH' n (34)

where (H)"H = (H") H' = (H H")" = H H" is used”. Eq. (34) is the equilibrium equation of
rigid structure b.

Collecting Eq. (26) for all cable members and Eq. (34) for all rigid structures into a single
matrix equation gives us

bp=t p=| %] 35)

where p_. is a vector represents tensile forces for all cable members, and p, is a vector which in-
cludes all vectors 1 in Eq. (34) for all rigid structures. By comparing Eqs. (4) and (15) with Egs.
(26) and (34), we get the relation B = A’ Then Eq. (35) takes the form

A'p=f (36)

which is the equilibrium equation of a hybrid structure.

If a hybrid structure is in an equilibrium state under tensile forces of cable members and no
external force exists, we call this state as a self-equilibrated state. In a self-equilibrated state, self-
equilibrated stress is introduced into the hybrid structure. In order to calculate the self-equilibrated
stress modes of the system, we can get the equilibrium relation by setting f = 0 in Eq. (36) as
follow

Ap=0 37)

2.3 Example of basic equations

Let us consider a simple hybrid structure consisting of three cable members and a triangular
rigid structure as show in Fig. 5. Here we us two dimensional space instead of three dimensional
space. The coordinates of the nodes are listed as follows:

{Xlzl /XZZO /X3=—] {X4=3 /.XS:U {X6:—3

yp=-1 \yz=0 \Y3=—1 y4=-2 \y5=1 Ye=-2

Let the member of node 1 to node 4 be cable no.1, the member of node 2 to node 5 be cable
no.2 and the member of node 3 to node 6 be cable no.3. Then the direction cosines of the cable
members can be written as

MRS
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(3) (1)

Fig. 5 Example of a hybrid structure

Using Eq. (6) we get kinematic equation of cable members.

X,
~2/¥51/Y5 0 0 0 0 [[2] (o
0 0 0-10 0 ’ny=o (39)
0 0 0 02//5IA5||| 10
s

The items about node 4, node 5 and node 6 are eliminated in the equation because they are
fixed as shown in figure. Also, we take cable members as rigid members: i = 0.

Next, let us consider the rigid structure. Let x. be coordinate vector of an arbitrary point ¢ in
the triangle, for example, x. =0, y, = - 2/3. From Eqgs. (12) and (14),

10 13
0 1 1

Ho| 1 023 40)
0 1 0
10 13
0 1 -1

The Moor-Penrose generalized inverse matrix of H and I - HH' can be obtained as

73 0 13 0 173 0
H= 0 13 0 13 0 13 “41)
1/8 3/8 -1/4 0 1/8 -3/8



170 M. Wu et al.

58 -1/8 -1/4 0 -3/8 1/8
724 1/4 -1/3 -1/8 124
12 0 -1/4-1/4

I- HH' =

23 0 -1/3 “2)

sym. 5/8 1/8

724

]

From Eq. (15), we get the kinematic equation of the rigid structure.

58 -1/8-1/4 0 -3/8 1/8 H] 0

724 14 -1/3 -1/8 1124 || y 1 0

12 0 -1/4-1/4|xp 10
23 0 -13|y2| |0 @3)

sym. si8 118 || x3| |0

74 ||y3| 10

Writing Eq. (39) and Eq. (43) into one equation,

2N5 IN5 0 0 0 0
o 0 0 -1 0 0 |
0 0 0 0 245 15 ||F1
58 -18 —1/4 0 38 18 |71
18 R4 14 —13 —18 104 |72 |=
14 1A 1R 0 -4 —1/4 )yé
0 -13 0 23 0 -3 V3
38 -1/8 —1/4 0O 58 18 !
118 124 —1/4 —13 18 R4

(44)

cococoococococoo

Eq. (44) is the kinematic equation of the hybrid structure. From Eq. (36) or Eq. (37), we can also
get the equilibrium equation. According to Fig. 5, no external force exists, thus
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n
0 S8 -18-14 0 38 18 | n,
INS 0 0 —1/8724 1/4 —1/3-1/8 124 ||
0 —l/4 14 12 0 —1/4—-1/4 27‘ _
0 0 -130 23 0 -13|p,
0 2//5 3/8-1/8-1/4 0 58 18 || 7,

0 IN5 1/8 124 -1/4-1/3 1/8 7124 25
6

@5)

coococoo

where, n, ~ n, are axial forces of cable members, 17, ~ 1, are components of vector 7.

3. Classification of Stable and Unstable Structures and
Introduction of Self-Equilibrated Stress

In this chapter, by using the generalized inverse theory, the rigid body displacement modes
and the self-equilibrated stress modes of hybrid structure are calculated. Classification of a hybrid
structure into stable or unstable and, classification of rigid body displacement into small or finite
type are proposed. The self-equilibrated stress system of a hybrid structure, and the condition for
stabilizing an unstable hybrid structure into stable state by introducing self-equilibrated stress, are
discussed.

3.1 Classification of stable and unstable hybrid structures

In order to classify a hybrid structure, let us examine rigid body displacements first. In this
case, cable members are considered as rigid members /,= [, = 0. For rigid members, , Eq. (22)
holds. By introducing an arbitrary n-dimensional vector &, the solution of Eq. (22) can be written
as

k=[1,- A'Ala (46)

where I, is a n X n identify matrix. If the rank of A is r, then the rank of coefficient matrix of Eq.
(46) is p = rank(I, — A"A) = n — r. p denotes the degrees of rigid body displacements and is called
“degree of geometrically unstable”. Let ¢ = m — r, then g represents the number of compatibility
conditions, and is called “degree of statically indeterminate”.

Write Eq. (46) into the form as

x=0h, +h,+.. +h, @7)

where hy, h,,..., h, represent independent modes of rigid body displacement in the sense of the
small displacement and ¢, @,,..., @, are components of vector &. Using method of reference'’, we
classify a hybrid structure as Table 1.

Next, let us assume that the rigid body displacements exist in the small displacements and
examine the existence condition of finite rigid body displacements.

By introducing Eq. (47) into Eq. (24), ® can be expressed as a function of unknowns ¢,,
Oy, o'c,,. Then Eq. (24) takes the form

A% =_éb(al,a2,,,,,ap) (48)
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Table | Classification of a hybrid structure

qg\p p=0 p>0

7=0 Geometrically Stable Geometrically Unstable
Statically Determinate Statically Determinate

450 Geometrically Stable Geometrically Unstable
Statically Indeterminate Statically Indeterminate

The necessary and sufficient condition of Eq. (48) to have a solution is
|1, - AL (¢, x,...5 ) =0 49)

If we have some unknowns @,, ¢,,..., o'zp which satisfy Eq. (49) trivially, then the finite rigid
body displacement corresponding h,, h,,..., h, exists.

3.2 Self-equilibrated stress
Let us examine self-equilibrated stress system on the condition of f = 0. From Eq. (37) we get

p=[1,,, - AT)W} B=Pig, +Pg,+..+Bg, (50)

in which g = m — rank(A), B is an arbitrary vector of g dimension and g,, g,...., g , are independent

self-equilibrated stress modes. It is clear that the number of independent modes of self-equilibrated
stress equals to the degrees of statically indeterminate.

Every self-equilibrated stress mode contains both tensile forces p, of cable members and p, of
rigid structures as shown in Eq. (35). If p, = 0, it means it is impossible to introduce tensile forces
into cable members by this self-equilibrated stress mode. On the other hand, if p, # 0, it is possible
to introduce tensile forces into cable members.

As an example of calculating self-equilibrated stress, let us examine the example discussed in
chapter 2 ( see Fig. 5). In chapter 2, the equilibrium equation has been given by Eq. (45). By using
Eq. (50) we get the self-equilibrated stress modes.

ISler 0 0
Y/r 0 0 0
Slor 0o 0o
Y1 0 Yz oo
|2 & g ogl=| %6 %6 0 o0 G1)

Wor We Wz Ve
o e o Vs
0 o Ysmz o
0 0 0 g
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Fig. 6 One equilibrated stress mode exists Fig. 7 No equilibrated stress mode exists

From Eq. (51), we can find that there are four self-equilibrated stress modes, but only g, shows
it is possible to introduce tensile forces into cable members (see Fig. 6 ).

o1 | et
ny | =B Yoot (52)
S R

If we let the coordinates of node 4 and node 6 be (see Fig. 7)
x,=1 Xg=—2
53
{y4 - 2 {yG - _ 1 ( )

then the self-equilibrated stress modes become

o O o ©

3
&) & &]=| %6 0
Ve Yz Vi
W 0o We
0 Vi 0
0 0 Y

o O o o O

(54)

There is no self-equilibrated stress mode which tensile forces can be introduced into cable mem-
bers.
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3.3 Stability after introducing pre-stress

Let us examine the stability of a hybrid structure after introduction of pre-stress. Eq. (37)
represents the equilibrium equation for a hybrid structure before deformation. Give the system a
disturbance, after small deformation, nodal force —Arp occurs. Consider mass m; attached to node i
of a hybrid structure, the equation of motion of the mass is given by

Mi=—A'p (55)

where M = diag (m;). The kinetic energy can be written as

T:%XTMX (56)

The derivative of the kinetic energy T respect to time t is expressed as

T =x"Mx (57)
By using Eq. (55), Eq. (57) becomes

T= —%"A"p (58)

Let the system be supposed to be staying at the initial equilibrium position for ¢ = 0 and give the
kinetic energy 7°(0) by a small disturbance. Then the condition for stability can be written as

Tt)-TW0)<0 (59)
Maclaurin expansion of 7'(¢) of |¢] < I leads
T()-TO)=T0O)t + %T(O) £ (60)

where T(O) equals zero because A7p equals zero according to Eq. (37) and Eq. (58). Thus Eq. (59)
becomes

7(0)<0 61)

Time derivative of Eq. (58) yields
T0)=-%"Ap-x"A'p-x"A"p (62)

Because x and p are rigid body displacement and self-equilibrated stress respectively, Ax = 0 and
ATp = 0 are satisfied. Then Eq. (62) becomes

T0)=—x"A"p 63)
Hence the condition for stability is given by
x'ATp>0 64)

By using x"A” =®7(@ and p=[1-AA]B, we get
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a) stable (b) unstable

Fig. 8 Stability after introduction of pre-stress ( in three dimensional space )

'(0)[1- 44°|B>0 65)

Fig. 8 shows two simple hybrid structure modes under the introduction of pre-stress. If two
models are in three dimensional space, then (a) will be stable under the pre-stress of the cable
while (b) remains unstable under the pre-stress of the cable.

4. Stress and Displacement Analysis of Hybrid Structure

In this chapter, an analytical method to calculate stress and displacement under static load is
proposed. In the chapter, a hybrid structure is divided into cable members and rigid structures. The
stiffness matrix of cable members which consists of elastic stiffness and geometric stiffness is ob-
tained, while rigid structures which have definite stiffness can be considered as displacement con-
straint conditions. The kinematic equation of rigid structures which formulated in chapter 2 is con-
sidered as displacement constraint conditions. The Bott-Duffin inverse method'” is used to solve
the problem. In the end, a numerical example is given and the validity of the proposed analytical

method is examined.

4.1 Introduction of analytical method

Let us examine an example of hybrid structure as shown in Fig. 9(a). This hybrid structure
contains of two rigid structures (with triangular shape) and four cable members. There are five
movable nodes. Let the displacement vector of nodes be x, the load vector be f, and the stiffness
matrix be K. Consider f as a nodal force vector, then

f=Kx (66)
Stiffness matrix K can be written as

K=K, +K, 67)
where K is elastic stiffness matrix and K is geometric stiffness matrix. We divide the hybrid
structure into cable members and rigid structures as shown in Fig. 9(b)(c). For cable members, the

stiffness matrix K. (K. = K, + K.) can be obtained. Substitute K in Eq. (66) by K, Eq. (66)
becomes
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f=K.x (68)

In the case of Fig. 9, Eq. (68) can be written as

?1 | le

f, I X,

f, _ Kee + Kge L0 |k, ©69)
i, = |

4

i, 0 0 |[%s

For rigid structures, it is impossible to obtain stiffness matrix because of their infinite stiff-
ness. By using kinematic relation Eq. (15), rigid structures can be taken as constraint conditions of
displacements. Write Eq. (15) for all rigid structures and find out independent conditions, we get

Ci=0 (70)

where Cis a (5n) matrix, n is the number of freedom, r is the number of independent conditions, r
= rank (C).

4.2 Stiffness matrix of cable member
In section 2.2, we have analyzed the equilibrium equation of cable members. Rewrite Eq. (26)

here
A [t
l* | a1
a Ja
Differentiating Eq. (71) with respect to ¢ leads to
A=A £
[ )\l nu + A, ¢ na= ‘m (72)
a a t;.a
1 3
5
4 2 4
(a) a hybrid structure (b) cable members (c) rigid structures

Fig. 9 Analytical method for hybrid structure
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Consider the first item of the left side of Eq. (72). According to the Hooke’s law,

n, = A, (73)

where E is elastic modulus and A is area of cross section. By using Eq. (4) for I(,, we get

A, . —A,
2

a a

R

J

a

Let the coefficient matrix of the right side of Eq. (74) be (K,.),

EA A'HA'ZI. - }"u}\‘g
(KEC)a=T ——;\,A.T l}\"f (75)

a a”“a a”“a

(Kge), is called elastic stiffness matrix of member a.
Next, consider the second item of the left side of Eq. (72). From Eq. (3), we can get

XI

A= L peaar paar|
a l I + a a I llx(l] 'X/ (76)

a

then

— a a”ra a”u

AT e oA

a a a”ra a”“a

(a7

J

A I_MT_1+MT|5<,

Also let the coefficient matrix of the right side of Eq. (77) be (K.,

n,| I-AAL T+A A0
K =~f“ ‘a”“a a”ta ’78
( Gc)a L I+AA T-AAT ( )

a a”ta a”a

(Kge), 1s geometric stiffness matrix of member a.
By using (K.), and (K;.),, Eq. (72) becomes

a’

f
. =[(KEC)(, +(Koe),

f

i

X’

(79)

X;

After writing Eq. (79) for all cable members, collecting them into a single matrix equation
and considering boundary conditions, we get Eq. (66) for the hybrid structure.



178 M. Wu et al.

4.3 Analytical method of Bottin-Duffin inverse

As shown in section 4.1, stress and displacement analysis can be made through the stiffness
matrix of cable members and the constraint conditions of rigid structures. Here we use Bott-Duffin
inverse method'” to solve equilibrium equation Eq. (66) under the constraint condition of Eq. (70).

Using Lagrange multiplier method, the potential energy function of the problem becomes

I, =%xTKx — &+ Ck 80)

where A a is Lagrange multiplier. Partially differentiate Eq. (80) with respect to x and and A then
set to zero, we get

Ki—f+CA=0 @1)

Ck=0 82)
where K = K is used. Let a vector r be

r=C'A 83)
then Eq. (81) becomes the next equation.

KX +r=f 84)
By now, the problem is to solve Eq. (84) of unknowns r and x with the constrain condition of Eq.

(82). To do this, the Bott-Duffin inverse method is introduced.
Make a fundamental transformation for matrix C as follow

p("x")é("X”)Q(anJ =[I" 0](7'“) 85)
where P and Q are normal matrix. Also make transformations for x, r and f as

x=Qa t=Qr ¢=Q'f (86)
Vector u and vector t satisfy orthogonality condition which can be proved as follow.

w't=0'Qr=%"r=x"C'A=(Cx) A=0 (87)
Multiplying Eq. (84) from left side by Q" and Using Eq. (86), Eq. (84) takes the form

Lu+t=q (88)
where

L=Q'KQ 89)

Multiplying Eq. (82) from left side by P
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[pC Qu=0 (90)
where x = Q u is used. From Eq. (85), the above equation can be written as
Ba=0 B=|I, 0] oD
Because u and t satisfy orthogonality condition as shown in Eq. (87), we can assume that
u=Pa t=P.a 92)

where P, and P, 1 are orthogonal projectors on L and on L" respectively. L is a linear subspace in
R', L"is orthogonal complement to L and a € R". Substitute Eq. (92) into Eq. (88)

(LP, + Pla=q 93)
Solving the above equation for a and substituting a into Eq. (92) lead to
u=L)\q 94)

In which, L}'L) is called Bott-Duffin inverse.
1 -1
L(L)=PL(LPL +PLL) (95)
From Eq. (88)

t=q-Lu 96)

For P, and P, 1, we can choose them as

P= P 1= 97

By using the transformation of Eq. (86), X and r can be calculated in the end.

4.4 Numerical example

Fig. 10 shows a simple hybrid structure. The shape of the rigid structure is equilateral tri-
angle, its three nodes are connected by three cable members with the same length of / and the same
stiffness of EA. Initial self-equilibrated tension force n, is introduced in every member. At each
node of the rigid structure, external force fis applied at the direction of z. The vertical displace-
ment d can be derived theoretically by removing the rigid structure. Fig. 11 shows the results given
1) by the analytical method proposed in the paper and 2) by the theoretical analysis. The results
which have a good agreement verify the validity of the proposed method.
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Fig. 10 A simple hybrid structure model
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5. Vibration Analysis of Hybrid Structure

In this chapter, the equation of motion for hybrid structure is derived and the analytical method
to solve the equation is given. The equation of motion derived in this chapter consists of two parts.
One is the equation of motion for cable members. The mass matrix is the sum of the mass matrix
of cable members and the mass matrix of rigid structures and, the stiffness matrix is the one which
has been formulated in chapter 4. The other part of the equation of motion is the displacement
constraint conditions. Rigid structures are considered as displacement constraint conditions as we
have done in chapter 4.

The mass matrix of rigid structure used in the paper differs from the common mass matrix of
a rigid body which contains of mass and moment of inertia. The new mass matrix is derived by
using the freedom of the nodes of rigid structure, in this case, the motion of rigid structure is repre-
sented by the displacements of nodes.

In the end of the chapter, a method to solve this kind of equations is given and a numerical
example is shown.
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5.1 Egquation of motion

In chapters 2~4, we take 7 as an arbitrary parameter to solve static problems. In dynamic analy-
sis, we take parameter ¢ as time. Let d be displacement vector of nodes, the equation of motion of
cable members in a hybrid structure can be written as

Md +Cd+ Ky + K | d=£0) 98)

where M is the mass matrix of cable members, C is the damping matrix, K, and K are elastic
stiffness matrix and geometric stiffness matrix of cable members respectively, £(7) is a excitation
vector.

Let us consider the kinematic relation and the motion equation of rigid structures. For a rigid
structure b (b = 1,..., m,), let d, be the displacement vector of its node k (k = 1,..., k,), f, be the
external force vector of node k, Dy, be the coordinate vector of the center of mass and F be the
force vector applied on the center of mass. In this case, the kinematic relation and equation of
motion of rigid structure b become

HD, =d, 99)
M,D, +F, = Gf, (100)
where matrix H and matrix G have been derived as Eqs. (12) and (31). Here, we try to describe the

motion of rigid structure by using the displacements of nodes rather than its center of mass. In
order to do this, Dy and D, should be eliminated from Eqgs. (99) and (100). From Eq. (99) we get

|1-HH'|d, =0 (101)

Writing Eq. (101) for all rigid structures gives

Cd=0 (102)

which has the same form as Eq. (70). Consider rigid structure b in an equilibrium state under node
forces, we can let F, = 0. Thus, from Egs. (99) and (100)

f,.=G'M,H'd, =M,d, (103)
where IVI,, is the generalized mass matrix. Eq. (103) is the equation of motion of rigid structure b
by using coordinates of its nodes.

Writing M, for all rigid structures into M, and collecting M. and M, into one matrix, Eq.
(98) becomes

Md + Cd +Kd =f() (104)
where
M=M.+M,, K=K +K, (105)

Eq. (104) is the equation of motion for hybrid structure.
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5.2 Analytical method
By solving the constraint condition of Eq. (102), we get

a=[1,-ctfo (106)

where @ is an arbitrary n-dimensional vector. Using normalized independent vectors b,..., b, of
the coefficient matrix of Eq. (106), Eq. (106) has the form

d=ab +..+ab, a107)

where ¢,..., @, are unknowns and p is

p=n-—rankC)=n—r (108)

If we use

B=|b,...b,|. a=[o,..0] (109)
then, Eq. (107) becomes

d=Ba (110)
Substituting Eq. (110) into Eq. (104) and left-multiplying Eq. (104) by B'

M;a + Cpa + Kpa =1£,() (111)
where

M,=B"MB, C,=B"CB, K,=B"KB, f,=Bf (112)

Because M, C and K are symmetrical matrices, My, Cy and Ky are also symmetrical matrices.
Mg, Cy and K, are p X p matrices. a and f; are p x 1 vectors.

Eq. (111) gives a, then d can be obtained by substituting a into Eq. (110). There are r con-
straint equations of rigid structures, so the number of unknowns decreases from n in Eq. (98) to p
=n-rinEq. (111).

5.3 Numerical example

In order to examine the validity of the method discussed above, an example which given in
Fig. 12 is solved by Newmark-f3 method with an iterative process to reduce unbalance force. The
hybrid structure consists of eight cable members and a cube rigid structure. The cable members
have the cross-section area A = 5 x 107" m’, the mass density 7 = 3.9 kg/m and the elastic modulus
E=2.1x10" Pa. The mass of the rigid structure is 557 kg. The nodes of the rigid structure (nodes
1-8 ) are free while the other nodes (nodes 9-12 ) are fixed. In this case, n = 24, rank(C)=18,p =
6.

Fig. 13 shows the natural frequencies of the hybrid structure and the corresponding modes
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when the initial tension force N, =5 X 10* N is introduced in every cable member. We use = 0.25
and Ar=10" in N ewmark-f3 method. Fig. 14 gives the response of free vibration with the damping
of C=10" (M + K). The solid line represents the sum of the strain of the total cable members
while the dot line represents the change of the sum of the distance between two nodes of the rigid
structure. The dot line remains almost zero which means almost no error occurs during the numeri-
cal analysis process. Fig. 15 shows the history curve of stress.

In order to obtain response curve under harmonic excitation, harmonic load of 10° sin 27ft(N)
(fis the frequency) is applied to every free nodes with z direction. We use Rayleigh damping as C,
=107 (M+K),C,=5x 10" (M +K) and C; = 1 x 10~ (M + K). Fig. 16 shows the results of
vertical displacement response z.

6. Experiments on a Hybrid Structure Model

In this chapter, experiments of a hybrid structure model with 1/2 scale of size of a planning
house are done as follows: i) pre-stress introducing experiment, ii) static loading experiment.

The experimental model consists of a rigid structure, which has six nodes on its surface. Cable
members connected with the rigid structure by nodes. The roof of the model is covered with mem-
brane. The hybrid structure is stabilized by introducing pre-stress into cable members. According
to the analytical analysis based on chapter 3, there are two self-equilibrated stress modes in the
experimental model, i.e., symmetrical mode and asymmetrical mode.

In pre-stress introducing experiment, the symmetrical self-equilibrated mode is introduced and
the validity of the proposed analysis method in chapter 3 is verified by examining the self-equili-
brated forces of cable members. Pre-stress is also introduced in membrane with about 200 kgf/m.

In static loading experiment, loads are applied to two nodes of the rigid structure. Displace-
ments of nodes of the rigid structure and stresses of the cable members are measured. The data
calculated by using the analytical method of chapter 4 have a good agreement with the results
obtained from the experiment.

1
Plane View Front View

Fig. 12 Analytical model
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Fig. 13 Frequency (Hz) and mode (N, =5 X 10* N)

T T T T T T T T T
5.0x10" 4
Initial Condition:
4.0x10 ft Displacements of Node 1-8: -1.8*10°m B
Initial Veolocity: 0
3.0x10° Damping:C=10"(M+K) 4
=
=
o 4
2.0x10° 11
1.0x10™" H
0.0 -
1 L L " 1 " 1 1 " L 1 " L "
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1.0

Time (sec)

Fig. 14 Time history curve of strain



A Basic Study on a Hybrid Structure Consisting of Cables and Rigid Structures 185

v T M T M T T T M T T T T M T T T

2.0x108 - =

1.5x108
w
o
~ 1.0x108
[
(%]
£
7]

5.0x107

0.0
L 1 A 1 — L 1 1 L 1 1 1 1 A 1 n 1 .
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
Time (sec)
Fig. 15 Time history curve of stress
10 s T T T T T
o
N 4
N ¢

Fig. 16 Response under harmonic excitation



186

Table 2 Elements of experiment model

M. Wu et al.

Item

Size

cable

tensile rod: diameter 25mm

rigid structure

pipe: diameter 48.6 mm with thickness 3.2 mm

out frame Htype: H125 x 125 x 6.5 x9
Membrane Direction Tensile Elongation
material strength after fracture
type A: PTFE warp 375 kgt/3 cm 3-10%
thickness: 0.6 mm fill 300 kgf/3 cm 6—15%

6.1 Experiment model

Fig. 17 gives the dimension of the experiment model. In the center part of the model, there is
arigid structure which is made by pipe. There are six nodes on the surface of the rigid structure.
Through these nodes, the rigid structure is connected with cables and is stabilized by introducing
pre-stresses into cables.

There are eight cable members with the same diameter of 25 mm and the numbers are indi-
cated in Fig. 17 in parentheses. One end of every cable is linked with rigid structure and the other
end is fixed at the out frame. Out frame is made by H type steel.

The model is covered with PTFE membrane. Membrane panel is fixed on the out frame and
pre-stress is introduced. Photo 1 shows the experiment model.

From Eq. (50) the self-equilibrated stress modes of the hybrid structure model can be calcu-
lated. There are two independent modes, one is symmetrical mode and the other is asymmetrical
mode. The axial forces of cable members can be given by means of the two modes as follows.

N, 1 1

N, I -1

N, 1.038 1296

N, 1.038 ~129

Ny |~ 2379 T 1422 (113)
N, 2379 1422

Ny |2245] |- 1.819

Nyl [2245 1819 |

where N is the axial force of cable member i. ¢, is coefficient of symmetrical mode and c, is coef-
ficient of asymmetrical mode.

6.2 Pre-stress introducing experiment

In this experiment, first, we introduce symmetrical pre-stress to cable members by using turn-
buckles step by step until the maximum tensile force is about 1000 kgf. The axial forces of cable
members are obtained by measuring the strains. Next, membrane is set and pre-stress is introduced.
After relaxation, the pre-stress of membrane is about 200 kgf/m.
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Fig. 18 is the process of the introduction of initial tensile forces into cable members. It shows
that proper stress is introduced for every member. After 14 steps, the maximum tensile force reaches
1100 kgf for member 5.

Fig. 19 shows the symmetrical self-equilibrated stress mode calculated from the experiment
data. The experimental result has a good agreement with the analytical result. Fig. 20 shows the
asymmetrical self-equilibrated stress mode.

Fig. 21 gives the changes of coefficient ¢, and ¢, in introducing process. We can see from Fig.
21 that ¢, increases in the process while ¢, remains small. This means from Eq. (113) that only
symmetrical self-equilibrated stress mode is introduced.

When the introduction of pre-stress for cable members is over, membrane is set. In the pro-
cess of pre-stress introducing for membrane, the axial forces of cable members vary with the in-
creasing of the membrane stress as shown in Fig. 22. For membrane material, it has some visco-
elastic properties such as stress relaxation and creep. Fig. 22 also shows the change of tensile forces
caused by the stress relaxation of membrane.

6.3 Loding experiment

In loading experiment, we apply load to node 5 and node 6 of the rigid structure by using
weights as shown in Photo 2. Load for node 5 is kept with the same value for node 6 in loading
process. We increase load step by step till the total 12 steps. The total load of the two nodes is
about 650 kgf. Displacements of the rigid structure and strains of the cable members are measured.

Fig. 24 gives the vertical displacements of nodes and Fig. 25 gives the axial forces of mem-
bers 1~4. We can see from figures that the experimental results have a good agreement with the
analytical results.

7. Summary

A new type of hybrid structures which consists of cables and rigid structures is proposed, and
analytical methods for investigating structural behaviors such as 1) rigid body displacement modes
and self-equilibrated stress system, 2) the introduction of pre-stress for a positive geometric stiff-
ness matrix, 3) the stress and displacement analysis and 4) the vibration analysis are presented by
using generalized inverse matrix.

Theoretical characteristic of the paper is that, freedoms of the rigid structures are considered
by those of the nodes on the surface of the rigid structures, which are connected with cable mem-
bers. In order to eliminate the freedom of any points in the rigid structures (such as the centers of
gravity), a theoretical method was proposed.

In the end, the validity of the presented methods is examined by the experiment of a hybrid
structure model.
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Symmetrical Self-Equilibrium Stress Mode
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Photo2 Loading by weight

Fig. 23 Loading points 5 and 6 and displacement measuring points 1~4
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