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Abstract

Heat transfer between two parallel plates in polyatomic gas was studied
based on a linearized version of the Wang-Chang, Uhlenback, and de Boer
equation with Gross-Jackson’s type approximation. The analysis was carried
out using phenomenological accommodation coefficients of translational and
internal energies. Results showed that the net rate of heat transfer between two
plates was less dependent upon such coefficients. On the otherhand dis-
tributions of number density and temperatures were dependent upon those
coefficients. A comparison with the experiments using the electron beam
fluorescence technique suggested that the accommodation coefficients for the
rotational energy of nitrogen might be much less than unity.

1. Introduction

This paper is concerned with the one-dimensional heat transfer problem between two
parallel plates in polyatomic gas. This study was motivated from the question whether or not
the Kassem and Hickmann’s postulation” is correct. They carried out experiments of heat
transfer in polyatomic gas (nitrogen gas) in the transition regime and found that the gradient
of the rotational temperature was much larger than the gradient of the translational tempera-
ture (in fact the negative gradient of number density). That is, the experimental results
showed that a slip of the rotational temperature was much less than the one of the number
density. This fact, they postulated, suggested that the rotational temperature accommodates
itself completely to the temperature at the surface. But such postulation might be contradict
to the conventional theoretical predictionsQ)’3) of accommodation coefficients of internal en-
ergies.

Since the energy accommodation coefficients are substantial parameters for the evalu-
ation of the thermal force” on a small particle with high thermal conductivity, the Kassem
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and Hickman’s postulation should be critically examined. This report presents a theoretical
study of this problem based on the Gross—Jackson s model equaﬂon to the Wang-Chang,
Uhlenbeck, and de Boer (WCUB) equation,” which retains 17 moments of the WCUB
equation correct. It is obvious that the previous studies 74) based on the Morse model equa-
tion” is inadequate because this model equation yielded incorrect Euken factors” for
polyatomic gases. The effects of the lntemal energies, however, will be investigated introduc-
ing a macroscopic collision number Z,,, ) which is required to establish a thermal equilibrium
between the translational mode and the internal mode. Boundary conditions for emitted
molecules will be described using phenomenological accommodation coefficients. A
method of solutlon of the kinetic model equation used in this report will be found in the pre-
vious papers.’

2. Formulation of the Problem

Consider a stationary gas at a constant pressure p, and a temperature 7, between two
parallel plates at x = 0 and x = L. The two plates are maintained at constant but slightly dif-
ferent temperatures Ty + 34 Tand T, — 34 T. Let us f'(x, v, €;) be the probability density
(distribution function) of gas molecules in the ith internal energy state having velocity be-
tween v and v+ dv. The WCUB equation is given by

0L ([ s = s ety a@a | (1)

Jik, ¢

where the pnmes refer to the distribution function after a two body collision. The scattering
cross section, I contains transition probabilities from the ith to kth and from jth to ¢th
states. The sohd angle of scattering is dQ and the integral is summed over all states except i.

Macroscopic moments, the density », flow velocity u; u = (1, 0, 0), translational tempera-
ture T,, internal energy E, and temperature T are given by

n
I | g
E €

T, +c
2m Vm
c 2 (3)

where k is the Boltzmann constant, m the mass of molecule, c,, the specific heat of the trans-
lational energy, c,,, the specific heats of the internal energy, and ¢, = ¢, + Cy.

Using knowledges of moment equations of the WCUB equation,'*' a kinetic model
equation that retains 17 moments of Eq. (1) correct is yielded by

VI piriarahy - /) (4)
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where
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where R is the gas constant, R = k/m. The dimensionless shear. stress p,,, and the heat
fluxes, q.,and g are given by

=
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The parameters J; to J; denote collision integrals defined in Mason and Monchlck * and are
expressed in terms of conventional collision integrals Q®2, QD, and Q' as

=31, 1=,

L=5L=5=Q" 2

> ]3=J4

22)_ 25 »Cc — 4 ¢ Evin L), 35
Js=Q® =530, =45 +500,

where Q" and Q®? are related to the shear viscosity u and the self diffusion coefficient
D,
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while Q' is related to the bulk viscosity x

kT Vl'l
K =(-=m 200 ) ( )

where the subscript 1 denotes the first approximation of the Chapmann-Enskog solution. 16)

Let introduce a conventional collision number Z," ) defined by
Z,=4pt/mu (5)
where the acoustic relaxation time tis given by

4 VII‘

A relaxation time required for inelastic collisions may be given by

~1

¢ 4
T =(g ) (3.

Since the total collision number v is given by v = p/u, the ratio of the inelastic collision
v, (= 1/1,) to the total collision v is given by

in__S
0=7=%¢,

Then Eq. (5) is reduced to

Zmzi(ccv)é_l' (6)

T vir

A distribution function of the emitted molecules with a velocity ¢(=v/ /2 RT ) and
with an internal energy state E,is given by

e/ T @E)=L[ 161/ E) W Ere, B de (7)

in terms of the distribution function of the incident molecules /' ~ where W(c; E ,; ¢, E;)rep-
resents a differential reflection probability that a molecule of an incident velocity ¢ and an in-
ternal state E; is reflected into the velocity space element de in the vicinity of ¢ and in
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the internal energy state E;. If we assume a simple (Maxwell type) differential reflection
probability in analogus to the monatomic gas case,'”

W(e, Erve, E)=[(1— ) (¢ —¢,)+ a, 2 exp(—c”)]

exp (—E;)
X[(1=a,)0(E, —E)+a,—F+7],

[( l) ( z) i Qin(T) ]
where ¢, = ¢ — 2nc,, O,,(T) the partition function, «, the accommodation coefficient of the
translational energy, a; the accommodation coefficient of the internal energy, J(x) the
Dirac’s delta function, and n the unit vector normal (outward) to the surface, Eq. (7) yields

i+ i exp (“E:)
fGE)y=(1—a)(l—a)f (¢, EN)+(1—a)a exél.fm)

) f""(c,,E,:)+ a,(1— a,-);tz-exp(—-cz) J » [ ¢, ] 7 (¢, E;)de

+a,0 ,ﬂexp("c )%)((—f)) f OIC;If’;_(c',E,»)dcﬂ (8)

The energy accommodation coefficients are defined by

+

E —E E —E
q,~ =", ;"= —w,
" E, —E "' E —E

where E¥ and E~ denote fluxes of energy of the emitted and impinged molecules, whereas
E" refers to the value when gas and the wall are m equilibrium. Detailed discussion on the
accommodation coefficients were given by Kuscer."'

Outside the Knudsen layer the distribution function may approach the 17 moment solu-
tion to the WCUB equation and in one-dimensional problem the solution is given by

F = AT =D HIE- D~ § e (¢~ § )

nkT\/_2_R~[5 (C _'2')'1'2’1(5_1)] } (9)

where

exp (—E;)

i B ’
fo=no(2mn RTy) “exp(—c”) Oin(To)
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3. Method of Solution

When the temperature difference between two plates is small, AT/T << 1, Eq. (4) may
be rewritten in a linearized version of it. Conveniently, we introduce the reduced distribution
functions ¢, 8, and y defined by

g(x,c) w 1 ,
O(x,¢.) |= Znnl jJ c;—!— cf—l ¢'de,dc,, (10)
Y(x,c) l - E—1

where f'= f 8 (1+ ¢i). Multiplying Eq. (4) by the weighting functions 1, 2R T(cf + cz2 - 1),
and RT(E; — 1), integrating the results with respect ¢, and c,, and summing up them with re-
spect to i in accordance with Eq. (10), we obtain

o®

65 = @ N+ @, U+ (D + 5 Bs) t

Coin 4 ,
(1= 0) T (1, 1) (@5, D)+ 75 (1=30) 4/ Dy,

1 5 in

where
D=(4,0,y), ®=(1,0,0), ®,=(2¢,0,0),

1
2)

3

@y =(¢; =5, 1,0, @5,=(0,0,1)', ®=(c;~3¢¢.0),

Pyin= (0,0, Cx)t’ D5, = Dy, (Dsmz(O»O,—%)r,

and the superscript ¢ implies the transpose of a vector or a matrix. In Eq. (11) the distance x
is nondimensionalized by a reduced mean free path ¢;

2 — Mo 2 =,/2RTO
0" mn, \ RT, 5

The perturbed variables are defined by

n=no(1+N), u=[2RT,U, T,=T,(1+1,),
Tin=T0(1+tin)9 T=T0(1+t)5 (12)
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while the energy conservation equation yields
tr in
q9.= q, + g, = constant.

In terms of the reduced distribution functions these perturbed variables are expressed as
N=(,9), U=(c9), t,= [(C "— AT (L O],
tm = (13 ‘/’) H = Cv~1 (cvtrttr + cvintin) H
3.3
Qtr=(cx—.§Cxﬁ¢)+(cx)0)a qin=(cx: w) (13)
In Eq. (11) the following abbreviation is used
A B)=7"] ABexp(-&)de,.

The boundary conditions (8) for x = i% and (9) yield

10 0
o (75, c0=(1=a) |01 0 o" (7L, -c)
0 0 1'—'(11*
é—1 0
—®"* FATq, 1 FATa, | 0 |, (14)
0 1

0 _ —
P =2a,f$m Gl (FL+-a) o’ (3 L) lew (- &) de,

@ (@)= Ng@ + 2o (P3, T }%n @35) + (4 dx )X (P53, — Py + ;én D@s;,)

451 qjc,q)ltr+ zq:" lin * ( 15 )

In the Knudsen layer adjacent to the wall surface gas is not in thermal equilibrium in
spite of the collisions of particles emitting from the surface with those impinging on to the
surface. The distribution function @ is accordingly divided into two parts, ®* = @ (¢c,,0) and
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these half-range distribution functions may be expanded using the half-range Hermite poly-
nomials H; (7)® where n=c,|:

+ +
Gy G
(Di=z b; ; b; =J HECIJi exp(~772)d77, (16)
£E=0 0
+ +
Ce Ce

Substituting the expansion form (16) into Eq. (11) and using the orthonormal relation of
. . . . . . * + *
H; %), we obtain a set of differential equations of the coefficients a & beand ¢ £

+
%=rx;x=[§_], (17)

where the vectors X * are defined by

+ + + + + * * + st *
X =(a1> a2a tt 'sanab13b29 t ',bn,CI,Cz, t ‘,Cn),

and [ is the matrix of order 6n when the first n terms of the expansions (16) are retained; the
components of the matrix I’ can be obtained from the vectorial form of the righthand side of
Eq. (11). Hereafter the superscript + and — denote respectively the upper and the lower
halves of a vector or a matrix. In terms of the vector X, Eq. (11) is rewritten as

N=X,-X, U=X,- X, (,=5X, - X,
= Xsin * X, @p=Xsy " X, qn=Xpsn = X, (18)
where X; is a constant vector (See Appendix).
A general solution of Eq. (17) is given as
3n—2

X= ) [Plexp(Ax)Ui+ Piexp(—Ax) U] +X;, (19)
E=1

where A;(> 0) is the eigenvalue of the characteristic equation

g31=2 i )
[T=M]=x [] (A=15)=0, (20)
E=1
where I is the unit matrix, U, the eigenvector corresponding to the eigenvalue A;(# 0), and
X denotes the fluid dynamic solution corresponding fo the eigenvalue i = 0, i.e., the 17 mo-

ment solution of Eq. (17) is given by

X,= Ny X, + 1, X5+ O.X, + (X, — X3) Qux, (21)
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where X; and X, are constant vectors (See Appendix). Arbitrary parameters Pfand P as
well as Ny, t,, and Q. will be determined from the boundary conditions.
The boundary condition (12) can be rewritten in terms of vectors as

X*(FL) = WX+ 20, XXX, (22)
where
10 0
W=(l—a) 0 1 0 |+20,(1— a)Xs (Xin),
00 1-a,
X* = X" ¥ 247X},

The second term in the righthand side of Eq. (22) is the vectorial form of

L 0 ¥ 2 1
N(F5y =202 [ lel ¢ ep(—)de F faT],
Fo

that is, the number density of molecules which suffer diffuse reflection.

Since ¢(0) = N(0) = 0, we find N, = t = 0. If L/¢, > 1, —0.. denotes the temperature
gradient. Imposing the boundary conditions (22) on the solution (19), we can determine the
values of all unknowns, P, P{'(k =1, 3n — 2), and Q... The antisymmetric nature of the
problem results in Pé’ /P{= %1 where the positive or negative sign depends on the sign of
the ratio U /Uj. The temperature slip coefficient d, and the slip coefficient of number den-
sity d, at x = —L/2 are formally obtained as

which yields

5 — _—AT =Ll 740
Q“—L+2d,’ Nu 2roL anw-

If L/¢, >> 1, d, and d, yield the conventional slip coefficients (See Table 1). Since the dis-
tribution functions is thus determine, we can evaluate any necessary moments of the distribu-
tion function.
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Table 1. Slip coefficients for diatomic gas ; A* = 1.095, s = 2.

Slip coefficients

a; d, d, d, d,
(Zr = 3.0, ¢, =1.0) (Zr =10.0, o, = 1.0)
1.0 0.99377 ~1.75759 0.96767 —1.75200
0.8 0.96743 —1.72387 0.92940 —1.70479
0.6 0.94357 —1.69333 0.89280 —1.65912
0.4 0.92186 —1.66553 0.85672 —1.61491
0.2 0.90201 —1.64013 0.82206 —1.57208
0.0 0.88380 —1.61681 0.78847 —1.53057
(Zr = 3.0, a, =0.7) (Zr=10.0, a,=0.7)
1.0 1.91733 —3.42206 1.89293 —3.41247
0.8 1.76885 ~3.20950 1.73908 —3.20208
0.6 1.64268 —3.02859 1.59684 —3.00745
0.4 1.53402 —2.87251 1.46474 —2.82659
0.2 1.43935 —2.73625 1.34153 —2.65780
0.0 1.35601 —2.61608 1.22617 —2.49964

4. Results and Discussion

In the previous section we obtain the analytical solution of the one-dimensional heat
transfer problem in polyatomic gases. The results depend on the five parameters, s, Kn(=
L. /L), Z,,, a,, and a;, where s denotes the internal degree of freedom. If K tends to zero,
the present problem reduced to the problem to evaluate the slips (jumps) of temperatures. As
shown in Table 1 values of slip coefficients are less dependent on the collision number Z,, as
long as ¢ is close to unity : As Z,, — =, for instance, d, ~ 0.9651 and d, -~ —1.7688 for s =
2and a,= ;= 1. Even if ;s close to zero, effects of Z,, on the slip coefficients are not so
significant. As a; decreases, values of the slip coefficients decrease. This trend is enforced as
a; decreases. The values of slip coefficients increase significantly as a, decrease. In Fig. 1 the
shp coefficients are shown against s for the case when Z;, = 2.122, A*= 1.0, and o, = a; =
1.0. The slip coefficients increase gradually as s increases. The results showed that the values
of slip coefficients slightly de end on the value of A*. For the Lenard-Johns potential A* =
1.095 is a good estimations."

As aforementioned Kassem and Hickmann measured rotational temperature and num-
ber density of nitrogen gas between two parallel plates with different temperature. Their re-
sults of number density measurements showed a good agreement with the results of previous
works.'” Their results are, however, convenient because they measured number density as
well as rotational temperature : They assumed that under a constant pressure a reciprocal of
number density yielded translational temperature. In Fig. 2 theoretical predictions of dimen-
sionless heat flux in the transition regime are shown against the reciprocal of the Kundsen
number. It is found that the heat flux is weakly dependent upon the accommodation
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Fig. 1. Dependence of slip coefficients on the Fig. 2. Heat flux in the transition regime.

internal degree of freedom.

coefficient a ;. The dependence of the heat flux on «, is shown in Fig. 3 for the case when Kn=
0.19. Distributions of rotational temperature and number density are shown in Fig. 4 (see

Kn =0.19
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Fig. 3. Dependence of Heat flux on the accom- Fig. 4. Distributions of number density and ro-

modation coefficients: Kn = 0.19, s = 2,

Z,, =10, A+ = 1.095.

tational temperature: Kn = 0.19, s = 2,
Z.,= 10, Ax = 1.095, a, = 1.0.
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Fig. 5. Distributions of number density and ro- Fig. 6. Distributions of number density and ro-
tational temperature for Kn = 0.19. tational temperature for Kn = 0.3.

5. Appendix

The constant vectors X, X,, X;,, X;;,, X, , and X,,, are the vectorial forms of @,
D,, Oy, Dy, ¢ (P35, — D)), and ¢, P4, respectively. The vectors X ; and X, are given by

Cing
X3 = X3tr+ (_1—?—) H

Cvm

X, = (3% 0 Xy + (52 0) X

where the Eucken factors are given by

A=5l=3 -1,

6A* Cuir 3A=
fi= B8 [1+ S (3 — 3%y,
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also Table 2) for the same case as Fig. 3. In accordance with the change of slip coefficients in
Table 1 the distribution of rotational temperature deviates downward as «; decreases. In Figs.
5 and 6 present results are compared with the Kassem and Hickman’s results. The present re-
sults for a, = 1 and a, = 0 show a good agreement with their results for Kn = 0.19, while the
results for o, = 0.7 and a, = 0 agree at best with their results for Kn = 0.3. Since values of a,
of unbaked surfaces are expected to be close to unity,zo) the choice of «, = 0.7 is a little sus-
picious. On the other hand, innegligible uncertainties may be included in the measurements
of number density of rarefied gas in contrast to the measurements of rotational temperature.
In spite of such uncertainties it is confirmed through the present comparison that the signifi-
cant deviation of the distribution of rotational temperature from that of number density is at-
tributed to the smallness of ;. If ¢, is close to unity, the both distributions might be much
closer than the measured distributions. More accrate measurements of number density and
theoretical studies using nonlinear kinetic equations may be expected.

Table 2. Distributions of number density and temperatures;
s=2,Kn=0.19, Zr = 3.0, o, = 1.0.

x/L N ty, Lot
(0, = 1.0)

—0.50 0.3399 -—0.3563 —0.3540
—0.45 0.2870 —0.2988 —0.2972
—0.40 0.2500 —0.2590 —0.2581
—0.35 0.2165 —0.2234 —0.2228
—0.30 0.1842 —0.1895 —0.1892
—0.25 0.1526 —0.1567 —0.1565
—0.20 0.1215 -0.1246 —0.1245
—0.15 0.0909 —0.0931 —0.0930
—0.10 0.0604 -0.0619 —0.0618
—0.05 0.0302 —0.0309 —0.0309

0.00 0.0000 0.0000 0.0000

(a; = 0.0)

—0.50 0.3418 —0.3591 —0.3847
—0.45 0.2905 —0.3036 —0.3185
—0.40 0.2539 —0.2641 —0.2749
—0.35 0.2203 —0.2283 —0.2363
—0.30 0.1877 —0.1940 —0.2000
—0.25 0.1557 —0.1606 —0.1651
—0.20 0.1242 —0.1278 —0.1311
—0.15 0.0929 —0.0955 —0.0978
—0.10 0.0618 —0.0635 —0.0650
—0.05 0.0309 —0.0317 —0.0324

0.00 0.0000 0.0000 0.0000
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