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Abstract

A computer code based on the Ist order panel method is presented for
solving inviscid incompressible flow fields about 3-D airplane-like bodies. A
sample problem chosen for a test is solved and a comparison with other
computational results shows good agreement. To increase the accuracy of the
method, especially for a thin wing, the number of doublet panels on the
camber surface of a wing is multiplied in the chordwise direction by a factor,
which enhances the accuracy to some extent.

i. Introduction

The incompressible potential flow fields whose governing equation is Laplace’s

differential equation have been able to be solved effectively even in the case of compli-
cated boundary conditions such as airplane-like bodies, owing to the rapid development
of computers and numerical methods. The most effective method for such a problem
has been known to be the panel method, that is, the surface-singularity method or the
boundary element method, which is being, nowadays, used widely in the field of airplane
design because of its usefulness. This surface-singularity method is superior to the other
methods such as FDM or FEM, because the surface-singularity method can solve such
problems as mentioned above more economically, with its unknowns placed only on the

body surface, not on the whole flow field as in FDM or FEM.
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Fig. 1. Airplane geometry treated in program

In this paper a computer code which is able to solve a flow about the configuration
as shown in Fig. 1 with the panel method is presented. In fact, it is not so simple to
define a body surface with an arbitrary complicated configuration that the application of
the code is confined to a body of the configuration consisting of an axisymmetric fuselage,
a wing and a tail which have an arbitrary wing section, aspect ratio, sweep angle and
attachment angle. The geometrical parameters needed for the present code are also shown
in Fig. 1.

To show the accuracy of the code, a wing-only problem has been solved. A
comparison with known numerical results shows good agreement.

2. Derivation of Integral Equation

For an irrotational incompressible flow field the velocity potential @ satisfies La-
place’s equation:

V20 =0 (1)
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upon which the panel method relies. If we consider a body at rest in a uniform flow, the
boundary conditions will be given as follows:

=0 (2)

on the body surface if the surface is impermeable, and
Vo=V,

at infinity.
It is possible to transform equation (1) into a variety of the equivalent integral form
by Green’s integral formula.

Fig. 2. Mathematical modeling of flow field

Consider a domain Q enclosed by the closed surfaces S.. and S, (see Fig. 2) and
assume that a velocity potential which satisfies equation (1) is defined both in the domain
and on the surfaces; the local normals to the surfaces are respectively M. and np, directed
as shown in Fig. 2, then Green’s formula says:

1. _ 1

4%H@F§3P7wwv®+®nwvgﬂd5

n g (3)
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where the subscript p denotes a fixed point P lying inside € or on the boundary Sy, 7 is
defined to be the length of the vector 7 drawn from the surface element dS lying on S,
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and S, to P, H is a value determined according to the position P lies, i.e. H=1 when P
lies inside €, H=1/2 when on the smooth surface of S, and the integral symbol ff
means the integration excludes the singular point at which P coincides with a point Q
lying on the surface of integration (r=0). The first integral on the right-hand side of
equation (3) means the undisturbed potential at P and is written as 4n®.p. This equa-

(o]
tion, when H=1/2, may be directly utilized to obtain one of ® and —:—— , if only the
n

other one of the two values is known on the boundary, after that, it is possible to get the
value of @ at all points in the domain Q by the same equation (for values on S, H=1/2,
for values inside Q H=1).

Alternative integral forms, however, may be derived”. Now if we define another
fictitious potential @’ in the domain Q' enclosed by the surface S,, again applying
Green’s formula in the case where the point P lies outside Q’, we obtain:

1 = ’ 4 e 1
0=J§f [=7 (=) V&' + " (=1y)- V()]dS (4)
b
Adding equation (4) to equation (3), we have:

47‘51‘1@1):471@001)“!':{{: {—-:'Zb'( Vo~ V@’)%—(@-—@'}ﬁb V(‘i‘)]ds (5)

Sp

In a practical problem we have an interest only in the outer domain Q and are given
boundary conditions in the domain only, so that if equation (5) is to be determinate for
such a problem, an assumption of the boundary conditions on the inner side of the
boundary S, is necessary. This arbitrariness to choose the potential &’ in the inner
domain Q' may be, if with good skill of choice, exploited to make the problem easy to
solve with efficiency and small error numerically.

It may be shown that the integral on the right-hand side of equation (5) can be
interpreted as the potential caused by a surface source of variable density o and a surface
doublet of variable density « with the doublet axis coinciding with 71, if we equate:

0=y (VO—-VD') , u=—(d—a")

Then, equation (5) may be written for an arbitrary point P not lying on the boundary S, :
o - 1
4JrCI>p=47tCpr+_U[——r——/u nb-V(;)]dS (6)
Sp

For a point P lying on S, the same equation may be used, provided the integral is defined
to include the local singular contribution —27mu, due to the local doublet density Hp.
By applying the operator Vp to both sides of equation (6) we get the following expression
about the velocity V, at P:

41 V=4 Vop+ [ 1=09,) =17, (G v (5))]dS 7
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About equations (6) and (7) the equivalent statement as in equation (5) may be
made, i.e. to render the equations determinate, it is necessary to assume one of two
unknowns, o and u on Sy. It means that an infinite number of different combinations of o
and p distributions may exist for the same boundary conditions given on the outer surface
only. We should, therefore, determine the distribution which not only satisfies the
boundary condition, but which also minimizes the numerical errors in that domain.

In the ideal fluid the wake. behind a wing is idealized as an infinitely thin sheet of
discontinuity, on which surface doublet is laid. Even though the position and the
configuration of the wake is not known beforehand but determined by the calculation of
the flow field, it is assumed that the wake lies at a fixed position since the influence of its
spatial variation on the flow around the wing may be neglected. Because of some
numerical reasons surface doublet is laid not only on the wake, but also on the upper
surface or the camber surface of the wing, as shown in Fig. 3. In the case where we lay
doublet only on the wake, because the influence induced on the Kutta points near the
trailing edge by the doublet becomes much larger than that of the source distribution on
the wing, the application of the Kutta condition to the Kutta points brings about the
vanishing of surface doublet density. Consequently, the problem reduces to a source-only-
distributed problem without lift.

The doublet distribution on the extended surface in the wing is expressed as a mode
function ¢(&) in the chordwise direction together with an unknown magnitude factor py.
Thus,

w=pep (&) (8)

Theoretically the Kutta condition is stated as the avoidance of an infinite velocity at the
trailing edge. Such a condition, however, cannot be enforced numerically. Hence we place
the Kutta points a short distance (about 1/3% of local chord) downstream of the trailing
edge on its extended camber surface and apply the condition that the component of the
velocity normal to the surface at these points vanishes.

o+H

Fig. 3. Surface doublet extended into wing Fig. 4. Distribution of singularities over airplane
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In the present code, on the body surface is laid a surface source, while on the
camber surfaces and wakes of a wing and tail is laid a surface doublet, as shown in Fig.
4. If we apply the boundary condition of (2) to equation (7), we have the following :

0=dx 1700-;5‘,,+fsf( —0 i, vp(%))ds+fsf —u 7ty v, (- V(%))dS (9)

where S, expresses the surface of an airplane shown in Fig. 4, S, means the camber
surface and the wake of the wing, and the first integral on the right-hand side of the
equation is defined to include the local singular contribution 270,77, due to the local
source density o,.

3. Numerical Formulation

3. 1. Discretization

To solve equation (9), it is necessary to discretize properly the body surface, the
distribution of surface singularities, and the boundary condition. There can exist various
methods of discretization, for example, on each panel of the body surface a simple plane
or spline representation may be used, while the surface singularity distribution may be
represented by one of discrete, linear or curvilinear variations. The present code adopts
the 1st order method which has been widely used because of its simplicity to calculate the
influence coefficients. It is written as follows.

(1) The body surface is represented by a lot of plane panels made by every 4 points on
the surface.

(2) On every panel a singularity of constant density is distributed.

(3) The boundary condition is applied to every control point which is the centroid of a
panel.

If we represent the plane panel of the surface as a subscript j and the control point
as a subscript i, dividing the integral region of the equation (9) into panels, then for the
control point i, we have:

- -~ = ‘700 -
Z)Gni'cij‘f'szkni'Czk:—“;“'ni (10)
] 0
where
> 1 = - 1
C=J]-v,yas Ca= [ -olv,(i-v(-))]ds
panel r doublet r
j strip &
i Hi
X=amv. K= v,
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The influence vector 5,] means the velocity induced at a control point i by a panel j on
which surface source of unit density lies and Cj, represents the velocity induced at the
same control point i by a wing strip k with doublet distribution of ¢(&).

3. 2. Calculation of influence vectors

Cy is calculated by the Gaussian integral (see Appendix), where the number of
Gaussian points varies according to the distance between the control point and the panel.
For the control point sufficiently long distance, the formula of a point source is used.
According to the equivalence law obtained by B. HuntV, a panel with a constant density
as in the present paper can be transformed into a ring vortex around the perimeter of the
panel, therefore, its influence is calculated easily by Viot-Savart’s law. Cy is calculated by
adding all the influence induced by every doublet panel of wing strip k to the influence
induced by the trailing vortex of that strip.

3. 3. Formation of the linear equation system
If we let rT,«-(Zj=Aij, it - Cp=Ay, and —((7 Vo) - 1=B;, equation (10) is rewritten as:

2ZA;X+ % A X =B,
]

In a matrix form, it is expressed as AX=B. If the body is symmetric about the plane y=0
and the oncoming flow is likewise symmetric, the resulting singularity density must also be
symmetric. In such a case, the number of matrix elements may thus be reduced by a
factor of 4 (though the number of unknowns is halved), by adding up the two influences
induced by each pair of panels. Boundary conditions are then applied only to half control
points on the right-hand side of the xz-plane.

The solution of the linear equation system may be efficiently obtained by iteration
method because the matrix A has the largest value in the diagonal elements. Due to
linearity of the equation, the solutions for various angles of incidence can be obtained by
the linear combination of the two basic solutions for a=0° and 90°. This is because, even
though the angle of incidence of the oncoming flow varies, the matrix A not changing,
the column vector B only becomes different. If we suppose the column vectors for a=0°
and 90° are B; and B, respectively, the column vector B for an arbitrary a becomes
cosa-By+sina-B,. It can be concluded that the solution X for « is obtained by the
relation

X=cosa-X;+sina - X,

where X; and X, are the solutions for a=0° and 90°, thét is, the solutions of the equations
AX=B,;, AX=B,, respectively.

4. Verification of the Present Code for a Simple Wing Configuration

4. 1. Adoption of a model problem

To estimate the numerical accuracy of a code based on the panel method, the
computational result is compared, not with experimental data directly, but with a
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theoretical solution or more exact solution of the governing equation, that is, a solution
obtained by a higher order method. Such a comparison may determine whether both the
method used and the code are accurate or not.

As shown in Fig. 5, a model problem is about a simple sweptback tapered wing.
Thus, a wing-only problem is chosen, with a fuselage and a tail wing omitted from Fig. 1
for simplicity. It is one of the model problems adopted by some relevant researchers to
try to establish some standard solutions of them for the estimation of various panel

Fig. 5. Planform of tapered sweptback wing (RAE Wing A; Wing section NACA 0015) and its
discretization

control point

N
[ . source panel
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N=3 t I I doublet panel
N=n
P

Fig. 6. Increase of doublet panels
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methods. The form of the wing is the planform, RAE Wing A, and its airfoils are
symmetric NACA 4-digit sections with the thickness ratio of 0.05 and 0.15.

The wing surface has 36 source panels per each wing strip (18 panels on the upper
and lower surfaces) on 6 wing strips on the half wing, as shown in Fig. 5. The number of
doublet panels on camber surface is, usually, the same as that of source panels on the
upper surface of the wing. As shown by J. Ballmann, et al.¥), a numerical model of a
doublet distribution should have one degree higher continuity than that of a source
distribution for an equivalent order of error between both distributions, i.e. a constant
distribution of source on a panel is compatible with a linear distribution of doublet on a
panel (the so-called ‘sheets model’). In the present code, however, is used a constant
distribution of doublet on a panel, which is termed the ‘lines model’.

For a remedy for this situation, the number of doublet panels is multiplied by a
factor in the chordwise direction in such a way as shown in Fig. 6, in the present code.

4. 2 Numerical results and discussion

Fig. 7 shows, at no lift, the comparison of C, distribution on a wing section, 7=0.55
between A. Roberts’ result’ and the present one. The present results were obtained for
the discretization, IXJ=36x6 and 72x6, where [ is the number of panels per wing strip
consisting of upper and lower surfaces, and J the number of wing strips per half wing.
Roberts’ solution is that obtained by a higher order panel method. The comparison shows
good agreement with Roberts’ in both cases of /. The spanwise lift distribution (1/
2)c- Ci(§), determined by numerically integrating the computed pressure distribution, is
shown in Figs. 8(a) and (b) for t/c=0.05 and 0.15, respectively, at a=5°, together with the
effect of the multiplying factor N. Although the result for #/c = 0.15 is nearly the same as
Hunt’s, which was obtained with ‘sheets model’, considerable error for #c=0.05 is
demonstrated. It may be, therefore, said that ‘lines model’ produces marked error for a
very thin wing.
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Fig. 7. Calculated chordwise distributions of pressure coefficient (/ = number of panels per wing
strip, /= number of wing strips per half wing, NACA 0015, a=0° 5=0.55)
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Fig. 8(a). Effect of multiplying factor N for chordwise discretization of doublet sheet on local lift
(NACA 0005, a=5%)
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Fig. 8(b). Effect of multiplying factor N for chordwise discretization of doublet sheet on local lift
(NACA 0015, a=5°%)
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Fig. 9. Effect of multiplying factor N on chordwise distribution of pressure coefficient (NACA 0005,

a=5°, n=0.60)
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Fig. 10. Effect of multiplying factor N on chordwise distribution of pressure coefficient (NACA 0015,
a=5°, n=0.58)
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The effect of the multiplying factor N on C, is also shown in Figs. 9 and 10 for
#/¢=0.05 and 0.15 respectively. N means that a wing has N times as many number of
doublet panels per wing strip as that of source panels per upper (or lower) wing strip. In
the case of a thick wing, the curves of C, distribution for various values of N do not
show marked difference. For a thin wing of #/c=0.05, however, the lines of C, distribution
show some difference and become closer to the datum result as N becomes larger. Similar
tendencies are observed for lift distribution (1/2)c-C; from Figs. 8(a) and (b). The lift
curve for #/c=0.05 approaches to the datum one of Hunt from a large value of (1/22)c- C,
as N increases. The converged result is about 8% larger than that of Hunt. It may be,
therefore, asserted that it is possible to obtain better results with ‘lines model’ even for a
thin wing, by increasing only the number of doublet panels per wing strip.

5. Conclusions

A computer code based on the 1st order panel method (‘lines model’) is presented
for solving the incompressible potential flow around an airplane with an axisymmetric
wing-body-tail configuration at an arbitrary angle of incidence in a uniform flow. An
application of the code to a wing-only problem leads to the following conclusions.

(1) With no lift, it produces nearly accurate solution as that of higher order method, if
with sufficient panels.

(2) With lift, the errors of computed results such as C, and C; tend to be larger as wing
thickness becomes small, with the same number of panels.

(3) Better results may be obtained by increasing doublet panels only per wing strip, even
for a thin wing, though not yet comparable to ‘sheets model’ results.

Nomenclature
A = coefficient matrix of linear equation system
B = matrix whose i-th element is 72;-V../|V., |
Ay = influence coefficient, E-C,-j
AIR = aspect ratio, (2b)*(wing area)
b = half span
c, = local chord length
Cy = influence vector
C, = pressure coefficient
Cy = local drag coefficient
C = local lift coefficient
i = doublet’s directional unit vector taken normally to doublet-distributed surface
N = multiplying factor for surface doublet discretization
er = normal unit vector on point P of body surface
P = control (or collocation) point on which boundary condition is to be satisfied
Q = point on differential element dS of §
P = vector drawn from Q to P
S = singularity-distributed surface
t = thickness of airfoil
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= oncoming uniform velocity

= solution column vector

coordinate established free-streamwise

coordinate established spanwise

total velocity potential

mathematical domain where harmonic function is defined

angle of incidence

variable density per unit area of doublet distribution

variable density per unit area of source distribution

mode function of chordwise doublet distribution

magnitude factor of doublet strip k

spanwise distance from axisymmetric plane normalized by half span, y/b
& chordwise distance from leading edge normalized by local chord
v? = Laplacian operator

r = circulation or strength of line vortex

8

[
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Subscript
i control point
j source-distributed panel
k doublet-distributed wing strip
oo undisturbed condition
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Appendix

Gaussian integral

Gauss’ formula of approximate integration is written as follows,
for one variable;
1
2 18 de=Zwi-f(&0) (a.1)

for two variables;

JL T e mdzan= 2wy (a.2)
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where w; and wy represent weight coefficients and & and 7, Gaussian points. These values
can be get from the table. For the calculation of influence vector Cy with Gauss’ formula,
the domain of integral needs to be transformed in such a way as shown Fig. A-1. The
equations for coordinate transformation are

Xi= ,éan(gi)xni (1:1’2) (83)

where x,; denotes i-coordinate of the n-th vertex of a plane panel before transformation
(x,y coordinate of Fig. A-1), F,’s are interpolation functions expressed as follows (&; is &1
of Fig. A-1),

F(8)=(1/4)(1-8)(1-5&)
F(8)=(1/4)(1+&)(1-§,)
F3(8)=(1/4)(1+5)(1+§,)
Fy(8)=(1/4)(1-8)(1+5)

(a.4)

Thus, by the coordinate tranformation such as equation (a.4), the integral becomes :

Cy=[[ Ras=[" [' R|r|deay (a.5)

panel
]

where K=777 and |J| is the Jacobian determinant. Now with equation (a.2), the
integration of equation (a.5) can be numerically calculated.

4 3 1,1 (1.1)

-l
>
oy

1 2 -1,-1 (1,1

Fig. A-1. Transformation of integration domain





