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Abstract

A mathematical model is constructed to study the role -of transverse
waves in a detonation wave. The lower solid wall in a two-dimensional
channel is replaced with a porous wall that absorbs momentum and energy
but does not allow mass to leave the system. A plane Chapman-Jouguet
(C-J) ZND detonation wave is disturbed by putting a few exothermic spots
in the neighborhood of the leading shock-front to generate a stable multi-
dimensional detonation wave. All the elementary reactions occurring behind
a leading shock are represented by a two-step reaction model. The mathema-
tical model is developed by treating the entire flow as a two-stream fluid
flow: Main flow in the channel is solved using the MacCormack second-order
explicit finite-difference scheme while the capillary flow in the porous wall
using an upwind finite-difference scheme. Both solutions are then coupled
through the boundary conditions. By changing the porosity of the porous
wall, propagation of the detonation wave is controlled. Numerical calcula-
tions are made for different channel widths and different porosities. Various
interesting phenomena such as detonation quenching, development of gallop-
ing detonations and penetration of a shock wave into an expansion zone are
demonstrated.

1. Introduction

The Zel'dovich-von Neumann-Déring (ZND) model? is the most successful concept
in understanding the Chapman-Jouguet (C-J) detonation. However, this one-dimensional
detonation wave model as a shock discontinuity followed by a zone of chemical reaction
after a certain ignition delay has been shown dynamically unstable.? In fact, a number of
.careful experimental observations confirmed that all detonations propagated with a
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complex nonsteady frontal structure of shocks. This shock system consists of a number of
triple shocks traveling also in the transverse direction to the main flow. Recently, based
on a two-dimensional stability analysis, Buckmaster” predicted the development of very
large pressure spots in a plane detonation wave starting from small-amplitude perturba-
tions. He argued that such high pressure spots ultimately developed into Mach stems and
hence transverse waves. All these studies are directed toward the establishment of stable
multi-dimensional detonation wave. '

Taki and Fujiwara*® were successful in simulating these shocks numerically in two
dimensions. By destructing a one-dimensional ZND detonation wave with some added
exothermicity spots they obtained a stable nonsteady detonation. They also re-established
that though the instantaneous propagation velocity widely varied from the C-J value, the
wave traveled at an average velocity close to the C-J value.

Once established, the transverse waves are essential to have a stable detonation; then
questions arise about the strength and role of these transverse waves in a detonation
wave. It is very interesting to know how these unstable detonation waves respond to any
action that suppresses transverse waves. Quenching of detonation or adjusting to an
under-driven detonation wave are not the only outcome of this duel between establishing
and suppressing actions on transverse waves. When a climax is reached, the unburnt gas
pockets” formed in the burnt gas explode to generate a galloping detonation which
re-establishes a multi-dimensional detonation wave from a dying detonation wave.

Therefore, naturally, a number of studies are initiated to understand the role of
transverse waves on the propagation of a detonation wave. Recent experiments by
Dupre” indicate that the damping of transverse waves by acoustically attenuating walls
caused a detonation to fail. The small air pockets in a porous wall act like a hydraulic
damper to absorb momentum, effective only when there is a pressure jump. Thus, when a
shock wave hits a porous wall, the detonation loses a portion of its momentum and gets
reflected as a relatively weak shock. This hydraulic damping on the shock can be utilized
in suppressing the transverse waves in a detonation wave and thereby one can have better
understanding on the role of transverse waves. The present paper describes a numerical
model to simulate a multi-dimensional detonation wave that is traveling in a chamber with
a porous wall.

2. Mathematical Formulation

Although a porous material has cellular structure with numerous interconnected free
air cells (see upper wall in Fig. 1), all the dynamic behaviors related to this material
can be simulated by modeling it as a rigid
wall with a large number of thin and long
circular cylindrical capillary tubes (lower wall
in Fig. 1). All these tubes are open on one sone
side that is in contact with the flow, while
the other sides are sealed so that no mass is
allowed to leave the system. Schematic se-
quential changes of the flow due to the
porous wall are also depicted in Fig. 1. For a  Fjg 1. Real and modeled equivalent porous
low damping coefficient of the porous wall, a walls and schematic description of the
detonation wave ' propagates stably in an problem.
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under-driven detonation mode. A wide in- T —
duction zone may be observed in such flows.
When the damping coefficient is above a
critical value, significant momentum in the
‘transverse waves is absorbed into the porous
wall and the detonation soon fails because of 7 °
the weak transverse waves. E b
The entire flow can be regarded as a CAPILLARY FLow
two-stream fluid flow with the main flow and  Fig. 2. The grid system used for the main and
the capillary flow in porous tubes. capillary flows.
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Main Flow:

A simplified model is used to describe a detonation wave. All the elementary
reactions occurring behind a leading shock wave are represented by a two-step reaction
model of induction and exothermic reactions® containing two reaction progress variables «
and . The specific reaction rate of the induction reaction is given by

d 1 .
e =—K,p*exp(—E,/RT*), (1)
df* Tind

and that for the exothermic reaction is given by

_dpg | =0, a>o,

A= %
dr* ) E
:_KZP'.Z{ﬂZexp( RT:;:
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)= (1=pPexp(——222)], a=0.(2)

Here the superscript * indicates- the dimensional values and the reaction parameters
appearing in Eqs. (1) and (2) are selected as

K;=3.0x10"cm’lgls, Ky=1.5x10""cm*dyn’ls,

E;/R=9800K, E;/R=2000K and Q*=4.0x10"erglg,

to fit either 2H,+O,+7Ar or 2H,+0,+7He mixture.
The fundamental governing equations under perfect gas, inviscid and non-heat-conducting
assumptions can be written in the following non-dimensional conservation-law form:

oq oF oF
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Y o + R +H=0, (3)

where the inviscid flux vectors and the chemical source term vector are
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The state equations
p=(y=1)le—pBQ—0.5p(u”+v*)], (4)

p=PooT, | ()

are also used to complete the svstem of Eq. (3). The followmg non-dimensionalization is
used in the above formulation:

t:{: N x*) # u‘é:) V* £
[:—————g" a@*) x’y:-—_—.—é-g_ﬁ_) u)v:—:———’ '0: ._’0_“._?
3 * o™ ’Om.::
e* Q* T‘i‘
€= 0 * %2 Q= a %2 and T—— T ) (6)

and the constant in Eq. (5) appearing due to non-dimensionalization is defined as

R
=——T.,".
ﬁ() a w2

=

Capillary Flow :

The porous material is assumed to consist of an aggregation of long thin tubes, within
which a polytropic motion of the gas is governed by the balance between the pressure
gradient and viscous force alone; the irregular character of most porous materials is
therefore ignored in this simple model. By assuming that inertial effects of the gas motion
within a long tube of very small diameter and the variations of pressure across any tube
cross section can be neglected,” the fluid motion within the porous medium is mathemati-
cally formulated as follows:

Defining # as the coordinate along the tube axis (see Fig. 2), the approximate
momentum equation is

ﬁz

e @

with

ﬂ[ :/Ll :;:/,Ow *am:;:L:g,
where V' is the non-dimensional axial (y-direction) velocity, 7 is the non-dimensional
radial coordinate, L* the tube length and u* the dynamic viscosity. Assuming that u* is

constant and v is zero when r=a (a* is the tube radius) and using the hypothesis that p
is a function of 7 and ¢ only, integration of Eq. (7) with respect to r yields

) e
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The mean velocity v across any plane. perpendicular to » is given by

L 2 a o
v—a2 fbrv dr, (9)
:—Dcpvf (10)

where D.=a/8f;. This relation between the mean velocity and the mean pressure gradient
is a particular form of the Darcy’s resistance law; the parameter is constant for a given
porous material.

The continuity equation of gas within the tube can be written as

/Ot+(400)?7:0' (11)
One may propose that the fluid flow inside a thin tube obeys a polytropic law, i.e.
p=Kpm, (12)

where K and m are the constants with 1<\m<y where y is equal to the usual specific heats
ratio. For such flows, Eq. (11) can be rewritten as

Lo,
ptmpl=w (pw ¥),=0. (13)

Egs. (10) and (13) form an initial-value problem for the variables p and v.

3. Boundary Cenditions

Egs. (3) to (5) for the main flow and Eqs. (10) and (13) for the capillary flow are
coupled only through the boundary conditions; hence, they can be solved independently,
once the flow variables p and ¥ are known at the matching boundary i.e. at y=n=0. The
boundary conditions for Eqs. (10) and (13) are

V=0 at =1L, (14)

p=p.(x,t) at n=0. (15)

Here" p.(x,f) is the external flow as far as porous flow is concerned ‘and is solely
determined by the main flow. Boundaries for the main flow are the solid upper wall and
the porous lower wall. At the solid wall reflection principle is used to impose flow
tangency conditions. At the porous wall the normal velocity component ¥ is set equal to
the value that is obtained from the capillary flow solution at »=0 and all the other
variables except p are extrapolated from the field points. Pressure p.(x,f) is then
determined by solving Eq. (4). Usually at any time ¢ an iteration is required to obtain the
matching pressure p.(x,f) and ¥ at y=y=0, and is described in the following section.
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4. Numerical Scheme

The main and capillary flows are to be solved numerically to acquire a consistent
solution. Egs. (3) to (5) are solved using the second-order MacCormack finite-difference
scheme. The predictor and corrector steps of the scheme are as follows:

Predictor:
A[ 17 At n n
415];)_6]1/_ Ax (Ef; - EY ”A"y“(Ff'fjH“Fi,j)_Af Hf; - (16)
Corrector:
AN ]
41" = lalyratl)= = (BU=E,) = < =Fl ) - ar B (17)

In order to reduce the spurious oscillations near shocks and to make the shocks steeper
the fourth-order diffusion terms and flux corrected transport (FCT) limiters are added.
They are given by

Fourth-order Diffusion:

=n+l ~ i+l

Gi7 =41 (qilo =491+ 6q]—4ql 1+ ql2;)

—1(Gii—2— 491+ 0694971+ q]42). (18)
FCT Limiters:
gi =il ndalh = 2q +qlt ), GRT=a0 (gl —2q9 8 +q =), (19)
qi=ql G = = (0 L= 08 L) — (08, L=65,_ 1), (20)
where

f+§l_~»S Max[0, Min(S- AL A~i+§1.‘,-i, S AniDl

=n+1 =+

o
A 51— qz*]] q” >

A. Zi-ﬂ ((Jz+1/ q:z;LI 5
S=Sign(A, L)) -

The governing Eqs. (10) and (13) for the capillary flow are solved by using an
upwind finite-difference scheme,

n+l _

At Hn n AN
P =i D PR s (0 911), (21)
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and

DC n+l __n+l
Aﬁ[plﬁ—l Dk ] (22)

<>
>
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|

As mentioned earlier, the solution procedure involves an iteration procedure, since the
pressure “and velocity at the matching boundary are coupled through the main and
capillary flows. Based on the velocities in the capillary tubes at n-th time step, Egs. (16)
through (20) are solved first for the pressure at (n+1)-th time step. At this pressure, Eqgs.
(21) and (22) are solved for the flow in a capillary tube. Using this new velocity,
calculations are repeated to correct the main flow and then the capillary flow at (n+1)-th
time step; this cycle has to be continued until convergence. Usually two iterations are
sufficient.

5. Results and Discussions

All the calculations are started from a plane C-J ZND detonation wave. A stable
multi-dimensional detonation wave is generated by placing exothermic spots just upstream
of the leading shock front. These exothermic spots perturb the plane C-J wave and
develop transverse waves. Once the detonation becomes stable then the lower wall is
replaced by a porous wall. By changing the wall porosity, studies on the role of transverse
waves on detonation propagation are made. The grids are constructed with Ax=2/9 and
Ay= An=2/9. Though L, the depth of the porous wall, is a parameter to determine the
Darcy’s coefficiennt, it is held constant at 20 and the value of Darcy’s coefficient is varied
by changing the other parameters such as a* and u*.
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Fig. 3. The propagation velocity of a detona- Fig. 4. History of detonation wave structure in

“tion front along three locations, the terms of pressure contours in a 9 £*-
upper and lower walls and the center wide channel with both solid walls.
line, for a 9 ¢*-wide channel with both Average non-dimensional propagation

solid walls. velocity is found to be 4.96.
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Channel with both solid walls:

To make sure that the present analysis is able to generate a stable multi-dimensional
detonation wave, both of the walls of a 9 ¢*-wide channel are made solid boundaries and
calculations are carried out for 7000 time steps. By this time the detonation front has
moved by 66 channel widths corresponding to the 663.7 us real time. The wave velocities
at the lower and upper walls and at the mid section are plotted in Fig. 3, while the
wave-front structure at three different times is depicted in Fig. 4. The detonation wave
is found to be very stable with three transverse waves. The average non-dimensional
propagation. velocity is 4.96, which is close to the C-J velocity for the mixture considered
(Dc-;=4.8). These calculations are made on a 44 X 500 grid system for which a
FUJITSU-VP200 computer took 4.96 x 107° s/step/grid cpu time.

4 4% channel with a porous wall:

Lower wall of a 4 ¢*-wide channel is replaced by a porous wall of Darcy’s coefficient
equal to 0.02. The plane C-J detonation wave is disturbed by the porous channel itself.
The shock-front velocities at the walls and at the mid section are plotted in Fig. 5, while
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Fig. 5. Propagation velocity of a detonation
wave as a function of time at the upper
solid and lower porous walls and along
the center line, in a 4 ¢*-wide channel

having the Darcy’s coefficient D.=0.02.

Fig. 6. History of detonation wave structure in
terms of pressure contours in a 4 ¢*-
wide channel with solid . upper and
porous lower (Darcy’s coefficient
D.=0.02) walls. The average detona-

tion propagation velocity is reduced
from 4.96 to 4.46.

the shocks at three different times are shown in Fig. 6. At this porosity, a stable
detonation wave with one transverse wave is established. The velocity fluctuations at the
mid section appear at a frequency twice that at the walls because a single transverse shock
leaving from a wall crosses the center line two times before it again reaches the same
wall. Average propagation velocity of the detonation is found to be 4,46, which is less
than the C-J value 4.80 and is 89.92 percent of that in a solid wall chamber (note that the
propagation velocity 4.96 obtained in a 9 ¢*-wide channel remains almost at the same
value in a 4 ¢*-wide channel). This indicates that the weakened transverse shock ultimate-
ly reduces the detonation propagation velocity. Broken lines in the shock structure plots
show the reaction front, giving the induction length. A marked feature on detonation
wave structure due to the porous wall may be seen in the induction length. As seen in
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Fig. 6, this 4 ¢£*-wide channel supports only one' triple shock and, after following the
notation used by Strehlow,” the wave structure can be identified as the combined Mach
shock, primary shock and reflected shock. The Mach shock which supports the detonation
propagation associates with a shorter induction zone and fast exothermic reaction. Under
the presence of the porous wall, the strength of the Mach shock is not essentially affected
and as a result stable propagation is made possible. On the other hand, the weakened
transverse shock balances the flow with the help of a weak primary shock wave. This can
also be identified in the wave structure showing the increased induction zones associated
with the primary shock waves. In Figs. 6(b) and 6(c) it may also be noted that the
induction lengths associated with the incident shocks standing on the porous wall and solid
wall are different. The transverse wave, when it impinges the porous wall, loses a portion
of its momentum and gets reflected as a weak transverse wave and hence the induction
distance associated with the primary shock standing on the porous wall is longer. This
difference in the primary shocks leads to an irregular wave front in a multi-cell detona-
tion. As the difference in the induction zone lengths of the Mach shock and primary
shock increases in a detonation wave, each collision of triple :point with the wall generates
a pocket of unburnt gas. Presence of unburnt gas has been observed in experiments by
Subbotin'® and in numerical simulations by Oran.® These pockets are completely sur-
rounded by burnt gas and most of them in turn burn more slowly, finally giving their
energy to the system. Explosive burning of the unreacted trapped gas depends on the
particular condition in and outside the pocket.
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Flg 7. Propagation velocity of a detonation Fig. 8. History of detonation wave structure in
wave as a function of time at the upper terms of ‘pressure contours ‘in a 4 £*-
solid and lower porous walls and along wide channel with solid upper and
the center line, in a 4 ¢*-wide channel porous lower (Darcy’'s’ coefficient
having  the Darcy's  coefficient D, =0.035) walls.

D.=0.035. At t=230 microsec the de-
tonation gets decoupled and the prop-
agation velocity rapidly decreases.

By increasing the porosity of the lower wall (D.=0.035), calculations are repeated.
Similar plots. are shown in Figs. 7 and 8. At this porosity, the detonation wave is unable
to self-sustain and dies after traveling for 230us. The highly porous wall continuously
absorbs momentum from the transverse wave. Once the strength of the transverse wave is
reduced. below a critical value, it can no longer support the detonation wave and as a
result the detonation is quenched soon.
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Typical velocity distribution at the open
ends of capillary tubes at a particular instant
of time is shown in Fig. 9. When the detona-
tion wave front passes over a capillary tube,
the gas is pushed into the tube to balance
the pressure jump. The steep increase in the
velocity in Fig. 9 represents arrival .of the
wave front. The small negative velocity be- 1
fore the shock wave is due to the undershoot (P S S e
in the calculated pressure. The viscous fluid - ° 7 55, 55, o8 o L 7o
in the capillary tube gradually transmits the
external pressure toward the sealed end and
this settles the fluid in the tube. The other Fig. 9. Non-dimensional velocity distribution at
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two velocity jumps seen in the figure are due the open ends of the capillary tubes
to the slapping of transverse waves on the along the porous wall at a particular
porous wall in the burnt gas region. instant of time.

9 ¢* channel with a porous wall:

Calculations are made for a detonation within a 9 ¢*-wide channel with a porous lower
wall and a solid upper wall. Results for two Darcy’s coefficients (D.=0.06 and 0.08)
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Fig. 10. Propagation velocity of a detonation Fig. 11. History of detonation wave structure

wave as a function of time at the in terms of pressure contours in a
upper solid and lower porous walls 9 g*-wide channel with solid upper
and along the center line, in a 9 ¢*- - and porous lower (Darcy's coefficient
wide channel having the Darcy’s D.=0.06) walls. A stable detonation
coefficient D.=0.06. The number of with two transverse waves is de-
triple shocks settles down to 2 after veloped.

t=300 microsec.

are shown in Figs. 10 through 13. For these calculations the lower wall is made porous
only after 197 us; by that time a stable detonation is developed within a solid wall
chamber. For D.=0.06 a stable detonation with two transverse waves is developed. For
the same channel width but with both solid walls a channel was able to generate a stable
detonation wave with three transverse waves (See Fig. 4). This indicates that the
transverse waves in a channel with a porous wall are not uniformly weakened but are one
by one weakened before being completely absorbed in a queue. As the number of
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absorbed transverse waves increases, the remaining transverse waves are either strong
enough or not enough to keep the detonation alive in the whole width of the channel.
This confirms that the number of transverse waves depends on the width of the channel.
In Fig. 11 it can be observed that a weak and a strong transverse shocks are forming an
irregular wave front. The difference in the induction lengths associated with the primary
shocks standing on porous and solid walls can also be identified in Figs. 11(a), (¢}, and
(e). These transverse waves are in fact moving toward the walls and the primary shock on
a wall was generated by the transverse wave that is penetrating into the other primary
shock. This irregular wave front is stable in a chamber with a wall replaced by a porous
wall and the stability can be argued as follows: In Fig. 11(a), the strong transverse shock
is moving toward the porous wall and the weak transverse shock toward the solid wall.
After 10 microseconds these strong and weak shocks get reflected from the porous and
solid walls, respectively as weak and strong transverse waves (Fig. 11(b)). These two
reflected shocks moving toward the center of the channel are crossed (Fig. 11(c)) at a
section slightly shifted toward the porous wall from the mid section. The shock front at
467 us is identical to the shock fronts at 443 us and also at 483 us, indicating a stable
propagation of the irregular wave front. The detonation is propagating at a velocity equal
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Fig. 12. Propagation velocity of a detonation
wave as a function of time at the
upper solid and lower porous walls

Fig. 13. How a detonation gets decoupled in
galloping mode is seen in the history
of detonation wave structure in terms.

and along the center line, in a 9 ¢*-
wide channel having the Darcy’s
coefficient D.=0.08. At t=230 mic-
rosec the detonation gets decoupled,
followed by coupling at t=300 mic-
rosec, and again decoupled at t=420

of pressure contours in a 9 ¢*-wide
channel with solid upper and porous
lower (Darcy’s coefficient D =0.08)
walls. The detonation front is losing
another tripple shock at t=422 mic-
rosec.

microsec; ‘a galloping is observed due
to the explosion of an unburnt pocket
in burnt environment.

to 4.84, which is 2.42 percent less than the corresponding velocity in a solid wall chamber.
For D =0.08, the detonation fails after 450 microseconds. Before failure, the wave front
is very irregular as seen in Fig. 13(a). In Fig. 13(c) it is noticed that the shock front is
losing yet another transverse wave. The remaining transverse wave is not sufficient to
maintain the detonation. In fact, at time 250 us, the detonation fails once (see Fig. 12).
But due to pocket explosion of a trapped unburnt gas, the detonation is re-established.
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Galloping Detonations:

From the velocity profiles on the walls and mid section in Fig. 12, it can be observed that
at time 250 us the detonation loses all its transverse waves and is dying. At 295us the
detonation is re-established back to a galloping mode. As discussed earlier, certain
particular conditions cause the unburnt gas that is trapped within burnt gas to explode. It
may not be of any interest to a combustion researcher if the shock wave generated from
the explosive burning ultimately dies out within the reacted gas. But when the explosion
of unburnt gas occurs close to the heated unburnt gas within the induction zone of a
detonation wave front, the shock from pocket explosion eventually develops into a
galloping detonation. The sequence occurring between the time 260 us and 292 us is shown
in Figs. 14(a) through (1). The wave structure within a solid wall chamber at t=188 us is
shown in Fig. 14(a). When this wave enters into a porous wall chamber, it loses all its
transverse shocks as shown in Fig. 14(b) at t=260us. A weak triple shock may be
identified but this does not do anything helpful and the detonation finally dies out. At
time 271 us, an unburnt gas pocket is isolated at the solid wall (Fig. 14(c)). Along with
the unreacted gas pocket, an unburnt peninsula in the induction zone is also found at
t=271 us. The explosive burning of this trapped unreacted gas generates shock waves that
are traveling in all directions. Since the tongue of the peninsula is sufficietnly close to the
burning trapped gas pocket, the shock waves are able to reach the peninsula (Fig. 14(d)).
These weak shock waves are sufficient to initiate burning of the already heated gas in the
peninsula (Fig. 14(e)). At time t=283us (Fig. 14(f)), the whole gas in the peninsula has
been burnt, resulting into a strong explosion. In Fig. 14(g) this explosion gathers more
and more energy by penetrating into the induction zone and eventually forms a galloping
detonation wave. The propagation velocity of this galloping wave is much higher than that
of the dying wave. Due to the structure of the formed induction zone, this galloping
detonation wave gets a velocity component toward the porous wall (Fig. 14(h)). At time
t=283 us, the galloping detonation hits the porous wall (Fig. 14 (i)) before it catches up
with the dying front wave. A careful observation of the pressure plots gives some idea
about the structure of the galloping detonation wave. The blast wave has a structure with
a shock wave in the outer shell and expansion waves in the inner core. The expansion
waves headed by a shock wave are moving toward the porous wall and front wave.
Therefore, when this galloping detonation hits the porous wall, then the reflection process
contains two effects: One is, due to the porosity of the wall surface, the reflection of the
incident shock as a weaker shock. Due to the trailing expansion waves, this reflected
shock penetrates into the expansion zone which weakens the shock. These two effects can
be seen in Figs. 14(i) to (I) and as a result the reflected shock becomes very weak.
Meanwhile, at t=287 us (Fig. 14(j)), the galloping detonation catches up with the dying
shock wave and re-establishes the detonation wave having two triple shocks. The other
stem of the galloping detonation wave still having strong expansion waves at its back is
moving toward the solid wall and hits it at t=294us (Fig. 15(a)). The shock wave
immediately gets reflected and is penectrating into the expansion zone as seen in Fig.
15(b). The reflection process ends with a resulting transverse shock and the re-established
detonation wave now is supported by the two transverse shocks indicated as #; and ¢, in
Fig. 15(c) at t=296.5 us. After a few reflections of these transverse shocks from walls, the
detonation wave develops into an irregular wave front shown in Fig. 13(a) at t=381us.
Without any further appearance of periodical galloping, the wave dies after t=450us. A
channel which supports more transverse waves is more susceptible to the galloping
detonation and hence detonation failure in a very wide channel due to porous wall is most
unlikely.
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Fig. 14. Cinematographic view of a galloping detonation (case of Fig. 13):
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A detonation wave with three triple shocks propagating in a solid-solid channel is
exposed to a solid-porous channel.

A dying detonation wave.

Generation of an unreacted gas pocket.

Gas pressure builds up due to the explosion of the isolated gas pocket.

Due to the blast wave, a concave peninsula-shape reaction front is accelerated to the
forward direction.

Explosion of unreacted gas in the peninsula and buildup of a very strong shock wave.
Amplification of the local explosion due to the generation of the shock wave.

The development of a reacting shock wave.

Interaction of the shock with the lower porous wall and simultaneous interaction between
the reacting shock and leading inert shock.

Formation of a triple shock and disappearance of the shock reflected from the porous
wall.

Completion of a double-headed detonation wave.
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Fig. 15. The instant of reflection from the
solid wall for a transverse wave in the
galloping detonation.
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6. Conclusions

A mathematical model to generate a detonation in a channel with a porous wall is
developed. This model is quite useful for studying the role of transverse waves on
detonation propagation. The following observations are made during the present study:

1. A stable detonation that travels at a speed lower than the C-J value can be
established in a chamber with porous walls.

2. Porous walls do not attenuate all the transverse waves simultaneously; instead they
weaken and absorb one by one in a queue. In other words porous walls increase the cell
size and reduce the number of cells. '

3. Due to the irregularity of the wave front, pockets of unburnt gas are formed
frequently, and their explosion can occur, giving a mechanism of detonation galloping. As
a result, a detonation in a porous chamber is fairly unpredictable.
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