1.
2. Multi-mode Response of a String

Memoirs of the Faculty of Engineering, Nagoya University
Vol. 40, No.2 (1988)

A STUDY ON THE MULTI-MODE
RESPONSE OF CONTINUOUS SYSTEMS

Kmviaiko YASUDA and Takao TORII

Department of Electronic-Mechanical Engineering

(Received October 31, 1988)

Abstract

Nonlinear forced oscillations of continuous systems such as strings,
membranes and beams are considered. These systems have an infinite
number of natural frequencies and an infinite number of corresponding
natural modes. Under some conditions, some of these modes may interact
with each other, and the so-called multi-mode responses may occur. To see
whether some or other types of multi-mode responses in fact occur and what
their characteristics are, the oscillations induced by a periodic excitation near
primary resonance points are discussed. Both theoretical and experimental
analyses are conducted.

The first system taken up is a string. Its natural frequencies are in a
ratio of prime integers. Due to this, oscillations containing several subhar-
monic or super-harmonic components occur. Thus it is shown that a type of
multi-mode response occurs. The second system is a circular membrane. In
this system, two modes exist in pairs with the same natural frequency and
the same modal shape but are shifted circumferentially. Due to this, oscilla-
tions of rotary type occur. The third system is a square membrane. As in a
circular membrane, oscillations of rotary type occur. Thus, in circular and
square membranes another type of multi-mode response occurs. The last
system taken up is a beam in which a natural frequency of deflectional mode
and one of torsional mode are in a ratio of prime integers. It is shown that
nonlinear term causes coupling between these two kinds of modes. Thus, it
is shown that one more type of multi-mode response occurs.
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1. Introduction

Nonlinear vibrations of continuous systems such as beams, strings, plates, membranes,
and shells have been studied extensively. Eisley surveyed the nonlinear vibrations of
elastic beams, rings and strings.” Sathyamoorthy and Pandalai surveyed the large-
amplitude vibrations of discs, membranes,” and of plates and shells;® Nayfeh and Mook
surveyed the nonlinear vibrations of beams, strings and plates in his excellent book;*
Sathyamoorthy surveyed the nonlinear vibrations of plates.” There are also many other
important studies. Some of them will be cited in relevant places in the following chapters.

Thus, so many studies have been published which treat nonlinear vibrations of
continuous systems. But many of the existing studies treat free vibrations. Comparatively
few studies treat forced responses. Furthermore, many of the studies treating forced
responses are limited to the study of a single-mode response in which a system responds
in a single natural mode. A continuous system sometimes responds, as in multi-degree-of-
freedom systems, in a different way from that of a single-mode response. In fact, it
responds in a form of superposition of several natural modes. This type of response is
called the multi-mode response.

In multi-degree-of-freedom systems, multi-mode responses are the subjects of recent
studies. Multi-degree-of-freedom system has as many natural frequencies and as many
corresponding natural modes as the degrees of freedom. Under some conditions some of
these modes interact with each other. This is the reason why multi-mode responses occur.
One type of multi-mode response is the combination resonance which was predicted
theoretically by Malkin® and found experimentally by Yamamoto.” Combination reso-
nances have been studied by many investigators.>'! Another type of multi-mode response
is the internal resonance. This also has been studied by many investigators.'>?!

Continuous systems have an infinite number of natural frequencies and an infinite
number of corresponding natural modes. Hence, just as in multi-degree-of-freedom
systems, multi-mode responses are expected to occur. Yet, contrary to the studies in
multi-degree-of-freedom systems, those in continuous systems are few.

In this study, strings, membranes, and beams are considered. It is discussed whether
multi-mode responses in fact occur and what their characteristics are. The studies are both
theoretical and experimental. It will be shown that in each system, one or the other types
of multi-mode responses occur.

In chapter 2, strings are taken up. The strings have, as is well known, their natural
frequencies in the ratio of prime integers, 1:2:3:---. Because of this, there is a
possibility of the multi-mode response. It will be shown that the multi-mode responses in
fact occur, and oscillations denoted by (12w, 3/2w), etc., summed and differential har-
monic oscillations, as well as almost periodic motions occur.?*?¥

In chapter 3, circular membranes are taken up. Axisymmetric oscillations of circular
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membranes have already been treated, and a kind of multi-mode response is shown to
occur.?” Here oscillations in nonsymmetric case are investigated. It will be shown that
here too a multi-mode response occurs, and especially oscillations of rotary type occur
which have no counterpart in the axisymmetric case.?”

In chapter 4, square membranes are taken up. In them too, oscillations of rotary type
occur as well as other oscillations.?®

In chapter 5 are considered beams, whose cross-section does not allow coupling
between bending and twisting modes in a linear region. Even in such a beam, the modes
may couple in a nonlinear region. Hence, a multi-mode response connected to both
bending and twisting modes is expected. Here, it will be shown that this type of
multi-mode response in fact occurs.

2. Multi-mode Response of a String

2. 1. Introduction

A string is a nonlinear vibratory system for large-amplitude vibration. The problems
of nonlinear vibrations of a string have been treated by Carrier,?” Oplinger,?®, Anand,?
and others. But the investigations so far have been restricted to free vibrations. Forced
oscillations are less well investigated.

As is well known, the string has its natural frequencies in the ratio of prime integers,
and it is expected that the multi-mode response will occur in the string.

In this chapter, to investigate whether the multi-mode response in fact occurs in the
string, oscillations near the first, second, third and fourth primary resonance points are
analyzed theoretically and experimentally. The external force is supposed to consist of
two components, one independent of, and the other harmonically varying with, time. For
simplicity, it is assumed that oscillations occur in a plane, i.e., no spatial motions occur.
In accordance with this, a thin steel strip with appropriate width is used in the experi-
ments.

2. 2. Fundamental Equations and the Method of Solving Them

2. 2. 1. Fundamental equations

A string with length [ and cross-sectional area A is considered. Origin O is fixed at
one end of the string and x and y axes are taken along, and perpendicular to, the string
in its equilibrium state. It is assumed that external force g acts parallel to y-axis and that
deflection w occurs in the direction of force, where g and w are functions of time ¢ as
well as coordinate x. It is also assumed that a damping force acts on the string. With
these assumptions, the equation of motion of the string, when the variation of tension is
considered, is as follows:

*w  ow AE ¢l ow,, *w
A——+c—— — N—l——f —)dx}—5= 2.1
o or Y {No 21 o(ax) }axz q ( )
where Ny is the initial tension in the x-direction and where p, E and c are the density,
Young’s modulus and the damping coefficient, respectively. As mentioned above, the
external force g is supposed to consist of two components, one independent of, and the



A Study on the Multi-Mode Response of Continuous Systems 213
other harmonically varying with, time, i.e., it is given in the following form:
q=q(x)+Q(x)cosw ¢ (2.2)
To rewrite Eqs. (2.1) and (2.2), a positive small parameter
e=A[l? (2.3)
and non-dimensional quantities

ook gom N o x [E
S —z\/pA’ 2V N,

. 1?2 £ f= ? c o' = 0A
T=2aN VN T 27 AV AN, \/ No?

are introduced. Using these quantities and omitting primes, Egs. (2.1) and (2.2) are
transformed into

(2.4)

2 2
Sl (Ghran Si=g (2.5)
g=q(x)+ Q(x)cose ¢ (2.6)

The solution of Eq. (2.5) with the boundary conditions w=0 at both ends (x=0,1) is
put in the following form:

wzan sinn 7 x (2.7)

n=1

where sinnx represents the n-th modal form of the string, and the coefficients X, are
an unknown function of time. Substituting Eq. (2.7) into Eq. (2.5) and applying the
Galerkin method yields the equations for determining X, as follows:

d2
dr?

2X,+en®( Z szzm)X =q,+Q, cosw t (2.8)

where
qrz=2f:q(x)sinn Txdx
Qn=2f;Q(x)sinn wxdx (2.9)
pa=n ,

2. 2. 2. Analysis by the perturbation method
To analyze oscillations near the k-th primary resonance point, it is assumed that the
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detuning between w and pj is of the order of ¢ so that the exciting frequency w can be
put in the form

w=ppt+eo (2.10)

To apply the perturpation method of multiple scales, the times with different scales,
To=t, Ty=et,---, are first introduced. Then, the solutions of Eq. (2.8) are put in the
following form:

Xn=Xpo(To, T1, )+ eXpi (To, Ty, o)+ (2'11)
It is also assumed that the external force satisfies the following conditions :

0,=0(1) (n#k), Ox=0(e)=¢0)

(2.12)
4,=0(1)

Finally the perturbation method is applied to Eq. (2.8). Thus, the solutions are obtained,
to an accuracy of order of &, in the following form:

Xo=A e Pop A, e nTog p,
X,0=A4, eiP,.To+Zrl e~ iPTo (213)

1 ) .
+~2—P,,(e’ loyemioloy 1 D, (n#k)
where

P,=0,/(p.>—w?) (n#k)

i (2.14)
Dn = Qn/pn
and where A, are unknown functions of T, with A, being conjugate to A,. The functions

A, and A, are determined by the conditions that X, do not contain secular terms, i.e.,
the conditions

1 .
2ipAi+2 ikaAk_“é“le etoh
+k2{ > m2(2AmZm)+....}Ak+...‘_—_-0
m=1

(2.15)
2ip,Ap+2ip, LA,

12 { 3 P (AR Ay) e YAy =0 (nEk)
m=1

where symbol ' means differentiation with respect to 7;. For numerical calculation,
quantities A,, P,, D, with n>3 are neglected and the first equation as well as the second

equations for n=1,3 are retained. Such a treatment is, as will be shown later, enough for
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explaining the experimental results.

2. 2. 3. Occurrence of oscillations containing several super-harmonic oscillations or
subharmonic oscillations

To solve Eq. (2.15), unknown quantities 4, are put in the form
1 i#aTyi—v,)
A= R, G (2.16)

and are substituted into Eq. (2.15). Dividing the resulting equations into real an
imaginary parts, yields equations of the form

1 .
PkRé=“Pk§Rk+?lesmyk+---
, 1
PRy yk:pkORk'*‘?leCOS'yk
d 1
—kZ{ZmZ(ZRnf)+...}Rk+... (2.17)
m=1

anrftz_pnéRn’*‘”' (f'l:#k)

kit 1
ann Vr:z anaRn_nz{ 2 mz(szz)—*"}Rn‘*_ (n#k)
m=1

Solving these equations for R, and vy, and substituting the results into Eq. (2.16) and then
into Eqgs. (2.13) and (2.7), yields the deflection w in the form:

w=§:{Rn cos(%w t—y,)+ P, cosw t+ D, }sinn 7 x (2.18)
n=1

where P,=0.
To determine steady-state oscillations for deflection w, constant solutions of Eg.
(2.17) satisfying the conditions

R;=0, y,=0 (2.19)

are obtained.

Among constant solutions of Eq. (2.17) satisfying the conditions (2.19), the solutions
satisfying R;#0, R,=0 (n¥k) imply, as can be seen from Eq. (2.18), the occurrence of a
harmonic oscillation in the k-th mode shape. On the other hand, if the solutions satisfying
R,#0, (n#k) exist, then these solutions imply the occurrence of oscillations containing the
n-th super-harmonic oscillation (for k=1) or a/k-th subharmonic oscillation (for k+#1),
each in the n-th mode shape.

To determine the stability of a steady-state oscillation, it is necessary to determine
the stability of the corresponding constant solution. The stability of the constant solution
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denoted by A, is determined by giving it a slight disturbance A, and examine its
variation with respect to time. To examine this, equations for determining A, are
obtained by substituting A,+ 4, in place of A, in Eq. (2.15) and by neglecting small
quantities higher than the second order of A,. Then, in the resulting equations, A, in
the form

A,=(E,+in,) ex°h (2.20)

and also A, in the form
1 . s
<Anzzz(un+11g) ek’ (2.21)

are substituted. Finally, dividing the resulting equations into real and imaginary parts,
yields variational equations in terms of &, and #, with real coefficients. Applying the
Routh-Hurwitz criterion to these final equations, determines the required stability.

Equations (2.17) sometimes have, in addition to constant solutions, periodic solutions
with R, and v, varying in an equal time interval. This type of solution implies, as can be
seen from Eq. (2.18), the occurrence of almost periodic motions. This type of oscillation
is obtained by integrating Eq. (2.17) numerically with a suitable initial condition until a
periodic solution is reached.

Equations (2.17) are a set of infinite number of equations which cannot be solved
strictly. Here only a finite number of equations are retained for numerical analysis. It is
shown, by comparing with experimental results, that such a treatment is enough for
qualitative discussion.

2. 3. Experimental method

A schematic diagram of the experimental apparatus used in this study is shown in
Fig. 2. 1. In the figure, B denotes the string. Initial tension N, is given to the string by
tightening the nut shown in the left side in the figure. The periodic exciting force is given
to the string by the current flowing alternately to two electromagnets M; and M, placed

i [Bre|
M3 ’dlég Eg g_;]

Power

Amplifier‘—*ﬁRecorder F——
T. F.F.T.

Function Analyzer

Generater

Fig. 2. 1. Schematic diagram of the experimental apparatus.
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on both sides of the string. By varying the distances d; and d, of the electromagnets from
the string, a constant component can be included in the exciting force. The oscillation
induced in the string are measured by three sensors S;, S, and S; placed as shown in the
figure. The amplitudes of each component of the deflection are determined by calculating
the weighted mean of amplitudes obtained by spectrum analysis of the deflections at
chosen points.

The dimensions of the string and its properties are as follows:

length [=816 mm

width b=19mm

thickness h=0.5mm (2.22)
Young’s modulus E =206 GPa

density 0=17.84x10° Kg/m>

The natural frequencies of the string change with initial tension and the obtained values
in the experiment are as follows:

p1=26.0Hz, p,= 52.0Hz

(2.23)
p3=78.0Hz, p,=1055Hz

Here and in what follows, the same notations are used to denote the frequencies instead
of angular frequencies. The natural frequencies in Eq. (2.23) are approximately in the
ratio of integer and the steel strip used in the experiment can be regarded as a string.

2. 4. Oscillations Near the First Primary Resonance Point

2. 4. 1. Occurrence of superharmonic oscillation

The response near the first primary resonance point is obtained by putting k=1 in the
analysis given in Sect. 2. 2. 3. For numerical analysis, the first three modes are retained.
Hence the six equations governing R, y, (n=1,2,3), or the equivalent, are used in Eq.
(2.17), with R,, P,, D, (n>3) neglected. Eq. (2.17) for this case is

1 . 1 3 )
PiR{=-p LRy *"Z’Qusm)’l “‘é‘R1 ZlmZszSlnz)/I
e

3
—D{ X m*D,, P,siny;— 2D, P,Rosin(y;—72)

m=1

. 9 .
—2D3RyRysin(2y,—y2) _Z'P3R3R1$m(2“/1 —¥3)
1
piRy/ =pioRy ‘*“‘QTQHCOS%

3 1 1 1 1 1
—~ 2(=R2+—P2+=D,2)+—RZ+—P2+D2}R
{‘mz:lm(4 m 4P 5 ) SRI 2P1 D} R,
1 3 3
_ng > m?P,2cos2y;— Dy > m*D,,P,,cosy;
m=1 m=1

=2D{PyRycos(y1—y2)—2D,RyRicos (271 —y2)

9
*‘4‘P3R3R1008(27/1 —73)
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P2Ry' == prC Ry = 2D PyRysin(y,—y1)— DoR{sin (y2—271)
—9P3R3Ro8in(2y, —y3)— 18(D2P3+ D3 Py ) R3sin(y, —y3)
—(2P2m§3=:1m2Dum+ Dszi:lmszz)sinyz (2.24)
P2Ryy2' =2pr0R,
1

3 1
—4{ 3 mA(—R2+~P2+
m=1 4 4

1

ED,,,Z) +%R22+iP22+4D22}R2

2
—2D1PyRcos(y2—y1)— DaR{cos(y2—2v1)

—9P3R3R;sin(2y,—y3)— 18( D, P3+ D3 Py ) R3cos (y2—y3)

3 3
"(2P2 2 szum+D2 2 msz?')COS)@
m=1 m=1

Ed

9 .
P3R3'=—p3LR, -§P3R2231n(y3—2’y1) 3

3
P; > m?P,2siny,
m=1
9 . .
’E‘P3R223m(’}’3’“272)‘18(D2P3+D3P2)R25m(3’3*7’2)

P3R3ys' =3p30R;
1

3 1 1 9 9
_ 2(tR2i2p2yp2y ?p2, 7 po 2
9{m2=1m (4Rm+ 4Pm 2Dm)+ 8R3 + 2P3 +9D5} Rs

3
—%P3R12COS(Y3 —2y1)— _Z‘Ps > m’P,lcosy;
m=1

9
'"2“P3R22005(V3 =2y5) = 18(Dy P3+ D3 Py)Rycos(y3—72)

2. 4. 2. Characteristics of super-harmonic oscillation

An example of the response curves obtained theoretically is shown in Fig. 2. 2. In
the figure, R; is the amplitude of the harmonic oscillation and R, and R; are the
amplitudes of the second and third super-harmonic oscillations, respectively. The solid and
dotted lines of the response curves (and of the response curves in the following) denote
stable and unstable oscillations, respectively. In what follows, we confine our attention to
the stable oscillations.

As can be seen, the oscillations near the first primary resonance point are always
accompanied with more or less super-harmonic oscillations. They are classified into two
types. To one belong oscillations denoted by branches Oy and O, which are accompanied
with small super-harmonic oscillations. To the other belong oscillations denoted by
branches A, A’ and B which are accompanied with large super-harmonic oscillations. The
former can be regarded as the usual harmonic oscillations, but the latter are special types
of oscillations. The oscillations denoted by branches A and A’ are those whose phase
difference y, is nearly . :
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500 O",
- 2€c=0.01 Pd
o g€=1x10"° .7 4B
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Fig. 2. 2. Response curves obtained theoretically near the first primary resonance point.
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0.01 sec
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© 0 | i
_ 0 Lo 80 120 160
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(a) The oscillation shown by a symbol A in the Fig. 2.4 (36 Hz).

0.01 sec rien
——fe—
\v/\u/\u/\u/\J/ E6 (x=3/61)
coswt L
2
g 0 !
© 56 (z=4/61)
w(x=3/67) ;
E 0 ‘
© g6 (x=5/61)
i
w(z=4/61) )
MMM
@ 0 40 80 120 160
w(x=5/61) W Hz

(b) The oscillation shown by a symbol V in the Fig. 2.4 (36 Hz).

Fig. 2. 3. Waveform and spectrum of oscillation near the first primary resonance point.
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When the excitation frequency w increases gradually from a low value, the oscilla-
tions denoted by A occur. But, as the branches other than A separate from branch A,
the oscillations denoted by these branches do not occur spontaneously, but occur only
when appropriate initial conditions are given. In the region of high frequencies, several
branches exist, and which oscillation occurs, depends on the initial conditions.

2. 4. 3. Experimental results

Near the first primary resonance point were observed experimentally the occurrences
of such oscillations as shown in Fig. 2. 3. In the figures, the left figure shows the time
variation of the deflection and the right the result of its spectrum analysis with its
constant component omitted. As seen from the figures, the oscillations contain the
super-harmonic oscillations as their components. By comparing the waveforms in Figs. (a)
and (b), it is found that the phase of the second super-harmonic oscillations are different
from each other nearly by 7.

The response curves obtained experimentally are shown in Fig. 2. 4. In the figure,
O denotes the oscillations containing small super-harmonic oscillations. A and V~de-
note those shown in Fig. 2. 3 (a), and those shown in Fig. 2. 3 (b), respectively. The
oscillations denoted by A occur spontaneously as w increases, but those denoted by V
occur only when an appropriate shock is given to the string. From these facts it is
seen that the oscillations denoted by A and V correspond to the ones denoted by A and
A’ in Fig. 2. 2, respectively. The oscillations which correspond to those denoted by B in
Fig. 2. 2 did not occur in the experiment. Thus, the experimental results confirm well the
validity of the theoretical analysis.

2. 5. Oscillations near the second primary resonance point

2. 5. 1. Occurrence of subharmonic oscillations
The response near the second primary resonance point is obtained by putting k=2 in

10 p1=25.5Hz T

S =124 mm g U - p1=25.5 Hz

“ {di= 9mnm & Zy=124 mm

58 td,= lhmm o dy,d,= 9,14 mm

T

N

2 o

0 %
30 40 W Hz 50

Fig. 2. 4. Response curves obtained experimentally near the first primary resonance point.
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the analysis given in Sect. 2. 2. 3. For numerical analysis, the first three modes are
retained. Hence the six equations governing R, v, (n=1,2,3), or the equivalent, are used

in Eq. (2.17), with R,, P,, D, (n>3) neglected. Eq. (2.17) for this case is

PR =—pi1 LR,
13
=2D, Ry Rysin(2y; —v2) — (“2“ > m*D,, P, + Dy P;)Rysin2y,
m=1
9 . 9 .
“4‘P1P3R3SIH(71 +y3)——2—(D1P3+D3P1)R3sm(y1 =73)
, 1
PRy :7P10R1
1

3 1
- 2(—Rz2+—P2+
L2 (g R P

1

1 1
—2—Dm2) +—8—R12+ —2—P12+ D2}R,

1 3
_2D2R2R1COS(2’}/1—')/2)_('§' Z_Isz,an+D1P1)R1COSZ’)/1

9 9
““Z‘P1P3R3003(V1 +7’3)"2*(D1P3+D3P1)R3COS(71 =73)

1 ; .
P2R' =—p,CR, +'5Q21 siny, — Dy Rsin(y2—2y1)

4 3 3
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(2.25)

The steady-state solutions of Eq. (2.25) can be classified into two groups, one with
Ry=R;=0 and the other with R;#0, R;#0. The former solutions imply occurrence of the
harmonic oscillation, and the latter that of the oscillation containing subharmonic
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oscillations of orders 1/2 and 3/2. The latter oscillation will be called in this paper, with
use of its components, the oscillation of type (12w, 3/2w).

2. 5. 2. Characteristics of subharmonic oscillations

An example of the response curves obtained theoretically is shown in Fig. 2. 5. In
the figure, R, is the amplitude of the harmonic oscillation and R; and R; are the
amplitudes of the subharmonic oscillations of orders 1/2 and 3/2, respectively.

In the figure it is seen that the response curve consists, as mentioned above, of two
kinds of branches. To one belong the branches Oj, O, representing the harmonic
oscillations and to the other, the branches representing the oscillation of type (12w,
3/2w). On the former branch Oy exists an unstable portion, and from its boundary points
the latter branches bifurcate. Of the latter branches, the branch A which bifurcates from
the lower boundary point is stable. Thus with an increase of the exciting angular
frequency w, a transition occurs from the state of occurrence of the harmonic oscillation
to the state of occurrence of the oscillation of type (1/2w, 3/2w). Of the branches of the
oscillation of type (12w, 3/2w), the branches A and B are stable. The latter branch B is
such that R; is small, and hence this branch represents in effect the occurrence of the
usual subharmonic oscillation of order 1/2.
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Fig. 2. 5. Response curves obtained theoretically near the second primary resonance point
(q0%0).

2. 5. 3. Occurrence of summed and differential harmonic oscillations

In the previous section, the case with presence of g(x)#0 was considered. Here the
case with g(x)=0 or g(x) being small of the order of ¢, is taken up. With this condition
the quantities D, in Eq. (2.25) become zero, and the unknown quantities y; and y; always
appear in Eq. (2.25) in the form (y;+y;). Hence the steady-state solutions determined by
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conditions (2.19) generally do not exist, and hence the oscillation containing several
subharmonic oscillations cannot occur.

To examine what steady-state oscillations then occur, the second and the sixth
equations in Eq. (2.25) are combined to yield

P1P3R1R3y13' =2p1p30R 1 R;

1
4

1
4

3 1 1 1
-p3{ Zlmz(ZRj+ Pn}?')""é“Rlz'*‘?Plz}Rle

(2.26)

3 1 9
"9[)1{ 2 mz(ZRmz’i‘ P,,12)+§R32+‘2“P32}R1R3
m=1

9
“?P1P3 (P1R{ +p3R3)cosyis

where y;3=y;+y3. Then it is assumed that the constant solutions are given by the
conditions

R/'=R)=R3'=0, y,'=y13'=0 (2-27)

For these conditions, the solutions for R, y, and y,53 do exist. Substituting them yields the
deflection in the form of Eq. (2.18).

The solution of Eq. (2.25) with condition (2.27) can be classified into two groups,
one with Rj=R;=0 and the other with R;#0, R;#0. The former solution implies the
occurrence of the usual harmonic oscillation. To see what the latter solution implies, the
angular frequencies w; and w; of the first and third mode components are examined.
From Eq. (2.18) it is seen that

1 3
w1=—é—a)—y1', 6032‘2““)“?’3' (2.28)

In the above expressions the values of y{ and y; are given by Eq. (2.17). Because y{#0
and y5'#0 hold generally, w; and w; are not in a simple relation with w. However, from
condition y13'=0 in Eq. (2.27), it is seen that

w+ws=2w (2.29)

Hence, the present oscillation represents the summed and differential harmonic oscillation.
Thus, the solution with R;#0 and R;#0 implies the occurrence of the summed and
differential harmonic oscillation.

2. 5. 4. Characteristics of summed and differential harmonic oscillations

An example of the response curves obtained for g;=0 is shown in Fig. 2. 6. In the
figure, R, is the amplitude of the harmonic oscillation and R; and R; are the amplitudes
of the summed and differential harmonic oscillations, respectively. The angular fre-
quencies of the summed and differential harmonic oscillations are given in Fig. 2. 7. In
the figure are added, for comparison, chain lines expressing 1/2 times and 3/2 times the
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Fig. 2. 6. Response curves obtained theoretically near the second primary resonance point (go=0).
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Fig. 2. 7. Frequencies of the components in the summed and differential harmonic oscillation.

exciting frequency.

The curves in Fig. 2. 6 consists of two kinds of branches. To one belong branches
Og, O, representing the harmonic oscillation and to the other, branches representing the
summed and differential harmonic oscillation. On the former branch Oy exists an unstable
portion, and from its boundary points the latter branches bifurcate. Of these branches,
the branch A bifurcating from the lower boundary point is stable. Thus, with an increases
of exciting frequency w, a transition occurs from the state of occurrence of the harmonic
oscillation to the state of occurrence of the summed and differential harmonic oscillation.
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2. 5. 5. Experimental results

In the experiment with the condition d;#d,, we observed that such an oscillation
occurred as is shown in Fig. 2. 8, in which the left figure shows the time variation of
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(b) Subharmonic oscillation of order 1/2 (73 Hz).

Fig. 2. 8. Waveform and spectrum of oscillation near the second primary resonance point (d,#d,).
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deflection and the right figure the result of its spectrum analysis. The figure indicates that
the oscillation contains components with frequencies 1/2w, w, 3/2w and that these
components take the first, second and third modal shapes, respectively. Thus, it was
confirmed experimentally that the oscillation of type (1/2w, 3/2w) occurred.

The response curve obtained experimentally is shown in Fig. 2. 9. In the figure, O
shows occurrence of the harmonic oscillation and @ the occurrence of the oscillation of
type (112w, 3/2w). It is seen from the figure that the branch of the harmonic oscillation
contains an unstable portion, and from its boundaries the branches of the oscillation of
type (12w, 3/2w) bifurcate. It is also seen that a branch exists which corresponds to
branch B with small R; in Fig. 2. 5. These experimental results agree well with the results
of the theoretical analysis.
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Fig. 2. 9. Response curves obtained experimentally near the second primary resonance point (d,#d,).
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Fig. 2. 10. Waveform and spectrum of the summed and differential harmonic oscillation (d;=d,).
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Next, under the state of occurrence of the oscillation of type (112w, 3/2w), we moved
the magnets so that the component g, became small while keeping (d;+d,) at a constant
value. In doing this, we observed that the oscillation of type (12w, 32w) disappeared,
and appeared such an oscillation as is shown in Fig. 2. 10, in which the left figure shows
the time variation and the right figure the result of spectrum analysis. In the figure it is
seen that the oscillation contains, in addition to the harmonic oscillation, oscillations with
frequencies w; and w;. Also it is seen that the later oscillations take the form of the first
and third modal shapes, and that the frequencies w; and ws satisfy the condition
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Fig. 2. 11. Response curves obtained experimentally near the second primary point (d,=d,).
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Fig. 2. 12. Frequencies of the components in the summed and differential harmonic oscillation.
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2w=w,+ws;. Thus, it was confirmed that the summed and differential harmonic oscillation
occured.

The response curve obtained experimentally for the summed and differential harmon-
ic oscillation is shown in Fig. 2. 11. In the figure, O denotes occurrence of the harmonic
oscillation and ® the occurrence of the summed and differential harmonic oscillation. The
frequencies w;, w; of the summed and differential harmonic oscillation obtained ex-
perimentally are shown in Fig. 2. 12. In the figure are added for comparison, chain lines
expressing 1/2 times and 3/2 times the exciting frequency. These experimental results
agree well with the results of the theoretical analysis.

2. 6. Oscillations near the third primary resonance point

2. 6. 1. Occurrence of subharmonic oscillations

The response near the third primary resonance point is obtained by putting k=3 in
the analysis given in Sect. 2. 2. 3. For numerical analysis the first three modes are
retained, and R,, P, and D, (n>3) are neglected. Eq. (2.17) for this case is

3 . .
piR{ = —p1§R1~~§-P1R125m3y1-2(D1P2+D2P1)stm(y1 +v2)
. 1 )
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1
P1R1V1'=?P10R1
1

1 1 1
1 P,,$+7D,,3)+§R12+7P12+DE}R1

5,01
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3 1
p3Rsys’ = ‘3‘P30R3 + ?Qm cosys

3 1 1 1 9 9
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The steady-state solutions of Eq. (2.30) can be classified into two groups, one with
Ry=R,=0 and the other with R{#0, R,#0. The former solutions imply occurrence of the
harmonic oscillation, and the latter that of the oscillation containing subharmonic oscilla-
tions of orders 1/3 and 2/3. The latter oscillation will be called in this paper, with use of
its components, the oscillation of type (1/3w, 2/3w).

2. 6. 2. Characteristics of subharmonic oscillations

An example of the response curves obtained theoretically is shown in Fig. 2. 13. In
the figures, R; denotes the amplitudes of the harmonic oscillations, and R; and R, denote
the amplitudes of the subharmonic oscillations of orders 1/3 and 2/3, respectively.

As can be seen, the oscillations near the third primary resonance points can be
classified into two types. To one belong the pure harmonic oscillations denoted by O, and
O, and to the other belong the oscillations denoted by A and B which are accompanied
with the subharmonic oscillations. Among the latter oscillations, the ones denoted by A
are of type (1/3w, 2/3w), with use of the notations employed in the previous section,
because R; and R, are large enough. On the other hand, the oscillations denoted by B
may be regarded as the usual subharmonic oscillations of order 1/3, because R, is small.
Both the branches A and B are separated from the branches of the harmonic oscillations,
so the oscillations denoted by A and B can occur only when appropriate initial conditions
are given.
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Fig. 2. 13. Response curves obtained theoretically near the third primary resonance point.
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Fig. 2. 14, Waveform and spectrum of the oscillation of type (1/3w, 2/3w) near the third primary
resonance point (102 Hz).

1= T g 4 T
&

= p1=26.0 Hz ol p1:=26.0 Hz
e | ZTy=204mm R e i =204 mm
b dyi= 1lmm 1 dysda=11, 4 mm
[):B_dzz L4 mm 3

1. 2

(§w,§m)

/ » ,
2 T ry 2 (w)
[p1+‘p2] W [p1+pZMM
/fgﬁd " | combongsnes
1 1 (%w,%w}

: ooo0000ebannn

100 80 30 W Hz 100

80 90 W Hz

Fig. 2. 15. Response curves obtained experimentally near the third primary resonance point.



232 K. Yasuda and T. Torii

It is also found that an unstable portion exists on the branch Oy, and almost periodic
motions occur in this portion. In Fig. 2. 13 is shown the range of variations of the
amplitudes R, of the almost periodic motions as segments with arrow heads. As the result
of studies, these oscillations can be regarded as the so-called summed and differential
harmonic oscillation.?! These oscillations occur continuously only by varying the excitation
frequency.

2. 6. 3. Experimental results

Near the third primary resonance point were observed the occurrences of such
oscillations as shown in Fig. 2. 14. From the figures, it is seen that these oscillations are
of type (13w, 2/3w). The summed and differential harmonic oscillations were also
observed. However the oscillation, predicted by the theory and regarded as a subharmonic
oscillation of order 1/3, did not occur.

The response curves obtained experimentally are shown in Fig. 2. 15. In the figures,
O, @ and ® denote the harmonic oscillations, the oscillations of type (1/3w, 2/3w), and
the summed and differential harmonic oscillation, respectively. The results confirm the
validity of the theoretical analysis.

2. 7. Oscillations near the fourth primary resonance point

2. 7. 1. Occurrence of subharmonic oscillations

The response near the fourth primary resonance point is obtained by putting k=4 in
the analysis given in Sect. 2. 2. 3. For numerical analysis, the first four modes are
retained and R, P,, and D, (n>4) are neglected. Eq. (2.17) for this case is
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The steady-state solutions of Eq. (2.31) can be classified into three groups, one with
R{=R,=R;=0 another with R{=R3;=0, R,#0 and the other with R;#0, R3#0. The first
solutions imply occurrence of the harmonic oscillation, the second imply occurrence of
subharmonic oscillation of order 1/2 and the last that of the oscillation containing
subharmonic oscillations of orders 1/4, 2/4 and 3/4. The latter oscillation will be called in
this paper, with use of its components, the oscillation of type (14w, 2/4w, 3/4w).

2. 7. 2. Characteristics of subharmonic oscillations

An example of the response curves obtained theoretically is shown in Fig. 2. 16. In
the figures, R, denotes the amplitudes of the harmonic oscillations, and Ry, R, and R;
denote the amplitudes of the subharmonic oscillations of orders 1/4, 2/4 and 3/4,
respectively.
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Fig. 2. 16. Response curves obtained theoretically near the fourth primary resonance point.

As can be seen, the oscillations near the fourth primary resonance point can be
classified into three types. To the first belong oscillations denoted by O, and O,, which
are the harmonic oscillations with R;=R,=R;=0. To the second belong oscillations
denoted by A and A’, which are the subharmonic oscillations of order 1/2 with R;=R;=0.
To the last belong the other types of subharmonic oscillations. Among the last, the
oscillation denoted by B is an oscillation of type (l/4w, 2/4w, 3/4w), because all
components R;, R; and Rz are large enough. Also it is seen that unstable portions exist
on branch A’ of the subharmonic oscillation of the order 1/2 as well as on branch O of
the harmonic oscillations. On each of these unstable portions occur almost periodic
motions, among which the one occurring on the former portion can be regarded as the
summed and differential harmonic osciilation.

As the branch A’ of the subharmonic oscillation of order 1/2 bifurcates from the
branch Ogy of the harmonic oscillation, the subharmonic oscillation occurs continuously
only by increasing the excitation frequency w. When w further increases, an almost
periodic motion first occurs in the unstable portion of branch A’, and then an oscillation
of type (1/4w, 2/4w, 3/4w) of branch B occurs, both continuously.

2. 7. 3. Experimental results

Near the fourth primary resonance point were observed the occurrences of two types
of oscillations as shown in Fig. 2. 17. From the figures it is seen that these are
subharmonic oscillations of order 1/2 and oscillations of type (1/4w, 2/4w, 3/4w). Other
oscillations such as the summed and differential harmonic oscillations and almost periodic
motions were also occurred experimentally.

The response curves obtained experimentally are shown in Fig. 2. 18. In the figures,
O, @, A and ® denote the harmonic oscillations, the subharmonic oscillations of order
172, the oscillations of type (1/4w, 2/4w, 3/4w), and the summed and differential harmonic
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oscillations, respectively. The results of the experimental analysis confirm the validity of
the theoretical analysis.
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Fig. 2. 17. Waveform and spectrum of oscillation near the fourth primary resonance point.
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Fig. 2. 18. Response curves obtained experimentally near the fourth primary resonance point.

2. 8. Conclusions

The nonlinear oscillations near the first four primary resonance points of a string
subjected to periodic excitation were treated theoretically and experimentally. The
obtained results of the theoretical analysis are summarized as follows:

(1) Near the first primary resonance point, the oscillations containing the second
and third super-harmonic oscillations can occur, in addition to the usual harmonic
oscillation.

(2) Near the second primary resonance point, the subharmonic oscillations of order
1/2 and oscillations of type (1/2w, 3/2w) can occur, when the external force contain a
component independent of time. On the other hand, when the external force doesn’t
contain it or contain only slightly, the summed and differential harmonic oscillation
occurs.

(3) Near the third primary resonance point, the subharmonic oscillations of order
1/3, the oscillations of type (1/3w, 2/3w), and the summed and differential harmonic
oscillations can occur in addition to the usual harmonic oscillation.

(4) Near the fourth primary resonance point, the subharmonic oscillation of order
1/2, the oscillations of type (1/4w, 2/4w, 3/4w), the summed and differential harmonic
oscillations, and almost periodic motions can occur in addition to the usual harmonic
oscillation.

Thus it was shown theoretically that multi-mode response occurs in the string.

Finally, an experiment was conducted with use of a thin steel strip, and the validity
of the theoretical analysis was confirmed.
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3. Multi-mode Response of a Circular Membrane

3. 1. Introduction

Problems of nonlinear vibrations of a circular membrane have been treated by
Eringen,*® Chobotov and Binder,?? Keller and Ting,*® Mack and McQueary,*>Yen and
Lee,* the present authors,™ and others. But almost all the investigations so far have
been restricted to axisymmetric problems. Nonsymmetric problems have been hardly
investigated.

In this chapter, a problem of nonlinear nonsymmetric vibrations of a circular
membrane is taken up. The forced oscillations near a primary resonance point induced by
harmonic nonsymmetric excitation is considered. It is known that in the nonsymmetric
vibrational modes, two modes exist in pairs with the same natural frequency and with the
same modal shape but are shifted circumferentially from each other by angle n/2n (n is
the number of nodal lines). In nonlinear problems, as will be shown later, these two
modes are coupled by nonlinear terms. Hence it is expected that a multi-mode response
can occur. Here it is shown that the multi-mode response in fact occurs.

For theoretical analysis, modal equations are first derived from the governing non-
linear partial differential equations. Then, a typical case is analyzed of forced oscillations
near the primary resonance point at which the modes having one nodal line resonate. It
will be shown that, near this primary resonance point, in addition to the usual harmonic
oscillation, a special type oscillation occurs in which the modes in pairs are excited
simultaneously with a phase lag of nearly z/2 between them, and a traveling wave occurs
and moves circumferentially. Thus, it will be shown that the multi-mode response occurs
in the form of traveling wave.

Finally, experimental analysis is conducted with use of a steel membrane to confirm
the validity of the theoretical analysis.

3. 2. Fundamental Equations and Modal Equations

3. 2. 1. Fundamental equations

A circular membrane of radius @ and thickness k, stretched by uniform tension Ng,
and subjected to external force and damping force in the lateral direction, is considered.
Polar coordinates (r,0) is taken in the middle plane of the membrane in its equilibrium
state, with the origin coinciding with the center of the membrane. As the inertia force,
only the lateral component is retained. Under these assumptions, the equations of motion
become as follows:

’w  ow

phaz+ca~—NoVw q
*w 1aw 1 Pw 2 aw 2 o%w

=Nr o 2+N9( r 392) r9( 2 Y arae) (3 1)
AN, 13N, ’
ar+r 89+ (N —Ny)=0
LoNe N, 2y g
r o8 or r
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In these equations, w and g are the deflection and the external force, respectively, both
being functions of time as well as position. Also, p and ¢ are the density of the membrane
and the damping coefficient, respectively. Finally, N,, Ny, N,y are resultant forces in the
membrane, and are related to deflection as well as radial and circumferential displace-
ments ¥ and v as follows:

Eh au 1 ow, u_ vov V_l_aw

— Ty A R T T YN2
T e Y 2 200
_ Eh ﬁ lov 1 10w, +Y oW 5
Ne——““l_vz{ C T 56T S (= )+ ( ) } (3.2)

r o0
__En i__a_a_t__ av+_1_awaw

Nro= 2(1+v) r 00 r+ar r orob

}

where, E and v are Young’s modulus and Poisson’s ratio, respectively.
Suppose that N,, Ny, N,y are given in terms of stress function F in the form

Lor, 1 2
=5 ar  r* 96
o*F
— .3
- (3.3)
o, 1aF
Neo= or r a8

With use of these expressions, the second and third of Eq. (3.1) are satisfied identically,
while the first is rewritten as follows:

2
aw+ca —NoV?w=L(w, F)+q - (3.4)

h
YRR

where

1aF 1aFa2 1 ow 1aw °F
Lov D=t ) o " e o

.5
dor 1 @F 1ow 1 P G2
00 r orab’ r* 26 r arob
Furthermore, the condition of compatibility of strains yields
—LV4F*~—lL(w w) (3.6)
En" = 277 ‘

where L(w,w) is an expression obtained from Eq. (3.5) by replacing F in its right hand
side with w.



A Study on the Multi-Mode Response of Continuous Systems 239

Introducing nondimensional quantities

i Mo _w [ER
a’ a’ _a oh’ " aVeNn,
e P J_49 [Eh
8N()a Vph No 8N0

and rewriting Egs. (3.4) and (3.6) in terms of these quantities, yields, after omitting
primes, the following equations:

(3.7)

Pw
or

V4F=——-2~L(w, w)

+2¢e §~———V w=elL(w, F)+eq
(3.8)

Boundary conditions are that u, v, and w are zero on the periphery of the
membrane. Expressing these conditions in terms of w and F, by use of Egs. (3.2), (3.3),
yields

W[r=1=0

2 1aF 1
_8..2.F+v(__a__+
or roor
1 oF 1 &*F

220 r arob

{ 392)}“ 1= (3.9)

)[rl

3. 2. 2. Modal equations

To determine deflection w and stress function F in a form of series, the following two
eigenvalue problems are solved in advance.

The first is the linear eigenvalue problem of a circular membrane. Namely, the
problem is to solve the equation

Viw=p’w (3.10)

under the condition given by the first of Eq. (3.9). The eigenfunctions for the problem
are, as is well known, as follows:

n=0,1,-

D 0, D, 0
{D,rcosn sinn }( (212

) (3.11)

where @, ’s are given, with use of Bessel function of order n, as follows:

@nn’(r)zxnn'jn(pnn'r) (3 12)
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In this expression, p,,’s are determined such that Eq. (3.12) satisfies the first of Eq.
(3.9). In expressions (3.11), the two functions with the same suffixes nn’ (where n>1) are
modal forms of the modes, which have n nodal lines and (n’—1) nodal circles but are
shifted circumferentially from each other by angle n/2n. In the following, these modes and
their natural frequency are denoted by the notation (n,n’). Arbitrary constants k,, are
assumed in the following to be determined by the normalization condition.

Another eigenvalue problem is to solve the equation

ViF=1'F (3.13)

under the boundary conditions given by the second and third of Eq. (3.9). The eigenfunc-
tions for this problem are

n=0,1,----

n' » nn’ i 0
{¥,ycosn 6, W, sinn }(n’=1,2:"")

(3.14)

where ¥,,’s are given, with use of Bessel functions and modified Bessel functions of
order n, as follows:

lpnn’(r) =Unp {Jn(/lnn’r) +Xnn'ln(’lnn’r)} (3 . 15)

In these expressions, 4,,’s and g, ’s are determined such that Eq. (3.15) satisfies the
boundary conditions. Here too, arbitrary constants are assumed to be determined by the
normalization condition.

With use of the above two kinds of functions, w and F are developed in the following
form:

w= i 2 (X cosnf+ X, sinn6) @,
S (3.16)
F=3 3 (Y, cosnb+Y,,sinn0)¥,,

where X, X s and Y., 7,,,{ are unknown functions of time to be determined. Among
them, X,,, and )7,,,,: denote the magnitudes of modes of order (n,n') contained in the
deflection.

To obtain equations for determining X, X v and Yoo, Yo, Eq. (3.16) is substi-
tuted into Eq. (3.8). Then, in the resulting equations, the first and second are multiplied
by r®,,.cosnf, rd,, sinnd and r¥,,cosnd, r¥,,sinnd, respectively, and each is integrated
in the region of the membrane. Due to the orthogonality of the eigenfunctions, this yields
the following equations:

Xnn' + ZECX,,,,' +p2nn’Xnn’ - 8,an’

<« o0 .
=& Z Z (ann'mm’ii’ Ymm’ Xii’ +bm1'mm’ii' Ymm' Xii’)

m,i=0m,i'=1
Y = 2 % ~
Xnn' + 2‘(:C)(nn' +P nn’Xnn’— ann’

oo [e]
=& 2 Z (Cnn’mm’ii’ Ymm' Xii' +dnn’mm’ii’ Ymm’ Xii’)

m,i=0m,i'=1

(3.17)
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o0 =]
Yo = 20 20 (Commjprne Xij Xicrer B X jr X ra)
jk=0 =1
o~ » hd o ~ o~
Yom = kZ o kE 1(7/mm’jj'kk' Xijr Xt + 0 e icier X jjr X )
Ik=0jik =

Finally, of these equations the third and fourth are substituted into the first and second to
yield the required modal equations in the form

Xnn' +2e CXnn' +p2mz’ Xnn’ —¢& an’
el hod ~
=& 2 2> (Anviviie X Xip Xigo+ B ivjjricne Xio X j X
k=0 i =1
+ Cowivrjjicre X i X X+ Dnn’z‘i'jj'kk'}z WX 2.9,
. . T (3.18)
Xnn’ +2¢ Cle' +p2nn' Xnn’ —& an’
hd R —~ — —~ — o~ —~
= 2 i’,j’,%=1(A it ik X it X jjr X e+ B i jjrieier X i X Xere

+ fjnn'ii'jj'kk' XX jjr Xt + D sriivjjicicr Xir X X prer )

Here dot means differentiation with respect to time. As seen in these equations, the
equations for determining X, and X,, are coupled by nonlinear terms.

3. 3. Oscillations near the Primary Resonance Point

3. 3. 1. Analysis by the perturbation method

By use of the modal equations derived in Sect. 3. 2. 2, the dynamic response of a
membrane subjected to arbitrary excitation can be analyzed. Here the case in which the
excitation is a harmonic function of the form g=g(r,0)coswt, and its frequency is near one
of the natural frequencies, is taken up.

As a numerical example, it is assumed that g(r,6) is symmetric with respect to 6. For
such ¢(r,0), it follows that 0,,=0 as to the components of the excitation. Also, it is
assumed that w is close to the natural frequency of order (1,1).

The concrete distribution of the excitation is taken so that it approximates the
distribution in the experiment, which will be mentioned later. Namely, q(r,0) takes the
constant value g, inside, and zero outside, of the circular region of radius ry with center
(r,6)=(r\,0).

To carry out numerical calculation, equations with n=1, n’=1 in Eq. (3.18) are
retained, and the unknown quantities other than Xy, X, are neglected. Thus, the
equations to be solved are

X+2elX+p?X=eA(X*+X*)X+eQcosw t ( )
» . 3.19
X+2etX+p*X=cA(X*+XH)X

where
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X=Xy, X=Xy, p=pu, Qcosw t=0y
A=A = Buunn +Cinn + Dinin (3.20)

=Annnn= B11111111 +C11111111 + D11111111

To solve Eq. (3.19), it is assumed that the detuning between the excitation frequency
o and the natural frequency p is a small quantity of the order of ¢ so that w can be put
in the form

w=p+eo (3.21)

As a method for solving the problem, the perturbation method of multiple scales® will be
adopted. For this purpose, the solution is put in the form

XZXO(TOale"")+8X1(T0,T],"")+---~
o N (3.22)
XZXQ(TQ,T1,~'~-)+8X1(T0;T17-...)+....

where Tpy=t, Ty=et,... are times of different scales.
Now, to obtain the solutions within an accuracy of order ¢, Eq. (3.19) is solved in
the form

Xo=Ce' T4 Ce '
(3.23)

Xo=De' T4+ De '
Here, C and D are unknown functions of Ty, and C and D are their conjugates. These

unknown quantities are determined from the condition that the solution has no secular
terms, namely

1 .
2ipc'+2ipz;c—~2-—Qe“’Tl
—A(3C?*C+2DDC+D*C)=0

(3.24)

2ipD’'+2ipED

—A(3D*D+2CCD+C*D)=0
where primes mean differentiation with respect to Tj.
To solve Eq. (3.24), C and D are put in the form

1 i(aT,—vy)

C=-2—Re 177
(3.25)

1~ ; o~
D=—R (0T, ~7)
5 e
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Substituting these expressions into Eq. (3.24) and dividing the resulting equations into real
and imaginary parts, yields

1 |
pR'= —p(:R+-§-Qsiny+—8‘AR’2 Rsin(2y—27)

3
pRy’=poR+%Qcosy+§AR3
| .
+§AR2R{2+COS(2‘}/~Z’7)} (3.26)

~ ~ 1 —~
pR'=-pCR +§AR2 Rsin(2¥7—2y)

—— >3 w3, L R
pRy,:pGR+_é~AR3+§AR2R{2+COS(27“2)’)}

To obtain a steady-state solution of the above equations, R’, R’, ¥', ¥’ in them are
put as zero. Solving the resulting equations and substituting the obtained solutions into
Eqgs. (3.25), (3.23), and then into (3.16), yields a solution of Eq. (3.8) in the following
form:

w=Rcos(wt—y) @y, (r)cosn O+ Rcos(wt—7) Dy, (r)sinn 6 (3.27)

From Eq. (3.26) it is seen that there are two kinds of steady-state solutions. One is a
solution with R=0. Noting that J=0 this solution expresses the occurrence of the usual
harmonic oscillation. The other is a solution with R#0. This means that the two modes in
pairs with the same natural frequency are induced simultaneously due to nonlinear
coupling.

The stability of a steady-state solution (which is denoted by C, D) of Eq. (3.24) can
be determined by giving to it a small disturbance (which is denoted by aAC, AD) and
examining its variation with respect to time. To examine this, C, D in Eq. (3.24) are
replaced by C+AC, D+ AD. Then, in the resulting equations, small quantities higher
than the second order are neglected to obtain differential equations governing A C and
AD. To rewrite the last equations in the form having real coefficients, AC and AD in
them are put in the form

A C=-;~(§+i77)ei"r‘
. (3.28)
AD=§-(§+i77')ei"T‘

and substituted, and the resulting equations are divided into real and imaginary parts.
Obtaining the eigenvalues of the final equations and examining the sign of their real parts
determines the stability.

3. 3. 2. Characteristics of the oscillations
Characteristics of the oscillations are now examined via a numerical example. The
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Fig. 3. 1. Response and phase curves obtained theoretically.

response and phase curves in the example are shown in Fig. 3. 1. In the figures, solid and
dotted lines denote stable and unstable oscillations, respectively. It is seen in the figures
that the response curve consists of branches Oy, O;, O, with R#0 as well as branch A
with R+#0. Branch A bifurcates from branch Oy, and the bifurcating point (denoted by @
in the figure) coincides with the boundary point between stable and unstable portions.

From the figures, the characteristics of the oscillations can be seen. When, for
example, w increases gradually from a lower value, the harmonic oscillation denoted by
branch O, appears first. Then, when w exceeds the value of @ the transition occurs from
the harmonic oscillation to the oscillation denoted by branch A, and the latter oscillation
consists of the components which take the shapes of the modes in pairs of order (1,1).
When w becomes sufficiently large in the last vibratory state, R and R take almost the
same value. (Both approach gradually V'3/2 times the value given by the backbone
curve). And the phase difference between the two components is 7/2, as obtained by
comparing y and 7. Thus, in the last vibratory state, a traveling wave occurs with the
angular speed equal to the excitation frequency, as seen from Eq. (3.27).
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3. 4. Experimental Analysis

3. 4. 1. Experimental method

To confirm the validity of the theoretical analysis, an experimental analysis is
conducted with use of a steel membrane. Schematic diagram of the experimental appar-
atus is given in Fig. 3. 2. In this apparatus, the ring shown in the figures is used to given
tension to the membrane. Harmonic excitation is given by use of two electromagnets M;
and M,. Two displacement sensors are placed at angles # and 772 measured from the
position of the electromagnets so that the variation of X and X can be obtained
independently of each other. The electromagnets are placed such that its midpoint
coincides with point (0.5a,0).

The dimensions and physical properties of the membrane used in the experiment are
as follows:

radius a=215mm
thickness h=0.17 mm
Young’s modulus E=206 GPa
Poisson’s ratio v=0.3

density 0=1.7x10° Kg/m®

The natural frequency p;; was obtained as py;/27=150 Hz

3. 4. 2. Experimental results

In the membrane excited by the excitation with a frequency close to the natural
frequency of order (1,1), an oscillation as shown in the left side in Fig. 3. 3 was observed.
In this figure, the upper and lower figures show the oscillatory waves at positions 6=x
and 6=m/2, respectively. These two waves show variation of X and X appearing in Eq.

F.F.T.
Analyzer

Recorder &

Power
Amplifier

Function
Generator

Fig. 3. 2. Schematic diagram of the experimental apparatus.
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(3.16). In the right side in Fig. 3. 3 are given Lissajous’ figures obtained when values of
the upper and lower waves are taken as abscissa and ordinate. In Fig. 3. 4 is given the
response curve obtained experimentally. As in Fig. 3. 3, the amplitudes at the positions
6= and @=n/2 correspond R and R in Eq. (3.27), and hence the response curve in Fig.
3. 4 corresponds to that of Fig. 3. 1.

From Figs. 3. 3 and 3. 4, the following can be said as to the characteristics of the
oscillation. When o is small, R is nearly zero, but when « exceeds a certain value, R
begins to increase rapidly. And when R is large enough, the phase difference between the
oscillations with the amplitudes R and R is nearly 7/2, as seen from the waves or
Lissajous’ figures in Fig. 3. 3. Thus, when o is small the usual harmonic oscillation
occurs, but when w exceeds a certain value, a motion represented by branch A in Fig. 3.
1 occurs.

The above results agree qualitatively well with the theoretical results.

3. 5. Conclusions

As a problem of nonlinear nonsymmetric oscillations of a circular membrane, forced
oscillations near a primary resonance point induced by a harmonic excitation are consid-
ered. As a typical example, an oscillation induced near the primary resonance point of order
(1,1) is analyzed. The obtained results can be summarized as follows:

(1) First, the modal equations are derived from the governing partial differential
equations.

(2) In the modal equations, the modes in pairs having the same natural frequency
are coupled by nonlinear terms.

(3) Due to the above coupling, the modes in pairs can be excited simultaneously.

(4) When the modes in pairs are excited simultaneously, the phase difference
between these modes is nearly #/2. Thus, a traveling wave can occur moving circum-
ferentially with an angular speed equal to the excitation frequency. Hence, the multi-
mode response occurs in the form of traveling wave.

Finally, experimental analysis is conducted with use of a steel membrane, and it is
verified that the theoretical analysis is reasonable.

4, Multi-mode Response of a Square Membrane

4. 1. Introduction

The problems of nonlinear oscillations of a membrane have been the subjects of
many investigators.®®>% But the investigations concerning to forced oscillations are few.
Especially those of the multi-mode responses which are often observed in the membrane,
have scarcely been investigated.

In the previous chapter, the problem of forced oscillations of a circular membrane is
considered. Then it was shown that a multi-mode response can occur, and that the two
modes in a multi-mode response occur in such a way that they form a rotary type of
oscillation.

In this chapter the problem of forced oscillations of a square membrane is taken up.
It is known that in a square membrane, two modes exist in pairs with the same natural
frequency and with the same modal shape. Due to this, the oscillations similar to those in
circular membrane, and different from those in a rectangular membrane®’’ are expected to
occeur.
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For theoretical analysis, modal equations are first derived from the Karman-type
equations which govern the motion of the square membrane. Then by taking up a typical
case, the characteristics of oscillations of a square membrane subjected to harmonic
excitation are discussed. The typical case taken up here is the one in which the excitation
frequency comes near the resonance point of the modes with one nodal line. It will be
shown by the analysis that in the square membrane a rotary type of oscillation as well as
another type of oscillation which has no counterpart in a circular membrane occurs.

Lastly an experimental analysis is conducted with use of a thin steel membrane and
the validity of the theoretical analysis is discussed.

4. 2. Fundamental Equations

4. 2. 1. Equations of motion of a membrane

Let a membrane with its side length a and thickness 4, stretched by uniform tension
Ny, be subjected to lateral excitation force and lateral viscous damping force. To express
the equations of motion of the membrane, a rectangular coordinate O-xy is taken along
two neighboring sides in the middle plane of the membrane in its equilibrium state. Then
the Karman-type equations of motion is as follows:

2F 2 2 2 ZF 2
:az‘a?_zaF’anraz‘a\;v (4.1)
oy~ ox* oxgy oxoy ox- 9y

82w 3w

1 *w
2}

L 2
Eh{( axay) ox?

ViF=

where w, F and g are deflection of the membrane, stress function determinig the
membrane force, and the excitation force, all being functions of the coordinates x, y as
well as time ¢. The quantities p, E and ¢ are density, Young’s modulus and damping
coefficient, respectively. Also

2 2 4 4 4
&, D 9 B

2= = =2 40 < 4+ 2
v ax* ay*’ ox* T oax*ay’  ay?

(4.2)

By denoting the displacements in x and y directions by u and v, the relations between
stress and strain are given as follows:

ou 1 ow o*F 82F
Eh ==
{ 2( )} 5 Var
ov 1 ow, 92 JEF
Eh —)l===- 4.3
(GG =t es (4.3)
2
Eh{ aV+ﬂ~-‘?1 =21+ 2L
ox oJx 9y ox 9y
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where v is Poisson’s ratio.
Introducing the nondimensional quantities

6___’_1__ xl_i I_l t'——_t_ N_Q Wr__n_Z__vY_ E@_

T a’ a’ Y T a avV ph’ "7 aVen,

, u ER , v Eh , o, F

— R T = — m— F - .

WET eNy' |~ a Ny & eNya* (4.4)
ac , aq /Eh

2ef=—m, £q = [

&t aV phNy ’ 4 Ny V eN,

into Eq. (4.1) and omitting primes yields:

*w ow 5
____+ [ — —
o7 2¢el Yy s Vew—eq
e O°F &*w _ &*F o*°w o&°F &w
{5 2 . S} (4.5)
xt " 9y© ox oxgy ox3dy ox° 9y
2 2 2
yir= (2 2. 821
ox oy ox° gy
The boundary conditions on the four sides (x=0,1, y=0,1) are
w=0, u=0, v=0 (4.6)

It is cumbersome to obtain the solutious which satisfy all the boundary conditions exactly.
Instead it is tried here, as done in 38) and 39), to obtain such solutions that satisfy the
first of the boundary conditions exactly, but the rest conditions only in the average. For
this purpose the last two conditions are replaced by

1 1 au

fofo(gg)dxdy—O
1 1 av

fo )(5,) dxdy=0 (4.7)
1 1 au av _

fo fﬁ(ay+ax)dxdy—0

Substituting the nondimensional quantities given in Eq. (4.3) into Eq. (4.7) yields

Lot F  *F 1 ow, _
fofo{ 4 xz—.z(ax)}dXdy_O

Ea
Vel PF 9*F 1 ow, _
fo GEmr gy (5, dxdy=0 (4.8)
Lt *F  ow ow
2(1+ +5=. 55y =
Jofo{( 1l)axay ox ay} xdy=0
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4. 2. 2. Modal equations

To obtain the unknown quantity w in the form of the superposition of the modes of a
linearized system, it is noted first that the mode shape is given as follows:

Wop=sinm axxsinnzxy (m,n=1,2,---) (4.9)

This mode shape is referred in what follows to that of order (m,n). Now w is sought in
the form:

e}

= 3 X,.sinmaxsinnmay (4.10)

mn=

Here X,,,’s are unknown functions of time and express the magnitude of the mode of
order (m,n) contained in w. This expression satisfies the first of the boundary conditions
exactly.

Another unknown quantity F is supposed to be given in the following form:

- 1 1
F= 3 Y,,.sinm mx sinn ary+~2—Nx0x2+ENy0y2+ny0 Xy (4.11)

mya=1

where Y., Nyg, Ny, Ny are unknown functions of time just as X, is. Substituting Egs.
(4.10) and (4.11) into Eq. (4.8) and performing necessary integration gives expressions for
Nyo, Nyg, Ny in terms of X, and Y, as follows:

72
2
Nyo= 8(1= vz),,z— (P+vj*) X, +n ]2_ b a,JYU
2
7T
N 2 .
0= S(1= 1/2)’12_(] +vi®) X7 +n* Jz_laY (4.12)
nyO 2(1+'V)z]21k; 1llszbkl Xkl

where

1 1
a;=1\ sinimxdx | sinfrxdx
7 Jo 0
(4.13)

1
bif:f sini mx cosjwxdx
0

Substituting Eqgs. (4.10), (4.11) and (4.12) into Eq. (4.5), multiplying sinmax and
sinnzy, and then integrating yields

an + 2£§an +p mn mn —¢& an

=& 2 Z Kmnfgaﬁ Yng af

fe=t b=l (4.14)
te2 2 2 LoumijuapXiXuXap

=1 k=1 a,f=1
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o

feed
mn= 2_ “2_1 ani]le i Xk

where the concrete expressions of the coefficients are omitted. In Eq. (4.14), dot means
differentiation with respect to time. Also, p,,, and Q,,, are the natural frequency of order
(m,n) and the excitation force acting on that mode respectively, and are given as follows:

Plon=m>+n’
(4.15)

1 et
m"=4fo foq(x,y,t)sinm mxsinnmwydxdy

Substituting the second equation in Eq. (4.14) into the first yields the required modal
equations expressed in terms of X,,, as follows:

an +2¢ gX;nn +p2mnan
(4.16)
=& Z % ; mnijklaf inlea/J’ +e an

It is noted from Eq. (4.16) that each mode is coupled by nonlinear terms with one
another.

4. 3. Oscillations near the Primary Resonance Point

4. 3. 1. Analysis by the perturbation method

With use of the modal equations obtained in the preceding section, the response of
the membrane to arbitrary excitation can be obtained. Here, the response to a harmonic
excitation of the form g=qg(x,y)coswt is considered. The characteristics of oscillations
when @ comes near a certain natural frequency are discussed by taking up a typical case.

The typical case taken up here is one in which the excitation frequency comes near
the primary resonance point of order (1,2). Since p,;=pi, this primary resonance point
coincides with that of order (2,1). As to the excitation force, it is assumed that its
distribution is symmetric with respect to the straight line y=1/2, which implies that Q,=0.

To conduct numerical calculation it is assumed that the behavior of the system is
governed mainly by the two modes of orders (1,2) and (2,1), and hence the unknown
quantities except X,; and Xj, in Eq. (4.16) can be neglected. Then the Eq. (4.16) is
reduced to

X+2e0X+p*X=e(NX*+NX?)X+¢eQcosw t
(4.17)
X426 X+ p2X=e(NX2+NXOHX

where
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X=X, X=Xy5, Qcosw t=0y
N=N;1212121=N 12121212
(4.18)

N= N2121 1212+ N21122112+ N21121221

= N12122121 + N1221 1221+ N122121 12

It is assumed that the detuning betwen the excitation frequency @ and the natural
frequency p is of the order of ¢, and hence can be put in the form

w=p+eo (4.19)

To solve Eq. (4.17), the perturbation method of multiple time scales® is employed and
the solution is sought in the following form:

X=XO(T0>T1"')+£X1(T03T17”)+““
] (4.20)

X=Xo(To, Ty, )+ eX:(To, Ty, )+ -+

solving Eq. (4.17) up to the order of ¢ yields the solution for X, and X, as follows:

Xo=Ce' "T14+ Cei o
(4.21)

Xo=De! T4 D~ )
where C, D are unknown functions of T, and C, and D are their conjugates. These

unknowns are determined from the conditions that X; and X; have no secular terms
namely

>

1 )
2ipc'+2ipgc—5Qe‘"Tl

—N(3C*C)-N(2DDC+D?*C)=0

(4.22)
2ipD’'+2iptD
~N(3D*D)-N(2CCD+C?*D)=0
where primes indicate differentiation with respect to time Tj.
To solve Eq. (4.22), C and D are put in the form
C=2L ReiloTi)
2
(4.23)

1~ ~
Dz_.?Rel(UTr‘V)
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and are substituted into Eq. (4.22), and then the resulting equations are separated into
real and imaginary parts to yield

1 1o
pR'= —pCR—%—i—Qsiny-i-—gNRz Rsin(2y—2%)

1 3 1o
pR)/'-——paR—l—;Qcosy%——S—NRS—i-—é—NR2 R{2+cos(2y-2¥)

(4.24)
pR”=-pai+éNR2EgnQy—zw

O T U
pRylpoR+§.NR3+—8—NR2R{2+COS(27_2Y)}

To obtain steady-state solutions of Eq. (4.24), R'=R'=y'=7"'=0 are substituted into
it. Then the solutions of the obtained equations are substituted into Eq. (4.23), Eq. (4.21)
and Eq. (4.10) successively to yield the solutions of Eq. (4.5) in the following form:

w=Rcos(wt—y)sin2xxsinzy+ Rcos(wt—7)sinzxsin2xy (4.25)

The form of Eq. (4.24) reveals that it has two kinds of solutions. One is the solution
of for which R=0, a natural consequence of Q;=0, and hence this solution implies the
occurrence of a usual harmonic oscillation. The other is the solution for which R#0,
which occurs due to the coupling by nonlinear terms, and this solution implies the
occurrence of the oscillation containing the two modes with the same natural frequency.

The stability of a steady-state solution is determined by giving to the steady-state
solution C, D a slight disturbance AC, AD, and examining its variation with respect to
time. For this purpose, C and D in Eq. (4.22) are replaced by C+AC and D+ AD
respectively, and small quantities of the second order are neglected to yield the equations
governing AC and AD. Then to transform the resulting equation in the form with real
coefficients, AC and AD are replaced by

AC=%{§+mﬂa“ﬂ
(4.26)
AD:%@+my”ﬂ

and the resulting equations are separated into real and imaginary parts. Finally the
eigenvalues of the last equations are determined and the stability is determined whether
thier real parts are positive or nagative.

4. 3. 2. Characteristics of the oscillations

To discuss the characteristics of the oscillations, numerical calculation is conducted.
For numerical calculation, it is assumed, in accordance with the experiment to be
mentioned later, that the excitation force takes a constant value gy inside, and zero
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outside, of a square whose side length is by and whose midpoint coincides with point
(xm;ym)- In Fig. 4. 1 is shown an example of the response curves and phase curves
obtained for this case for values of parameters as given in the figure.

In the figures, solid and dotted lines indicate stable and unstable oscillations,
respectively. From the figures it is seen that the response curves consist of two kinds of
branches, one denoted by Oy and O, for which R=0, and the other for which R+0.
Among the latter branches, the branches A and B are stable. The branch A bifurcates
from branch O, and the bifurcating point coincides with the boundary point between
stable and unstable regions of the branch Oy, while branch B exists separately from other
branches.

The characteristics of oscillations obtained from Fig. 4. 1 is as follows. When, for
example, the excitation frequency w is increased gradually from lower values, the
harmonic oscillation expressed by branch O, appears at first. When w exceeds the value
of @, the oscillation expressed by branch A appears instead, in which R is large, and
hence this oscillation consists of the two modes of orders (1,2) and (2,1). When o
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(v=0.3, 26£=0.005, e=1x10%, q4=20, x,y=0.25, y;=0.5, by;=0.25)

Fig. 4. 1. Response and phase curves obtained theoretically.
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increases further, R and R become almost the same values and at the same time the
phase difference between the two modes is nearly 7/2, as can be seen by comparing y and
7. Thus the last oscillation takes the form of rotary type of oscillation rotating with the
angular velocity equal to the excitation frequency.

As mentioned above, branch B exists separately from other branches, so the oscilla-
tion represented by B doesn’t occur when the excitation frequency is increased gradually,
but occurs when appropriate initial conditions are given. For this oscillation, while R and
R are almost the same value, the phase difference between the two modes is zero, which
is different from that of branch A. Hence, this oscillation is not a rotary type, but one
whose nodal line is placed along the diagonal line of the membrane. Thus, this is such a
kind of oscillation that has no counterpart in the circular membrane.

4. 4. Experimental Analysis

4. 4. 1. Experimental method

To check the validity of the theoretical analysis presented in Sect. 4. 3, an ex-
perimental analysis was conducted by use of a thin steel square membrane. Schematic
diagram of the experimental apparatus used in this study is shown in Fig. 4. 2. In this
apparatus, the square membrane is fixed to four separate frames, and these frames are
fixed to the outer frames through bolts. By revolving the bolts, the tension in the
membrane can be adjusted.

Excitation force is given to the membrane by two electro-magnets put on both sides
of the membrane and by flowing electric current into them alternately. The two electro-
magnets are placed around point xy=3a/4, yy=a/2, so that Q=0 is valid.

To measure vibrations, two sensors are placed at points x=a/4, y=a/2 and x=a/2,
y=3a/4. These points are on nodal lines of one mode or the other, so the two modes can
be measured separately from each other.

F.F.T.
Analyzer

Recorder

Power Mi1,2 o
“mplifier| —T Lhd|lMh -7 X
f F-l- . —
Function ) &) oo
Generater

Fig. 4. 2. Schematic diagram of the experimental apparatus.
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The dimensions and the physical properties of the membrane are as follows:

side length a=401 mm
thickness h=0.25mm
Young’s modulus E=206 GPa
density 0=17.7x10° Kg/m?
Poisson’s ratio v=03

The natural frequencies obtained experimentally are

P21=pr2=190Hz

4. 4. 2. Experimental results

By exciting the membrane by the excitation force with its frequency close to the
natural frequency of order (1,2), two kinds of oscillations as shown in the left sides in (a)
and (b) in Fig. 4. 3 was observed. In the figures, the upper and lower waves in each
figure are the deflections at points x=a/4, y=a/2 and x=a/2, y=3a/4, respectively. When
account is taken of the location of the sensors, the upper and lower waves can be
considered to correspond to X and X in Eq. (4.10). In the right sides in Fig. 4. 3 are
given Lissajous’ figures obtained when deflections of upper and lower waves are taken as
abscissa and ordinate. In Fig. 4. 4 is given response curves obtained experimentally. As in
Fig. 4. 3, the amplitudes at points x=a/4, y=a/2 and x=a/2, y=3a/4 correspond to R and
R in Eq. (4.25), and hence the response curves in Fig. 4. 4 correspond to those in Fig. 4.
1.

From Figs. 4. 3 and 4. 4, the following can be said as to the characteristics of the
oscillation. When o increases gradually from lower values, the oscillation represented by
branch with notation I in Fig. 4. 4 appears at first. In this branch, the amplitudes of R is
nearly zero for small excitation frequency but becomes large suddenly when the excitation
frequency exceeds a certain value. The figure (a) in Fig. 4. 3 is the waves and the
Lissajous’ figure for the oscillation for large R. From this figure it is seen that the phase
difference between the two modes is nearly /2. Thus it is seen that when the excitation
frequency is small, the ordinary harmonic oscillation occurs, but as the excitation frequen-
cy becomes large the oscillation represented by branch A in Fig. 4. 1 occurs spontaneous-
ly.

In addition to branch I, there is one more branch denoted by II for which R#0. The
figure (b) in Fig. 4. 3 shows the waves and Lissajous’ figure for the oscillation represented
by branch II. As seen in the figure, the phase difference between the two modes is zero.
Thus it is seen that the branch II corresponds to branch B in Fig. 4. 1.

From above it can be concluded that the experimental results confirm qualitatively
the validity of the theoretical ones, except a slight disagreement which might be caused by
nonuniformity of the tension or anisotropy of the membrane.

4. 5. Conclusions

A problem of nonlinear forced oscillation of a square membrane is considered. The
problem taken up here concerns the oscillation of a membrane subjected to harmonic
excitation near the primary resonance point of the natural mode with one nodal line. The
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(b) Oscillation denoted by II in the Fig. 4. 4 (194.0 Hz).

Fig. 4. 3. Waveform and Lissajous’ figure.

results obtained theoretically may be summarized as follows:

(1) According to the modal equations derived from the Karman-type equations of
motion, the modes with the same natural frequency are generally coupled by nonlinear
terms. Hence the two modes existing in pairs with the same natural frequency and the
same mode shape are coupled by nonlinear terms.

(2) Hence in the membrane near the primary resonance point, in addition to the
usual harmonic oscillation, the oscillations consisting of the two modes can be excited.

(3) The latter oscillations can be classified into two types. One is the oscillation for
which the phase difference between the two modes is 7/2. Hence this oscillation takes the
form of the rotary type of oscillation rotating with the angular velocity equal to the
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Fig. 4. 4. Response curves obtained experimentally.

excitation frequency.

(4) Another type of oscillation consisting of the two modes is the one for which the
phase difference between the two modes is zero. When this oscillation occurs, the nodal
line is placed at different position from that of the linear membrane. This oscillation has
no counterpart in the circular membrane.

Thus it was shown theoretically that multi-mode response occurs in the square
membrane.

Finally an experimental analysis is conducted, and the validity of the theoretical
analysis is confirmed.

5. Multi-mode Response of a Beam between
Bending and Twisting Modes

5. 1. Introduction

The problems of bending vibrations of a beam with large amplitudes have been the
subject of many investigators.***® One of the present authors also treated one such
problem and showed that a multi-mode response can occur in a beam subjected to
periodic excitation.*’!

Bending and twisting displacements may be coupled by nonlinear terms for large
amplitudes in a beam with such a cross section for which they are not coupled for small
amplitudes. Hence, it is expected that in such a beam, bending-twisting oscillations caused
by nonlinear coupling may occur. However, it seems that the problems of this type of
oscillation have scarcely been investigated.

In this chapter, the dynamic response of a beam with a thin rectangular cross section
subjected to harmonic excitation in the lateral direction is taken up. The possibility of a
multi-mode response between bending and twisting modes is discussed for the case in
which one of natural frequencies of bending modes and one of those of twisting modes
are in a certain relation.

For theoretical analysis, the equations of motion for the problem are obtained, from
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which modal equations are derived. Then, the modal equations are solved by a perturba-
tion method.* Finally, to confirm the validity of the theoretical analysis, an experimental
analysis is conducted.

5. 2. Fundamental Equations and The Modal Equations

5. 2. 1. Fundamental equations

A beam with length [, width b and thickness A, and stretched in the axial direction by
initial force Ny is considered. For simplicity, it is assumed that I>>b>>h, and that both
ends are simply supported. As shown in Fig. 5. 1, x, y and z axes are taken along the
center line, in the direction of width and in the direction of thickness, respectively, of the
beam in the equilibrium state. The displacement in the direction of x axis, deflection in
the direction of z axis and the torsion around x axis are denoted by u, w and ¢,
respectively. The magnitudes of u, w and ¢ as well as their derivatives are assumed to be
of the following order:

w=0(1), 6=0(1)

F-0@), w=0(), -0 (5.1)
azw_ 2 ou _ 2 aqu_ 2

axz-0(8), 5;-0(8)7 59—0(8)

Unit vectors e,, e, and e, taken along x, y and z axes in the equilibrium state
become, during motion, as follows:

W

Fig. 5. 1. Coordinate system located in a beam.
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L ow

ex=ex+-a—x~ez

e,=e,+oe, (5.2)
ow

e,= -E;ex—qﬁey'%ez

Hence, the position vector R of a point with coordinates (x,y,z) in the equilibrium state
becomes, during motion, as follows:
R=(x+u)e,+we,+ye',+ze',
(5.3)
ow
= (X+u—z§)ex+ (y—zo)e,+(z+w+ygp)e,

Then the strain in the direction of x-axis becomes, when small quantities of higher order
are neglected, as follows:

_ L2k oR
T2 ox ox
i (5.4)
Lou 1 ow, 5 oIw  ow 9¢
=—+ +—(y*+z z=—=+y
o T2 (5 ( )( ) o Y or ox
Substituting this into the expression
o,=Ee,+Ny/A (5.5)

for stress in the direction of x-axis, and integrating the result over the cross section yields
the resultant stress N, and the resultant moments M,, M, as follows:

_ ou, 1 owny 1., 29
Nx—fo dA=No+ EA{Z 4 (S5} 4 El(SF)
*w
My:fzo’di:: yaxz (5.6)
fya dA=-pg1,2%. 2%
ox ox

Also the resultant moment around x-axis is obtained as follows:3®

Mx=(GK,+I_<)%% (5.7)
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In Egs. (5.6) and (5.7), E, G and A are the Young’s modulus, the shear modulus of
elasticity and the area of cross section, respectively. Furthermore, [,, I,, Iy are moments

of inertia, and K, and K are the St. Venant twisting constant and the Wagner coefficient,
respectively, and are defined as follows:

1 1
= 2 = e 3 = 2 T e 3
I, Jz dA=25b, 1, fy dA=T5hb

IO=J-(y2+zz)dA’=.IZ, Kt=%—bh3 (5.8)

_ ! 2 op
_ 2. .2 . 1o “ 2
4 f(y +2)0, dAS N SEL(SEP)

The resultant stresses N, and N,, not defined in Eq. (5.6), are supposed to be determined
from the condition of equilibrium.

The equations of motion derived in terms of resultant stresses and resultant moments
given in Egs. (5.6) and (5.7), with an inclusion of viscous damping forces, become as
follows :

2NN 2 =0 /

é%(Nz+Nx~g—;"-+Ny¢) pA%%ﬁch%%*q
§;<MX~MZ%>=MO%2;§3+@—2% (5-9)
2 (M,~M.4)=N.

2 (M+ M2+ M, 9) =N,

where p, ¢, and ¢, and g are the density, the damping coefficients, and the external force,
respectively. To simplify the analysis, small quantities of higher orders are neglected.
Then the first equation in Eq. (5.9) becomes

2 (N)=0 (5.10)

implying that N, is independent of x. With this taken into account, the first equation of
Eq. (5.6) is solved with respect to u, under the boundary condition that u=0 on both
edges, to yield

NN E (s 2w 29
N,=N=No+ yfo (AP +h(SEP) dx (5.11)
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Similarly, the forth and fifth of Eq. (5.9) give

3w o, ow 09
=—F +EL,—
Nz Iy a 3 a ax ax¢)
Ny:—E]z_a_ __a_.‘f)_.a_(p)
ox oOx ox
9 ow ¢ *w
R + [—
+ 2GR+ 2N 2 20y, =)

Substituting these into the second and third of Eq. (5.9) yields

AL e 2y, TR N
e, 22222y - p 2o 2
(GK+ 2N g2 (22 ‘;f)}
plogztfmgt —(GK,+2 N)%yi%
—ELZ @(@)ZHZEI -t {(a‘p)}

oX Ox  ox 5 A ox

Now, the nondimensional quantities

e——A— x’—ﬁ t’——— NO ! — 27 AE
I R I VN,

2n /AE 1, lc,
[ . e 2 = ——
V=T Ven, Va® 2= AN,

ret,——to A . _la JAE
4 TV pANO Iz 2JTNO 8N0

= s H1=TT

Ny L N12’ Pr="" b= EIZ+EA

GK, A _GK, Ny

(5.12)

(5.13)

(5.14)

are introduced. When these quantities are used, account is taken of the fact that §,<«1,

B2«<1, and finally primes are omitted, Eq. (5.13) is rewritten as follows:
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2 2
22 2ee 2L 2 (2 2y g 2 2
e 9, 0w, o9

T on (o (5.15)
, .
aa;b” Cy‘j—)_;l-[bi-%o—%——f {(aw)2+(a¢)2}d 124 ¢

_ e 2 .3w a0, 8&0d 09,

‘nax{ax >} + Snax{( >’}

5. 2. 2. Modal equations

Unknown quantities w and ¢ are put, so as to satisfy the boundary conditions, in the
following form:

w=> X, sinn xx
" (5.16)
¢p=>Y,sinnxx
=
where X,, and Y, express contribution of each mode to deflection and torsion, respective-
ly. Substituting Eq. (5.16) into Eq. (5.15), multiplying sinnzx on both sides and integrat-

ing with respect to x from 0 to 1 yields, for determining X,,, Y,, the following equations:

X,,+2£§xXn+p,lzXn+en2 s mz(sz+ Y,2) X,

=—¢€ Z Hm]kY YXk+£Qn
ikl=1

> (5.17)
Y, +2eC,V,+D,e Y, +en® > m* (X2 +Y,2)Y,
m=1
il 2 .
=— 'SMZ:I Hnijk(XinYk'*"gYi YY)
where
pn=nV 1+xn2, p,=nV 1+
1 pt
Q,,=2J~0 foq(x,t) sinmmxdx (5.18)

1
H,,i,«k:SJ COSM 7T X COSi ;T X cosj w x cosk mx d x
0

From Eq. (5.17), it is noted that bending and twisting modes are coupled by nonlinear
terms.

5. 3. Oscillations Near The Primary Resonance Point

5. 3. 1. Analysis by the perturbation method
The natural frequencies p, and p, for bending and twisting modes of a beam are, as
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already mentioned, given by Eq. (5.18). From this and Eq. (5.14), it is noted that the
ratio of p, and p, are varied with the initial tension N,. Due to this, one of natural
frequencies of bending modes coincide with some of those of twisting modes. Here is
treated the case in which the natural frequency of the second bending mode coincides
with that of the first twisting mode.

The excitation is supposed to be the harmonic one of the form g=g(x)coswt and its
frequency o is near the primary resonance point of the natural frequencies mentioned
above.

It is assumed for simplicity that the behavior of the system is governed mainly by the
second bending mode and the first twisting mode, and thus the quantities other than X,
and Y; can be neglected in Eq. (5.17). Then, Eq. (5.17) is reduced to

X+2e8, X+p* X+ e(HoX?+H,, Y*)X=¢Qcosw ¢

§ _ (5.19)
Y+2e8,Y+p*Y+e(H, X>+H, Y)Y=0

where
X=X,, Y=Y, p=p,=D;, Qcosw t=q,
Hy=2%-2%, Hy\=27 - 1>+ Hyp; (5.20)

2
H,,=1%-2*+ Hyp,, H,,=1%- 12’*‘?Hun

It is also assumed that the detuning between the excitation frequency w and the
natural frequency p is of the order of &, so that w can be put in the form

w=p+eo (5.21)

To solve Eq. (5.19) by the perturbation method of multiple time scales,” the solution is
put in the form

X=Xo(To,T1, ) +eX1(To, Ty, - )+--+
(5.22)
Y=Yo(To,T1, ) +eY (T, Ty, )+

where Ty=t, Ty=et,--- are various times with different scales. Solving Eq. (5.19) within an
accuracy of the order of ¢ yields the solution for X, and Y, as follows:

Xo=Ue' °Ti4 e~
5.23
Yo=Ve' T4+ Ve ioh ( :

where U and V are unknown functions of T3, and U and V are their conjugates. These
unknown functions are determined from the conditions that X; and Y; have no secular
terms ; namely,
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. , . 1 ioT
2ipU +21p§xU—-2—Qe !
+H,(3U?TU)+H,(2VVU+V?*U)=0

(5.24)
2ipV'+2ipf,V
+H,,(3V*V)+H, (2UTV+U*V)=0
where primes indicate differentiation with respect to time Tj.
To solve Eq. (5.24), U and V are put in the form
U=lRei(GT1“V)
2
(5.25)

1 .
V=—5S i(oT—90)
) e

Substituting this into Eq. (5.24) and separating the resulting equations into real and
_ imaginary parts yields

1
pR'=—-pC.R +5Qsiny——é-nySz Rsin(2y—29)

o}

PRy’ =poR+%Qcosy—§HxxR3

1

-ngySZR{2+cos(2y—26)} (5.26)
1
pS’=—prS——-§nyR Ssin(20—2y)
’ 3 3 1 2
pSéo =poS—§Hny —‘-é-nyR S{2+cos(26—2y)}

To obtain steady-state solutions of Eq. (5.26), R'=S"=y'=0"=0 are substituted into
it. Then, the solutions of the resulting equations are substituted into Egs. (5.25), (5.23)
and then (5.16) successively to yield the solution of Eq. (5.15) in the form:

w=Rcos(wt—y)sin2 7 x
(5.27)

¢p=Scos(wt—0)sinmw x

The form of Eq. (5.26) reveals that it has two kinds of solutions. One is the solution
for which §=0, which implies the occurrence of the usual harmonic oscillation. The other
is the solution for which $#0, which implies the occurrence of not only the bending but
also the twisting modes, i.e., the occurrence of the multi-mode response.
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The stability of a steady-state solution U and V is determined by giving it a slight
disturbance AU and AV, and examining its variation with respect to time. For this
purpose, U and V are replaced in Eq. (5.24) by U+ AU and V+ AV, respectively, and
small quantities of the second order are neglected to obtain the equations governing AU
and AV. Then, to transform the resulting equations in the form with real coefficients,
AU and AV are replaced by

A U=—;—(§+in)ei°T‘
’ | (5.28)
AV=—(F+i)e' T
and the obtained equation is separated into real and imaginary parts. Finally, the
eigenvalue of the last equations are obtained and the stability is determined, whether their
real parts are positive or nagative.
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2" i
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(p=2.01, 2e,=2¢§,=0.01, e=1x107°, go=40, x,=0.25, bp=0.12)

Fig. 5. 2. Response and phase curves obtained theoretically.
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5. 3. 2. Characteristics of the oscillations

To discuss the characteristics of the oscillations, numerical calculations are conducted.
For this, it is assumed that the amplitude of the excitation force takes, in accordance with
the experiments to be mentioned later, a constant value g inside, and zero outside, of
the region of the beam whose length is by and whose midpoint is x=xy. In Fig. 5. 2 is
shown an example of the response curve and phase curve obtained for this case for
suitable values of the parameters.

In the figure, solid and dotted lines indicate stable and unstable oscillations, respec-
tively. From this figure, it is seen that the response curve consists of two kinds of
branches, one expressing the usual harmonic oscillations with §=0 and the other denoted
by BCDE with $#0. On the former branch ABEF exists unstable region BE, from whose
boundary points, the branch BCDE bifurcates. On branch BCDE exist stable portions BC
and DE.

The characteristics of oscillations can be discussed by Fig. 5. 2. When, for example,
the excitation frequency w is increased gradually from lower values, the harmonic
oscillation expressed by branch AB first appears. When w exceeds the value of point B,
the harmonic oscillation is replaced by the oscillation expressed by branch BC with §
increasing rapidly, and thus the multi-mode response of the bending and twisting modes
occurs. The phase difference between these two modes is nearly /2, as can be obtained
by comparing y and J in Fig. 5. 2. When o is further increased in this oscillatory state,
jump phenomena occur at point C, and the oscillation expressed by branch DE appears.
The phase difference between the two modes of this oscillation is nearly. With further
increase of w, R increases but S decreases. At point E, S finally becomes zero, and the
harmonic oscillation expressed by branch EF appears.

5. 4. Experimental Analysis

5. 4. 1. Experimental method

To check the wvalidity of the theoretical analysis presented in Sect. 5. 3, an ex-
perimental analysis was conducted with use of a steel beam. A schematic diagram of the
experimental apparatus used in this study is shown in Fig. 5. 3. In this apparatus, the
initial tension in the axial direction is given by the nut in the left side. The excitation is
given to the beam by flowing electric current alternately into two electro-magnets placed
on either side of the beam. To measure the deflection and the torsion separately, two
sensors are put in the direction of the width of the beam as shown in the lower part of
Fig. 5. 3, and the sum and the difference of the signals of each sensors are calculated by
operational amplifiers.

The dimensions and the physical properties of the beam are as follows:

length [=1000 mm

width b=32mm
thickness h=0.5mm
Young’s modulus E =206 GPa

shear modulus G=79.2GPa
density 0=7.7x10° Kg/m?

The position of the electro-magnets is xy=250mm, and the distance between the two
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Fig. 5. 3. Schematic diagram of the experimental apparatus.
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Fig. 5. 4. Natural frequencies of a beam.
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sensors is 18 mm.

The natural frequencies of the beam obtained by varying the initial tension in the
axial direction is as shown in Fig. 5. 4. In the figure, instead of the initial tension, the
natural frequency of the first bending mode is taken as abscissa. For comparison,
theoretical values are also shown by chain lines. From the figure, it is noted that for
p1=28 Hz the natural frequency of the second bending mode coincides with that of the
first twisting mode, whose value is nearly 56 Hz.

5. 4. 2. Experimental results

The beam was excited with the excitation frequency nearly equal to the coincided
natural frequencies. It was found that in addition to the usual harmonic oscillation, two
kinds of oscillations as shown in Figs. 5. 5(a) and (b) occurred. In these figures, w, and
wp are waves obtained by sensors A and B, and (wa+wg)/2 and (wa—wg)/2 are the
calculated waves corresponding to deflection and torsion. In each figure of (a) and (b),
the left and right waves are ones obtained at points x=//2 and x=3//4. From these figures,
it is found that the oscillation containing twisting mode in fact occurs, and that the
deflection takes the second mode shape and the torsion the first mode shape. In Fig. 5. 6

o] LA
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(w,ﬁwa) /2"

2mm

sV A ANANANNA eTTAAAANAANANAN
N[\Ju\ﬁuuwuu N[\/\/\/\/\/\/\/\/
(wA UB)/2 (MA“MB)/Q

0.05sec 0.05sec

(a) Oscillation denoted by I in the Fig. 5. 6 (57.2Hz).
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(MA+MB) /2 wA+wB
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g[/\vﬂv/\\j/\v/\vﬂv/\y/\vﬂ Al /\V/\v/\\//\\’/\/\?fi\.\fi%

(b) Oscillation denoted by II in the Fig. 5. 6 (58.0 Hz).

Fig. 5. 5. Waveform.
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Fig. 5. 6. Response curves obtained experimentally.

are shown the response curves obtained experimentally at point x=2I/3.

From Figs. 5. 5 and 5. 6, the following is noted. When the excitation frequency is
increased, the harmonic oscillation first appears. When the excitation frequency become
higher than a certain value, the twisting mode increases rapidly and the oscillation
represented by branch I occurs, As obtained from Fig. 5. 5, the phase difference between
the bending and twisting modes of this oscillation is nearly /2. Thus, the oscillation
represented by branch I corresponds to that represented by branch BC of Fig. 5. 2.

When the excitation frequency is further increased in Fig. 5. 6, jump phenomena
occur at a certain frequency and above that frequency the oscillation represented by
branch II occurs. In this oscillatory state, the bending mode increases and twisting mode
decreases with the excitation frequency. Furthermore in this state, the phase difference
between the bending and twisting mode is nearly 7. Thus, the oscillation represented by
branch II corresponds to that of branch DE in Fig. 5. 2.

It is noted from Fig. 5. 5 that the oscillation represented by branch I contains higher
harmonics, and to carry the analysis in more detail, higher modes should be taken into
account. But this has not been done here.

In conclusion, the results of the experimental analysis confirmed qualitatively those of
the theoretical analysis.

5. 5. Conclusions

As a problem of nonlinear bending-twisting oscillations of a beam, the dynamic
response of a beam with a thin rectangular cross section to harmonic excitation in the
lateral direction is considered. The case treated here is one in which the natural frequency
of the second bending mode coincides with that of the first twisting mode, and in which
the excitation is near these coincided natural frequencies. The obtained results may be
summarized as follows.

(1) The equations of motion for the problem are obtained, from which modal
equations are derived.

(2) The modal equations thus obtained reveal that the bending modes and the
twisting modes are coupled by nonlinear terms.
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(3) Due to this, the twisting modes occur in a certain region of the excitation
frequency, although the excitation is in the lateral direction, and thus the multi-mode
response Occurs.

(4) There are two kinds oscillatory states in the multi-mode response. For one, the
phase difference between the bending mode and the twisting mode is n/2, and for the
other it is . In the former oscillatory state, amplitudes of the twisting mode increase, but
in the latter they decrease, as the excitation frequency increases.

Finally, the experimental analysis is conducted and the validity of the theoretical
analysis is confirmed.
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