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Abstract

This paper presents the experimental and theoretical studies on deforma-
tion and failure behaviours of the typical weak and hard rocks for conven-
tional triaxial tests under monotone and “weakly” cyclic loadings. These
materials show the dilation characteristics at lower confining pressures and
the brittle-ductile transition. We present a non-associated plasticity theory
using a dilatancy function for plastic behaviour under monotone loading, and
an extended multi-response theory to elasto-plastic behaviour under “weakly”
cyclic loading. In these approaches, we treat only the strain hardening
response of geomaterials as the material behaviour and do not apply them to
the strain-softening response since the softening is a structural phenomenon
rather than a material characteristic. We present the response functions by a
Laplace trasformation. The response models are applied to simulate the
behaviours of Oya-tuff under monotone loading with non-linear plastic re-
sponse, and the behaviours of Funyu-tuff and granite under cyclic loading
with non-linear elastic and plastic responses, respectively. We also describe a
procedure for conventional triaxial tests of rock materials by a stiff testing
machine, a closed measurement-analysis-system for a laboratory test per-
formed by a microcomputer and a data banking system of rock triaxial tests.
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1. Introduction

It is well-known that, in general, the mechanical behaviour of geomaterials such
as rock and soil shows a non-linear response, and a dilatant plastic deformational
behaviour, associated with shearing under compressive loading. And the strain
softening phenomenon is also observed for most rock materials in triaxial tests
under lower confining pressures. To investigate deformational behaviour and failure
of rocks under monotone and weakly cyclic loadings, a series of conventional
triaxial tests were carried out on typical weak and hard rocks. Here, the “weakly”
cyclic loading implies that the reloading path is same as the unloading one. We
show the experimental results for Oya-tuff under monotone loading, and for
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Funyu-tuff and granite under cyclic loading. These materials commonly show a transition
from brittle or strain-softening behaviour to strain hardening or ductile behaviour, and are
accompanied by a dilation behaviour at low confining pressures.

Based on the experimental results, we present two incremental elasto-plasticity
theories which are applicable to non-linear plastic response under monotone loading, and
to non-linear elastic and plastic response under cyclic loading, respectively. Generally, a
number of elasto-plastic theories’™* are applied to geomaterials in order to describe their
non-linear plastic behaviour, but it is also known that the incremental plasticity theory
using flow theory includes several ambiguities when it is applied to dilatant materials.
These ambiguities essentially are caused by the plastic flow theory, which requires a scalar
potential function as a plastic potential, and defines the plastic strain by differentiating its
potential function.

Rudnicki and Rice” derived an incremental constitutive law for dilatant materials
directly by adding a friction term to the Prandtl-Reuss’ equation, and defined a dilatancy
function as the ratio of volumetric plastic strain increment to the norm of deviatoric
plastic strain increment, which then they imposed to Mises flow law. This is a simple
procedure and physical meanings of the resulting constitutive relation become trivial.
However, some basic features have not yet been fully discussed in terms of a yield
function and a flow potential.

We have already proposed an incremental plasticity theory, called the multi-response
theory which defines the plastic response functions both for the shearing and volumetric
behaviour.” This theory gives the complete solution for ambiguities involved in the flow
theory. It was applied for some rock materials under monotone loading, and comprehen-
sive results were shown.

In this study, we propose an alternative incremental plasticity theory which is a
non-associated plasticity model using a dilatancy function for the plastic behaviour of
geomaterials under monotone loading. The constitutive law is derived by introducing the
dilatancy function under the assumption of a non-associated flow law with Drucker-
Prager’s yield condition and isotropic hardening rule. The plastic response is represented
by using the Laplace transformations by treating the responses as monotone.

As for the elastic-plastic behaviour of geomaterials under cyclic loading, many
theories” ™' have been proposed within the framework of flow theory. However, these
models still involve on versality in describing the shear and volumetric responses indepen-
dently. We have presented the extended multi-response theory to non-linear elastic and
plastic behaviours of geomaterials under cyclic loading'®. In the theory, the elastic and
the plastic response functions should be defined for the shearing and volumetric be-
haviours, because most rocks exhibit the plastic strain at the very beginning stage of cyclic
loading, and the elastic response is also non-linear. These response functions are also
represented by Laplace transformation since the monotone response was assumed. As an
example of application, we present the results of granite under cyclic loading.

We also describe a procedure for the conventional triaxial test of rock materials, and
a measurement system of experimental data by a microcomputer to determine parameters
of constitutive models based on proposed incremental plasticity theory. In addition we
have developed a data bank system to store the actual data gathered during triaxial tests.

2. Triaxial Tests for Rock

2. 1. Testing apparatus; high stiff testing machine
To investigate the deformation and failure characteristics of brittle materials such as
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rock, the stiffness of testing machine must be sufficiently increased to control instan-
taneous deformations of specimens in compression tests. Usually, most testing machines of
the stiff type employ a closed-loop servo-controlled oil pressure system. This system
requires the instantaneous control of oil pressure at the failure of specimen, and it has a
disadvantage because of the decreased stiffness of machine due to the compressibility of
oil. Therefore, we have newly developed a high stiff testing machine which controls the
displacement rate of specimen by the mechanical servo-control system.'®

Fig. 2. 1. Overview of high stiff testing machine

The high stiff testing machine is shown in Fig. 2. 1. This testing machine is developed
to do tests on rock-like materials under monotonic or cyclic triaxial loading conditions,
and has following special features; 1) The overall stiffness of the machine is about
3.12x10° kN/mm, and the stiffness is increased by employing a stiff loading frame and by
arranging two steel blocky columns parallel to the axis of the specimen. 2) Using the
mechanical servo-control system with a satisfactory stiffness of the machine, the deforma-
tion characteristics including the pre-failure and post-failure behaviour of rocks such as the
strain hardening and the strain softening can be easily obtained. 3) The machine is
capable of controlling either deformation or load, and the loading and unloading points
during cyclic loading can be set in both displacement and load. 4) The loading with an
arbitrary deformation rate may also be applied by using a variable deformation rate
controlling unit.

This testing apparatus consists of a loading frame, a hydraulic pump unit for the
loading ram, a control equipment for displacement rate, and a measurement unit. The
control system of the testing machine is shown in Fig. 2. 2. The control of displacement
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Fig. 2. 2. Schematic diagram of control system of high stiff testing machine
Table 2. 1. Specifications of high-stiff testing machine
Load cell 6.45 MN/mm
Stiffness Steel columns 6.05 MN/mm
Overall 3.12 MN/mm
Capacity 1 MN
Load cell Measurement error +1 %
Measurement Output voltage 1V full scale
apparatus Displacement Stroke of displacement 5 mm
transducers Measurement error +1 %
(LVDT) Output voltage 0.06V full scale
Loading capacity 0.2 KW
Print motor Loading range 0.2, 0.5, 1 MN
Defromation rate 0.0l -1 mm
Controlling
apparatus Loading control Capable of controlling deformation rate and applied
unit load rate
Capable of programmed control of monotone and cyc-
lic loading

Hydraulic pump unit loading rams

oil pressure (up to)
oil flow rate

20 MPa
1.5 Umin
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of the specimen during a compression test is performed as follows: First, the loading is
simultaneously applied to the specimen and the columns parallel to the specimen using the
loading ram activated by oil pressure. Then, the loading on specimen is applied by
vertical movement of the top of the columns, which can be adjusted vertically by the
horizontal movement of two steel wedges installed under the columns using a direct
current servo-motor. The direct current servo-motor, so called print motor, is controlled
by the desired displacement or loading rate set by the program generator in the control
equipment of the machine. Two linear variable differential transducers (LVDT) are
attached between the top and the bottom loading plates to measure axial displacement of
a specimen, and to control the vertical movement of the columns. Also, a stiff vertical
load transducer is attached to the loading ram to measure the applied load.

Specifications of the testing machine are shown in Table 2. 1. The vertical load
transducer is 1 MN capacity and has a stiffness of 6.45x10°> kN/mm. The stroke of the
vertical movement transducer is a maximum of 5 mm. The speed of the vertical
movement of the loading head ranges from 0.01 to 1 mm/min.

2. 2. Deformation measuring instruments

The conventional triaxial test is used to obtain deformation and failure characteristics
of geomaterials. Appropriate theoretical descriptions of continuum mechanics can be
established by inserting these experimental results. To support analyses based on proposed
incremental plasticity theory, it is necessary to develop a triaxial test which allows the
measurement of the parameters needed for its analytical model. It is important, therefore,
to measure closely the axial strain and the volumetric strain of tock specimens in
compression test to specify the parameters in the proposed elasto-plastic model. Usually,
it is difficult to measure the axial and the volumetic strain for rocks under triaxial stress
state. Therefore, we developed a triaxial cell
and a deformation measurement system
which consists of two linear variable differen-
tial transducers and three gauges of ring
type. These measurement apparatus are set
~<-{——————— Loading piston on a specimen in the triaxial cell. We have
performed monotonic triaxial tests for many
rocks by wusing the triaxial cell and the
measurement system of axial and volumetric
strain. This test procedure is also adapted to
" Rock cyclic loading conditions.

/— specimen A triaxial cell, designed to accomodate
Ring guages measuring axial and volumetric strain of a spec-
imen with dimensions of 50 mm in diameter
and 100 mm in length, is illustrated in Fig.
2. 3. The cell has a confining pressure capacity
of 19.6 MPa, and can be used in monotonic
and cyclic compression tests. A specimen with
the attached measurement apparatus can be
1 B easily mounted in the cell which is designed
to connect the measurement apparatus set in

the cell with a strain amplifier. To measure

Fig. 2. 3. Setting of rock specimen and the distributions of radial displacements of a
pressure cell for triaxial test specimen, newly developed three ring gauges

,,
/

Pressure cell
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Fig. 2. 4. (a) Ring gauges

are attached to the specimen at the top, in
the middle and at the bottom of the speci-
men with an angle of 120-degree respectively,
as shown in Fig. 2. 4 (b). The ring gauge is
an ellipsoid, of which the apsides is in-
strumented with four strain gauges (Fig. 2. 4
(a)); each strain gauge is covered by an
oilproof coating. The edges of the ring gauge
clip the side of the specimen.The gauges are
attached to rock directly at locations where
the rubber sleeve had slits. These slits, later
on, are sealed with latex following the setting
gauges in order to prevent oil from permeat-
ing into the rock during tests.

In early series of monotonic triaxial
tests, the axial strain was obtained from mea-
sured axial displacements between the load-
ing plates of the machine by using differen-
tial transducers outside of the cell. This
measurement technique has a disadvantage
that the measured displacement does not ex-
actly correspond to the displacement of a
specimen itself. Therefore, we also developed
a system of measuring axial displacement of
a specimen, directly. To measure the axial

Fig. 2. 4. (b) Ring gauges

Fig. 2. 5. Newly developed ring gauges and
LVDT system
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Fig. 2. 6. Schematic diagram of measurement system

Fig. 2. 7. Microcomputer used in measurements and analysis
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displacement of a specimen, two linear variable differential transducers (deflection of 10
mm of travel) are attached to the top and bottom loading platens by an annular
attachments, as shown in Fig. 2. 5. Thus, a more accurate measurement of the axial
displacement of a specimen can be made using this new measurement apparatus.

2. 3. Data gathering system

In the incremental plasticity theory, to be presented next sections, the response
functions of elasticity and plasticity are resolved by a multiple Laplace transformation.
These response functions are determined from experimental data using a method of
spectrum approximation. We developed a closed measurement-analysis system with the
use of a microcomputer to gather the experimental data automatically, and to determine
the plasticity spectrum and the elastic, the plastic response functions from the obtained
data in conventional triaxial tests on rocks.

The typical block diagram of the experimental measurement system for laboratory
test is shown in Fig, 2. 6. The measurement system is consisted of a microcomputer, a
display (CRT), a floppy disk unit with two floppy disk drives, a terminal printer, a
graphics plotter and a digital strain amplifier. These external devices are connected to the
microcomputer by GP-IB interface bus (IEEE-488 bus). The microcomputer used in the
system is HP-86 model, previously, or HP-9816 model, recently, of Hewlett-Packard (Fig.
2. 7). These microcomputers are used for both the measurement of experimental data
during tests and the analyses of the measured data. In testing, this microcomputer is used
to control the strain amplifier and other external devices, and to store the measured data
in floppy disks.

Together with the microcomputer, a digital strain amplifier, TDS-301 (TML, Tokyo

G3=5(kgf/cm2) G3=50 (kgt/cm?2)
ot o 0 0.5% .
o initial
o peak

Fig. 2. 8. Typical lateral displacement distributions measured by ring gauges
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Sokki Kenkyujo) is also used for the measurement of experimental data. For an automatic
data gathering system, the TDS-301 can be programmable via the GP-IB. The ten
channels are available for measurements. In the tests, the six channels are used for the
measurements of load, displacement and confining pressure. The applied load is measured
by a load cell, the axial displacement by two LVDT, the lateral displacement by three
ring gauges, and the confining pressure by a pressure transducer. Fig. 2. 8 shows a typical
lateral displacement distribution measured by ring gauges. The data for initial testing
conditions and the calibration data of transducers are inputed and stored in the floppy
disk before starting the test. After the initial set of transducers, the microcomputer
activates the strain amplifier by sending a trigger starting command, and measurements
are made at regular intervals as desired. The data taken by the TDS-301 is send to the
microcomputer through the GP-IB. In real time, the microcomputer displays the obtained
the axial stress-strain curve in the CRT and stores the measured data in a floppy disk
with appropriate formats.

2. 4. Specimens

To investigate the inelastic behaviour of rock, we have performed monotonic and
cyclic triaxial tests on many weak and hard rocks. The deformation modulus and the
compressive strength in uniaxial tests are given in Table 2. 2. In the test, sedimentary
porous rocks, called the Oya-tuff, the Funyu-tuff and the Ryukyu-limestone are chosen as
weak rocks, and granite and rhyolite as hard rocks.

Table 2. 2. Strengths and elastic modulus of specimens in uniaxial tests

Rock type Compressive strength Elastic modulus
(MPa) (MPa)
Oya-tuff 12 2300
Funyu-tuff 22 2800
Ryukyu limestone 13 7200
Omotani ryorite 205 41400
Granite 130 29200

The shape of the specimen is a cylinder to avoid ‘edge’ effects. The specimen is 50 mm in
diameter and 100 mm in length, and a length/diameter ratio of which is 2.0. The specimen
ends are cut parallel to each other and ground to be smooth. Moisture content of the
specimen is controlled to obtain naturally dried condition.

2. 5. Procedures of triaxial tests

The incremental plasticity theory defines the plastic response functions both in the
shearing and volumetric behaviours after the onset of plastic yielding. The material
treated here is assumed to be isotropic and hydrostatically symmetric. This implies that
the response is associated with by the relation between the volumetric stress, the
deviatoric stress and the volumetric plastic strain, the deviatoric plastic strain. Therefore,
the conventional triaxial test using cylindrical specimens is useful to obtain the plastic
response of rock materials.

It is known that the deformation behaviour of rock materials shows nonlinear elastic
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response as well as a nonlinear plastic response under applied loads. The incremental
plasticity theory gives the plastic response by assuming a linear elastic response of rock
materials. The extended incremental elasto-plasticity theory discribes the nonlinear elastic
and plastic response of rock materials. Thus, two types of the conventional triaxial test on
rock materials are performed. The monotonic triaxial tests are carried out to get the
linear elastic and plastic response model. Also, the weakly cyclic triaxial tests are
conducted to obtain the nonlinear elastic and plastic response model. Also, the weakly
cyclic triaxial tests are conducted to obtain the nonlinear elastic and plastic response
model.

The all tests are carried out at several stages of confining pressure from 0 to 10 MPa.
The method of testing for both monotonic and cyclic test is as follows: firstly the
predetermined constant confining pressure is applied to the specimen. Then, the axial
load is applied at a constant deformation rate of 0.1 mm/min (0.1 %/min) by the dis-
placement control system of the stiff testing machine. The monotonic loading tests are
conducted by applying the axial load without unloading until the peak strength of the
material is exceeded (achieved). In the cyclic test, the cyclic loading is started by
loading to the required confining pressure, because the volumetric strain needs to be
separated into elastic and plastic components to obtain the nonlinear elastic and plastic
response of rock materials. The returning points of unloading during cyclic test are set up
at regular intervals of strain level by the deformation control system of stiff testing
machine, automatically.

The experimental data during tests are gathered by the data gathering system using a
microcomputer, and stored in floppy disks as described in the previous section.

2. 6. Data banking system for rock triaxial tests

To measure the deformational and failure characteristics of geomaterials many triaxial
tests are usually undertaken. Once tests have been used for a certain purpose, the use of
these results from another point of view is usually rare. Nevertheless, the tests results on
the deformational and failure characteristics may be re-examined from different view
points and their constitutive equations can be re-evaluated. Thus, a system to store these
tests results and to process for the given purpose is necessary in order to make the
effective use of the results. There are some recent attempts to make use of the existing
laboratory and in-situ test results obtained for the design of geotechnical engineering
structures in association with the use of underground space. Accordingly, by creating a
data banking system for triaxial tests in laboratory and incorporating with the future rock
mass data base system will lead a data base system with a large amount of accumulated
information which is expected to lend itself to further developments. From this point of

ROCKTESTING DATA BANK
TESTBANK

Laboratory Triaxial Test Bank Measured Data Bank
LABOBANK MDABANK

Fig. 2. 9. The structure of data banking system
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view, we have developed a data processing measurement system for the triaxial tests in
laboratory and have been attempting to develop a data banking system for the existing
and future tests results using a personal computer as described previously.

We name the data banking system “TESTBANK?”, the structure of which is shown in
Fig. 2. 9. The structure of the system consists of two data banking sub-systems ;
“LABOBANK?” and “MDABANK”. As shown in Table 2. 3, the “LABOBANK?” system
consists of ZU items of information on rock type, test number, physical property names,
testing procedures and storage locations (files) of data. On the other hand, the “MDA-
BANK?” system store the actually measured results of triaxial tests and test conditions and
consists of 21 items of information as shown in Table 2. 4. The “TESTBANK” system
makes use of a personal computer and the mass storage facilities of a large scale
computer. The “LABOBANK?” system operates on the personal computer and is prog-
rammed in a soft wear data bank programming language available on the market. The
main purpose of the “MDABANK” system is designed to store a large amount of
experimental data by using the mass storage facilities of the large scale computer. The
“TESTBANK?” system is connected with the large scale computer, and is accessed to the
mass storage facilities through the “MDABANK” sub-system on the basis of information
required from the “LABOBANK” sub-system.

Table 2. 3. Data file items (LABOBANK) Table 2. 4. Data file items (MDABANK)
Specification | No| Data File Items Specification | No| Data File Item
1 |test location 1 |test number
Test 2 ltest date (Year/Month/Day) 2 |sample number
3 |test number 3 |test date (Year/Month/Day)
. 4 |rock type 4 | diameter
Specimen 5 |sampling Location 3 | height
6 |confining pressure
6 |sample number 7 |ring gauge number 1
Test 7 |shape 8 |ring gauge number 2
Details 8 | dimensions 9 |ring gauge number 3
9| aceuracy of sample prepa- Test |10 |coefficient of load cell
conditions | 11 | coefficient of LDVT 1
10 | unit weit y, (g/em®) 12 | coefficient of LDVT 2
11| density o 13 | coefficient of pressuremeter
Physical | 12 | moisture content @ (%) 14 |initializing value (Load)
Properties |13 | void rato e 15 |initializing value (LDVT 1)
14 | porosity n (%) 16 |initializing value (LDVT 2)
15 | degree of saturation S, 17 |initializing value (Ring gauge 1)
16 | loading condition 18 | initializing value (Ring gauge 2)
Testing 17 | controlling method 19 |initializing value (Ring gauge 3)
procedures | 18 loading accuracy 20 |initializing value (Pressuremeter)
19 | confining pressure C,MPa Number of |21 |number of data for load, dis-
Storage Data placements pressuremeter etc.
Address of |20 | Test data storage code
test data
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3. Deformation and Failure Characteristics of Several Rocks

To' investigate the deformation behaviour of rocks from a viewpoint of the in-
cremental plasticity theory, we have performed monotonic and cyclic triaxial tests on
many rocks. We here show the results of triaxial tests on five rock types. The rocks tested
and the main features of their stress-strain characteristics and volumetric strain response
are described below. Plastic deformation characteristics obtained from monotonic and
cyclic tests are described in Chapter 5.

3. 1. Sedimentary rocks: Oya-tuff and Funyu-tuff and Ryukyu Limestone

Three types of sedimentary porous rocks, called Oya-tuff and Funyu-tuff and Ryukyu
limestone were used in tests and their physical properties are given in Table 3. 1. The
monotonic triaxial tests for Oya-tuff were carried out at various confining pressures.
Measured stress-strain curves for Oya-tuff specimens are shown in Fig. 3. 1. Clearly, the
stress-strain curves show a transition from brittle behaviour to ductile behaviour, which is
seen at the confining pressure of 4.5 MPa. Volumetric strain-differential stress curves is
also accompanied by dilation at lower confining pressures of 4.5 MPa (Fig. 3.2).

A series of triaxial tests on Ryukyu limestone, which is an organic type sedimentary
rock, were carried out under monotone loading conditions. Figs. 3. 3 and 3. 4 show the
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Fig. 3. 1. Differential stress-axial strain curves Fig. 3. 2. Differential stress-volumetric strain
for various confining pressures curves for various confining
(Oya-tuff) pressures (Oya-tuff)

Table 3. 1. Physical properties of specimens

Physical Oya- Funyu- Ryukyu Omotani Granite

properties tuff tuff limestone rhyolite
unit weight r, (g/em’) 1.56 1.67 2.21 1.93 1.88
moisture w (%) 5.20 6.59 — 4.57 3.74
content
void ratio e 0.61 0.33 —_ 0.34 0.22
porosity n (%) 377 24.9 — 25.3 18.0
degree of Sr (%) . 41.3 — 34.6 37.6

saturation
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axial stress—axial strain curves and deviatoric stress—volumetric strain curves. For the
applied range of confining pressures, this rock shows a brittle and dilatant behaviour.

A series of triaxial cyclic tests on Funyu-tuff was carried out in order to investigate
nonlinear elastic and plastic deformation at some lower confining pressures. The typical
results of cyclic tests on Funyu-tuff are presented in Figs. 3. 5 to 3. 7. The typical figures
includes axial stress—axial strain curves, axial stress—lateral strain curves and volumetric
stress—volumetric strain curves at confining pressures of 0, 4.0 and 10.0 MPa. In Fig. 3. 5,
the envelop curves which are the upper loading surfaces of the stress—strain curves, are
coincided with the stress—strain curves during monotonically loading. The envelop curves
of the stress—strain relations show a transition from strain softening behaviour to strain
hardening behaviour. The volumetric stress—volumetric strain curves show reduced dila-
tion at higher confining pressures (Fig. 3. 7).

3. 2. Igneous Rocks: Granite and Omotani Rhyolite

In order to study the cyclic deformation behaviour of hard rocks, cyclic triaxial tests
on granite were performed at various confining pressures between 0 and 12 MPa. The
typical results of the tests at confining pressures of 0, 6.0 and 12.0 MPa are shown in Fig.
3. 8 to 3. 10. The envelop curves of stress—strain relations in Fig. 3. 8 are also coincided
with the stress—strain curves obtained in tests of monotonically loading. It is noted that
typically, the plastic strain level at peak strength of the stress—strain relation of granite
(Fig. 3. 8) is relatively lower than the plastic strain level at peak strength of the
stress—strain relation of Funyu-tuff (Fig. 3.5). The small dilation is occured at lower
confining pressures as seen in Fig. 3. 10.

A series of triaxial tests on Omotani-rhyolite, which is a typical extrusive type of
igneous rock, were carried out under monotone loading conditions. Figs. 3. 11 and 3. 12
show the axial stress—axial strain curves and deviatoric stress—volumetric strain curves.
For the applied range of confining pressures, this rock shows a brittle and dilatant
behaviour.

4. Incremental Elasto-Plasticity Theory for Geomaterials

The incremental plasticity theory based on the flow rule is commonly used in
modeling nonlinear plastic behaviour of geomaterials. The flow theory is not appropriate
for estimating dilatancy effect of geomaterials, since the flow theory requires a scalar
potential function as a plastic potential in the flow equation. Moreover, it is difficult to
specify a plastic potential function, directly, if the non-asssociated flow rule is used.
Rudnicki and Rice, and Nemat-Nasser suggested to introduce a dilatancy factor instead of
the plastic potential function. However, some basic features have not yet been fully
discussed in terms of a yield function and a flow potential.

We here present three incremental plasticity theories; i-) The flow theory, ii-) The
multi-response theory, and iii-) The non-associated flow theory with a dilatancy function.
The section devoted to the flow theory is a summary of the fundamentals of the classical
theory of plasticity. The multi-response theory is a new approach to describe the
clasto-plastic behaviour of geomaterials. The third theory, though is based on the flow
theory of non-associated type, introduce a dilatancy function to represent the dilatant
behaviour of geomaterials. Responses and dilatancy functions in the latter approaches are
identified by a Laplace transformation method. Spectral points of these functions
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are directly specified from experimental data. The models are applied to study the plastic
response of several rocks in the latter sections.

As the volumetric deformation of geomaterials occurs independently of the shear
deformation, the geomaterials can be said to be a general material as compared with the
metals. Therefore, it is difficult to treat this kind of materials using the flow theory, more
explicitly, the scalar potential theory. To solve the insufficiency of the flow theory, the
multi-response theory has been proposed. Nevertheless, this theory requires very accurate
measurements in order to determine the volumetric and deviatoric responses. In addition
to this, a non-associated flow theory employing a dilatancy function has been presented.
The responses and dilatancy functions are represented through the Laplace transforma-
tion. Then these model are applied to simulate the behaviour of several rocks under
monotone and cyclic loadings. For the proposed theories, a procedure for triaxial tests of
geomaterials by a stiff testing machine, a closed-measurement-analysis system for a
laboratory test and a data bank system of rock triaxial test are described.

4. 1. Notations and terminologies

(Stress)
o] : stress tensor
o=tr(0)f/3 : mean or volumetric stress tensor
G=tr(0)/V3 : mean stress
I°/3 : unit tensor in the stress space
§s=0-0C : deviatoric (or shear) stress tensor
s=||s||=(s-)" : norm of the deviatoric stress tensor
6°=tcos {3V 3J§/2(J9)**} : stress Lode angle
I$=tr(0) . first invariant of the stress tensor
JE=g5-5/2 : second invariant of the deviatoric stress
Js=det(s) . third invariant of the deviatoric stress
(Strain)
e : strain tensor
e=tr(e)l®/3 - : mean (or volumetric) strain tensor
E=tr(e)/V3 : norm of strain tensor
I : unit tensor in the strain space
e=¢g—¢ : deviatoric (or shear) strain tensor
e=||e||=(e-e)? : norm of the deviatoric strain tensor
0 =1cos {3V 3 J§/2(J5)*%} : strain Lode angle ‘
=tr(e) : first invariant of the strain tensor
Js=e-el2 : second invariant of the deviatoric strain
Js=det(e) : third invariant of the deviatoric strain

We here assume a straight unloading and reloading path (show as a solid line in Fig. 4.
1), and the strain ¢ is directly separated into elastic and plastic components:

e=g+¢e? (1)
In the incremental form, it is written as

de=dec+de? (2)
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Fig. 4. 2. Schematic diagram of elasto-plastic response of dilatant materials
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The elastic and the plastic responses are composed of the deviatoric and mean compo-
nent, respectively. Thus, we obtain responses of dilatant materials as shown in Fig. 4. 2.

When the material is isotropic, the relation between stress and strain is independent
of the coordinate system. In other words, the relation can be written in terms of mean
and deviatoric components and the Lode angle. Herein, the relation between mean and
deviatoric components will be treated. As such materials gives a symmetric response with
respect to the hydrostatic axis o1=0,=03, it will be called hydrostatically symmetric
materials. This is a sufficient assumption when we consider the cylindrical specimens used
in triaxial tests in laboratory.

In the following sections, we will be mainly concerned with rock-like materials, and
present the flow theory and multi response theory. We will treat the strain-hardening
response up to peak strength only not the strain softening response as we regard the
softening behaviour as a structural phenomenon rather than a material characteristic.

4. 2. Flow theory for monotone loading

4. 2. 1. Yield function and hardening law
The surfaces of the initial and subsequent yieldings are generally given by:

flo, x)=0 (3)
Hardening parameter » representing the internal friction coefficient is written as

xzﬂfp:fo-dep : Work hardening (4)
or

x= f!] de?|| : Strain hardening (5)

Depending upon the introduced form of the friction coefficient, the yield function
f(o, %) are usually written in the following forms:

f(o, =)=f;(0)—K(x) : Isotropic hardening (6)

f(o, »)=f;(0—a(x)) : Kinematic hardening (7)

f(o, x)=f;(0—a(x))—f:(»x) : Anisotropic hardening (8)
da=cde? : Prager Type
da=c(o—a)||de?|| : Ziegler Type

There are various yield functions proposed, based upon the experimental data, in
which the terms associated with stress differ from one yield criterion to another. We give
some of them for fi(0) of isotropic hardening model (Eqn. 6) as examples:
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filo)y= VB : Mises
filo)= VI, +alf : Drucker-Prager
filo)=|oy—uy : Tresca
01=0,=0; : principal stresses
filo)= =1/2(01~-03)
+1/2(01+03)sing — ccos ¢ : Mohr-Coulomb
¢ : Friction angle ¢ : cohesion
filo)= (I9P/E Lada-Duncan
{=det(o) third invariant of stress tensor
filo)y= KB/ : Matsuoka-Nakai
fi(o)= 1;:;]111;”;-%-54%‘5 % : Cam-Clay model
p= 04/3=G/V3
g= VI=siV72
po= Initial consolidation eo: Initial void ratio

M: the value of g/p at the limiting state
4: Gradient of compression line ¢ — In p space
»: Gradient of unloading line e ~ In p space

Of these, the cam-clay model is a typical example for isotropic hardening model of strain
hardening type (Schofield and Wroth 1968).

K(e’)=el=¢l;

4. 2. 2. Consistency condition of Prager

For the material to continue behaving plasticly following the initial yielding, it must
satisfy Eqn. (3). Thus,

flo+do, n+dx)=0

As a result of this, one has

df=§-£-do+g—£dx=0 (9)

This is known as the consistency condition of Prager.
Inserting the work hardening law (4) in the consistency condition (9) yields

) B
Py do+a%o de?=0 (10)

On the other hand, subsituting the strain hardening law (5) in the consistency condition
(9) gives

. D
20 %" on Ber 4870 (11)

The consistency condition of Prager has a very important role in the flow theory.
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When the flow rule is subsituted in Eqn. (10) or Eqn. (11), it will be seen that this
expression establishes a relation between the stress and strain increments. It is not wrong
to say that the consistency condition of Prager itself is an incremental law.

4. 2. 3. Incremental plasticity theory based on the flow law

Let us write plastic strain increment de? in terms of plastic potential g which is very
well known as the flow law.

g
P )22
der=12% (12)

The flow law (12) implies that the direction of plastic strain increment is normal to
g=constant surfaces and it is coaxial with the stress ¢. For hydrostatically symmetric
materials, the followings can be said. Now, let us write

_OS_0Os _s o0 o0

)

o8 90 s o0 a0

n

(13)

As m, nr, I are orthogonal to each other, one has

8_2, ,08,, 98,
o0 os o0 o06°

Thus, plastic strain increment de? is coaxial with stress o. (Note: the stability condition
of Drucker) Drucker writes the condition for a stable behaviour of an elasto-plastic
material as

szf(o—og)-dapz()
where 0, is an arbitrary stress state satisfying the following condition
floo, #)<0
This expression can be rewritten in the local form or by writing o=0y+do as
(0—0y)-de?=0 (14)
If the flow law (12) is subsituted in Eqn. (14), one has
do-de?f=0

If gy is chosen arbitrarily, and the above condition required to be satisfied, then it is
implied that g=f (associated flow law) and the convexity of f. However, this is a very
strong condition and when the associated flow theory is applied to geomaterials, the
dilatancy (volumetric expansion associated with shearing) is overestimated. To overcome
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this problem, it is necessary to introduce plastic response functions for deviatoric and
volumetric components separately instead of using the flow law which is based on the
scalar potential theory.

When the flow law is used, the constitutive law can be obtained as follows:
Subsituting the flow law in the consistency condition of Prager (10) or Eqn. (11) yields

1o
l“h %0 do (15)

where h is the hardening coefficient and given by:

of 8

oWP ™ 2o

h= (16)
_of o= og

—= strain hardening
ox 9g¥ 90

work hardening

Resubstituting Eqn. (15) in the flow law gives

1 og,of 1 og. of
P 22 (22 —— ___®
de h ao(ao do) h(ao ao)do (17)

where & is the tensor product, but when 8g/90, 8f/ 90 are represented by vectors, this
tensor product can be considered in the following form

g 0f | 28, of
80®80 {80}{80}T (18)

Denoting the left terms of Eqn. (17) by

1 2g_ of
P O 2L
¢ h ao®ao (19)

one has the following.
de?=CPdo (20)

Egn. (17) is called Melan’s formula.

Since the plastic compliance C? obtained using the flow law, given by Eqn. (19) is
represented by the tensor product of two tensors of second order, its determinant
becomes zero (det(C”)=0) in the way it is considered in Eqn. (18). Also, it should be
noted that when the eigen values of the matrix are considered, there is only one non-zero
eigen value at most and, the other eigen values are all zero. Therefore, the inverse of C?
can not be obtained directly and the following technique is used to obtain the elasto-
plastic constitutive tensor C?. Taking the dot product of the both sides of the following
by of/ o0,
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do=D°de¢=D*(de—de”)

€ € af
=D*de—D*; "ao(a -do) (21)
yields
of . _of .. 1 of .08
o do—~—a(7 D ds/{1+h pou (D 80)} (22)

Since D° is symmetric, Substituting Eqn. (21) into Eqn. (22) gives:
o7 =0t~ (0 Ly (02 (4 2L (06 %) (23)

When the flow law is employed, the undefineteness of the determinant of the plastic
compliance C? has an important meaning. More specifically, when the strain increment is
given as the derivative of a scalar potential function as in the case of flow law, the
parameter determined freely is only one because of the scalarness of the potential
function. As a result, it becomes impossible to determine the volumetric strain and
deviatoric strain independently.

Next, we would like to show how to determine the hardening function k. For the
sake of simplicity, we will herein consider the isotropic hardening model (6). From Eqn.
(16), we have

oK o8 : i
aWPG s : Work hardening
. (24)
[aK ox ag:l : Strain hardening
ox ogf g0

The function ¢(X) is a homogenous function of order m with respect to an arbitrary
scalar ¢ if it satisfies:

P (1x)=1"¢(x)
Then, the following relation should hold (Euler’s theorem)

op_
x‘ax—mgz)(x)

For example, Mises fi=VJ§ and Drucker-Prager fi=VJS+al{ yield criteria are the
first order homogenous functions. Note that when the Drucker-Prager yield criterion is
written in the following form,

fi=l+alf
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fi(0), no longer, is a homogenous function of o.
When the associated flow law f=g is employed, and f is an m order homogenous
function of o, then the work hardening given by Eqn. (24) simply becomes

oK
h=m'é‘ﬁ,;f1 (25)

This is the reason why the work hardening law is commonly employed. Let us define the
effective stress as:

fi(o)=o.
and the effective strain increment to be determined from the following identity,
dWP=0-deP=0,de? (26)
then, the hardening coefficient is obtained as

a [oF

h=m—%
" ol

(27)

In the case of metals without volumetric plastic deformation, the expression written
below has a meaning,

o-deP=sde’ +ode”

=sdeP

On the other hand, the use of effective stress-strain concept as given by Eqn. (26) for
geomaterials is unreasonable as the volumetric plastic deformation of these materials can
not be ignored. For geomaterials, the endochronic or the multi-response theory described
below, which treat the volumetric and deviatoric deformations separately can be effective-
ly used. In metal plasticity, the results of uniaxial tests are only used, and the following
relation is introduced

0. =V3J5(=011)

Then the effective strain is usually written as

def=V2de?-de?[3

This is merely written in this form in order to adjust coefficients in Eqn. (27).

4. 3. Multi-response theory under “weakly” cyclic loading

When the softening behaviour is not taken into account, elastic and plastic responses
in multi-response theory are generally written in the following forms:
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0;=Df (&)

= ["ptexp(—erg)de (28)
0= P ()

= [Torexp(-erg)as (29)

Note that the stress and strain are represented in the vector form.

(Ui)z(gxx: Uyy: Ozz, O-yz) Ozxs ny)T

(gi)z(gxm 8yy» Ezz, Eyzy Eaxs 3xy)T

In the following sections, the elasto-plastic multi-response theory will be described for
hydrostaticaly symmetric materials keeping in mind the conventional triaxial tests.

4. 3. 1. Plastic response

The deviatoric and volumetric responses for hydrostatically symmetric materials can
be written as:

s=¢P(e”, &)
(30)
G=yP (2, o)

When the plastic response is written as in Eqn. (30), the vectorial yield function is
defined as:

fi fi=s—¢P(ef, &)

f L==0+yP (&, &)

Provided that plastic response does not involve the softening phenomenon, upper stress
surface can be written in the following form by using Laplace transformations:

s=so+ [T @A Dds+ [ 98 A mdy

[T ose mas pagace,
(31)
=3 [ wrnaces man+ [ ws(©A@; §ds

[ ] v paE@s manac: oas
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‘Where
A(a; a)=1—exp(—aa)

As a preparation for the asymptotic expansion of the response (31), the variables are
replaced by 7=1/n, w=1/&. Thus, we have

s=So+ f:ﬂz;(w)r(zp; w)d(Inw)+ f:#g(r)r(ep; )d(In7)

+L0°Lwﬂ§(w, T)I(?; w)d(Inw)I'(e’; 7)d(Int)
(32)
=00~ [ (OI(&; Dadnn)+ [ (@) I(@; 0)d(Inw)
+f0°°f0°°xg(z, ©)I(e?; 7)d(InT)[(F; w)d(Inw)
Here
(@)= (1/w) /o, u(r)=¢5(1/7)/T,
(o, 1)=p5(1/w, 1/7)/wt

and

w (D) =pi(1/7) /7, B(w)=ypE(1/w)/w,
B, o)=y95(1/7, 1/ow)/te

are called as the deviatoric and volumetric spectra respectively. And also
I'(a;p)=1~exp(—alB)=A(a; 1/B)

The incremental responses of plastic responses given by Eqn. (30) or (31) are written as
follows :

ds GY G def
= (33)
do K? K% de?f
where
Gy =0¢" ] o¢, GY=a¢" | 9%,

K? = oyP | o2, KB = oy* [ 9e?
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or conversely

deP 1/hy u/h, ds
= (34)
dz® B/h, 1/h, 5

where

hy=G{+uK¥g, u=-GE /K%,

h=KP+BGE,  p=—K3/GY
Here, h, and h, are the hardening parameters for shearing and volumetric variation
respectively. u is the internal friction coefficient and f is the dilatancy parameter.

If the direction of the plastic strain increment is assumed to be coaxial with the
direction of stress, Eqn. (34) becomes

de? =hlm®(m+un)do
’ (35)

d§=7}-n®([3m+n)dc

Where m, n unit vectors defined by Eqn. (13). From these, the followings are obtained:

deP=deP +de’=CPdo

1 1 (36)
cr =—}—z~m®(m +/,m)+~’;~n®(ﬂm+n)
Differentiating Eqn. (32), the plasticity spectra can be asymptotically written as
Do ( k+1 akS
(75 &)= Ilmw Zk(ki &) (37)
Wy (73 )= (0)+ [ (0, DI w)d(Ino)
(_ )k+1 ako.
X (s €)= (k 1), (kw e’) (38)
NCE ep)-:xg(w)+jo % (r, )[(e’; T)d(Int)
Accordingly, when responses are approximately determined, we have
s=so+ 2al(F; o) +ayl(eF; 1) +az: (275 w)I(e; 7;) (39)

=uf (wi)A ;] w;, ay=p8(1:)4 T/,



300 Y. Ichikawa, T. Kyoya, O. Aydan, K. Yoshikawa, T. Kawamoto and N. Tokashiki
a3ii=#§(60i, Ti)ACUIATi/wiTi
6=50—Z{b1if(ep; Tl') —-b2,T(Ep; Ct)i)‘;b3iir(€p; T,‘)F(Ep; a)l)} (40)
1
bu=x(v)At/t, by=x(w)dw;/w;,

bsi=x5(1:, w)dr;dw;/70;

Discretized spectral points (v, w;)
- os -
U (ef; P =const)= e”-a—p(ep, & =const)
e

- -, 00 _
2123 (€ epzconst)=ep—é?(ep; e’ =const)

are determined from the curves of the above expressions obtained from triaxial tests.
Once discretized spectral points 7, w; are obtained, coefficients Ay, Ao, G35 by, by, bay; of
response functions (39) and (40) can be easily determined from experimental data by the
least square method.

4. 3. 2. Elastic Response

In almost all rocks, plastic strains are observed from the very beginning of the
application of load and the response of elastic component is also non-linear. As the elastic
response can be written in the same form as that for the plastic response, we herein
present only the resulting expressions :

Response functions

s= (e, T)
=so+ [ #1©A@ de+ [ psimacess ndy
H[T[TesE maes Hasace, pay
=sot [ ui(@) I @)d(inw)+ [“us(r)r(e; md(ing)
+[7 w0, DI w)d(inw) I, nd(ing) (41)
15 (w), 45(7), u(w, 7): deviatoric spectra
=y (F, )
=G0+ [ vimACes mdn [ ys©)a: £de

[T [Tvson pace, manae; gaz
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=50+ [ (o)1 (e D)d(ne)+ [ 4@ I(E; 0)d(inw)
+ f: f:xg(r, w)I(e¢*; 7)d(Int)[(F; w)d(Inw) (42)

2i(t), (), xi(r, w): volumetric spectra
Incremental responses

lds} {G‘; G {dee}
o K K dze

Gi=0¢°/2¢",  G5=09° 3%,

Ke=oy°/oe’,  K5=oy®/ o

ds }
do

g, =Ki+aG5, a=-K5/GS,

or

{ def } 1/ 4/gs

dze alg, 1/g,

g =G +AKS,  A=—G5/KS

As the direction of elastic strain coincide with the direction of incremental stress, we can
write the followings

dee=gim*®(m+/ln)d6

d§e=~1—n*®(am+n)d5

v

However, note that we used the following identities in the above expressions:

As the asymtotic expansion of elastic spectra and the determination of its discretized
form are similar to those of the plastic response, they will not be presented herein.

4. 4. Non-associated flow theory with a dilatancy function

In this section, the Drucker-Prager model of isotropic strain hardening type is
considered :
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f(o, ®)=ao+s—K(e#, )=0 (43)
a =constant
This model is hydrostatically symmetric with respect to stress and strain. More concretely,

(s, 0) and (e?, €”) are introduced and Lode angle is not considered. Then the base vectors
defined in Eqn. (13) are:

5_s_de?  5G_0_ de” (44)
as s [[de” |l "“o5 o J|de7]

a—9f=o a9&1)=o

o0 7 P

(6%7 :Lode angle associated with plastic strain &).
When the plastic strain and its increment depend upon the Lode angle, note the
following :
de? e?
Ilde” || [le”]]

Let us define a dilatancy function as follows:

de?

P=iraen)

(45)

where

de?=d(tr(e?)/V3 )=tr(de?)/V3
HdepH=(deli}de€j)1/2

However, it should be noted that as the hydrostatically symmetric concept is intro-
duced, the increment de? of ¢ coincides with ||de" H

def=||deé ||

In addition, as the direction of the incremental plastic strain coincides with that of
the total stress, the flow law (12) becomes:

o8 - o8
p— 195 P = 198
de lasm, dg laan

Accordingly, we have

e _2g,08

P= 40~ 55 as (46)
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By using the dilatancy function, one gets

98 _8
20" 85 (m+an)

and derivating the yield function (23) yields

~@£=m+an

oo

Subsituting the above expressions in the constitutive equation (23) results in
do=D%?de (47)
D¥=D—D°(m+pBn)R®D°(m+an)

The hardening parameter A’ in the second equation of the equations (16) is obtained as:

h=h/28
os

- gjgm+2—§pn)-(m+ﬂn) (48)

oK , ;oK
deP T geP
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4. 4. 1. Hardening spectra and Dilatancy spectra

Next, how to express the hardening function K(e?, &) will be considered. From the
experimental data of triaxial tests on geomaterials, a set of curves of the hardening
parameter as a linear sum of stresses and the deviatoric strain ¢” can be drawn as shown
in Fig. 5. 2 by taking the volumetric strain as a parameter &”. However, it should be
noted that the softening is omitted in this representation as it is a structural property
depending on the testing method. When this set of curves are redrawn on the surface of
(¢, €), a surface shown in Fig. 4. 3 is obtained. In Fig. 4. 3, the surface is
monotonically increasing with respect to ¢” for e&’=constant and monotonically decreasing
with respect to ¢ for e’ constant. Using the Laplace transformations, one has

K, @)=Kot [ [ (& mades 514w, ndzdy (49)
where

A(e7; §)=1—exp(—eP§)

Aa(&; n)=exp(—n)
The above expression is rewritten as a preparation for the discretized approximation :

K(e, Ep)=K0=fjf:u(r, ®)I(e"; )Ty, w)d(Int)d(Inw) (50)
where

u(r, w)=¢(1l/7, 1/7)/7w (51)

ri(ef, ry=1—exp(—e’[t)=A(e"; 1/7)

Ty(ef, t)=exp(~w)=A(; 1/w) (52)

#(7, w) is called hardening spectra. Dilatancy function § is represented in the following
form as in terms of volumetric stress o as the dilatancy decreases with the increase in
compressive stresses :

B)= [ ()T E)as (53)
p@)= [ 2OT(7; Dan) (54)

Note that the tensile stress is taken as positive. The following expression is called the
dilatancy spectra.

A(D)=y(1/)/7 (55)
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4. 4. 2. The asypmiotic expansions of hardening and dilatancy functions and their
discrefized approximations

Differentiating K(e?, &) with respect to ¢ k times, and replacing Eexp(—e”&) by &
function yields:

K11 [ s B enp(~8)aE (56)
k!
=/£.22(_1)k+1(_6}-)72+_1¢ep(k/ep; Ep)

Note that we used the following.
b (&5 )= [ B(E )AL n)dy
Eqn. (56) means the following

(—1)k+11_]f)k+1akK(k/§: &)
ki E a(k/&)*

bep (8 ) =lim

Through variable changes r=1/§, the following is obtained:

FK(kr, )
a(kr)*

-1 k+1
Hep (T Ep)zlim( )

ko (k—1)1 (ko)

(57)

where
tep(v3 )= [ (s 0) L@ 0)d(Inw)
4]

In a similar manner, the dilatancy function is asymptotically expanded in the follow-
ing form:

(=) KL d Bk /&)
kUt & d(k/E)

w(&):!l{irg

or

(=0 dE B (k)
Mr)=lim e 1)"”)k d(ko)F

As a first approximation to the asymptotic equation (57), we specify the following:

=P
LK@ &)

/"ep(r; 5p)Ik:l:: ot
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We obtain the curves of the following expression for each constant ¥ from the
experimental data as shown in Fig. 4. 4:

oK (e, e =const.)

Uep(€F; B =const.)=eP

(58)

oe

oK
€ 5er
1
T.W W
Fig. 4. 4.

From the peak points of these curves in Fig. 4. 4, spectra points (1, 1), (12, ®,), (73,
ws3), ... are determined. With the spectra points (7, wy), k=1, 2, ... the hardening
function is represented in the following form.

K=Ko+2kakﬂ(€P; T ) La(e5 wy) (59)

However, it should be noted that, to select the peak points only, the surface integration
of Eqn. (49) is represented in the diagonalized form. Additionally,

ap=A(tr, wk)Adr dwy /0

The coefficient a; is determined from the experimental data by using the least square
method. More explicitly, the error function is defined as

ep
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1 -
E=5[K~—{K0+§Fi(ep;rk)/ld(e”; i) } P (60)

and the coefficient a; is determined from the following linear equation system:

oFE
—=0, k=1, 2, ... 61
aak ( )

The discretized form of the dilatancy function § is also obtained from the same proce-
dure. As a first approximation to A(r), the following is specified

B
AT pm1=—17
(0) =72
and discretized spectra points 7,,: m=1, 2, ... are determined from the graphs of
experimental data
_\__-9B
A(G)=—0— 62
(@)=-7o2 (62)

and the discretized form of the dilatancy function f is represented in the following form:

ﬁngmrd(a; rm) (63)
bmzi(Tm)A rm/rm

Coefficient b,, is obtained from the minimization of the error function:

1 _ )

E=3[8=Zbulu(3; 7)F (64)
9E .

=0 k=12, (65)

4. 5. Data processing and determination of response functions

The physical properties of geomaterials are usually determined from triaxial tests in
laboratory. In this section, the data processing system and determination of response
functions from the experimental data will be described.

Since the experimental data has a scattering, it is difficult to directly derivate Eqns.
(58) and (62). Therefore, the smooting procedure is performed and spectra points are
determined. Now, let us assume that, at descretized points X;, i=1,2,....N fi=f(X}) are
observed and let us define the dot product of functions g(X) and A(X) as

N N
<g,h>= glg(xi)h(xi) =§1 gih;

Taking a=minX; b=maxX;, a set of orthogonal polynominals on the space [a,b] is
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obtained by the recurrence equation
Pi+1 (X)-:A[(X‘“Bi)Pi(X)“‘C[Pi_l(X), i=1,2,3,. .. (66)
where

A;: nonzero constant

<xPi,P,»>_ Ai<Pi:Pi>

Bi= =
<P,P> Ai1<Pi_(,P;i_ 1>

and we set P_;=0, Py=aq(constant).
To fit the observed data by an k-th order polynomial p(x), the error function is
defined as

N
E=3{fi=p(x)
s
Using the orthogonal polynomials {P;}, p(x;) can be represented as
k
p(xi)zzldjpj(xi)
=
the error E can be minimized in terms of d;, then we have
k
9E/od;= —zzl{fi_p(xj)}Pi(xj)zO
=
from which, coefficients are obtained as

Zﬁ\ilfipi(x[) .
di= s l=0,1,2,,..
f\;1{Pi(xj)}2

Note that the order & is kept to a minimum in order not to include the scattering of
the experimental data.

5. Applications to Several Rocks

We have performed monotonic and “weak” cyclic triaxial tests on many rocks to
specify the deformation behaviours of geomaterials. In this section, we show, first, the
plastic deformation characteristics obtained from these tests. Then, we specify the para-
meters of the constitutive laws proposed in the previous section for the plastic response of
Oya-tuff under monotone loading, and the elastic-plastic responses of Funyu-tuff and
granite under cyclic loading, respectively. To verify the validity of the plastic response
model for Oya-tuff, a triaxial test under monotone loading at several confining pressures
is simulated by a finite element analysis.
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5. 1. Plastic response of Oya-tuff

5. 1. 1. Yield function

Firstly, we start with the determination of the yielding function defined in Section
4.2.4. The initial and the peak yielding curves are plotted in the mean stress & and
deviatoric stress s space for several confining pressures in Fig. 5.1. The initial yielding
point is defined as the point at which a volumetric non-linearity starts as seen in Fig.
5.1(a), and the peak yielding point is defined as the point at which peak strength is
achieved as seen in Fig. 5.1(b). Both curves can be approximated by a straight line in &, s
space, and it seems the peak yielding curve remains to be parallel to the initial yielding
curve. It implies that the material can be assumed to be isotropic hardening, and the
Drucker-Prager’s yield function is adopted as the yield criterion:

f=ad+s—K=0 (67)
where, a is a constant, and K represents a hardening function. Then, o and the initial

value of the hardening function, K, are obtained from Fig.5.1 for the initial yielding state
as:

(b) Peak yielding points
I o l © —

a=-0.29, Ky=5.8MN/m?
25

20

€ 15
=
=
. 10

Ko —— (a) Initial yielding points G

gy

0 -5 -10 -15 -20 -25
G (MN/m2)

Fig. 5. 1. Initial and peak yielding conditions

5. 1. 2. Hardening function
Since the yielding function is represented by Eqn. (67), the hardening function can be
described as
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K=a6+s. (68)

The hardening behaviours of the deviatoric plastic strain, K(e, &=const.), observed in
experiments are shown by dashed lines in Fig. 5.2 for several levels of volumetric plastic
strain, &. The hardening response is chosen as a monotonicaly increasing function for
&=const. in Fig. 5.2. These response curves can be approximated by low order orthogon-
al polynomials in this case. Then, by differentiating these curves and by calculating
(¢” 0K/ 2€f )z —cons:., and plotting them (Fig. 5.3), we get two spectral points as:

77=7.1X107%, 7,=1.8x1072 for ¢?
and
w;=6.6X1073, 0,=2.0x10"* for .
Then, the hardening response function is determined as
K=Ko+a,T(e?;1)T(&;01) + ayT (P ;1) T (8 05) . (69)

The initial value K, is determined from the initial yield surface in (Fig. 5.1(a)), and the
values a; and a, are obtained by the least square method:

a;=—2.1 MPa, a,=18.9 MPa.

The predicted curves using these values are shown by solid lines in Fig. 5.2.

5. 1. 3. Dilatancy function

The experimental results of Oya-tuff under monotone loading shows a dilatant
behaviour at low confining pressures. Dilation takes place in association with shearing
deformation under compressive loading. We show now, the relation between the
volumetric strain & and the integrated norms [||de?|| for various confining pressures in Fig.
5.4(a), and the corresponding the mean stress, ¢ in Fig. 5.4(b). Using the similar
procedures for the hardening response function, we get the dilatancy function B as
follows: These curves (Fig. 5.4) are approximated by polynomials of low order, and
differentiating & with respect to [||de?||, and plotting them against . Then, we have the
relation between the dilatancy factor and the mean stress, 6 as shown in Fig. 5.5. Again,
these points in Fig. 5.5 are approximated by low order orthogonal polynomials, and
differentiating them, we get a spectral curve —Gdf/dé to ¢ (Fig. 5.6). We have two
spectral points for dilatancy function 8 as

77=9.4 MPa, ,=-16.1 MPa.

The corresponding coefficients of the polynomial are obtained by the least square
method :

a1=—2‘787, 612:—1175
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Fig. 5. 2. Hardening response (Oya-tuff)
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Fig. 5. 3. Hardening spectra
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The dilatancy function obtained is shown by solid line in Fig. 5.7.

L O3 (MN/m?)
0.08 == 05
O—a 1.0
oosf o 20
—o 3.0
g 004F
0.02F
O i i 1] 1
0 0.05 010 015 0.20 025
jl]dgpﬂ (%)

Fig. 5. 4a Volumetric plastic

strain-deviatoric
strain curves for various confining
pressures (Oya-tuff)

0.8
0.6F
o 0.4
']
olo
o
H
0.2}
1
0o 5 10 15 20
-G (MN/m2)

Fig. 5. 5. Dilatancy function (Oya-tuff)

5. 1. 4. Numerical example

20
15W
g
4
Z 10}
1>
' O3 (MN/m2)
5r o—a 1.0
o—-o 2.0
o—0c 3.0
O 1 1 1 1
0 0.05 0.10 0.5 0.20 0.25
(laee] ()
Fig. 5. 4b Volumetric = stress-deviatoric strain

curves for various confining pres-

sures (Oya-tuff)
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Fig. 5. 6. Dilatancy spectra (

15 20

Oya-tuff)

Using the specified parameters of the constitutive equation for Oya-tuff, we simulate
a triaxial test of Oya-tuff by the axisymmetric finite element analysis. The finite element
mesh and the boundary conditions of the triaxial test are shown in Fig. 5.7. The lateral
nodal forces which are equivalent to the confining pressure, and an equivalent axial
incremental forced displacement were applied. Numerical results of the axial strain &, and
the volumetric strain &, versus the differential stress (0;—03) are shown in Fig. 5.8 for two
confining pressures, and are compared with experimental measurements. It is found that
there is a good agreement between experimental and predicted responses.

5. 2. LElastic and plastic of Funyu-tuff

5.2, L

Plastic response

As explained in the previous section, in the multi-response theory, the plastic and
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Fig. 5. 7. Finite element mesh and boundary Fig. 5. 8. Comparison of predicted and mea-
conditions sured differential stress-axial strain

and volumetric strain curves

elastic strain responses are separated, and the material is treated hydrostatically symmet-
ric, provided that its response is of isotropically hardening type, and deviatoric and
volumetric responses are separated and on the basis of which, the incremental constitutive
equation of a material is determined. As the material shows elasto-plastic behaviour from
the very beginning of loading, there is a need to obtain the elastic and plastic strain
responses separately. Therefore, we start to separate these responses during the initial
hydrostatical loading also and carry out a series of cyclic loading in this stage. The stress
paths for each tests are shown in Fig. 5.9. Typical curves of axial stress-axial strain and
axial stress-lateral strain obtained during hydrostatic loading Fig. 5.10 and 35.11.

Figs. 5.12 to 5.16 show the plastic responses for (6—&), (6—¢&°), (s—&), (s—¢é°) and
(e’ —¢&P). Figs. 5.17 to 5.21 show the determined response function for s(e?, &) and
(e’ —&P). From these data, deviatoric stress s and volumetric stress ¢ given in Eqn. (30)
are determined. As decribed in the previous section, following the smoothing procedure
and the polynomial approximation, the calculated spectra of the plastic response functions
are shown in Figs. 5.22 and 5.23. From Fig. 5.24, the values of deviatoric plastic response
spectra points are:

60112000140, TUZO.OOZO
w>=0.00203, 7,,=0.0050
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Fig. 5. 14. Deviatoric stress-volumetric plastic Fig. 5. 15. Deviatoric stress-deviatoric plastic
strain curves of Funyu-tuff for va- strain curved of Funyu-tuff for va-
rious confining pressure rious confining pressures
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Fig. 5. 16. Deviatoric plastic strain-volumetoric plastic strain curves of Funyu-tuff
for various confining pressures
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Fig. 5. 26. Calculated deviatoric response

Fig. 5. 27. Calculated volumetric response

From Fig. 5.25, the values of volumetric response spectra points are:

a)21=0.00120, T21=0.0020

wy=0.00148, 75,,=0.0040

The discretized plastic response functions are determined by the least square method as:

s=a,T (e ;1) +aT (& 01) +asT (€511 T (& 011)

+asT(eP;112) +asT (& s012) +asT (7 112) T (87 042)

G=b,T (€ ;7)) + bl (& 5011) +b3T (€7 571) T (& 501)

+b,T (€ ;7)) +bsT (& 012) +beT (€8 5712) T (& 50012)

(70)

(71)
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Fig. 5. 34. Smoothing of volumetric stress-
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where
a= —17.327, a= —53.059, as=  74.139
as= 51.727, as= 58.642, ac= —80.756
b;=—106.747, b,=—131.708, by= 119.261
bs= 146.965, bs= 188.927, bg=—171.312

The plotted plastic response functions are shown in Figs. 5.26 and 5.27.
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5. 2. 2. Elastic response

Figs. 5.28 to 5.32 show the elastic responses for (6—£°), (6—¢°), (s—&°), (s—€°) and
(e€°—&). Figs. 5.17 to 5.19 show the determined response function for 5(e%,&%) and
d(ef—£&%). From these data, deviatoric stress s and volumetric stress & given in Eqns. (41)
and (42) are determined. As decribed in the previous section, following the smoothing
procedure and the polynomial approximation, the calculated spectra of the elastic re-
sponse functions are shown in Figs. 5.33 and 5.34. From Fig. 5.35, the values of
deviatoric elastic response spectra points are:

w31=0.00248, 753;,=0.0050
0)3220.00325, T32=0.0060

From Fig. 5.36, the values of volumetric response spectra points are :
w41 =0.00352, 74,,=0.0050
w4=0.00340, 14,=0.0060

The discretized elastic response functions are determined by the least square method as:
s=c1I(e%5751) + el (85 031) +¢3T(e%5731) T (8% 031 )

+eal(€5732) +osT (8% wa0) +esT(€5732) T (8% w3) (72)

O=diT(e;741) +dr T (& ;041) +d5T (3741 )T (5 047)

dyT(€°3T42) +dsT (&5 042) +d T (€°3742) T (8% 042) (73)
where
cy=-—182.541, = —42.491, c;= 133.490
cy= 240.464, cs= 48.687, cs= —106.899
S (MPa) - (MPa)
50 (5008 * Sessors

ee= 0008 @ ee= 0.009
e¢= 0,007 40 @ e®= 0008 %

//
%= 0006 /Q @ef= 0006 % 7
ee= 0,008 :gﬁ ﬁw’;é’@@, ® ee= 0005 s
ee= 0,004 > E: M’*‘ O ® ee= 0.004 .

g
30 ee= 0,003 S

p 30 {®@e= 0003
e 0002] % ﬁﬂ/ 5 3 *
S5 el —© ‘

/ y S — * 4
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Fig. 5. 37. Calculated deviatoric response Fig. 5. 38. Calculated volumetric response
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d;=—788.448, d,=-912.203, ds= 972.646
dy= 854.348, ds= 942.740, dg=-1015.690

The plotted elastic response functions are shown in Figs. 5.37 and 5.38.

5. 3. Elastic and plastic responses of granite

In this section, we describe the determined elastic and plastic response of granite
which is a typical igneous rock.

5. 3. 1. Plastic response

Figs. 5.39 to 5.43 show the plastic responses for (6—&), (6—¢°), (s—&), (s—e”) and
(e —&P). Figs. 5.44 and 5.45 show the determined response function for s(e?,&”) and
G(e? —&”). From these data, deviatoric stress s and volumetric stress ¢ given in Eqn. (30)
are determined. As decribed in the previous section, following the smoothing procedure
and the polynomial approximation, the calculated spectra of the plastic response functions
are shown in Figs. 5.46 and 5.47. From Fig. 5.46, the values of deviatoric plastic response
spectra points are:

w1=0.000106, 17,,=0.0005

Wiy = 0. 000900, T12:0‘ 0003

From Fig. 5.47, the values of volumetric response spectra points are:

a)21=0000119, '521:0.0003

(1)22:0.000106, TZZZO.OOOS

The discretized plastic response functions are determined by the least square method as:
s=aL(e”311) +a T (& 01) +asT (e ;71) T (& 5011)
+asU(ef5tn) +asT (& o) +asl(e75712) (& 012) (74)

G=b1T(e’;711) +bo T (& 511) +b3T (€8 5711)T (&5 011)

+ byl (e ;715) +bsT (83 w12) +bs (€23 712) T (8:0012) (75)
where
a;= 1699.882, a, = 264.563, a;= —273.128
a,=—1207.729, as= —689.785, ag= 1271.016
by=—1844.270, b,=—1391.040, by= 2032.347

by= 2456.955, bs= 1443.098, be=—2409.057
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Fig. 5. 49. Calculated volumetric response
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Fig. 5. 52. Elasticity spectra

Fig. 5. 53. Elasticity spectra

The plotted plastic response functions are shown in Figs. 5.48 to 5.49.

5. 3. 2. Elastic response

Figs. 5.50 and 5.51 show the determined response function for s(e,&”) and o(e°—&°).

From these data, deviatoric stress s and volumetric stress & given in Eqns. (41) and (42)
are determined. As decribed in the previous section, following the smoothing procedure
and the polynomial approximation, the calculated spectra of the elastic response functions
are shown in Figs. 5.52 and 5.53. From Fig. 5.52, the values of deviatoric elastic response

spectra points are

6!)3120001250, 731:0.0050
6032=0001525, 1732:0.0040
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Fig. 5. 54. Calculated deviatoric response Fig. 5. 55. Calculated volumetric response

From Fig. 5.53, the values of volumetric response spectra points are:
w41 =0.001610, 74,=0.0030
w4 =0.001550, 74,=0.0020
The discretized elastic response functions are determined by the least square method as:
s=c,T(e%;731) +ei1T (8% w31) +¢sT(€°3731) T (& 031)
+eal(e%375) +esT (8% 03) 66T (€°5732) T (65 032) (76)

0 =d T (€°3741) +doT (& ;041) +dsT (€°5741) T (8% 041)

+dyT(e°;74) +dsT(8504) +ds T (€°3142) T (8% 042) (77)
where

= 1296.597, 6= —83.064, ;= 136.694

cs=—1062.887, cs= 143.040, 6= —3.733

d;= 1171.019, d>»=—1030.365, dy=—845.768

dy=-1045.967, ds= 1190.168, de= 772.034

The plotted elastic response functions are shown in Figs. 5.54 to 5.55.
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6. Conclusions

As the volumetric deformation of geomaterials occurs independently of the shear
deformation, the geomaterials can be said to be a general material as compared with the
metals. Therefore, it is difficult to treat this kind of materials using the flow theory, more
explicitly, the scalar potential theory. To solve the insufficiency of the flow theory, the
multi-response theory has been proposed. Nevertheless, this theory requires very accurate
measurements in order to determine the volumetric and deviatoric responses. In addition
to this, a non-associated flow theory employing a dilatancy function has been presented.
The responses and dilatancy functions are represented through the Laplace transforma-
tion. Then these model are applied to simulate the behaviour of several rocks under
monotone and cyclic loadings. For the proposed theories, a procedure for triaxial tests of
geomaterials by a stiff testing machine, a closed-measurement-analysis system for a
laboratory test and a data bank system of rock triaxial test are described.
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