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Abstract

First of all, the issues of artificial intelligence present dualism, tool, mental
act, pure and practical reason, symbols and the realizability of an artificial intel-
ligence system. The main points of Chap. I are importance of rapid, complex
and very long reasoning of Al as a tool, the difficulty of fluids engineering
problems which require very profound knowledge, and igniting the mental act.
In Chap. II, problems are considered, which appear when the domain of dis-
course is defined equations, and it is shown that in order to find the corre-
spondence between such a world and the real world, we need practical reason.
Also the meaning of symbols is discussed as a process of the compression of the
world into symbol and reconstruction of the world from the symbol. Finally, the
significance of idea related to Al is considered. Following chapters treat real
problems.

In Chap. III an efficient method is presented for computational fluid dyna-
mics, which produces a finite difference code automatically for general non-li-
near parabolic equations. Dimensional analysis has shown very important quali-
tative results for complex problems in many scientific and engineering branches.
An automatic and very general dimensional analyzing system is described in
Chap. IV and its high performance is shown by ways of examples. Discussion in
Chap. V centers on an application of knowledge engineering to problems in
fluid mechanics. The study is also intended to reveal information about the
structure of the solving process of human beings in this field. The analyzing sys-
tem simulates the student’s way of processing. Concept data, equation data and
inference data are assumed. Examples are given of the problems to determine
material characteristic values using equations. Chapter VI considers the fun-
damental aspects of an application of artificial intelligence to a solving mechan-
ism for elementary problems in fluids engineering. Problems in fluids engineer-
ing are classified into two categories, one with unchanging circumstances and
the other with changing ones. A multiple layer production system is im-
plemented and it is shown that such types of problems can be well represented.
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I. General Introduction

1. 1. Dualism

The various meanings of the object of Al (artificial intelligence) have been forcus for
many philosophical disputesl’m*z). In contrast to conventional technique aimed to work as
an agent of a human being, which extends and multiples the external action of a man, Al
technique is studied to make a machine which performs the work of agent of man and mag-
nifies the intelligent ability of the human being. As a scientific study, the main problem of Al
is to understand the mind of the human being by using mainly a computer and to simulate its
action by a computer. Thus, Al is concerned with the mind of human being, and this is why
so many philosophers have joined the discussion about AI’s significance. The serious issue of
whether Al is able to add something to the intelligence of man will be addressed in sec. 2.4.

According to Plato’s consideration, philosophy is classified into natural philosophy
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concerning with nature and related topics, ethics which studies human nature and related
problems, and logic which supplies an exact method to the other two branches' . Plato’s
analysis about technique is also of interest, for, according to his study, for exampIe a flute
technique has three stages: the first is the technique of selecting and obtaining the right ma-
terial for the flute, the second is to produce a flute from the material and the third is to play
the flute. If we apply a consideration like Plato’s to Al, the problem is whether the object of
Al is nature or the human being. If the object of Al is nature, one of the Al methods to gain
insight into one’s own thought divides the self into the one seeing and the one seen. The lat-
ter is nature in this case, and the problem is the validity of such a procedure as an objective
method. If the object of Al is the human being and pertains to ethics, which must treat the
concept like free will, then the objectivity of Al as a science becomes ambiguous.

Following Plato’s classification of the flute technique, we are aware of the relationship
between the three stages. Flute playing technique has a close relationship with the structure
of the flute, and the structure is related to the material used and to the technique for acquir-
ing the material. Thus the question arises: Although contemporary discussion of Al neglects
the problem of the structure of the human brain or computer hardware, is it an appropriate
method of the problem as in the case of flute? This question is related to the correctness of
dualism. The novelist Thomas Mann treated this problem very impressively in his novel, the
Replaced Heads' ™. In the novel at first a man A is represented as a combination as in:

A=(Ay| Ap),
Ay The head of A,
Ap: The body of A.

There is another man B,B = (B | By), and their heads have been replaced in a very compli-
cated fashion to become

A'= (Ay| By),
B'=(Byl| Ap),

and at first it was assumed as
A=A and B = B.

Thus, it is considered that the essential element constituting a man is the head. But after some
time passed, Ay in (Ay | Bp) was affected by By and Ay after replacement shows a resem-
blance not only in appearance but also in thinking with former By, and B, in A’ changes so
as to resemble the former A, under the influence of the A,. As with A', By in B’ approached
the former A, both in appearance and in thinking affected by replaced Ay in B and Agzin B’
shows features of former By invaded by power of By.

According to this novel, the head (brain) and the body of a man cannot be considered
separately. And if this is a correct idea, we should include this fact in the Al-simulation of
human intelligence.

The problem in cognition, the relationship among the object, the subject and the recog-
nized idea is important for Al in terms of the question about the correspondence between the
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seen object and visualizing machine and judgment and thought obtained from the output of
the machine. For example, this situation appears symbolically using a microscope by increas-
ing the magnification of the instrument, the thinking about the microuniverse changes, and
such an idea forms a strong motivation to improve the instrument. Also, in case of a compu-
terized visualization, we should ask the meaning of a color produced by computer. In spite of
the above issues, in this report we stand the position of dualism which means Al technique to
be consisted of two senses, hardware and software. The reader mainly interested in the phil-
osophical dimension may skip to chapter II.

1. 2. Tools

Papers on Al are dramatically increasing and reports of expert systems for diagnosis in
various fields are especially numerous' . The present study tends to be outside this main-
stream, considering more fundamental problems of applicability of Al with respect to
author’s special field of fluids engineering. From this point of view, it is convenient to classify
Al systems into three: those which assist with the problem solving of fluids engineering as a
tool, those which are used to analyze the structure of fluids engineering problems and the
characteristic reasoning appearing in this field and those which help to describe pictorially or
in words a flow field. The last system has fundamental importance, but only a preliminary
discussion will be given.

CFD (Computational Fluid Dynamics) is the most valuable tool, but in this study we will
discuss only its role in the problem solving to be considered in the next section. The other im-
portant tool in fluids engineering is the symbolic computation system. Since the mathermati-
cal equations appearing in fluids engineering have much of variety, development of the sys-
tem accessible to the user gives powerful tool to the research workers. For example, equa-
tions of fluids engineering concern incompressible fluids and compressible fluids which must
include thermodynamics and shock wave, Newtonian and Non-Newtonian fluids which are
formulated by very complicated constitutive equations, laminar and turbulent flow which is
represented by using intrinsic probabilistic nature of flow, and MHD flow, magnetic fluids,
reacting fluids, nematic fluids, multiphase fluids, flow in porous media, relativistic flow and
son on.

Takeuti, a logician at the University of Illinois, pointed out that the present logic is very
suitable to the problems which have small number of cases amenable to check each variation
or have an infinite or a very large number of cases amenable to be took a limit. He suggested
that when we can treat the medium cases by computer, which have too many cases intractable
to the human being directly, there is a possibility to change our thinking method' ™. We con-
sider that symbolic computation of fluids engineering may be one example in line with Ta-
keuti’s suggestion. Also, a remark proposed by Terada, an outstanding experimental physic-
ist, is intimately related to Takeuti’s inference. Terada said that if a problem has complete
complexity, it may be treated as a statistical problem. And if a problem involves a small num-
ber of components and a small number of conditions we can treat it as a deterministic system.
The most troublesome case has medium complexity'~". Although some reservations may be
necessary with regard to his remark after the chaos of a nonlinear problem is unveiled, it is
still basically on the mark.

A brief review will be given about the research of fluids engineering in this direction.
Van Dyke has pursued a computer extended series solution of various fluid mechanical equa-
tions' ™. Perry et al. uses computer to generate automatically Taylor series of Navier-Stokes
equations (NS equations) in order to study a singular point of separated flow' . Constitu-
tive equations of non-isotropic continuum mechanics are being studied using REDUCE by
Xu et al.'" ™' MACSYMA is used to apply the theory of Lie-group to NS equations' ™",
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A very interesting example related to Takeuti’s suggestion is the Fractal Fluid Mechanics de~
veloped by Schlechtendahl using REDUCE'™'?. He asserts that the theory of turbulence and
multiphase fluid should be able to treat the concept which allows a difference between the
local physical value at a point and the average value over the region including that point, and
then derives new momentum equations. In practise, the combination of CFD solver and Al
technique is important and some progress has been made in the field of fan design' ™"

A database may be used as a tool for fluids engineering, and the most important one is
the database on material property of various fluids. The a database including thermal and
chemical properties and supported by an expert system is useful for engineers. For example,
an expert system is valuable which has a database including a very complex Morier chart of
wet air and to assist in the design of air-conditioning systems. The other cases, difficult prob-
lems of the correctness of the data, changes in the values by new experiment and new materi-
als added, arise in these databases' .

Experimental techniques in fluids engineering have increased data as exponential of
time, and deducing new knowledge from them involves tremendous work. This is why an Al
system to produce databases from such experiments is necessary in the near future. This may
also apply to the calculted results of CFD.

1. 3. Issues in automatic problem solving for fluids engineering

Some characteristic points of fluids engineering problem solver, special problem analysis,
invention of solving method and necessary knowledge will be discussed in the following.
Fluids engineering is a branch of engineering based on fluid mechanics as a branch of physics.
As another engineering branch, it is used to govern and use the other things by fluids. Since
the problem of fluid mechanics appears in more simple form than in fluids engineering, we
consider the problem solving in fluid mechanics. In every problem we should restrict our at-
tention to a domain of discourse and we restrict it as a solution set of NS equations (Navier-
Stokes eqgs.). As mathematical physics, fluid mechanics has axiomatic aspects and follows
Truesdell’s dogma that the essence of problem solving in physics is not a physical discussion
about the problem but to solve the equation under suitable conditions.

The process is formulated as follows. The fundamental NS equation for incompressible
Newtonian fluids is

3 .
Equation of continuity ), % =0, (1.1a)

i=1 i

. au,» 3 auf o 1 ap 3 azui
NS equation '+ /_;uj = o 5;(_*‘ V}; o + fi (1.1b)
(i=1,2,3).
Let the abbreviatd form be,

NS.{u; v} =0, (1.2)

where x; denotes cartesian coordinate, u;: velocity component, p: pressure, o: density of
fluid, v: kinematic viscosity of fluid and f;: component of external force. Since density is not
important, only v appears as a parameter in Eq. (1.2).

Eq. (1.2) may be interpreted as an operation NS. which selects a function set {u}yg from



188 1. Nakamura and T. Watanabe

suitable general function space. The concrete form of the solution function may be selected
from {u}ys under the constraints of the initial condition (A) and the boundary condition (B).
We express this process as follows:

(A’ B)'{“}NS = Woturion = U (13)

In practice, using CFD solver (CFD), we approximate ug as a subset: [ugly C R' where R
denotes real number and R’ indicates {x1, x5, X3, #} (exactly R in CFD is rational number).
Let this procedure be

(CFD).[((A); (B))-(u}ns] = {us)w, (1.4)
or write A, B as conditions in the following expression,
(CFD).[NS[u, v} = 0| (A), (B)] = [ug],. (1.5)

This equation means to derive a system of simultaneous equations by use of suitable discretiz-
ing method from NS{u, v} = 0 under the conditions of (A) and (B), then to solve the system
numerically. This can be done in a simple flow problem. Since the output, {ug)y, of a usual
CFD solver involves too many numbers to be directly understandable by a human being,
{ug}y should be compressed to a set [ug)ye which expresses meaningful numbers, graphs or
animations.

From the viewpoint of Al it is of interest how to construct an operator defined as

(CV)fus)y = {uglne (1.6)

where (CV). means a procedure to compress or to compact and visualize a set {ug}y. Here is
the contact point between a set {u;}y and a human being. The operator, (CV). should process
{ug]yc to have fluid mechanical significances and understandable intuitively by experts and
non-experts. In particular, the role of (CV'). is important when u shows chaos or turbulence.

Aside from these problems, the present discussion concerns the condition (B). Two
types of (B) are classified as the one related to infinite distance and the other connected with
finite distance. The concrete form of (B) can be known only after the concrete flow field is
defined. However, the flow field appears with infinite variety and it is impossible to express
(B) as a function to vary its parameter to fit each case. For example, a sand-roughened sur-
face has intrinsic stochastic character and can be described only like a non-anticipating func-
tion. For this reason, (B) can not be implemented in the computer beforehand.

If we assume that some general equation determining (B) is obtained, of course such an
equation is not a usual equation but is constituted from usual equations, sentences and
graphs. Then the method for solving such a general equation is an important application of
AL A more simple but still not solved problem for current CFD solver is how to determine
the calculating region around a finite body. Since current CFD solvers cannot treat an infinite
region, they are restricted to a finite region and the no exact condition far downstream region
is not known. We should make some intuitive decision on the scale of the calculating region.

The next problem is the initial condition (A), which is related to (B), since (A) should be
given for the entire flow region because Eq. (1.1b) is an elliptic partial differential equation.
To determine (A) for turbulent flow is difficult.
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Historically, many renowned mathematicians and theoretical physicists tried to solve
fluid mechanical problems following Truesdell’s dogma, but no one has been able to solve
them in general so as to be applicable to practical fluids engineering. Fluids engineer de-
veloped clever solving methods which constitute with abstraction of the problem in some
sense or so called approximate methods and experimental methods. In these methods, from
the mathematical standpoint, some integration is performed for Eq. (1.1) and to reduce vari-
ables to obtain solvable algebraic equations. A fluids engineer does not usually integrate Eq.
(1.1) in order to derive necessary relations, but he takes a suitable control surface, assumes a
reasonable distribution of various quantities on it from his experience, and applies a physical
law more fundamental than Eq. (1.1).

For example, let a pipe or general duct
surface is defined by a suitable co-ordinate,
while in the practical situation this is almost
impossible for the real pipe. After integrat-
ing Eq. (1.1a) in the domain bounded by
the control surface S which is composed of
the sections A, and A, and the pipe wall as
shown in Fig. 1.1, we obtain the mass con-
servation law by use of the divergence theo-
rem of the following equation,

pipe wall

Ay

3 .
// Z éfl_l dV = f/ uin,»da= 0, Fig. 1. 1. Control surface S.
vi=1 0X s

i

where n; denotes a component of a unit normal vector. Since fluid cannot penetrate the pipe
wall, the above equation becomes as follows,

"f_//; unda = //A unda= Q, (1.7)

where Q denotes discharge of the pipe. Area averaged velocity v is defined as v = (Q/A and
since Q igcunstant, we obtain the following,

vA = Q= const. (1.8)

In fluids engineering, without considering Eq. (1.1a) and from the first step, we assume a uni-
form velocity in a section and apply mass conservation law directly to the control surface to
obtain Eq. (1.8).

Let x be the axial distance in Eq. (1.8), then A = A(x) and Eq. (1.8) can be written as,

v=v(x) = Q/A(x). (1.9)

In the real flow field velocity changes in the three-dimensional space, but in this treatment
the velocity varies only with x and this method is called as one-dimensional approximation.
However, from another point of view, this method may be identified as a one-dimensional
abstract method since it applies to any shape section.

Another important equation for pipe flow is Bernoulli’s equation. Let the viscosity of
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fluid be negligible for the moment and the flow be steady, then the resulting equation of Eq.
(1.1b) is integrated along a streamline to obtain Bernoulli’s equation. In fluids engineering,
we apply the deep physical law of energy conservation directly to the control surface in Fig.
1.1 and derive the following Bernoulli’s equation as,

1 oV + p+ gz = const, 1.10
2

where g is the gravitational acceleration and z is the height of the duct center from the some
level defined and z = z(x). As with Eq. (1.9), no particular condition is imposed on the duct
shape in Eq. (1.10). Also, the difference between the laminar flow and turbulent flow is ne-
glected to obtain Eq. (1.10). Extension of Eq. (1.10) to the case having energy loss due to
energy dissipation in the flow is done by introducing loss coefficient A inferred from the
dimensional analysis. The difference between laminar and turbulent state is presented only
through the value A, which is calculated theoretically for the laminar flow in straight pipe or
simple duct and can be known only from the experiment for the turbulent flow. Even though
the flow is laminar, it is difficult to calculate A by present CFD solver for the duct of a com-
plicated geometry.

The introduction of A is very clever. If fluids engineers have adhered to solve Egs. (1.1a)
and (1.1b) directly in order to obtain a pressure drop in a pipe, they could not treat fluid flow
reasonably, and water turbine, boiler, steam turbine etc. would not develop. Therefore, we
cannot use electric power, transistor or computer, and Eqgs. (1.1a) and (1.1b) will never be
solved. However, fluids engineers were wise enough to find out that turbulent flow can be
treated by the spirit of Kant’s practical reason, that is the experimental method in this case,
even though it cannot be completely analyzed by the pure reason of Kant. They performed
many measurements and found the law of the pressure drop along a pipe line, which is still
not calculated by any present CFD solver.

From the above discussion it is apparent that schemes like Eqs. (1.5) and (1.6) cannot
be of practical use, even though the fundamental equations are obtained and a good partial
differential equation solver is developed. The method to apply them to real engineering prob-
lems remains to be found. A true high quality problem solver should have the ability to
derive equations like Egs. (1.8) and (1.10) to obtain useful solutions to fit the situation en-
countered when it cannot solve exactly formulated problems like Egs. (1.1a) and (1.1b). A
very sophisticated intelligence is necessary to solve the problem with suitable modification
and simplification when it is found too difficult to treat by exact formulation.

1. 4. Qualitative reasoning and the mental act

In this section, we consider the reasoning which is regarded as qualitative in fluids engin-
eering. The sentence

“Incompressible fluid flow through a pipe shows increaed velocity and decreased pres-

sure at a reduced section”
is considered usually as an example of qualitative reasoning. This inference is deduced from
the equations

Av= Q= const., —%— oV + p= const. (1.11a,b)

In Eq. (1.11b), the gravitational term is omitted for the sake of convenience. The most
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important point of the reasoning process is to start or to trigger one’s mental act to conjecture
about what will happen if the duct area A is reduced. In this case, there are three parameters
to be varied and the three mental actions which should be triggered are:

1. The mental act to change variables in the world on which the real world is projected.

2. Selection of the variable as the mental act. '

3. The mental act dealing with how to change the selected variable.

In this regard, reason is defined as follows:

The reason is to commit the mental act which is allowed and has no contradiction in the

projected world.

From this point of view in quantitative reasoning, the reasoning mental act defined above
produces some sets of numbers and the qualitative reasoning produces some thing other than
numbers. However, to grant the objectivity to the qualitative reasoning, we should relay on
the characteristics of numbers, since the most rigorous objective reasoning uses numbers, as
has been pointed out' ™", So the qualitative reasoning is the mental act which produces the
set of numbers different from the traditional structure. The examples are quantization and
qualitative integrallfls).

At this point another problem appears as to whether or not the reasoning act by a man
using a pencil and paper is a mental act. We consider this is not a mental act because we can
not distinguish the reasoning act using a pencil and paper from the reasoning act using a sym-
bolic computation system, and from the reasoning act using an experimental apparatus. Of
course, common man is not equal to Feynman and a common man cannot perform a long
chain of calculations as his mental act. The mental act defined above is an idealized interior
act of a human being.
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II. Fundamental Discussions

2. 1. Knowledge and fluids engineering world defined by equations

An important discussion about knowledge was already given by Plato long ago in one of
his books of dialogues, Teaithetos. Refutation is made in the dialogue about the usual con-
cept of knowledge, that is, knowledge about playing a flute, knowledge about cloth etc. All of
these forms of knowledges are knowledge about something and a debate is given about pure
knowledge, not knowledge of something. Discussion on the meaning of knowledge by philos-
ophers has a long history. In these many ideas, Fichte’s one is interesting from the stand point
of Al. According to him, knowledge is the knowledge inevitable about something, and when
knowledge represents deep knowledge, it necessarily has the character of an imagez*l). This
thought corresponds to the assertion by Delgrade and Mylopoulosl_m that a knowledge base
must represent something. They define knowledge in Al as justified true belief and represent
a knowledge base KB as follows,

KB= < KBy, >. (2.1)
Where

KBy: a set of statements expressed by a language governed by a logic L,
t-,: the derivability relation in L, ie., specifies what can be derived

from the axioms, given the rules of inference in L.

Then knowledge a belongs to KB when a satisfies the condition as follows,
a € KB iff KByb,a. (2.2)

Thus, the example knowledge base contains not just the statements in KB, but others that
can be derived from them in L.

Now we discuss some problems of this definition from the viewpoint of fluids engineer-
ing. Let us assume KB, expresses fundamental equations of fluid mechanics including the
usual Jaws of mechanics. For example, ideal fluids can be described by Eq. (1.1a), and fol-
lowing Euler’s equation without external force and some suitable initial and boundary condi-
tions (A) and (B), respectively, are obtained:

. __109p
Eu: + Z fax > on (2.3)

Then KB, = (Eu,(A),(B)) = KBy also includes laws of mechanics. L may be usual mathe-
matics.

This fluid mechanical system has various invariants; for example, Kelvin’s circulation
conservation theorem:

Ke: % u - dx = const., (2.4)
c
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where C means a curve moving with fluids. This theorem gives very important knowledge
about the character of a vortex, which is a generic concept to describe fluid motion. Since the
proposition Ke is derivable from KB, defined above, then:

Kee KB= < (Eu(A),(B)),r, > . (2.5)

We ask how to construct a program which can answer a question whether KB has Ke or not.
How can a program be written to trigger +, to derive sequentially Ke which is not included
in KBgg explicitly? Even an excellent student cannot derive Ke from Eq. (2.3) without a
teacher’s hints. Only a great theoretical physicist like Lord Kelvin can ignite the inference
process to derive Ke from KBgg. So we should ask what kind of a mental action Lord Kelvin
has.

The set of flows represented by Eq. (2.3) includes potential flow, in which the velocity
can be obtained from a scalar potential ¢ as w; = d¢/dx;,. While it is also difficult to obtain
this proposition from KB, we assume it is possible. Further inference compatible with L
shows that any body in such a flow receives no reaction force from the flow. This un-
doubtedly contradicts our experience, and this fact is called d’Alembert’s paradox. Within the
knowledge derivable from KBgr = (Eu,(A),(B)), a body in a potential flow receiving no
force is not a paradox but a compatible knowledge. The above fact indicates the thorny prob-
lem of the correctness of a knowledge base.

If a knowledge base <<KBg, ;> can be programmed and implemented on an AT com-
puter, in the first place, a man having no knowledge about vortex can not ask the Al com-
puter about Kelvin’s theorem. It is not an ens for him in the meaning of Parmenides. The Al
computer implementing these KB should teach a man like his teacher to do in order to mani-
fest the AI computer’s knowledge about Kelvin’s theorem. Since the conventional definition
of knowledge base is founded on very simple KB and L, another consideration should be
given.

2. 2. Pure reason and practical reason

Following Kant, the aesthesia (i.e., sensors of a robot) is an ability to receive an idea (a
subset of inputs representing some part of categories of the object) by incentive (physical in-
puts received by the sensors) from an object. Explanations in parentheses are the authors’ in-
terpretation according to the present context. However, the mode of receiving the idea, that
is the sense datum, is not the aesthesia but the immediate mode to be possessed a priori by
the immediacy. This thought means that the cognition of the object consists of the priori
mode of the cognition. This signifies that the cognition does not depend on the object but the
object does depend on the cognition, and this is a Copernician conversion according to
Kant”™”, From this idea Einstein’s advocacy follows immediately that because we have a the-
ory we can recognize the object to be measured. Also Kant recognized the intelligence which
has an ability of inference.

Although Kant’s concerns are entirely philosophical, they may apply to the present con-
text, and the knowledge base discussed in the previous section will be analyzed following
Kant. If we restrict KB, in << KBy, +; > = KB to Euler’s equation, that is, let KBy = KB,
then the whole knowledge obtainable from the KB is the one about perfect fluid. If we con-
sider the object, the world is the whole knowledge as mentioned above, the ens permited to
exist in the world is the only one compatible with KB. As pointed out by Einstein, shear
stress and viscosity are not objects to be measured in the world of Euler’s equation. A not in-
significant example is that if we assume random initial condition there may arise turbulent
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flow in the world of KB produced by Euler’s equation, but the decay of turbulence, the main
problem of turbulent flow, is the non-ens in this world.

If we extend the knowledge base or knowledge system to the one which can treat viscous
fluids, we must include NS equations Egs. (1.1a) and (1.1b) to KB,. In this case many diffi-
cult problems arise and there is no guarantee that the logic L in KB for viscous flow is as
same as the one for Euler equation.

Now we assume that we can extend the KB to include CFD solver, Eq. (1.4), and fur-
ther we can construct some kind of analytical inference system denoted as (AE). and (CV).
of Eq. (1.6) to be implemented by an AI computer. This super fluids engineering problem
solver can be written formally as

(AE).
cv). [NS.{u,v] =0 | (4),(B)] (2.6)
(CFD).

There arises a question who asks this system a problem and what a problem it is.

This super solver can calculate the transition process from laminar flow to turbulent
flow. But a man having no knowledge about the transition phenomenon cannot ask about it
because the problem is the non-ens in the meaning of Parmenides. In this case he cannot ask
the problem consciously but only accidentally, without knowing its meaning. However, in
such case he will perhaps be able to understand the answer from the super solver only if the
super solver perceives his ignorance about the problem and explains to him the significance
of the problem with igniting his will to know it.

From the history of fluid mechanics we become conscious that almost all important phe-
nomena have been unveiled by experiments, and theories were devised to explain them after
discovery. For a leap from the world of the Euler equation to the one of the NS equations,
we need a practical experiment in the real physical world or a mental act of thinking experi-
ment. In both cases the main problem is how to trigger to act such an action in the real world
or in the thinking world. Mathematical development of ideal fluid theory based on the a
priori pure reason mode of the Euler equation has been done completely but it may lead to
the serious mistake by which one considers that only the phenomena described by Euler equ-
ation can occur in nature. Practical experimental experience shows that the degree of agree-
ment of the solutions of Euler equation to the experimental data is radically different case by
case, or even in various regions of a flow field. The Euler equation solver cannot distinguish
between these various cases by itself. The same proposition holds for NS equation solver.
Any such system cannot clarify the limitation of its ability by itself.

But, let us consider the more fundamental question as to how an Al computer can count
a number of things? Set theory constructs a natural number as a correspondence of null set, ¢
to 0, {¢) to 1, {4,{¢]} to 2, and so on. Here we do not discuss the construction method of natu-
ral number but consider the correspondence between 1 constructed like this and the real
world. The problem is how to make an Al computer or system count a number of things.
What kind of structure or architecture should be incorporated into an Al system which can
answer the question in the situation: when there are a pencil, an eraser, a book, a paper, a
tube of paint and a picture on a desk, the problem is to count the number of things on the
desk? Also, there is a difficult problem of how to teach an Al system that the “one” appear-
ing in statements like “there is one constitution in Japan,” the one appearing in a
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statement “there is one cup of water,” and the one appearing in a statement “I have one
week vacation,” corresponds to the set {¢}.

In regard to this problem, the logician Takeuti’s remarks are important'~®. He pointed
out that for the cognition of a natural number, the action to move to next process is indis-
pensable. Also Oka, a famous mathematician, said that a baby learns the meaning of the
natural number one through various actions. According to Nishida, a philosopher, the cogni-
tion of the correspondence between thing and natural number needs an active intuition” .
Thus, for the closed a priori mode of Al, it is difficult to obtain the correspondence between
the knowledge and the real world as pointed out by Kant, and the knowledge acquisition
should be performed by practical reason.

The typical case of this process is the invention of the microscope as mentioned pre-
viously. Owing to the practical reason appeared as microscope technique, we recognized bac-
teria and our world of knowledge was expanded. In fluids engineering, techniques of hot wire
and flow visualization expanded our cognition of the flow world. What kind of magnification
of intelligence of human being will be produced by AI? The microscope for intelligence com-
posed of Al should be constructed practically in order to show its ability.

2. 3. Symbol and perspective of intelligence

In the present Al system, everything is performed as changes in the idea of numbers pro-
duced in a computer. Usually it is said to be done by the binary number system, but in reality
the entity in the computer is a pattern of the electric potential distribution. And we assume
the pattern to be a binary number system through the symbolization of the pattern by our
mental act.

Symbols used in fluids engineering are not simple ones, but here they are used as a fam-
iliar system to the authors. For example, let the dependency of variables in Eq. (1.8) on the
duct axis length be expressed and put in the following form:

A(x)v(x) — Q=0. (2.7a)

A(x) is real positive, O can take both signs, of which plus and minus means favorable and in-
verse flow in the x direction, respectively. Then v(x) can take plus or minus value. In order
to clarify the mathematical nature of the equation, it is put in the following form:

Z(x)y(x) —w=0, z(x)>0. (2.7b)

By the same consideration, let Eq. (1.10) be in the following style:
L ey + i(x) —d =0, (2.8)

From two equations (2.7b) and (2.8), we can solve simple fluids engineering problems, but
an Al computer which knows only these equation systems can never realize what kind of
world corresponds to these equation system. Although these equation systems can describe
various fluid systems including air, water, oil, mercury and so on, if compressibility or cavita-
tion becomes important, these equations fail to descirbe the real world and the condition can-
not be derived by these equations.

Like the symbolization, the nature of the real world can be sampled and compressed to a
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symbol, and then some mappings from the real world into the world of real number become
possible. Also, the process in the other direction — the reconstruction of the part of the real
world from the symbols — should be made. Hence, the following schema can be formed:

D

RWTRT

SW. (2.9)

where,

RW: a part of the real world
SW: asymbolic world
(M).: sampling and compression

(R).: reconstruction

The processes (M). and (R). include interpretation of the real world and the symbolic world,
respectively. Of course, there arises the problem whether it is possible to regard (M). and
(R). as worlds to construct a same schema for them or not.

If we consider the water flow in a pipe line, and if the Al computer predicts when one
opens a tap he or she will be able to drink water, but only after he or she opens a real tap, he
can know whether he or she can drink water or not. This situation asserts that the world is
grasped totally by human beings only by the use of both the pure reason and the practical
reason as a whole. The symbolization is eventually to entrust the essential action to the ig-
nited mental act of the human being. The best example on this point is the e—0 argument of
calculus. That is the argument which entrusts the mental practical act of the human being
with taking further and further smaller positive real number. A man who is not ignited this
mental practical act can never understand why the e—¢ argument shows a process to take a
limite.

Take another example. After symbolizing the flow world using Eq. (2.3), this symbolic
world can be compressed to

3
Y Qz—? =0, ¢=¢(x); velocity potential, (2.10)
i=10X;
under the condition of the irrotational flow: rotu = 0. This is Laplace’s equation and appears
in the theories of heat conduction, gravitational field, electro-magnetism and many other
branches of science and engineering. So there are various reconstruction of the real worlds
from the symbolic world of Eq. (2.10).
Let us consider a more simple situation. From a simple equation,

y=ax (2.11)

there are many physical worlds that can be restored as follows. In the world of a spring it rep-
resents potential energy U of the spring:

1,2
U= 5 kx",

k : spring constant, x : elongation of the spring.
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In the mechanical world of a mass point, kinetic energy K is
N S
K 5 mv,
m : mass of the pint, v : velocity of the point.

In the mechanical world of free fall, fall length H is

2

H= % gt’,
g : gravitational acceleration, ¢: falling time.

In the electro-magnetic world, a capacitor stores energy W as

=1 op?
W=-=5 CV’,
C: capacitance, V': electric potential.

There are many other restorations allowed. From the above discussion it is apparent that the
restoration of a real world from a symbolic world needs a not-symbolized world itself. In
other words, we must use practical reason.

In this regards, Feynman’s comment on the physical interpretation of an equation is very
interesting. About the act to interpret an equation physically, he writes that it is an act to say
how to use the equation to describe the experimental results”™, According to the present
context, he considered implicitly both the pure reason, the equation, and the practical reason
to interpret it.

Also, the above discussion corresponds to Nietzsche's aphorism exactly.

“There is no occurrence in itself. The occurrence of things coming into existence is the group
of thing interpreted by a interpreting ens.” “A world which is interpreted uniquely by use of
symbol is only a semblance, a fiction (compression and restoration by use of symbol—the
present authors’ comment). Since human beings govern the world using symbols, then the
world inevitably has a fictious character. Furthermore, the thought as method for interpreting
the symbolic world is inevitably plural as a projection fitting the present world.”” > The
thought expressed by these aphorisms is the so called Perspectivism of intelligence originated
by Nietzsche.

If we wish to reduce the diverse meanings resulting from the processes (M). and (R). in
Eq. (2.9), we must become Phythagoreanist. For example, the number 9.8 which is the value
of gravitational acceleration expressed in m/ s> has almost no possibility of interpretation
other than gravitational acceleration. We think this is the exact meaning of Feynman’s re-
mark: “We can not prove the mistake of a theory expressed ambiguously.”2'4) In other
words, the theory must predict the number of numbers which can be compared with the ex-
perimental numbers. Also, we think that when we seek to make Al an exact science, we
should construct an Al system from which we can derive a number comparable with the
number obtained by an experiment which may be different from a conventional experiment.
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2. 4. Conditions for realizing an Al system

As a conventional machine, an Al computer’s ability is twofold,
(1) Simulation of the intelligent act of a human being.
(2) Expansion of the intelligent act of a human being as an aeroplane can give us flying
ability.
In both cases, the judgment of the achievement of their goal is a problem. A proposed stan-
dard for such a judgment for (A) is Turing’s test. However, it neglects completely the ability
of vision, the ability of the sense of touch etc. Disregard for the ability of vision on the part of
intelligence is a common imperfection of the present discussions on Al For example, many
medieval and Renaissance pictures were painted in order to express a world view, and an Al
computer, which can realize such pictures, should have the vision ability. If we can construct
such a machine system, the following questions remain.
‘What kind of output should be given by an Al computer which can process the picture
as does the brain-vision system of a human being?
Assume that such a machine processes a picture. If the output of the machine is the same one
as the picture, the machine does not perform any process. The impression produced by a pic-
ture in the human brain is not a simple conditioned reflex, but a synthesized thing forming
one’s own life experience and the stimulus from the picture and the atmosphere at that time.
Consider the more simple cases of flow visualization as shown in Fig. 2.1, which repre-
sents Karman vortices in a cylinder wake. By seeing the figure, the impression of it obtained

Fig. 2. 1. von Kérmén vortex steet. d= 3.5mm, Re= 70.
(Courtesy of Prof. M. Miyata, Yamanashi University.)

by a man is individual and he or she makes an individual mental act and sometimes expresses
some particular output corresponding to each person. If he or she has a knowledge of Kér-
mdn vortex, the person can say that I see a Kdrman vortex street. This is evidently the ex-
pression of compressing and symbolizing the world. In contrast, a person having no knowl-
edge of a Karman vortex cannot compress his or her impression and only can indicate the
figure and say: “I see this.” This method of communication is the one to transfer the informa-
tion of a random phenomena totally (Kolmogorov). Conversely, a person having knowledge
of a Kdrman vortex can construct an image like Fig. 2.1 by hearing the words, while a person
having no knowledge of it can get no idea from the words. Thus, the former can restore the
world from the symbol, whereas the latter can not.

Prandtl (German fluids engineer) began to use these visualization technique as an effi-
cient method to study various flows. He was a great scholar and discovered the boundary
layer, but it seems that he did not completely understand the fluid mechanical meaning of
various lines photographed on such a picture. It seems that the differences between stream-
line, particle path and streak line were not apparent for him. If an Al machine’s output about
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Fig. 2.1 is symbolized using these concepts of various lines, even Prandtl might struggle to
understand the output. Here the problem arises with respect to (b), that is,
(¢) An Al computer should have the ability to explain its output to human beings.

Usually a human being considers that firm belief about the truth of some results is ob-
tained when he or she can follow the reasoning step by step as in the case of mathematical
proof. However, one of the goals, (b), of Al is to perform the extraordinarily lengthy and
complex reasoning very quickly which can not be checked by a man. When a man can follow
such a reasoning of an Al computer step by step, such an Al computer performs (a) and has
no function as (b). If we can implement the function (c) completely to some Al computer, it
does not perform the function (b) completely. If a super Al computer has the function (b), its
output may sometimes be non ens and sometimes be Delphic oracles for human beings.

The structure of a jet engine is completely different from a cuttlefish using a jet to swim,
so it is not necessary that the knowledge processing in Al computer be the same as in a
human being. However at the interface between man and Al computer, the input and the
output of AI computer must fit the human being. If not, the AI computer has no mental con-
nection with man as the self-proliferating automaton of von Neumann.

It is apparent from the above discussions that we should study the science of Al not only
theoretically but also practically, experimentally and individually. At first sight, AT can be
pursued by only the theoretical method, but it has an experimental aspect and permits no rig-
orous proof for its action. Fundamental Al theory is based on natural number and set theory.
However, there is a Takeuti’s notation: “The construction of the natural number is founded
on the intuitive grasp of the mental act to go next or to annex. (This is the notion of active in-
tuition, the central idea of philosopher Nishida.) Even in set theory, the idea of going to the
next stage is inevitable.” With respect to the action, that is “to do such a mental act” or “to
begin such an interior act,” we call it the triggering or the igniting of the mental act.

In what follows a proposition or a working hypothesis for general Al system will be dis-
cussed. In order for a person A to perform communication with an other person B about
something, there must be some common ens or being for A and B. Our first assumption is,

(i) The idea, in the meaning of Plato, of a thing exists as the ens which is recognized com-
monly by both A and B about the thing.
It is permitted for both A and B to be the thoughts of a person. So we assume a duality of
self in some sense. Another hypothesis is the proposal of Fujisawa for the theory of ideas™ .
According to his expression, the following mode can be formulated for the idea:
(ii) The idea of a desk is projected on this place in the real world now.
The other expression may be,

“The idea of desk makes a thing a desk when the idea is mapped on the thing existing

here in the space at now”

This means that the idea is an abstract thing which makes something a thing by a mapping in
the space and time. The space, in these sentences, may be an abstract one.

In Fig. 2.2, a picture expressing the Al system according to the above consideration is
shown. Individual A which means a concrete thing like a desk but also abstract things like
proposition and strings of symbols, exists in the domain of discourse D and has an image of
an idea I, in the world of idea I In the human being’s world, that is the world of representa-
tion M, I, is projected on representation S, and I, is related to symbol M, in the world of
Al computer C.

When M, is transformed into M by some transformation 7. in the Al computer, rep-
resentation Sy having symbol My is related to representation S, through the operation of Ty,
in the world of representation where T, has symbol T,. Similarly, in D, there are individual
B and action T, which have images Sz and T,, in M. Changes in D, M and C can be
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Fig. 2. 2. A scheme of the process of Al
D: domain of discourse
M: human being’s world
C: Al computer
I: world of idea

connected through these schema. The assumptions(i) and (ii) guarantee the existence of the
idea of a thing and the possibility of restoration of a thing from the idea, respectively.

Also T, Ty and Tj, should be considered as images of an idea in 1. Aporia arises here
as the third man discussed by Parmenides, which is the question about the relationship be-
tween the three worlds D, M, C and the world of idea I. This question may be considered to
lead to endless retroaction. Here, we avoid this classical aporia to assume simply that in this
case the real world consists of D, M and C and the relationship between them, and everything
and mapping in the world are such a thing since they are the image of the idea.

The assumed schema given above is an axiom to establish the realizability of Al com-
puter and the meanings of output from it. Without this assumption, we consider that the rela-
tionship between the domain of discourse — the representation in human being — and Al
computer is lost.
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IIL. Automatic Generation of FORTRAN Code for Finite Difference Method

3. 1. Introduction

When the differential equations governing the physical problem cannot be solved analy-
tically, it is useful to solve the equations numerically for engineering as well as for under-
standing the physical phenomena. In order to obtain the numerical solutions, the computer
program must be prepared by processing the equations with a routine and laborious proce-
dure. In this paper, we attempted to carry out automatically such monotonous and straight-
forward work by the symbol manipulator of the computer. This automatic manipulation is ex-
pected to save time and labor and to avoid mistakes in processing.

Automatic programming has been studied for yearss_l 7379 In mechanical engineering,
general-purpose programs, such as those by Kleinsteuer and Patterson’ ", Rosten, Spalding
and Tatchell’ ™, Rice and Boisvert’” ” and Henry and Willmost®™", have been developed.
On the other hand, some applications of the symbolic Erocessing faculty of computers are re-
ported, which perform derivation of motion equations’ ~® analysis of the incompressible Na-
vier-Stokes equations3_9), code generation for eigenvalue determination”™'” and so on.

There are not many studies, at least known to the authors, dealing with automatic
program generation for the finite difference method in fluid mechanics. Rosen and
Okabayashi3~“) tried automatic processing of the second-order parabolic partial differential
equations governing the plasma fluid. They developed a FORMAC (Formula Manipulation
Compiler) program which prepares, by means of the marching finite difference method, the
linearized and difference equations and generates a part of the FORTRAN code necessary to
calculate the unknowns at grid points. This kind of programming was also carried out by
Takeda and Itoh® ">, Steinberg and Roache’ ™" wrote a symbolic manipulation program in
VAXIMA for the linear second-order elliptic differential equation. Their program has as
input the differential equation in some natural coordinates and has as output the FORTRAN
subroutines which compute the coefficients necessary to solve the difference equation and the
coefficients for determining the coordinate transformations. However, the equations to be
processed by these formula manipulating programs are restricted, and these programs do no
seem to be applicable to other types of problems.

A new simple program is herewith developed to use as input the nonlinear parabolic dif-
ferential equations and some accompanied conditions and to produce as output the FOR-
TRAN code for the iterative calculation to solve the nonlinear difference equations by New-
ton’s method. Keller’s box method®™'* is used, so there is no restriction on the order of the
differential equations. The manipulation program is written in LIST (evalquote LISP). The
details of the LISP program and its adaptation for ordinary and partial differential equations
are discussed.
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3. 2. Formulation and automatic generation of FORTRAN code

3. 2. 1. Formulation

The parabolic differential equations are solved by an implicit method which obtains the
net functions on one space coordinate simultaneously. This implicit method proceeds in the
direction of other independent variables. Differential equations can be written in terms of a
first-order system of the partial differential equations, by introducing new dependent vari-
ables, as follows:

ayl a)ﬁ ayn
Wi(xy, s Xy, D Pl '7'('9;[),

(3.1)
(i=1,-,n).

Here the equations are given in (xy, * * * ,x;)-space and y,, - * *,y, are the dependent variables
including newly introduced ones.

Eqgs. (3.1) are approximated by the central difference method. The simultaneous dif-
ference equation for Egs. (3.1) can be written as

Aij-—l/Z(yl 1 Y0 Vit s Ya) =0,
(3.2)
(izl,"‘,}’l ]= ]9""].1)1(&)'

where the two adjacent points on the space coordinate and the midpoint of these two points
are denoted by the subscripts j— 1, jand j — 1/2, respectively, and the subscript max desig-
nates the total number of steps in the space coordinate. These difference equations generally
contain known variables and coefficients. The nonlinear Eqgs. (3.2) are solved by means of
Newton’s method. For the iterates A, the higher-order iterates are introduced as follows:

A1 A ]
Yoqg = YpqT OVpq | | (3.3)
(sz.."” q=]_17] j=09”':]max)'

Using Egs. (3.2) and (3.3) yields the linear system

n J
) A A
Z Z qu 6ypq= _Ai/'—-l/z(yij-—l’ c 'ynj),
P (3.4)
(G=1,-+-,n F= 1 a)-
which is necessary for the iteration process. Eq. (3.4) and appropriate boundary conditions

are the system of n X (. + 1) equations with # X (.. + 1) unknowns. The coefficients
A, , are given by

_ OA;j-1/2 . (3.5)

rq ay;\q
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3. 2. 2. Automatic generation of FORTRAN code

The LISP program has as input Eqgs. (3.1), independent and dependent variables and the
boundary conditions and produces the FORTRAN code using the procedure mentioned in
Sec. 3.2.1. This FORTRAN code consists of the following three parts:

1. The coefficient matrix and the right-hand side of Eq. (3.4) are determined.
2. The linear system of Eq. (3.4) is solved using the ready-made subroutine program.
3. The higher-order iterates are obtained from Eq. (3.3).

In general, the executable FORTRAN program solving the difference equations includes
some portions: input, output parts, the parts which set the known parameters in equations
and examine the convergence of the iterative procedure, and the main part of the program
which sets the system of algebraic linear equations and obtains the higher-order iterates. The
calculation for determining the unknown net functions on one space coordinate is performed
following the flow chart shown in Fig. 3.1. First, the values of independent variables on grid

START

Assume initial profiles

!

Specify parameters in differential
equations from their definitions

] ] — -

] |

Calculate matrix and vector of system H
. of linearized difference equations

Solve linear system

. | |

Calculate new quantities
for higher-order iterate

Fig. 3. 1. Flow chart for calculation on one space coordinate.
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points are determined and the initial profiles are assumed for the unknown functions which
satisfy the boundary conditions. Second, the known parameters appearing explicitly in the
equations are set. Then the iteration procedure is repeated until the solution converges. The
present LIST program produces the required FORTRAN code. The produced part is en-
closed by the chain line in Fig. 3.1. The executable FORTRAN program can be prepared by
adding together the input, output parts, convergence examining part and others. The total
procedure to solve the differential equations is shown in Fig. 3.2.

The LISP program has the FORTRAN code as output. Therefore, it is not the kind of
general-purpose program which solves problems using existing subprograms and selecting an
algorithm.

( sTART )

A

Input differential equations, variables
and boundary conditions in concise form

Evaluate LISP program
Generate main part of FORTRAN program

|

Add input, output parts and others
Complete FORTRAN program

Execute FORTRAN program
Output

STOP

Fig. 3. 2. Present procedure to solve differential equations.

3.3.  Application of automatic generation

An example of automatic generation for ordinary differential equations will be illus-
trated. As seen later, partial differential equations are also solved in a similar way. Let us
consider the following ordinary differential equations:

ffHfr+ A=+ 8)=0,
S+ £S5 =0,

(3.6)
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which have self-similar solutions of a compressible laminar boundary layer flow” ™. In Egs.
(3.6), fand S are a nondimensional stream function and a stagnation enthalpy, respectively, 8
is a pressure gradient parameter and primes denote the differentiation with respect to 7,
which is the nondimensional distance from the wall. The nondimensional velocity component
in the direction of the main stream is given by f". The boundary conditions are as follows:

n=0: f=0, f=0, §=3,,

n=n: f=1 8§=0,

(3.7)

where the subscripts 0 and e denote the points on the wall and at the outer edge of the
boundary layer, respectively. Following the box method, Eqs. (3.6) are replaced by a system
of first-order equations, introducing new dependent variables u, vand g as

f—u=0,
u—v=0,
vt fot f(1—uu+ S)=0, (3.8)
S —q=0,
q+fg=0.
The boundary conditions are

n=0: f=0, u=0, S=3S5,,
(3.9)

n=mn, u=1, §=0.

The form of the input data is shown in Fig. 3.3. In this figure, ODE at line number 10
denotes the LISP function which processes the ordinary differential equations. The input data

00010 ODE (

00020 ( <F'>-U

00030 <UT>=y

00040 <V'>+FxV+BETA*<1-UxU+S>
00050 <S'>-Q

00060 <QT>+FxQ )

00070 CETA)

00080 (FUVS ®

00090 (F=0 U=0 $=S0)

00100 (U=1 $=0)

00110 )

Fig. 3. 3. Input data for ordinary differential equations.
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for equations, variables and boundary conditions are regarded as arguments of the function
ODE. In Fig. 3.3, the meanings of the data are as follows:

1. Between line numbers 20 and 60, input of the differential Eqs. (3.8). As parentheses
play a special role in LISP system, the symbols < and > are used instead of them.
Differentiations with respect to a space variable 5, such as f’, are denoted by <F'>
and others.

2. Atline number 70, input of the independent variable and variables to be expressed by

the array element names in FORTRAN code, if any.
At line number 80, input of the dependent variables.

4. Between line numbers 90 and 100, input form of Egs. (3.9), which are the boundary
conditions at two points.

Taking the case of the third equation in Eqs. (3.8), Fig. 3.4 shows the process to obtain the

o

1. Input <V'>+F#V+BETA#<1-U=U+S>
t
((DF V) + F #» V + BETA » (1 - U # U + S))
2. Dyjqp = ((V(J) -V (J-1)) / DETA + 0.5 = (F (J) = V (J) + F (J-1) =

V (J-1)) + 0.5 » (BETA # (1 - U (J) = U (J) + S (J)) + BETA
# (1 - U (J-1) # U (J-1) + S (J-1))))

3. Unknowns Coefficients
8,y B3 j1y2/0F; - = (0.5 = V (J-1))
oF, 03 j.12/0F; = (0.5 = V (J))
SU;4 OBy j1y2/0U;-1 = (0.5 % BETA #» (- U (J-1) - U(J-1)))
8, OBy .172/8U; = (0.5 # BETA = (- U (J) - U (J)))
6V5. 083 12/8Y; = (0.5 = BETA)
85 003 j.172/0V;.. = (0.5 » BETA)

4. B3 j-12

¥
Outputs R{N+3)=-(V(J)-V(J-1))/DETA-0.5=(F(J)=V(J)+F(J-1)sV(J-1))
& ~0.5#(BETA#*(1-U(J)#U(J)+S(J))+BETA# (1-U(J-1)*U(J-1)
& +5(J-1)))

Fig. 3. 4. Processing of differential equation in LISP program.

difference equations and determine the coefficients in Eq. (3.4), which is as follows:

1. The equation is transformed into the list notation. In the transformed equation, DF
stands for the prime.

2. Each term in the list notation is approximated by the central difference method. The
dependent variables are replaced by the array element names. The subscripts j — 1 and
J correspond to two adjacent points on the space coordinate. Derivative (DF V) is re-
placed with
(V@) — (J-1))/DETA
where DETA = 5; —#,_, is the interval of the grid line. The terms other than deriva-
tives and the coefficients multiplied by derivatives are replaced with arithmetic aver-
ages. For example, F * V is approximated by
0.5 = (FJ) = V(J) + FJ-1) * (J-1)).
Then the difference equation, denoted by A, ;_,,,, is obtained.
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3. For this difference equation, the coefficients multiplied by unknowns of.—;, of, - -+ in

Eq. (3.4) are obtained by the derivative of A; ,_;,, with respect to each term, F(J-1),
F(J), - - in the equation of list expression.

4. The difference equation and the coefficients in the list notation are written in FOR-
TRAN as output. In the statement in FORTRAN, the right-hand side of Eq. (3.4)
corresponds to the array name R.

Evaluating the LISP function in Fig. 3.3 yields the main part of the FORTRAN pro-
gram, a part of which is shown in Fig. 3.5. In Fig. 3.5, the array name A denotes the coeffi-
cient matrix in Eq. (3.4). The dependent and independent variables are written in the array
element names. The input type of the coefficient matrix and the right-hand side vector may
depend on the subprogram which solves the linear system. However, the present LISP pro-
gram can easily be adapted for any type of subprogram by a minor change of the defined
LISP function.

The executable FORTRAN program is constructed by adding the necessary parts to the

1000 R(J)=0.0
DO 1100 J=1,NJA

1100 A(J)=0.0
DO 1200 J=1,JMAX
DETA=ETA(J)-ETA(J-1)
N=70%J-28
A(N+5)=~1,0/DETA
A(N+10)=1.0/DETA
A(N+6)=-0.5
A(N+11)=-0.5
A(N+19)=-1,.0/DETA
A(N+24)=1.0/DETA
A{(N+20)=-0.5
A(N+25)=-0.5
A(N+31)=0.5%V(J-1)
A(N+36)=0.5xV(J)
A(N+32)=0.5#BETAx(-U(J-1)~-U(J~-1))
A(N+37)=0.5%BETAx(=U(J)-U(J))
A(N+33)=-1,0/DETA+0.5%xF(J-1)
A(N+38)=1.0/DETA+0.5%F(J)
A(N+34)=0.5%BETA
A(N+39)=0.5%BETA
A(N+4T7)=~1.0/DETA
A(N+52)=1.0/DETA
A(N+48)=-0.5
A(N+53)=-0.5
A(N+57)=0.5%@(J-1)
A(N+62)=0.5xQ(J)
A(N+61)=-1.0/DETA+0.5%F(J-1)
A(N+66)=1.0/DETA+0.5%F(J)
N=5%J-2
RIN#1)==(F(J)-F(J=1))1/DETA+0.5=2(U(J)+U(I-1))
RIN+2)==(U(J)-U(J-1))/DETA+0.5%(V{JI+V{JI-1}]

Fig. 3. 5. Part of generated FORTRAN code for input in Fig. 3.3.
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code in Fig. 3.5. The velocity and stagnation enthalpy profiles obtained by this FORTRAN
program are shown in Fig. 3.6.

SO:‘“O.B

0 ,
-10-8 -6 -4 -2 0 2 4 65 8 1.0
Fig. 3. 6. Velocity and stagnation enthalpy profiles of similar compressible boundary layer.

3. 4. Boundary layers on rotating cone in linearly retarded external streams

The authors have investigated the flow on a rotating circular cylinder in a retarded axial
flow’ ™71 As an example for the partial differential equations, the LISP program is ap-
plied to the problem of the boundary layer on a rotating cone in an axial flow. When the ex-
ternal flow was the potential flow for a cone, Koh and Price”™"® solved this problem by
means of the finite difference method. In this chapter, the external flow is assumed to be li-
nearly retarded with the distance from the apex along the generator. In the coordinate system
shown in Fig. 3.7, the continuity, momentum and energy equations are

U, U oW

6x+7+ 0z =0,
2
vy wil— Vi@, o
dz x dx 97
ydV . waV, UV _ , 9V (3.10)
ox Jz = x o7’
T, 1 dT _ v 9°T
Uoxt™ VW= Pr a7
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Fig. 3. 7. Flow past a rotating cone.

with the boundary conditions

z=0: U= W=0, V=V,=wxsintg, T=T,,
(3.11)
z=2z,. U=1U, V=0, T=T,.

Here U, V and W are the velocity components in the x, y and z directions, respectively, 7 is
temperature, v the kinematic viscosity, Pr the Prandtl number, o an angular velocity of the
cone and ¢ the cone half angle. The external flow U, is assumed to be

U="U,— cx (3.12)
where cis a constant. Using the stream function 1 given by
_ 9y __ oy
xU= 32 xW= P (3.13)

and nondimensional quantities

G
¥ =1r, =[50z
" (3.14)
Y v -7
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Egs. (3.10) and (3.11) are transformed into

f+ —g—f ”ozzx"‘zg2 + x*(x* = 1)+ x*fr o _ x*f of 0,

ox* ox*
b3, , a ., , 08
g+ 3 fg—afgr Sy —vf S50, (3.15)
0" 3 . o .. , 06
—};;‘4'—2—](0 +x*§]—;9——x*f-é}§=0,
and
n=0: f=0, f=0, g=1, 6=1,
(3.16)
0= 1. fl=1_X*’ g=0, 0=19
where
a=wsin(—?), —l—jq=f'.

Although the energy equation can be solved independently after the calculation of the
momentum equations, in this example Egs. (3.15) are solved simultaneously. New dependent
variables u, v, g and s are introduced as follows:

ff—u=0, w—v=0, g—q=0, ¢ —5=0. (3.17)

Then Egs. (3.15) and (3.16) are written in terms of the first-order derivatives. The input data
in this case are shown in Fig. 3.8. The LISP function PDE processes the partial differential
equations. For simplification of the expression, the terms x*(x* — 1) and o’ x** are replaced
by C1<<X> and C2<{X>>, respectively, in Fig. 3.8. Of course, these replacements are not
always necessary. The differences of the input form from that for the function ODE in Fig.
3.3 are as follows:

00010 PDE (

00020 ( <F'>-y

00030 <Ur>-v

00040 V'>+3xFxV/2+C1<X>xG*xG+C2<X>+Xx Vs <F ' X>-X*xUx<U'X>
00050 <G'>-Q

00060 <Q'>+3%xFxQ/2+2xUxG+X*<F'X>xQ-X*xUx<G'X>
00070 <THETA'>-S

00080 <S'>/PR+3xFxS/2+X*<F'X>xS—-X*xUx<THETA'X> )
00090 (X ETA)

00100 (F UV G Q@ THETA S

00110 ()

00120 (F=0 U=0 G=1 THETA=1)

00130 (U=1-X G=0 THETA=0)

00140 )

Fig. 3. 8. Input data for partial differetial equations.
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1. Derivatives with respect to timelike variables, such as af/ ox*, are denoted by <F'X>
and others. In this example, x* is the only one timelike variable.

2. Among the known functions of the independent variables, such as C1 and C2 in this
example, the functions which are expected to be expressed by the FORTRAN array
element names must be specified as the fourth argument of the function PDE. In this
example, the position is at line number 110.

After evaluating the LISP function in Fig. 3.8, the FORTRAN code in Fig. 3.9 is ob-
tained automatically. In Fig. 3.9, the independent and dependent variables are written by
one- and two-dimensional array element names, respectively, and the subscript for timelike
variable x* (X in input) is denoted by IX. The known functions C1 and C2 which are not
specified at line number 110 in Fig. 3.8 can be defined by the statement functions or the
function subprograms.

The LISP program can also be applied to the case of the variable kinematic viscosity and
Prandtl number, and to the case of the turbulent boundary layer equations closed by using an
appropriate turbulence model. Furthermore, as was suggested earlier, the problems with

A(N+466)=-0,5% (X(IX)xU(IX, J=1)+X(IX)%U(IX,J-1)
& FXCIX-1)%U(IX-1,4-1))/DX+0.5xX(IX)*U(IX-1,
& J-1)/DX
A(N+53)=-0.5x(X(IX)xUCIX, JI+X(IXI*UCIX, JI+X(IX-1)
& *UCIX-1,4))/DX+0. 53X (IXI*U(IX-1,4)/DX
A(N+467)=-1.0/DETA+0.5%CL=sF(IX,J-1)+0.5%X(IX)%
& FOIX,Jd=1)/DX=0,5%X(IX)*F(IX-1,J~1)/DX
A(N+54)=1.0/DETA+0.5%C1=F(IX,J)}+0.5xX(IXI*F(IX
& »JI/DX-0.5%X(IX)%F(IX-1,J)/DX
A(N+48)=0.5%(C2(X(IX)I*G(IX,J-1)+C2(X(IX)}=*G(
& IX,J-1))
A(N+55)=0.55(C2(X(IX)I*G(IX,J)+C2(X(IX)I%G(IX
& +J3)
A(N+67)=-1.0/DETA
A(N+74)=1.0/DETA
A(N+68)=-0.5
A(N+75)=-0.5
A(N+83)=0.5%C1l#Q(IX,J-1140.5(X(IX)*Q(IX,J-1)
& +X(IX-1)*Q(IX-1,J-1))/DX
A(N+90)=0.5%C1*Q(IX,J)+0.55(X(IX)xQ(IX,J)+X{IX-1)
& #Q(IX-1,J))/DX
A(N+861=0.5%C&xG(IX,J=1)-0.5%X(IX)*G(IX,J-1)/
& DX+0.5sX(IX)*G(IX-1,J-1)/DX
A(N+91)=0.5%C4%G(IX, J)~0.5sX(IX)*G(IX,J)/DX+0.5
& X (IX)*G(IX~1,J)/DX
A(N+86)=0.5%C4xU(IX,J-1)-0.5%(X{IX)*U(IX,J~1)
& +X(IX-1)=U(IX-1,J-1))/DX
A(N+93)=0.5%C65U(IX,J)-0.55(X(IX)sU(IX, JI+X(IX-1)
& *U(IX-1,4))/DX
A(N+87)=-1.0/DETA+0.5%C1%F(IX,J-1)40.5xX(IX)*
& FOIX,J-1)/DX-0.5%X(IX)%F(IX~-1,J-1})/DX
A(N+94)=1.0/DETA+0.5%C1%F(IX,J)+0.5%xX(IX}*F(IX
& +JI/DX=0.5%xX(IX)I¥F(IX-1,J)/DX

Fig. 3. 9. Part of generated FORTRAN code for input in Fig. 3.8.



212 1. Nakamura and T. Watanabe

multiple timelike variables, such as unsteady two-dmensional boundary layer, can also be
processed by the present LISP program.

The flows on a rotating cone in linearly retarded axial streams are investigated using the
FORTRAN code in Fig. 3.9. The initial profiles at the apex can be obtained by solving Eqgs.
(3.15) and (3.16) at x* = 0. The Prandt]l number is set at 0.7. Fig. 3.10 shows the profiles of
the axial, circumferential velocity components and temperature at o = 1, x* = 0.25. At a
relatively small «, the axial velocity component is retarded, and finally the flow separates
from the cone wall. Fig. 3.11 shows the variation of the axial velocity component at a = 4.

6

x=1 ¥=0725
—U/Ue
----- V/ Vg

L ——o

05 1.0

Fig. 3. 10. Profiles of axial, circumferential velocity components and
temperature at relatively small rotation speed.

6 T T

0 0.5 .0 G 7.0
U/Ue

Fig. 3. 11. Development of axial velocity component.
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As the flow develops, the velocity is accelerated in spite of the external adverse pressure gra-
dient. Then an overshoot occurs in the middle portion of the boundary layer, where the cir-
cumferential velocity component is not small. Figs. 3.12, 3.13 and 3.14 show the variations of

] T T T T

XI/Z/(PUmZH

log[ ek R

-Z 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

/PUn V)

1/2
X

- Toy R
(el

D : I ] i
0 0.1 0.2 0.3 0.4 0.5

Fig. 3. 13. Variation of circumferential wall sthear stress in the axial direction.
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1/2
X

Nu/R

0.2
0.1 0.2 0.3

O

Fig. 3. 14. Variation of local heat transfer coefficient in the axial direction.

1.5

Fig. 3. 15. Profiles of axial, circumferential velocity components and temperature at relatively

large rotation speed.
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the axial, circumferential wall shear stresses 1,,, 7y, and local Nusselt number

h
Nu="%. | (3.18)

Here 4 is the local heat transfer coefficient and k is the thermal conductivity. In the figure, o
is density, R, is the Reynolds number defined by U,x/v. In Fig. 3.12, 7, is shown in logarith-
mic scale. At @ = 0 and 1, the profiles terminate at the x position where no convergence of
the solution is obtained near the separation point as is the case in the two-dimensional
boundary layer. As o increases and the effect of rotation grows, the absolute values of 1, t,,
and Nu become larger and the flow ceases to separate from the wall. Fig. 3.15 shows the vel-
ocity and temperature profiles at o = 10, x* = 0.4. In comparison with the profile at o = 4
in Fig. 3.11, the axial velocity component is further accelerated, while the profiles of the cir-
cumferential velocity component and temperature are monotonous.

3. 5. Conclusions

The LISP program is developed, which processes the differential equations and produces
a certain FORTRAN code. The equations are formulated by the box method and Newton’s
method. This part of the FORTRAN code is needed for solving both the ordinary and partial
differential equations in one space and/or multiple timelike coordinates. The form of input
data to the LISP program is simple and the equations are written almost as they are in the
natural expressions. This LISP program avoids tedious and time-consuming work and
possible mistakes in symbolic operation by hand.

The boundary layer on a rotating cone in a linearly retarded axial flow is investigated.
When the effect of rotation is small, the axial velocity component is decelerated and the
boundary layer separates from the wall. As the effect of rotation increases, the axial velocity
component is accelerated and the separation ceases to occur. Then the axial, circumferential
wall shear stresses and the local heat transfer coefficient become large.
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IV. Automatic Dimensional Analyzing System

4. 1. Introduction

Recently and in the days to come, one of the demands for computers is their ability to
assist the intelligent action of human reasoning. Studies in the area in mechanical engineering
seem to be focused on CAD systems, autonomy of industrial robots and so on. With the great
development of computers and the advance in knowledge engineering, intelligent technology
will hopefully be applied to not only design and manufacturing but also to support systems to
analyze physical phenomena. From this point of view, the application possibilities of com-
puter’s symbolic processing ability in fluid mechanics is examined. In this chapter, a well-
defined dimensional analysis is considered and a computer support system is developed.

‘When the relation between variables governing physical phenomena is not know, a
dimensional analysis based on the pi theorem is a very effective method to understand and
explain the problems. Dimensional analysis is formulated by the dimensional homogeneity of
the terms in governing equations. This method has a sound mathematical background and
systematic organization®™"*?. Recently, advanced methods of dimensional analysis have
been proposed’** and approaches to system formulation have been reported*™ >~

Dimensional analysis using the pi theorem is written in list processing language LISP and

Input of Consulting Dictionary
Fundamental Units of Units
Input of Consulting f[pictionary of
Physical Quantities Dimensions
Use of

Top-Level Pi Theorem

1 Consulting Dictionary of
& Existing Quantities

Combining
Pi Numbers

Fig. 4. 1. Architecture of dimensional analyzing system.
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a computer aided support system is developed. The overall structure of the system is shown
in Fig. 4.1. The analyzing system is composed of functional modules. While it is easy for ex-
perts in fluid mechanics to carry out dimensional analysis on fluid mechanical problems, the
analysis of problems in thermodynamics seems to be unfamiliar territory. The present support
system facilitates this kind of situation. Physical variables used frequently are stored in the
data base with their dimensions and when they are used the system consults with data base
and refers to their dimensions. This function is useful to prevent input errors. Analyzed non-
dimensional variables are rearranged by using the well known variables and suggestions to
understand the physical meaning of the results will be offered. Hereinafter, the details of the
basic concepts and the architecture of the analyzing system are explained.

4. 2. Formulation and construction

4. 2. 1. Dimensional analysis

Suppose that the physical phenomena are governed by m parameters in any dimensional
formula and that k is the maximum number of physical variables which do not constitute
nondimensional quantities. Then m — k is the number of nondimensional pi numbers*™". In
pi theorem, k corresponds to the rank of the dimensional matrix and does not exceed the
number of primary quantities, which is equal to the row number of the dimensional matrix.
The rank of dimensional matrix, k, is determined by reducing the row of the dimensional ma-
trix until a nonsingular matrix composed of physical quantities is found* ™. This process is
shown in Fig. 4.2. First, { which is the number of rows to be reduced, is 0. The combinations

v

The combinations of n rows
taken i at a time are
represented.

matrix is made.

F’ne (n-i)xm dimensional

Does this (n~1)xm matrix
contain nonzero determinant
of order (n-i)?

rank = n-i.
The rows teo be discarded
are obtained.

Are all the possible
(n-i)xm matrices examined?

Fig. 4. 2. Flow chart to determine rank of dimensional matirx.
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of nrows taken i at a time are determined and dimensional matrices with n — i rows are con-
structed. When a nonsingular matrix is found in these matrices, the rank is n — i. If all the
matrices with n — i rows are singular, /is replaced by / + 1 and the same process is repeated.
Once the rank and the rows to be extracted are determined, one of the k X k nonsingular
matrices composed by & physical quantities is selected and used to be combined with other
quantities into m — k nondimensional forms.

For the same number of physical quantities, the larger the number of the rank, the smal-
ler the number of nondimensional forms and the pi numbers are expected to have more
sophisticated meanings. Therefore, the extended pi theorem is formulated, which makes a
distinction between the components of vector quantity” . For example, by introducing a
length measured in the vertical direction and a length measured in the horizontal direction, a
number of independent dimensions is increased and more useful result is obtained. The pres-
ent system can analyze vector quantities by this directional method.

4. 2. 2. Registration of physical quantity dimensions

Representative physical quantities and their dimensions are stored in the system data
base. The system requires, as an input of governing variables, the meaning of physical quan-
tities and the variable names. Here, the examples of the meaning of physical quantities are
velocity and length, while the examples of variable names are the symbols v and / Physical
quantities and their dimensions are placed on the property list of LISP system. One property
list of the symbol EXAMPLE is shown in Fig. 4.3. This property list consists of pairs of
property names and property values. In Fig. 4.3, the property name P-NAMEI indicates the
value P-VALUE1 and the name P-NAME?2 denotes the value P-VALUE2, and P-VALUE1
and P-VALUE?2 are referred to as P-NAME1 and P-NAME?2, respectively. Representative
physical quantities and their dimensions are placed on the property list of the symbol DIC-
TIONARY. Fig. 4.4 shows this list in primary units of length, mass and time. The meaning of
the physical quantity VELOCITY is a property name and its value is (1 0 -1), which is the
dimensions of the velocity. When the user designates the variable U as velocity, the system
registers the meaning of U and its dimensions (1 0 -1).

The meanings of variables are placed on the property list of symbol MEANING shown
in Fig. 4.5. The list of all the used meanings of physical quantities is referred to by the
property name REF and the list of registered velocity U and V is referred to by VELOCITY.

The prescribed dimensions of quantities are formulated in the primary units of length,
mass, time and temperature. The dimensions in other primary units are converted from these
units. In case the dimensions of an input variable are unknown, its dimensions must be speci-
fied in some primary units. Therefore, the system is designed to enable the user to select pri-
mary units.

4. 2. 3. Transformation of nondimensional quantities

There are many quantities which are normally employed and known to represent physi-
cal relations between variables appearing in phenomena. For example, the Reynolds number
is the relation between inertia forces and viscous forces and the kinematic viscosity is the
ratio of viscosity to density. The transformation of nondimensional parameters obtained by
the pi theorem and their arbitrary combination into some well known quantities helps one
understand the phenomena and find more meaningful forms.

In this system, some of the well known quantities are prepared on the property list of a
symbol EXISTING shown in Fig. 4.6. In this figure, the property name RE is the abbrevia-
tion of the Reynolds number and its property value denotes that the physical meaning of
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EXAMPLE III 1 I]l ] I1| ] lll 1

P-NAME1 P-VALUEL P-NAME2 P-VALUE2

Fig. 4. 3. Property list.

DICTIONARY {%[ } {il ] {}{ 1 {*I }

VELOCITY (1 0 -1) LENGTH (1 00)

Fig. 4. 4. Physical quantities and its dimensions in data base.

MEANING {i! { {%l }

REF (VELOCITY
LENGTH
KINEMATIC-VISCOSITY)

VELOCITY (U V)

Fig. 4. 5. Meanings of variables stored in property list.

EXISTING {%I:}

RE (REYNOLDS-NUMBER
(LENGTH
VELOCITY
KINEMATIC-VISCOSITY)
(11-1))

NU (KINEMATIC-VISCOSITY
(VISCOSITY
DENS1TY)
(1 -1))

Fig. 4. 6. Known nondimensional quantities in data base.

variable RE is the Reynolds number which is the product of length, velocity and kinematic
viscosity to the minus one power. The meanings of physical quantities composing pi numbers
are stored. When the combinations of meanings of physical quantities in pi numbers include
the meanings of known quantities on the property list of a symbol EXISTING, the transfor-
mation is suggested. To be concrete, while it is known that the kinematic viscosity consists of
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viscosity and density, an obtained pi number contains the meanings of density, viscosity and
others, the transformation using the kinematic viscosity is offered. Even though the transfor-
mation into the kinematic viscosity is carried out, the kinematic viscosity may be used to

1. Nakamura and T. Watanabe

transform into other nondimensional quantities.

4. 3. Examples

Let the system analyze the fully developed flow in a circular pipe. The following quan-
tities may be concerned in this flow: velocity U, diameter of pipe D, kinematic viscosity v,
density o and wall shear stress 7. Fig. 4.7 and 4.8 shows the analyzing process of this prob-

lem.

(a)

(b)

(c)
(d)
(e)
(£)
(g)
(h)

(i)

(3)

##x% 1 HAVE FOLLOWING SYSTEMS OF LNITS ##x

1 LENGTH MAZS TIME

pe) FORCE LENGTH TIME

] LENGTH MAZS TIME TEMFERATURE

4 FORCE LENGTH TIME TEMFERATLURE

& LENGTH TIME ENERGY TEMFERATURE
#H##E FLEAZE SELECT ONE SYSTEM

IN NUMEER. st#x##

R 1
s DD YOO TDIFFERENTIATE DNRECTIONS 7
(YES/NO) 33
ROND
s ORE THERE ANY FLINDAMENTAL UNITS
OTHER THAN LENGTH MAZZ TIME 7
INDTOR ANY UNITES s
RONG
#d#Hw PLEASE INFUT DERIVED GUANTITIES 3%
R VELOQCITY 11!
NEXT DERIVED QUANTITY 7
R LENGTH D !
NEXT DIEZRIVEID GUANTITY 7
R KINEMATIC-VIZCOSITY N
NEXT DERIVED DUIANTITY 7
R DENZITY RHO !
NEXT DERIVED MIANTITY 7
R ZTREZS TAL !
NEXT DERIVED GUIANTITY 7

###% POSSIELE COMBINATIONS FOR RANEK 2
(LENGTH MASTS TIME) ARE

(b O RHOD

(L0 TALD

(L NLE RHO)

(L ML TALD

(I NLI RHOD

(I WL TALD

(00 RHO TALD
@ (NILD RHO TALD)  #3

##¥Ex FLEAZE TNFUT ONE COMBINATION

OR ITES NUMBER ###xx

RSN I RV I Y

oG

R
1 FIOD =R (1 /2 #TALER(--1/2)
bl FTO0D) =0NL#E (1) #RHO##(~1/2)

BTAEX(1/2)

Fig. 4.7. Analyzing process of problem with no vector quantity. (1)
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(i) R =

1 FIOD=UeRHOER(L/2)*TALRE (172
ped FI{Dy=0NL%s (-1 ) ¥RHO#={(-1/2)

TR (L/D)
w##xe® CONTINUE T (YES/NOD HISTORY & ELIMINATE 7

REWRITE * OR INFUT COMBINATION, REGUIEST swtws

(k) R (L)
FROUDE~NUMEER FR=EVELOCITY®LENGTH#2 (-1 /2) #*GRAVITY##(~1/2)

REYMNOLDS~NUMBER RE=LENGTH®VELDCITY#KINEMAT IS-VISCOSITY ¥% (—-1)
s CONTINLE 7 (YES/NDD HIZTORY 7 ELIMINATE 7
REWRITE 7 OR INFLUT COMBINATION, REQUEST swsexs
(1) R 1 1 2 1!
= PT (I3 = (D)) #NUs# (=1 )
wddests CONTINUE 7 (YES/NDD HIZSTIRY 7 ELIMINATE 7
REWRITE 7 0OR INFUT COMBINATION, REDUEST s%ses
(m) R REWRITE
INFUT ONE NUMBER

(n) R 2
FI(=D)sUelneNdes (~1)
REYMNOLDS-NUMBER RE=Ds#ilseNUz#*(~1)
#ddst INFLT EXFONENT OF RE ##ews
(o) R 1

FI(I=D)=RE
REYNOLDEZ~-NUMBER RE=DRLENL##(~1)
st CONTINLUE REWRITING T (YEIS/NI)  sedesedir

Fig. 4. 8. Analyzing process of problem with no vector quantity. (2)

In these figures and following ones, the italics in parentheses (), (A), (b), (B) and so on
denote input lines by the user and character R at these lines are input prompt of the LISP
system. In Fig. 4.7, length, mass and time are selected as the primary units. Since any vector
quantity does not appear and since there is no primary unit except those selected at input (),
replies NO are put at lines (b} and (c), respectively. Lines from (&) to (/) denote the inputs
of governing quantities of this problem. At each line, the meaning of physical quantity and its
variable name are presented and an exclamation mark denotes a terminator of input. Velocity
U is presented at line (d), and length D, kinematic viscosity v, density o and shear stress 7
are put at lines (e), (f), (g) and (h), respectively. The input of terminator ! at line (i) denotes
that all the physical quantities are specified. Then the system determines the rank of the
dimensional matrix and shows all the possible combinations of quantities, which can be used
to form nondimensional forms of other quantities. At line (J), eighth combination is selected
to obtain nondimensional forms other than kinematic viscosity, density and shear stress.

Fig. 4.8 shows the continuation of this process. Two pi numbers of velocity U and
diameter D are obtained. By the input at line (k), stored known quantities composed of vel-
ocity and length are presented. It can be recognized that the Reynolds number contains the
product of the length and the velocity. At line (/) it is indicated to make a nondimensional
product of the first power of the first pi number PY(U) and the first power of the second pi
number PI(D). Then the third nondimensional form of quantity I/ X D is obtained. This third
pi number can be transformed into the Reynolds number by the process at lines (), (n) and
(o).

Fig. 4.9 and its continuation Fig. 4.10 shows the process of the problem which contains a
vector quantity. To begin the vector analyzing, YES is put at line (B). Input (C) directs to
distinguish between lengths measured in the x, y and z directions. In this problem, it is as-
sumed that z is the axial direction and x and y directions are perpendicular to the axial direc-
tion. The dimensions of physical quantities are determined by the suggestion of Huntley ™.
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Since the flow direction coincides with the axial direction, the primary length unit of the vel-
ocity is the length in the z direction. Because of the symmetry of the pipe about its axis the
dimension of the diameter is written as the square root of x times the square root of y. For
the same reason, the dimensions of the kinematic viscosity, density and shear stress are deter-
mined. The inputs of these quantities are at lines from (G) to (K). The meanings of the in-
puts are obvious. Fig. 4.10 shows the resultant pi number and its transformation. It can be
concluded that the friction coefficient is inverse proportional to the Reynolds number.

#xuus FLEASE SELECT ONE SYSTEM
TN NUMBER. s###x#
(a) R 1
g [0 YO DIIFFERENTIATE NMIRECTIONS 7
(YES /NI 4ttt
(B) R YEZ
wE#ad FLEASE TNFUT DIRECTOINZS OR NO“
FOR EACH LINIT ###3t#
FOR LLENGTH
(c) R XY Z !

FOR MASS
(D) R N

FOR TIME
(E) R NO

#u#d ARE THERE ANY FUNDAMENTAL LINITS
OTHER THAM LENGTH MAZS TIME *
SN TR ANY LINITS ##3s4
(F) R NO
w#ad FLEASE INFUT DERIVELDR GUANTITIES #3#33#
(G) F VELOCITY ¢Z) !
NEXT DERIVED QUANTITY 7
(H) R LENGTH IX 1/2 Y 1/2) !
NEXT DERIVED QUANTITY +
(I) R KINEMATIC-VISCOZITY NU(X Y)Y !
CNEXT DERIVED GUANTITY 72
(7) R DENZITY RHO(X -1 Y -1 Z —-1) !
NEXT DERIVED GIUANTITY 7

(x) R STREZZ TALKX —1/2 Y —-1/2) !}
NEXT DERIVED CHIANTITY 7+
() R !
#d FOSSIBLE COMEBINATIONS FOR RANE 4
(X Z MA TIME) ARE
1 (LI N RHOD
b (LI NLE TALD
= (LU I RHO TALD
4 (LI N RHO TALD
=)

NLE RHO TAL) w33
#E# FLEAZE INFUT ONE COMBINATION
OR ITS NUMBER s###at#

(M) R =
1 FL ) =3l # (—1) #NLUB#ERHO#TALIE#® (~1)

Fig. 4. 9. Analyzing process of problem with a vector quantity. (1)
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M) RS
1 FI(U)=Uslses (—1) #NURRHORTAUR# (1)
s CONTINLE 7 (YES/NO) HIZTORY 7 ELIMINATE 7
REWRITE 7 OR INFUT COMEINATION, REGRUEST ####s
(N) R REWRITE
##x#% AVAILAELE QUANTITIEZ ARE FOLLOWZ::
CF FRICTION-COEFFICIENT=STRESS#DENSITY#%(—1) #VELOCITY#% (=2)

MU VIZCOSITY=DENSITY#KINEMATIC-VIZCOZITY
FLEASE SELECT (NE ABBRERIATION ##idst
(0} R CF
FI (L) =tHeles (1 ) #NU#RHO#TAUs% (=1 )
FRICTION-COEFFICIENT CF=TAURRHO®® (=1 ) #Li#x (-2)
###xx INFUT EXFONENT OF CF ##x#¥
(p) R -1 )
PI(U)Y=CF#(—1) %L (—1) 0 (~ 1) *NU
FRICTION-COEFFICIENT CF=TAUSRHO®S: (—1 ) sUsa (-1
#ases CONTINUE REWRITING & (YES/ND) #¥ssx
() R YEE&
FI(L =CF#5 (~1 ) #Uss{—1 ) elEs (1 ) #NU
REYNZLOS—NUMEBER RE=[HLs#NUS#(—1)
gaues INFUT EXFONENT OF RE ®#s%#
(R} R -1
FI U =RE#*(—1) #CF##(~1)
REYNOULDE~NUMEER RE=Lixl N (=1)
FRICTION-COEFFICIENT CF=TAUSRHOEE (=1 ) #tlss (-1)
waws CONTIMUE REWRITING & (YES/NDO)  sdedess

Fig. 4. 10. Analyzing process of problem with a vector quantity. (2)

4. 4. Conclusions

The system written in LISP is developed, which is convenient to analyze the phenomena
by using the pi theorem. It is demonstrated that even the simple inputs can deduce useful re-
sults. This system suggests the possibilities of transformation of nondimensional quantities
obtained by the pi theorem into other forms within known physical quantities and helps the
user to understand the phenomena.

Dimensional analysis based on the pi theorem is systematically formulated, and it can be
implemented in the present study. There are other methods to find pi numbers governing the
phenomena; the method which tries to find scale factors in the problems“‘m), and the method
which analyzes based on the governing equations and their boundary conditions*™"". To im-
plement these methods, their procedure and algorithms in the human process must be speci-
fied in some ways and various data need to be readjusted. The development in this area will
be an excellent application of knowledge engineering and contribute greatly to it.
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V. Mechanism for Solving Fluid Property Problems

5. 1. Introduction

There are many domain specific systems which are devised to carry out human intelli-
gent activities. Some of them seem to have more practical ability than experts’ ° . The re-
searches in knowledge engineering are carried out mainly in the areas of diagnosis, design,
manufacturing and control engineerings‘z).

In this chapter, fluid mechanics are considered as an object of study, and the process by
which students use to solve textbook problems is simulated. Applications of knowledge en-
gineering in this area are still few and this study is intended to be a contribution in this re-
gard. As a practical use of symbolic manipulation processing of computers, a dimensional
analysis system has been coded and its utility has been shown by the present authors’ . The
present automatic problem solver is constructed by the simulation of the human thought pro-
cess. This study is expected to clarify the knowledge structures and the solving mechanism in
this area. It also would seem to advance the systematic methods of teaching.

After a pioneer system was reported to solve the mathematical problems’ ¥, solving sys-
tems which accepts primary statics and arithmetic problems were deveiopeds"s)”kg). Mean-
while, the studies to apply the solving systems to computer-aided instruction have been pro-
gressing” 'Y,

In these situations, resolution of fluid property problems is the first step for an ambitious
research plan. These problems are well-posed ones based on full of experiences and emerge
on the first pages of most textbooks. In what follows, we present details on this problem sol~
ving system.

5. 2. Basic method to solve fluid property problems

Consider the simple problem of obtaining a specific volume of fluid, in which we follow
the process of a student in solving this problem and then try to create some human models.
Here, the proposed model is one of the examples and it does not mean a universal model. It
is assumed that students already knows the physical meaning of technical terms and symbols .
appearing in problems and have the set of concepts to understand problems. Confronted with
a problem, students have some representation about the problem: given quantities, wanted
quantities, constraints and so on. This makes a set whose elements are various kinds of
understood concepts. If the specific volume is given in the statement of a problem, the prob-
lem can be solved. If the specific volume v is not given, it may be obtained from the density o
by using the expression

o=+ (5.1)
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If the density is given, the problem can be solved. If the density is not known, a subproblem
to obtain it is set up and the resolution of this subproblem is pursued. When the density can
not be determined, it is impossible to obtain the specific volume through the expression (5.1).
On the other hand, the relation between specific volume v, pressure p, general gas constant
R, molecular weight M and absolute temperature 7 is known to be

RT
po==1, (5.2)

and the problem of obtaining the specific volume is divided into subproblems to find pres-
sure, gas constant, molecular weight and absolute temperature. In this way, problems are
transformed into subproblems by using relations between quantities. In case all the solutions
to subproblem is found, the original problems are solved. However, if one fails to solve the
subproblems, other expressions and/or methods must be found. In other words, in the pro-
cess to solve this problem, search strategies are needed to determine whether solutions can be
found through the expression (5.1) or the relation (5.2) must be taken into account.

In the example above, a subproblem to obtain density is formulated by the expression
(5.1). It is generally thought that density is a characteristic of a fluid and that it can be known
by consulting data books and textbooks as a reference’™'?). Therefore, the properties of mat-
ter can be formulated in a system data base. Besides the density, the molecular weight and
specific volume are properties also.

One of the subproblems developed by the expression (5.2) contains the absolute tem-
perature. When the absolute temperature is not given, the search for it is continued. Even if
one fails to obtain the absolute temperature, it may be assumed that the Celsius temperature
0 1is 15 centigrade. And by using the expression

T=0+273.15, (5.3)

the absolute temperature may be obtained. In this case, the assumption of the Celsius tem-
perature is one of the well used methods. A similar method may be adopted to obtain pres-
sure in the standard condition. These kinds of methods are defined as general decisions.

Consider the subproblem of finding the gas constant. The gas constant and acceleration
of gravity are experimental constants which are difficult to determine experimentally in the
solving process. These subjects are beyond the scope of this chapter. In general, experimental
constants are not clearly denoted in problem sentences. When they cannot be found by any
method, it is common for standard values to be determined by considering the conditions of
problem. In problem solving, this default knowledge cannot be disregarded.

The general decision and default knowledge must be used only in case the quantities are
not given or cannot be obtained. Therefore, we must determine when such knowledge is to
be used.

Expressions (5.1) and (5.2) are used not only to obtain the specific volume. Expression
(5.1) may be used in the problems to find the density. These expressions represent dependen-
cies of quantities and can be utilized in various situations. However, it is a mattter of course
that the state of equation of gas (5.2) is effective only when the fluid is liquid.

Problem solving involves many relations between physical quantities, and these quan-
tities are expressed in various umits. Thus, it is necessary to standardize units of quantities to
apply expressions and solution methods.

A rough outline of the process for solving a fluid property problem is shown in Fig. 5.1.
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Sa

hq

Fig. 5. 1. Rough sketch of solving process using relations.

Space X is a set of unknowns and data in problems. Each of the quantities to be obtained in a
problem makes set in X, whose element is the unknown itself. Consider one of these sets, S,.
In Fig. 5.1, Pis a set of given quantities in problem and Q is quantities prescribed by the
general decision and default knowledge. It is difficult to clarify the ways to define set Q and it
seems that experienced teachers have more excellent ability for it than students. From set S,,
transformation #; is applied to the set of unknowns, and a set of unknowns in subproblems is
formed. In this figure, if all the quantities in S; are known, the quantities in 5., can be ob-
tained. The transformation which uses quantities replaced by previous transformations is
never applied. When all elements in set S; are included in set P and/or Q, the problem can
be solved by a general decision, default knowledge and given values. On the other hand, if no
transformation is found to make S; contained in P and/or Q, it is concluded that the problem
cannot be solved.

In problem solving, transformations, general decision and default knowledge depend on
the characteristics of the problem areas. In terms of the above considerations, a solving sys-
tem is coded.

5. 3. System architecture

The prototype system has the architecture shown in Fig. 5.2 and it is written in Interlisp-
D. In the Figure, the main loop controls the overall processing.

Syntactic and semantic analysis are applied to the input sentences. Inner expression in
system is formed and the working memory is renewed. For convenience, inputs are expressed
in Japanese sentences. An example of an input sentence is shown in Fig. 5.3 and it is trans-
lated into the inner expressions shown in Fig. 5.4 (a), (b). The inner expression in Fig. 5.4 (a)
has the same meanings as those in Fig. 5.4 (b). The consistency of the two expressions is
maintained in processing and both of them are used properly. In Fig. 5.4, CONCEPT means
object in the problem, GOAL means wanted value and DATA means given value. When the
unit is omitted in the input sentence, a default unit system, whose primary units are meter, ki-
logram, second and absolute temperature, is adopted. In Fig. 5.3, an explicit expression
< bar> means that the pressure is 1.0 bar. Problem solving is carried out by expressing the
current state in working memory. When the input sentence contains no unknown and is not
regarded as a problem, replacement of the working memory, advisory system or other subsys-
tems runs according to the meaning of input.
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Algebraic
Input Manipulation
|| Working | | Concept
. Memory Data
Main .
Loop Plagnlng - »
L - quation
Output Carrying Data
] out
Semantic| |Unit . |_|Production| |Inference
Analysis| |Conversion System Data

l |

l Word Dictionary }

Fig. 5. 2. Architecture of the solving system.

I am ready to solve problems,

->ABSOLUTE TEMFERATURE 366.8, PRESSURE 1.8 <{bar>
>»DEMO WATER MO DEHSITY, WISCOSITY WO MOTOME YO,

Fig. 5. 3. Input of problem sentence.

({ (CONCEPT WATER)
(GOAL (DENSITY kg/m++3)
(VISCOSITY kg/m/s))
(DATA (ABSOLUTE-TEMPERATURE 368.8 K (GIVEN))
(PRESSURE 1.8 har (GIVEN)}))

({CONCEPT WATER)

(GOAL DENSITY kgfm**?)

{(GOAL YISCOSITY kg/m/s)

(DATA ABSOLUTE-TEWMPERATURE 386.8 K)
(DATA PRESSURE 1.8 bar)))

Fig. 5. 4. Inner expressions of the input in Fig. 5.3.



228 1. Nakamura and T. Watanabe

Given a problem, plans to solve the problem are formed. Following the process ex-
plained in Sec. 5.2, paths from unknowns to knowns are searched by formulating subprob-
lems. In case this search process fails, it is concluded that the problem is not resolvable.
‘When the solution plan is formed, a practical calculation is made by following the plan and
values of unknowns are obtained. Since the planning system and calculator are independent
of the data base of expressions, default decision and default knowledge, a wide variety of
problems can be handled by data supplements.

The data base of characteristics of the objects is named Concept Data, the data base of
relations between physical quantities is named Equation Data and the data base for general
decision and default knowledge are called Inference Data. Formation of solution plans and
calculation are processed according to these data. Fig. 5.5 shows a part of Concept Data,
which contains the density and the compressibility -of water. In the-expression of density,
PROCEDURE denotes that the density is evaluated by some procedure, UNIT denotes the
unit of obtained density, VARIABLES denotes requisite variables used in this procedure,
CONDITIONS denotes_the preconditions to apply this procedure. METHOD is the main

{WATER
(DENSITY
{PROCEDURE (UNIT kg/a%23)
{VARIABLES (CELSIUS-TEHPERATURE THETA C)
IF-FAIL (at celsius teasperature 20 "[C]")
{VALUE 998.2 kg/e#%3))
(CONDITIONS ({>= THETA 0.0)
"Recause water is solid®))
(RETHODS ({{>= THETA 0.0)
{(= THETA 100.0})
(FIRSTINT DATAL (THETA)))
(0= THETA 100,0))
{FIRSTEXTR DATAZ (THETA)}))
(DATAL (0.0 999.9)
(5.0 1000.0}
(10,0 999.7)
{13.0 999.1)
(20.0 998.2)
{30.0 995.7)
(0.0 992.2)
{60.0 983.2)
(80.0 971.8)
{100,0-958.4))
{DATA2 (80.0 971.8)
{100.0 958.4))))
{COMPRESSIRILITY S e e
(SPECIAL f{at celsius teaperature 20 "[C1" and
pressure 101,325 "[kPal®)
-——--{VALUE 4.845E-10 1/Pa)i}}

Fig. 5. 5. Characteristic data accompanied with water. (Concept Data)
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part of the procedure and DATAL and DATAZ are data used in METHOD. In the VARI-
ABLES list, the sentences following IF-FAIL indicate that, in case of failure to find the Cel-
sius temperature, the density is assumed to be 998.2 kg/ m’ at 20°C. This kind of assumption
is regarded as a general decision. In the figure, the compressibility has a value in a special
condition and is also evaluated by the general decision.

Equation Data is shown in Fig. 5.6. In the description of a relation, a distinction is made
between variables obtainable by default knowledge or by other arbitrary variables. In the
solution process, relations are used when one of the arbitrary variables is a variable to be ob-
tained. The equation is transformed by the algebraic manipulation and the expression of one
arbitrary variable is determined. In the equation EQ1, density and specific volume are the ar-
bitrary variables. The list of CONDITION denotes the conditions to validate EQ1. The ex-
pression EQ1 is effective when the density p and the specific volume v are not less than 0.
RELATION denotes the expression itself. Expression EQZ is the equation of state. In the
CONDITION list,

(P EQLRULEl (CONCEPT WATER)
— > (REMOVE 1) (MAKE NOT APPLICABLE))

is a production rule written in the subset system of OPS5° ™. The meaning of this rule is as
follows: if the object considered at present is water and there is an element

(CONCEPT WATER)

(EQ1 (NAHE)

(ARBITRARY (DENSITY RHD kq/e®#3)
{SPECIFIC-VOLURE Y a®&3/kg))

(DEFAULT)

(CONDITION {<= O RHD)

(=0 Y1)

(RELATION RHO=1/V1)

tEQZ {NAME EQUATION-OF-STATE)

(ARBITRARY (PRESSURE P Pal
(SPECIFIC-VOLUHE V m#23/kg)
{HOLECULAR-WEIGHT H kg/mol)
{ABSOLUTE-TEHPERATURE THETA K1)

(DEFAULT (GAS-CONSTANT R J/amol/K})

(CONDITION (P EQ2.RULE! (CONCEPT WATER)

-~-> (REHOVE 1)
(HAKE NOT APPLICABLE}}
{¢=0P)
=0V}
{{= 0 THETA)
{¢= 0 R}
{(RELATION PeV=R/HZTHETA)}

Fig. 5. 6. Relation data between quantities. (Equation Data)
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in the working memory, it is concluded that this relation is not applicable.
Fig. 5.7 gives examples of Inference Data. Inference Data are expressed in production
rules. As the path search proceeds, the unknowns in subproblems denoted by SUBGOAL

(P RULE! (SUBGOAL GAS-CONSTANT)
{SEARCH DEFAULT)
{DEFAULT-ASKING PROPERTY= GAS-CONSTANT VALUE= B.31433 UNIT= J/aol/K)
---) (REMOVE 1)
{HAKE DATA BAS-CONSTANT 8.31433 J/mol/K))
{P RULEZ (CONCEPT AIR)
{SUBGOAL CELSIUS-TEHPERATURE)
(SEARCH BENERAL)
---» (REHOVE 2)
{MAKE DATA CELSIUS-TEHPERATURE 20 C))

Fig. 5. 7. Default decision and general knowledge. (Inference Data)

are set in the working memory. When a solution cannot be obtained by knowns in the prob-
lem, default knowledge and general decision are used. RULE1 asserts that when the un-
known of a current subproblem is the gas constant and the default knowledge can be used, if
the user permits to determine that the gas constant is 8.31433 J/mol/K, then a new element

(DATA GAS-CONSTANT 8.31433 J/mol/K)

is added to the working memory. In RULE1, DEFAULT-ASKING is a Lisp funciton which
inquires of the user if the default value is adopted.

There are some levels in the path searching process. Initially, one tries to find a solution
only by using data in the problem. If the solution cannot be found, values that may be
omitted are supplied. In this system, the levels are as follows: first, knowns in the original
problem are used, then the default knowledge and finally the general knowledge are applied.

5. 4. Examples

Consider a problem in which the unknown is the value of specific volume of air. Fig. 5.8
shows the interaction process in this problem solving. Since no known value appears in the
input sentence of the problem at line (A), a system inquiry about the usage of default value is
made in consequence of the production rules. The planning process is continued by permit-
ting to use all of the default decision data and general knowledge data, and the two methods
shown in Fig. 5.9 are obtained. A second method is selected at line (C) and the specific vol-
ume is determined. At line (D), it is commanded to find the sonic velocity, in unit km/h, of
water at Celsius temperature 25.0°C. It is shown that the density and the compressibility are
evaluated and the sonic velocity is obtained.

5. 5. Conclusions

Through application of knowledge engineering to fluid mechanics, fluid property prob-
lems are considered and a system which simulates the human solving process is developed.
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I 3m ready to zolve probless,

(A) -¥AIR MO SPECIFIC VOLUME WO MOTOME ¥0.
Hay uze default value 2.31433 [J/mol1/K] for BGAS
CONSTANT 2
FORIND HAKARAE.

I found 2 schemes to ohtain SPECIFIC YOLUME.
(B) 3xEQ7 w0 SHIME 3E.

Equation EQ7
Srbitrary variables are
ARBOLUTE TEMPERATURE: ABITENP
CELSIUS TEMPERATURE: CELSTEMP
Felation
ABSTEMP=CELSTEMP+273. 15

(C) ®r2 WO JIKKOU SEYO,

sult value of GAZ COHMSTANT 4s 8,31
ume CELSIUR TEMPERATURE e 2@ [C].
1

HOLECGULAR WELGHT has heen referd az 28,37 [g/mal].
1 ume PRE3ZSURE iz 101,325 [kPal.

SPECIFIC YOLUME has been calculated as (8305325
[m#*#3/kn].

SPECIFIC YOLUME 1= .8303325 [m*+3/kq].

I finished.

(D) -:CELEIUE TEMPERATURE 25.8 NO TOKI HO

DAATER MO SONIGC YELOTITY <ka/h> HA.

CELEIUSE TEMPERATURE hasz been given as 28.8 [C].
DEMZITY haz been referd as 996,95 [kog/m**#3],
COMFRESSIBILITY has been estimated 3s 4,845E-1@
[1/Pa] at celsius teaperature 28 [C] snd pressure
181,325 [KPa].

BULK MODULUS has been calculsted as 2063283483 [Pa].
BOMIC YELOCITY has heen calculated as 1438.853 [m/s]
SONIG YELOCITY iz &179.871 {kash].

I finizhed.

Fig. 5. 8. Solving process to obtain specific volume of air and sonic velocity of water.

Scheme of number 1 for SPECIFIC YOLUME

atain SPECIFIC WOLUME, 1 select equation EQL.

e equation EQL, I need to know DEMESITY of AIR.
tain QEHSITY of &IR, I sel dats of ALK,

e data of &IR, I need to know CELSIUE TEMPERATURE.
ume CELSIUS TEMPERATURE s 28 [C].

o

Scheme of number 2 for SPECIFIC VOLUME

To obtain ZPECIFIC YOLUME, I select equation EQZ.
To use eguation EQZ, I rneed to know GA3 CONSTANT, ARSOLUTE |~
TEMPERATURE, MOLECULAR WEIGHT of AIR and PRESSURE.

Oefault value of RAS CONSTANT is £.31433 [J/E/mol]

To obtain ARZOLUTE TEMPERATURE, I select eguation EQ7.
eguation EO7, I need to know CELSTUR TEMPERATURE.

me DELAIUS TEMPERATURE iz 28 [C].

in M ULAR WEIGHT of &IR, I select data of AIR.

ume PRESSURE 4= 181,325 [kPs].

Fig. 5. 9. Strategies to find the specific volume of air.
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Study in this area has been neglected. Knowledge about fluid property problems is resolved
into four parts: characteristic quantities of the objects under consideration, relations between
quantities, default decisions about the experimental constants and general knowledge in stan-
dard circumstances. The ability of this system is demonstrated. This system can be applied to
similar problems by updating the data base. It is also effective to advize users, who are not
familiar with problems in property problems.

It is very difficult to clarify the correctness and the limitation of the solving system based
on the analysis of practical problems. Therefore, one must apply the system to various kinds
of problems and prove its validity by experiment. So far, this system works well. Further im-
provements expected to provide a more effective and more universal process are as follows:
precise expression of current situations’ *” '), learning system® 'Y, metaknowledge to
control the process’™ 779, checking system of the results and intelligent interface system.
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V1. Application of Production System to Problems
with Changing Conditions

6. 1. Introduction

Applications of artifical intelligence are being made in various areas and in addition to
fault diagnosis, facility layout and plant control systems® ", an ap roach to the combination
of computational fluid dynamics and expert system is developmg )6-3),
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In this chapter, practical textbook problems are taken up and an attempt is made to clar-
ify the resolution process. This means not only the significance of the automatic problem sol-
ving system in physical problems but also the contribution of the modeling and simulation to
the knowledge representation and knowledge manipulation in fluid mechanics.

It is said that the study of knowledge representation must find out a description which
holds the meanings in wide variety of problems and guarantees the correctness of processing
done by formal transformations’™ . Following this opinion, it is necessary to carry out study
to confirm the validity of the knowledge representation for the practical problems as well as
universal research in abstract area. This seems to be the same case of requirement for both
the theory of isotropic turbulence and the detailed experiment of individual flows.

One of the aims of this study is to investigate the applicability of artificial intelligence
technologies to engineering and confirm their defects. Attempts to solve elementary mathe-
matical and physical problems automatically have already been made®™°7%. Here, for the
textbook problems in fluids mechanics, which had not been considered previously, we de-
veloped a solving system based on the production system.

One formulation of the elementary problems in fluid mechanics is proposed, which cla-
sifies problems into those with no changing conditions and those with change of same. The
former are called the static problems which are solved in a unique world. The latter are
termed multiple problems in which a solution is obtained by using the relations between static
problems. Though this kind of formulation is not a universal one, a fluid property problem
can be called a static one, while a system of pipes constitutes a multiple one.

6. 2. Syntactic and semantic analysis of input sentences

In order to achieve smooth interaction with a computer, a well-designed interface is
requisite. Therefore, a system to translate Japanese sentences into corresponding inner ex-
pressions is adopted. It is based on the extended Japanese LINGOL"™". The syntactic ana-
lysis is applied to the input sentence by using internal grammar and a dictionary, and compo-
sitions of phrases and words are checked. Then semantic analysis routines stored in inner
grammar and dictionary are employed to extract the meanings, and the meanings are regis-
tered in the global working memory of the production system. Properties used in the produc-
tion system to express the data in fluid mechanics problems are as follows:

(1) WANT (main goal): unknown appearing in the given problem.
(2) GOAL (subgoal): unknown created during the solution process.
(3) PROP (known): known quantity appearing in the problem or created during the solu-
tion process.
(4) NOTKNOWN (unsolvable): property determined not to be solvable.
(5) LOC (position): configuration of objects.
(6) ACTBYM (action object method): action applied to object by using method.
(7) CONDITION (condition): condition that must be satistied by the current object con-
sidered.
(8) TRANS (transition): changing mode in state of object considered.
The criterion for the selection of properties and the proof of their appropriateness are diffi-
cult to explain and the application to concrete problems would presumably contribute to their
reasonable confirmation.

One of the results of the syntactic and semantic analysis is shown in Fig. 6.1. In this
figure, undetermined values are denoted by the symbol ?, and the units of quantities are
transformed into fundamental units of the system.
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At the pressure 2 kgf/cm2 and the temperature 45 C the specific volume of a
perfect gas is 0.481 m3/kg. Determine the gas constant and the molecular
wright.

((WANT (GAS_CONSTANT PERFECT_GAS ?))

(WANT (MOLECULAR_WEIGHT PERFECT_GAS ?))
(PROP (SPECIFIC_VOLUME PERFECT_GAS 0.481))
(PROP (TEMPERATURE SPECIFIC_VOLUME 318.15))
(PROP (PRESSURE PERFECT_GAS 196140.0)))

A 2 m high by 1 m wide rectangular gate is making an angle of 30 degrees
with the horizontal and its upper edge is 20 cm below the water surface.
Determine the resultant force on the gate and the location of the acting
point.

((WANT (LOCATION ACTING_POINT ?))

(WANT (RESULTANT_FORCE GATE ?))

(PROP (DEPTH UPPER_EDGE 0.2))

(LOC (INCLINATION GATE HORIZONTAL (ANGLE 0.5235)))
(PROP (WIDTH GATE 2.0))

(PROP (HEIGHT GATE 1.0))

(PROP (SHAPE GATE RECTANGLE)))

Fig. 6. 1. Results of semantic analysis.

6. 3. Static problems

inference engine

The basic production system consists of the working memory, production rules and the
, and forward reasoning is used. Fig. 6.2 shows the production rules used
to obtain the viscosity. Variables are denoted by symbols starting with > or <C, and symbols
starting with * are Lisp functions. For example, the rule VIS-6 states that if the goal is the
viscosity of some object OBJ and its kinematic viscosity v and density o are known, the

6—8)

(VIS-2 ((GOAL (VISCOSITY >0OBJ ?))
(PROP (STATE <OBJ WATER))
(PROP (TEMPERATURE <OBJ >T)))
->
((#CHOICE (#EVAL TABLE_1.5))))
(VIS-6 ((GOAL (VISCOSITY >O0BJ ?))
(PROP (KINEMATIC_VISCOSITY <OBJ >NU))
(PROP (DENSITY <OBJ <RHO)))
->
((#PRINT#ANSWER (*SETQ W1 (VISCOSITY <OBJ <RHO <NU))))
(#POP (GOAL (VISCOSITY <OBJ ?)))
(#PUSH (PROP (#EVAL W1)))))
(VIS-1 ((GOAL (VISCOSITY >0OBJ ?))
(PROP (STATE <0BJ AIR)))
->
((#CHOICE (#EVAL TABLE_1.4))))
(VIS-3 ((GOAL (VISCOSITY >0OBJ ?))
(PROP (STATE <OBJ WATER)))
->
((#CHOICE ((0.001138 <15 C, 1 atom>)))))

Fig. 6. 2. Example of production rules.
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viscosity u can be determined by using the relation
v=p0X "

Rule VIS-1, on the other hand, asserts that if the goal is the viscosity and the object is air,
then it can be selected from the prescribed table 1.4 by using the Lisp function CHOICE.

6. 4. Multiple problems

Consider the problems with changing conditions such as are the energy conservation
problems and problems of the expansion and contraction of gases. One of the typical prob-
lems is that of momentum, which requires the force resulting from momentums of a water jet
before and after collision with a plate. The local problems before and after the collision may
have different quantities but they can be assumed to have the same kinds of properties in the
working memory and the same rule base. While the results of the local problems are obtained
at a lower level, the resultant force is found by combining these results and by using the rules
for the momentum at the higher level. An outline of this process is presented in Fig. 6.3 (a).
The upper world gets the results from the lower worlds and obtains the final consequences.

Another typical problem is the one which requires the state of a water jet before or after
the collision and can be solved by using some other state and momentum theory. A solution
process for this sort of problems is shown in Fig. 6.3 (b). The upper world gets the known re-
sult from one of the lower worlds and transfers the information to the other lower world
which obtains the final result.

To realize the solution process shown in Fig. 6.3, a multilayered production system is de-
veloped, which can initiate the inference in any world at nay time. Each world has its own

Upper World
0 )

Lower World 1 Lower World 1

(a) Processing Form of Type 1

Upper World

t d

Lower World 1 Lower World 1

(b) Processing Form of Type 2

Fig. 6. 3. Problem processing in multiple worlds.
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working memory and production rules. The working memory can be modified by the external
worlds.

One example of the moment problems and their inner expression, which corresponds to
the contents of the working memory, is shown in Fig. 6.4. This problem belongs to those in
Fig. 6.3 (a). In the upper world rules are prescribed, which directs the lower worlds to obtain
momentums and finds the acting force. The solution process for this problem is shown in Fig.
6.5. The inference proceeds in accordance with the rules.

Vi //
.y

I

V2

((WANT (FORCE PLANE ?))
(TRANS (((PROP (VELOCITY WATER 9.0))
(PROP (MASS_FLOW_RATE WATER 20.8)))
((PROP (VELOCITY WATER 0.0))
(PROP (MASS_FLOW_RATE WATER 20.8)))
WATER COLLISION_WITH_PLANE)))

Fig. 6. 4. Representation of momentum problem.

6. 5. Conclusions

A solving production system is developed in the light of human solving ability in the
elementary problems of fluids mechanics. Problems are classified into static problems with
unchanging conditions and multiple problems with changing conditions. It is shown that the
standard production system can be readily applied to static problems. To formulate multiple
problems, a multilayered production system, which represents worlds performing independ-
ent inferences, is designed. More straightforward architecture is constructed to solve multiple
problems by the multilayered production system than by the standard production system, and
the efficiency is increased. As a practical example, a process for solving a momentum prob-
lem is demonstrated.
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In which world do you execute inference?
(multiple world unique world)

sxs#e Start inference in multiple world. ###xs

————— Start inference before COLLISION_WITH_PLANE.

What is the state of WATER?
(gas liquid solid)
You selected liquid as a state of WATER.

<<<<< Matched rule is MOMENTUM_OF_FLUID_2 >>>>>

<<<<< Matched rule is MOMENTUM_OF_FLUID_1 >>>>>

Momentum of water is 187.0315 (N.s)

————— Finish inference before COLLISION_WITH_PLANE.

————— Start inference after COLLISION_WITH_PLANE.

<<<<< Matched rule is MOMENTUM_OF_FLUID_1 >>>>>

Momentum of water is 0 (N.s)

————— Finish inference before COLLISION_WITH_PLANE.

<<<<< Matched rule is CHANGE_IN_MOMENTUM_2 >>>>>

FORCE on PLANE is -187.0315 (KkN)

The problem is solved.

Fig. 6. 5. Processing in multiple worlds.
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