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Abstract

Effusion flows from a two-dimensional porous surface and expansion flows
from a sonic slit were studied based upon the DSMC method. Present simula-
tion was carried out under the suspicion that thermal motion of gas molecules
would partially change into back flow in effusion flow. Effusion flow was accel-
erated to a supersonic expansion flow but the virtual stagnation pressure of this
expansion flow was much lower than the pressure at the surface. Features of ef-
fusion flow with back flow were revealed. No substantial back flow was seen
even in the effusion flow from a porous surface. The back flow seemed to be
separated from the main flow of the effusion and effects of the back flow were
very restricted. Several cell sizes were employed in the simulation of expansion
flow. It was found that cell size should be finer than (slit hight/60) X (slit hight/
60) so that we might obtain accurate density contour. Value of the parameter
pod used in the simulation was about 24torr-mm, which was comparable with
the conventional experimental conditions.

1. Iniroduction

The space is the huge sink of molecules. Because of the low external pressures en-

counters, gases expand from any sources and form huge jet plumes in which continuum to
free molecular flows are included. Jets exhausting from control nozzles of spacecrafts are the
representative sources of such a expansion flow' "3 Evaporation or sublimation of ma-
terials from surfaces of space vehicles as well as effusion of remainder of combustion from

the nozzle can be a source of such an expansion flow.
Thermal motions of gas molecules exert a flow beyond the Prandtle-Meyer expansion
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fan®. Thus plume impingement in the direction of the back flow as well as in the direction of
the main flow must be taken into account. Such a back flow leads to undesirable effects as
contamination, heating, disturbance torque, and inefficient thruster operation”. Radiation
from gas molecules in the back flow occasionally may become a serious noises for the spec-
troscopic measurements of the space.

Obtaining laboratory pressure sufficiently low to simulate the space environment is not
currently possible, and in the absence of reliable theoretical predictions, numerical simula-
tions based upon direct simulation Monte Carlo (DSMC) method” will provides available
date for spacecraft engineers and experimentalists of the space materials. As above men-
tioned, the expansion flows include continuum to free molecular flows. Full scale simulation
of the total flow field must be still impossible, and the flow field should be studied separ-
atelys).

In this studies numerical simulations of effusion (exudation) flows from a porous surface
of finite width and expansion flows from a sonic slit into a vacuam are carried out. Simula-
tion of effusion flow is intended to know whether or not rest gas expands around a corner
considerably. Present simulations cover a rather restricted flow field in the vicinity of the sur-
face or slit. Results obtained by the present simulations can be used as boundary conditions
of simulation of far fields in the expansion flow.

Because of simplicity and efficiency of the method, we will apply the Bird’s DSMC
method” based upon the random walk theory rather than the simulation of the Boltzmann
equation proposed by Nanbu®). It is well known that an appropriate evaluation of the colli-
sion rate in each cell is the first requirement in the DSMC method. Two representative time
counting technique by Bird” and by Koura'?, the null collision technique will be examined in
the simulation.

Results of simulation of effusion (exudation) flows will be compared with the kinetic the-
ory analysis of the one-dimensional evaporation problem'"”. This comparison will also reveal
that whether or not the effusion flows are analogous to the expansion flows. Results of simu-
lation for expansion flows will be compared with the previous work by Boyd and Stark'>.
Present results will demonstrate detailed features of expansion flows, which will yield un-
doubtedly more accurate results than the Boyd and Stark’s works.

2. Simulation Scheme and Procedure

A. Direct Simulation Monte Carlo Method

Starting from the random walk picture, Kac' has proposed for the change of distribu-
tion function of N particles (in a microcanonical ensemble) ¢(R;7) where R denotes an array
of velocities v; of N particles instead of Liouville equation, an stochastic equation called the
master equation,

B= I [dg1sa @R~ 9k 0py. @)
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py the collision probability of i molecule with j molecule, and v; and v; are the velocity of i
and j molecules after collision, respectively. Kac made two simplifying assumptions; (1) the
distribution function depends only on the velocities (or momenta) of the particles, i.e., the
master equation describes motions of N particles in a spatially homogeneous gas. (2) the gas
is very dilute, so that only binary collisions need to be considered. The transition probability
for the random steps can be determined from the dynamics of such a binary collision. The
probability of a collision of i molecule of velocity v; with j molecule of velocity v; is assumed
to be given by Boltzmann’s “Stosszahlanzatz”.

Kac’s master equation Eq. (1) is reduced to the nonlinear Boltzmann equation as N —
o, Thus numerical simulation of many molecules yields a solution of the Boltzmann equation
as sample number N,,,, —~ %. Dividing the flow field into many cells, assigning N molecules in
the cell initially and applying a time increment A¢,, much smaller than mean collision time 7,
we can execute the motions of molecules step by step. Molecules travel cell to cell through
the translational motions, which causes a spatial distribution of molecules. Once we know
data of molecules in the cell, we can simulate the collision process after the concept of Kac’s.
If At, << 7, the first stage of molecular motion (collisionless motion) and the second stage of
the molecular motion (collisional process) can be treated separately. This is the idea of simu-
lation originated by Bird® called as the DSMC method.

Koura'® and Beloserkovski and Yanitsky'” derived simulation schemes based on the
Kac’s master equation. In the second stage of the simulation the collision probability p; and
sample number of collisions N, in the interval 4t,, should be determined stochastically. Meth-
ods of simulation of Koura”), Beloserkovski and Yanitsky15 ), and Nanbu” require evaluation
of p; of the all collision pairs in the cell, so that we must execute a lot of calculation of O(Nz)
where N denotes the number of molecules in the cell.

Introducing acceptance-rejection method, Bird reduced this calculation to the order of
O(N). The acceptance-rejection method yields the expectation

N, v
ElNZ =5 (2)

where N, denotes accepted number of collision pairs, (g0(g))., average value of go(g), Nt
the total number of sampled collision pairs, v the expectation of collisions in the cell in the
interval 4z, given by

v = 3Nn(go(8)ar (3)

n the number density, g the relative velocity g; = | v; — v; |, o the collision cross section, and
V,nax 18 given by

1
Vimax = 7Nn(g0(g))max . (4)
Bird estemated interval of sequent collisions 4z by

_ 2
®) Ate Nn(g0o(8))ac
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where the subscript ac implies the accepted value. The sample number N,, is determined by
the following inequalities.

Lz Aty < At, < Y Aty (6)

Expectation of Eq. (5) under the condition (6) yields
-1 7
Ejat] = R (7

This method is called “time counter method”. Although the time counter method yields cor-
rect (mean) collision rate v, the sample number N, is determined by an unstochastical way.
For the Maxwell molecules go(g) is constant with regard to the relative velocity g, so that Az,
becomes constant.

Since it is natural to consider that occurrence of collisions obeys the Poisson process'®,
At may be determined by the following exponential distribution

p(At) = vexp(—vAt,) . ()

Equation (8) yields the expectation Eq. (7). Equation (2) is rewritten as

N!IC — VAII?!
E[—N——_[(—;Z] B vmaxAtm ’ (9)

Thus, if v,,,,41, collision pairs are sampled, expectation of the number of accepted collisions
agree with the correct expectation of N,,, E[N,.]; substituting Eq. (4) instead of Eq. (3) into
Eq. (7), we can obtain the expected sample number E[N,].

Null collision technique'® yielded an improvement for the time counting method where
Ny — N, collisions are regarded as null (pseud-) collisions'”. So long as N > 1 time
counter method yields the same results as the results of null collision technique. In the pres-
ent simulations both time counting methods are available and they will be employed. As will
be shown later, in the simulation of expansion flow from a sonic slit, “time counter method”
works well to the extent N = O(1).

B.  Procedure of Simulation

Monte Carlo simulation of effusion flows from a two dimensional porous surface with
and without back flow and expansion flows from a sonic slit are executed in this paper. Since
each two-dimensional flow field has a surface of symmetry, the half of the flow field above
this surface of symmetry is simulated. This half of the flow field is devided into small cells
and N, molecules are initially assigned to each cell where the depth of the cell perpendicular
to the two-dimensional plane is taken to be 1 X A, where A, denotes the mean free path per-
tinent to the reference state. Setting the cell volume aﬁli, we obtain

A= N./af, (10)

where n.. denotes the number density of reference state. Equation (10) yields the relation
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between the number density of simulated molecules N, and the number density of real gas
Fleo.

Boundaries of the flow field of simulation are solid wall, edges of simulated domain in
the flow field, and a porous surface or a slit of the width D. For each boundary we employ
the following (a) to (d) boundary conditions.

(a) Porous surface or sonic slit: One additional array of cells are provided and number of
molecules in the cell is remained constant. Velocities of gas molecules obey Maxwellian
distribution pertinent to a stagnation condition or to a sonic condition. The stagnation
condition is given by pressure p = p,, temperature 7 = T;, and number density n = np.
The sonic condition is given by pressure p = p*, temperature T'= T*, number density 7
= n%, and velocity u= (yR#T+)""? where y is the ratio of specific heats and R* is the gas
constant. Molecules move to the next cell in the simulated domain by random walks.

(b) Solid wall: Molecules impinged on the solid wall pararell to the porous surface or to
the slit suffer specular reflection, while molecules impinged on the wall perpendiculat to
the porous surface suffer diffuse reflection.

(¢) Surface of symmetry: Molecules impinge on the surface of symmetry reflect specu-
larly.

(d) edges of the simulated domain: These boundaries act as molecular sinks, i.e., no
molecules enters into the simulated domain through these surfaces.

Initially 10 or 5 molecules are fed in the all cells in the domain of simulation. We assume
that temperature of solid wall is same as the temperature of stagnant gas. Under these initial
and boundary conditions, molecular motions are simulated with the aid of the DSMC
method. Simulation is executed employing hard sphere molecules.

In the case of effusion flows the initial pressure ratio is set py(0)/p(0) = 8 and the half-
height (D/2) of the porous surface is set 51, to 204 for the simulation of flow field; mean
free path A, of the rest gas for this pressure ratio is given by 4y = /8 and the corresponding
Knudsen numbers Kn, = /D are in the range from 0.0125 to 0.003. The cell size is
changed from 0.24. X 0.24, to 1.04. X 1.04,. The simulated flow domains are shown in
figures shown later. In order to obtain an asymptotic value of sonic point simulations for
small values of Knudsen number are also carried out.

In the case of expansion flows from a sonic slit initial pressure ratio is set p*(0)/p.(0) =
8 and the height of the slit is set 304.. The Knudsen number pertinent to the sonic condition
is Kn* = 0.004. Cell size is changed from 0.14, X 0.14. to 1.0A. X 1.04.. Simulated flow
domain is 404, X 1004..

3. Results and Discussion

Direct simulations of three flow configurations were carried out; i) effusion flow without
back flow, ii) effusion flow with back flow, iii) expansion flows from a sonic slit. Sampling
numbers and CPU times of representative cases are shown in Table 1. Several cell sizes were
employed in the simulation. Present results suggested that the half width of the slit should be
divided (at least) into about 30 cells. For the case of Kn* = 0.004 a cell size 0.54.. X 0.54.
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was small enough to simulate expansion flows from a sonic slit. A preferable cell size was
thus dependent upon the Knudsen number Kn*. But for the simulation of Knudsen layer in
the effusion flow this cell size was apparently insufficient and a finer cell may be occasionally
necessary for the detailed analysis.

Table 1: Values of parameters used in the simulations

flow method molecules/cell  sampling number cpu time (minute)
effusion without backflow NC 5 12500 170 (d = 404.)
effusion with backflow TC 5 12500 9
NC 5 12500 11
expansion flow TC 10 7500 120
NC 10 7500 140

i) Effusion flow without back flow.

In Fig. 1 present results for D = 404, (temperature, density, and pressure along the line
of symmetry) are compared with the results of one-dimensional evaporation problem'".
Asymptotic values as x — « of temperature, number density, and pressure of the one-dimen-
sional evaporation problem were 0.640, 0.326, and 0.209, respectively. Since the Knudsen
number Kn, = 4o/ D; A, = 84, was not so small, no quasi-onedimensional effusion flow was
established adjacent to the porous surface and features of two-dimensionality were shown in
the vicinity of the Knudsen layer.

—— 1 Dimensionadl

10 -——~ 2 Dimensional
2.0

© 08A. ]
E s lemperature ’/,,—/’ J
a? 06 =T f
= S T
o 04 Mach number -
~ D H i
S 02 e 2enelly -

00 ' . — 00

0 50 100 150 200

x/\o

Fig. 1. Comparison of two-dimensional effusion flow with the one-dimensional evaporation flow: Dis-
tributions of number density, pressure, temperature, and Mach number along the line of sym-
metry.
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In Fig. 2 location of the sonic line x,/D on the symmetric line y = 0 (or surface) in the
effusion flow was plotted vs reciprocal of the Knudsen number Kn, The results shown in Fig.
2 were obtained employing large cell sizes like a 54, X 51, as well as small cell sizes. Present
results showed that the distance tended to approach a finite value, say x,/d = 0.11, and

p/po(x;) = 0.21.
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Fig. 2. Location of the sonic point along the line of symmetry vs reciprocal of the Knudsen
number D/A..

This result suggests that the effusion flow from a two-dimensional slit is rapidly accel-
erated in the vicinity of the surface up to the sonic velocity. Thereafter a supersonic expan-
sion flow is established. As the Knudsen number decreases, this sonic condition of the effu-
sion flow may approache the sonic condition of the one dimensional evaporation flow except
the region in the vicinity of edges of slit.

Thus the effusion flow into a vacuum may be equivalent to an expansion flow from sonic
slit located at x,/D =~ 0.11. Stagnation condition of this equivalent expansion flow becomes

TOeq = 0.64('}//2) TO N
B (11)
Poeg = 0,21(y/2)7"1p,

for the moatomic gas (y = 5/3). But we need further simulations to assert whether or not
x/D = 0.11 is true in the three dimensional flow.

ii) effusion flows with back flow;

In Figs. 3 to 5 were shown results of simulation with null collision technique of the effu-
sion flow with back flows. Velocity vectors in the simulated domain were shown in Fig. 3. It
was very interesting that the backflow was separated by a flow parallel to the slit surface (see
Fig. 3). It was apparent that most part of the expansion flow was not affected by the back
step and a small portion of the expansion flow in the vicinity of the edge of the slit con-
tributed to the back flow. Figure 4 showed density contour (0/,0,) in the simulated domain.



142 Takeo Soga, Byung Gon Kim, and Hideo Suda
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Fig. 3. Velocity vectors in the effusion flow with back flow taken from the simulation
employing the null collisionn tecknique; Kn* = 0.006.
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Fig. 4. Density contour in the effusion flow with back flow taken from the simulation
employing the null collisionn tecknique; Kn* = 0.006.
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Since the number density was proportional to the average number of molecules in the
cell N,,, p/os < 0.01 was corresponding to N,, < 1 in the present simulation. Nevertheless,
time average (average of many samples) of density yielded unambiguous contours unexpec-
tedly. Simulations with time counter method also yielded accurate density contours even for
the case N,, = 0.5, so long as the present problem was concerned.

As was shown in Fig. 4, expansion fan around the corner (edge of the slit) was very
weak. Knudsen number on the contour, o/o, = 0.01 was estimated as Kn = (1/40 X
8)/(o/ps) = 0.3, ie., the expansion fan was a flow in the transition regime. Thus, as was
shown in Fig. 5, expansion flow was not so accelerated behind the slit; roughly speaking iso-
Mach lines were parallel to the slit. But this fact did not mean that effects of collisions in this

region were not important. The directions of velocity vector were widely changed through
this expansion fan (see Fig. 3).

MACH NUMBER CONTOUR

20.0. NULL CUL\LISIBN METHGD

¥

o0
(=]
=z
— \ )
n v
Y/
Zz
™

T~ 1T rrrr U U7 1 o bt b
-10.0-8.0-6.0-4.0-2.0 0.0 2.0 4.0 6.0 8.010.012.014.0168.018.020.0
X /N

Fig. 5. Mach number contour in the effusion flow with back flow taken from the simulation
employing the null collisionn tecknique; Kn* = 0.006.

The results using the null collision technique yielded a little smaller density predictions
than the results obtained by use of the time-counter method; the null collision technique
rather than the time-counter method yielded slightly rapid expansion.
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iii)  Expansion flow from a sonic slit

In Figs. 6 and 7 were shown density contours of expansion flow from a sonic slit taken
from numerical simulation employing the null collision technique and the time counter
method, respectively. Molecular numbers per cells was 10 in the simulations. Results of the
time counter method yielded almost same results as those which the null collision technique
yielded.

<
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Fig. 6. Density contour in the expansion flow from a sonic slit taken from the simulation
employing the null collisionn tecknique; Kn* = 0.004.
TC M- . - .
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9 100

Fig. 7. Density contour in the expansion flow from a sonic slit taken from the simulation
employing the time counter method; Kn* = 0.004.
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Boyd and Stark'? carried out a simulation of expansion flow from a sonic slit for Kn* =
0.03. Figures 8 and 9 showed density contour and velocity vectors taken from the present
simulation employing null collision technique for Kn* = 0.03. Cell size employed was 1.54 *
X 0.52 *. Even if we employed a large cell size 54 * X 31 * which Boyd and Stark employed

present results showed a quantitative disagreement with the results of Boyd and Stark (see
Fig. 1 in reference 12).
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Fig. 8. Density contour in the expansion flow from a sonic slit taken from the simulation
employing the null collision technique; Kn* = 0.03.
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Fig. 9. Velocity vectors in the expansion flow from a sonic slit taken from the simulation
employing the null collision technique; Kn* = 0.03.
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So far as number density is concerned the present results for x/D = 1 agree with the sol-
ution of Euler equation. The expansion flow along the line of symmetry (surface of sym-
metry) approached a cylindrical expansion flow from a virtual line source.

Since the present simulation, in the dimensional expressions, is equivalent to an expan-
sion of gas with stagnation pressure p, = 3.2kPa from a slit 1mm in height (i.e., pyd =
24torr - mm) into a vacuum; this value of the parameter is in the range of conventional ex-
periments. A detailed comparison of the present results with experimental results will yield
useful informations on the DSMC method.
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