Memoirs of the Faculty of Engineering, Nagoya University
Vol. 39, No. 2 (1987)

THERMOGASDYNAMICS OF
HYPERVELOCITY VEHICLE

Tosur FUJIWARA, Kazuuiro HORIE, K. V. REDDY
and Kazumi MASUDA

Department of Aeronautical Enginecring
(Received October 31, 1987)

Part 1L
TWO-DIMENSIONAL HYPERSONIC FLOWS
INCLUDING CHEMICAL REACTION

Tosur FUJIWARA, Kazuniro HORIE, and Kazuml MASUDA

Abstract

Two-dimensional hypersonic flows of the order of Mach number 25
are numerically solved for a blunt-body configuration using the Euler
equations. The utilized numerical fluid dynamics technique is the Beam-
Warming finite difference one, where a bow shock wave in front of the
blunt body is successfully captured in terms of several grid points,
along with a mixed flow shock layer consisting of supersonic and
subsonic regions separated by a sonic line. Starting from a simple set
of chemical reactions involved in the dissociation and ionization of
oxygen and nitrogen molecules, the numerical analysis proceeded to a
fairly complicated reaction system where a total of 17 reactions and 11
chemical species are included.

The results show that the Beam-Warming technique gives con-
vergence to extremely fast hypersonic steady flow problems, even if
there are complicated chemical reactions that might cause serious
stiffness difficulties. However, even the present less stiff flow fields
suffered consistent oscillations in the process of convergence to steady
solutions. The difficulties were controlled by adjusting the second-
order and fourth-order artificial viscosities and the local time step.

The acquired shapes of a bow shock wave and a sonic line showed
good agreements with existing theories and experimental results.

Introduction

The detached shock wave and downstream ultra-high-temperature flow around
a two-dimensional semicircle-straight-body configuration are solved applying the
Beam-Warming technique to the Euler equations. Since the incoming flow Mach
number is assumed 25.2, the Rankine-Hugoniot relations give the temperature ratio
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128, pressure ratio 750 and density ratio 6 across the normal portion of the shock
wave for r=1.4.

The purpose of the study is to incorporate a number of elementary chemical
reactions, including the chemical species N,, O,, N%, 0%, N, O, N+, O+, e, NO and NO™,
into a shock capturing technique (Beam-Warming) and to try to eliminate stiffness
(existence of multi time scales having different orders of magnitude) in the source
terms of the Euler equations.

In principle, the stiffness can be mitigated or in some cases completely elim-
inated by applying implicit schemes to handle source terms corresponding to
chemical reaction. Depending upon the extent of implicitness, a scheme can be
called fully implicit (the entire equations are solved implicitly), semi-implicit (only
the source terms are handled implicitly) or explicit (the equations are solved
entirely explicitly). A typical example of such distinctions is shown in the TVD
analyses of Yee.l> A different version of TVD, i. e. the explicit FCT technique®
is successfully applied to a number of chemically reacting flows, typically 2-di-
mensional nonsteady gaseous detonation problems.®

Another attempt to avoid the stiffness would be utilization of the steady-state
approximation or partial equilibrium to certain chemical species: A criterion to use
the steady-state approximation is the concentration of the species to be extremely
low throughout the calculation: this is easily detected by monitoring the signs of
the concentration and its rate of mass production (naturally, the concentration must
remain always positive from its physical character, while the stiffness often causes
the concentration negative).

Stiffness is challenged also by mixing several different methods; for example,
a finite difference technigue accompanied by a Fourier/Chebychev spectral method
where the source terms of chemical reaction are approximated using 4th-order
Runge-Kutta expressions.®

Out of numerous real gas effects, the present model accounts for (1) initially
3 and (ii) later 17 sets of elementary reactions, the rate constants of which are
acquired from each forward reaction rate and its associated equilibrium constant
as given functions of temperature in the temperature range under consideration.
The enthalpy and the gas constant are assumed to be weighted functions of con-
centrations only as a result of different molecular weights in the gas mixture, and
therefore the specific heat ratio 7 is not a constant.

In order to obtain a good stability and a rapid convergence to a steady solution,
the choice of second-order as well as fourth-order artificial viscosities and local
time is performed carefully as shown in a typical example:

Step Number Local Time Artificial Viscosities
™ (47) set £3 o £
0 ~ 2000 0.25 0.30 0.01 0.1333
2000 ~ 3000 0.5 0.30 0.01 0.1333
3000 ~ 3100 0.5 0.15 0.01 0.1333
3100 ~ 3200 0.5 0.10 0.01 0. 1333

After finding out a good combination of the parameters, we kept using nearly
identical parameters for different calculations. However, slow convergence or
occasionally divergence was observed conceivably due to the coupling between
stiffness and large shock thickness.
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Chapter 1. A Hypersonic Ideal Gas Flow around a Blunt Body'®

1. Flow Model and Fundamental Equations

The purpose of this chapter is to obtain the position and shape of a bow shock
wave and the subsequent shock layer, when an AOTV (Aero-assisted Orbital Transfer
Vehicle) is flying at an altitude about 70 km with a Mach number 25.2.8> The
AOTYV is now approximated by a two-dimensional blunt body consisting of a semi-
circle-straight-line combination.®’

The flow is assumed compressible, inviscid, ideal and chemically nonreacting.
Treating the gas as continuum flow (the Knudsen number is estimated 1072)17),
the fundamental equations are the Euler equations shown below :

#-Momentum ; %gq a%?-+a%gi: ~%%— @
y-Momentum ; Zf u g_z 27% = ~%% ©))
Energy %}é*‘ 9[(5;;)&1 N 8E(E;}}5)5] 0 4
Equation of State; »=pRT (%)

where 7 denotes the density, p the pressure, T the temperature, the total energy
— (. w? —
o=p(h+10") -5, (6)
7 the enthalpy per unit volume, and

wi=yu?-+po, D)

Here the following non-dimensionalization is introduced:

The velocity in x-direction; v=u/w.. ,
The velocity in y-direction; v=0/W.. ,
x-coordinate x=x/L ,
y-coordinate y=y/L ,
Temperature ; T=T/wk/c,),
Pressure ; p=p/(P.w2)
Energy; e=e/(pwk)
Mass density ; 0=0/P.. ,
Time; t=t/(L/w.)

Using such dimensionless quantities, the four differential equations (1) through (4)
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can be written in the following vector form:

oU , OF oG
5 ot 3y =0 )
o ou oV
ou pu+p ouv
U= F= G= 9
oV ouUY ovitp
e /, (e+pu/, (e+p)v

The equation of state (5) and the total energy (6) can also be non-dimensionalized
as

p=(G—1oT, 10)
e=p/(G—1)+pw?/2, a1

where the specific heat ratio 7=constant=1. 4.

2. Coordinate Transformation

A transformation is performed from a physical space (%, y) to a computational
coordinate (&, ) where & and » are a uniform-mesh orthogonal system. In general,
the transformation is given by the following equations:

§=% (%, ¥),
12)
n=n (%, ¥),
the differential transformation of which is given by
o) (25 (8 (. 0
ox ox ox || oz | |°® || %z
= = (13)
o || oo ||, , || 2
oy o0y 0y o7 7w 07
Thus, the transformation Jacobian is written as
J =80y~ (14)
On the other hand, the inverse transformation
=% (&, 1),
(15)

y=y (&, ),
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gives

0 dx 0y 0 0
50 132 ar ||ax | | * Y| 0w
o | ax oy || o P

0 ) Loy oy )\ ) | ey
and the Jacobian

],:xeyn—‘xnye.

The inverse matrix of Eq. (16) gives

x
0
3}/‘— —*x,, xg
from which the relation between the two Jacobians is obtained as

 YaXe— %Y. 1 1
]_qvelzve__

YaXe—X3Y: W—T
The combination of Egs. (13) and (16) gives

0 ~ 0
B Sz Mz Xe Yo o
o | |.

'5’}7 Sy Ty Xy Vo ’a%‘

from which it is obvious to derive the relation
[Ex nx][xe ye) {1 0}
& )%y 0 1

[Sz 7}.7:]_ 1 [ Va —yE]
£, My I\ —x, =

Thus the following relations hold:

and

éx:ny’ Sy:"‘"]xnv

7]_1:”"])’;, T]y:]xf.

Using Eq. (23), the differentiations are transformed as
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0 _ - 0 0 _ 0 0
0 - ,
Wzgyaa;-: Tny*z%“_]< Xz aaﬂ ‘l‘xeaa > (24)
As a result of using Eq. (24). the fundamental equations become of the form
oU aF oG
st T or Ty =0 (25)
where
U=]U,
F=y,F—x,G, (26)
G=x.G—y I

3. Difference Scheme

As a difference scheme, the following Beam-Warming technique is used:?

T 6AT a n a & 8
AU-1+8 or 407+ 1+ or 1+90
kS 2
g} e
where
Ur=U (ndr),
(28)

Az‘]n:f]nﬂ__(jn,

and ¢ and ¢ are arbitrary parameters related with accuracy. Using the Taylor
expansion of a difference term in Eq. (27)

AT =0 — 95] dr +% aaUZ 4T 04T —D,  (29)

Eq. (27) automatically holds for the order of accuracy (4c), while necessitating the
following condition for the order of accuracy (dz2):

1 CR U 1 920" 1 PRk
7(1+8> or? ._(@ oT? _78 o2 ) <3+_2__6) or? =0, (30)

Thus the Beam-Warming technique is of the second-order accuracy with respect to
time only when

0+—5—0=0, 31)
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Note in Eq. (34) that A and B are defined as
. oF 0(y,F—x,G
A= OB G _ j(y,4-1.B),
G  (—y.F+x.G) 32>
) — +x
B=2F= yf-laU ) J(—y.A+x.B).
In the present calculation, the selected parameters are
N 1
6=1, 8——2~_ (33)

The final Beam-Warming expression of the fundamental equation (25) reduces to
the following factorized form:

| (Mrr aAm Cgdr B p
{IT =TT j4
o AT BF‘” aG" R 0 n—1 - _1-_ 2.1 3
1+a< Tt ) a0 +0[ (s 0+ ) dr +as] @Y

To improve the convergence characters of the scheme (34), the following
artificial viscosities are added to the both-hand sides of Eq. (34):
(i) A second-order artificial viscosity to the implicit side;

—(RJ 14 ) 40",

(35)
(ii) Second- and fourth-order artificial viscosities to the explicit side®15:18
V(05411017 03] (6P AU — DAV AT, (36)
where the constants are defined as
eP =1, d7f (Vjs1s Ti» Tio1)s
e®=max (0, x,dr—e?),
o=] | yu—20| +avEFLE HT [ sv—yu| Favyitl, @37
7i=|Pi1—2P;+P; |/ | Pj1+2P;+P;_ 1y
while £ is given from the stability condition by
2=a(1+28)/4(1+9). (38)
A typical example on the present choice of the parameters is
i,=0.15, £,=0.01, a=0.4, (39)

Inclusion of the fourth-order artificial viscosity in the explicit side increased the
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thickness of the bow shock wave in front of a blunt body and yet supressed the
Gibbs phenomena on both sides of the shock wave and associated divergence of the
calculation.

As a time step of integration, a concept of local time step is introduced here,
since the present calculation aims at a steady solution$»15,16);

A1y = ATt (40)

Using this local time step, the coarse-grid region remote from the blunt body
showed a rapid convergence which improved the convergence character of the fine-
grid region, and eventually the step numbers to reach a final steady solution is
greatly reduced. In addition, the stability of calculation is enhanced as a whole.
The difference equation (34) containing the artificial viscosities in Egs. (35)
and (36) is a simultaneous algebraic equation with regard to the change of dependent
variables 4U. When the spatial differentials are given by second-order central

differences, the resulting equations become of the following simultaneous algebraic
form:

Bl C1 Uy Dl
A, B, C, U, D,

= i (41)

An—l 'Bn~1 Cn—l Up_1 Dn—l
A, B, U, D,

where the coefficient matrix is of a tri-diagonal form. After rewriting, we have
I B7i'C, Uy B1'D,

| (42)

An—l Bn—l Cn—l Upyoq Dn—l

A, B, U, D, ’

which, after defining C,'=C,B;~1, Dy'=D;B;™1, is reduced to
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I C; Uy Bi'D,
O B,—-A,C; C, U, D,
= (43)
An-l Bn»l Cnfl Uy Dn~1
A, B, i, D,
Defining the quantities
Ci=(B,—ALC;)'Cy,
(44)
D/;:(D/;“‘AkDé—l) (Bk‘Akcé—Q,
we finally reach the following matrix equation
I C; 78 Di
0.1 C; 0 U, D;
= (45)
‘,O -I C:’x~l Uy 1 Di’l~1
0
0 I iU, D, J,
from which we have
w+Crty=D; 1=k=m—1),
(46)

Un=2D},.

Using the above-mentioned technique, the &-direction and the 7-direction are solved
respectively; the obtained 40" gives the dependent variable vector U"*! at the

next time step (n+1):

Ut =Ur+ JAU™, (47)

4. Utilized Grids

A typical example of the grid system utilized in the calculation is shown in
Fig. 1. With regard to the grid generation, the following respects are taken into
account :



272 T. Fujiwara, K. Horie and K. Masuda

(i) Grid lines are formed algebraically; an 7 = constant line is an ellipse plus a
straight line, while a & = constant line is orthogonal to the 7 = constant lines.

(ii) An 7 = constant line is chosen to nearly agree with a bow shock wave; this is
because the boundary conditions are easy to impose in the downstream and in addi-
tion the location of the bow shock wave is more accurately determined.

(iii) More grid points are clustered in the regions where the flow is expected to
have higher gradients; in other words, near the body tip and the merging point of
ellipse and straight line.

(iv) Grids are also clustered near the body surface and the outflow boundary in
the calculated domain, because the extrapolation boundary conditions could cause
large errors, resulting in the occurrence of physically non-permissible conditions.

5. Initial Conditions

The flow conditions are very simple. A uniform flow is steadily flowing
around a two-dimensional blunt body at a Mach number 25. 2, corresponding to the
entry into the earth atmosphere at an altitude 70 km. According to the standard
atmosphere, the physical conditions at 70km are approximated as:

The density ; 0e=08.73x10% g/cm?,
the pressure; po=55,2 dyne/cm?, (43)
the temperature; 7" -—219.7 K,

Since we try to acquire a steady solution using the present nonsteady time-dependent
equations, the solution is reached when a flow started from an entirely uniform
condition showed a convergence to an unvarying flowfield after a certain number
of computational steps. Initially, a bow shock wave is formed at the very proximity
of a blunt body surface, due to the collision of an extremely high-Mach-number
flow at t=0. This bow shock wave develops and moves back to the upstream
direction to give an appropriate value to the shock standoff distance. However,
the bow shock wave goes too far from the body surface due to the inertial motion,
and therefore bounces back to the downstream direction. Such oscillation process
continues with its amplitude decaying rapidly, eventually vielding a steady state.
This is what we intend to perform in the present problem.

6. Boundary Conditions

In the present problem shown in Fig. 1, the boundaries to the calculation
domain consist of the following three regions:
(i) Inflow boundary :

Along an outermost 7 = constant line, the flow is considered always uniform.
(ii) Outflow boundary:

Since the flow is supersonic everywhere in this region due to the character of
our fundamental equations (Euler), the dependent variables are obtained by the
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extrapolation from the three upstream points.
(iii) On the body surface:
(iii-a) Velocity boundary condition.
The coordinate transformation gives the relation between the Cartesian veloci-
ties (#, v) and the velocities (&, #) in the transformed plane:

@ Yy =X (%
= . (49)
) — ¥ Xy v
The following condition obviously holds on the body surface:
9, =0, (50)

Thus, we have

Ji(—yu+x.2),=0,

(51)
V= (ye/xa)ul.
On the other hand, @, is derived from Eq. (49) as
dr=J1 (¥ 1t1—%,01), (52)
which is rewritten using Eq. (51) as
4= i* (:»fnxs—xnye)m:;‘_i. (53)
Thus we obtain
Uy =5% 4, (54
With regards to v, we obtain likewise
- J1 U1
Uy =2 (X . Yy—Y: %)V =1, 55
1y5(yvy)1y€ (55)
yielding
V=Y., (56)

Note here that the required #; can be calculated by the linear extrapolation from
the upper three points.
(iii-b) Pressure boundary condition.

Taking the inner product of the fundamental equations (34) and a vector N=
0, =y, %, 0), we obtain

37‘§6’§\87;

each term of which is evaluated as:
The first term;

N( oU | oF | aé):() 57)



274 T. Fujiwara, K. Horie and K. Masuda

N 00 _ 9 ew) . 9(] o)
N or Ve o =X 57
_ o J(=yutxv)] [ 0 ( 1 N, 9 (1.
= 87 T ] 140[ u—a:r*< 7—‘7]_7;> [ 'U—-a——;—(——]-[]y):l
o rea R R 58)
_ a(] 140] 17}) B -9 av 0 00 (
=SSP (w0 )

=0 (because 9=0),

The second term is rewritten as

NGBy ey P 90T i P

L
:(yeu~%-xev)_a~g—¥~“—)~+]”(—yspﬁ—a—%‘—-t—xspﬁ 8”)
03 0
~ye(yeT,P+ywzps)"“9‘76(xen}o”*‘xnpfs) (59)
=J“‘@~a—<€—_jﬁ@—+1'lpﬁ(—yeus+xsve)

’—(ysyn"‘xsxv)Pe'-(yeyen+xexsﬂ>P

The third term is again explicitly written as

e _ U ud—y.P)
an ¢ o7 ‘

)

o(J *ovd+x.P)
¢ an

x

o ‘ 0(J710D) | 71, a( . Ou ov
=( yeufxev)ﬁ—an +J pv( yeanerean)

+y. (¥ P+y.P)+x. (%, P+x.P;) (60)
1a
:]‘1@ma(]anpv> +T 00 (— Yty +%.0,)
+(xez+yez)Pv+(yenys+xevxe)P.

The sum of these three terms and the condition 9=0 yield

- (yeyn +xexv)Pe+ (x52+yez)Pﬂ - "‘]—11072("3)6”5‘}‘955776). (61)

The pressure on a solid boundary can be evaluated by solving a tridiagonal matrix
equation obtained from Eq.(61).

The density on a solid boundary can be determined by linearly extrapolating
from the three upper points.
(iii-c) Placing physical limits.

In order to prevent divergence or physically implausible situations to occur
during the initial stage of calculation, we have set both upper and lower limits
for a certain number of dependent variables, as shown below :
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Poup = 0 = Poy

Cosp =€ =2y, (62)
0= =Weups

where the limits (@), are the values for a Mach number 1.5 M.. The limits with

subscript 0 are the stagnation conditions evaluated by the isentropic relations

oot T5tar)

po:ﬁ(HJ—gLMZ)TT‘T, (63)

@o:ﬁo/(T'—l)a

and by the Rankine-Hugoniot relations across a shock (upstream x and downstream y)

p={er ) -5

05/0.= (r+DM2/L(r—1DM,>+2], (64
by/pe=[1+2r(M,*=1) 1/ +1).

7. Resulis and Discussions on Chemically Nonreacting Flows

A numerical analysis is performed for ideal flows around a blunt body illustrated
in Figs. 1 and 12 at an angle of attack zero, with an incoming flow Mach number
M.,=3~25.2. Shown below are the results for a Mach number 25.2 which cor-
responds to the orbital velocity of a low-altitude satellite and therefore is chosen
as a typical entry velocity of a spacecraft called AOTV (Aeroassisted Orbital
Transfer Vehicle). For reference we list both the jump conditions across a normal
shock wave as well as the stagnation conditions for the incoming flow Mach number
25.2:

ps/pw:7417 Po/pw:&l&
T,/T..=124, To/T=128, (65)
05/ 0e=5. 97, Po/00=0. 41,

It is noted that as a first step the flow is assumed ideal and nonreacting with
y=1.4 and therefore there is no real gas effect in the analysis in the present
chapter. The flow patterns are shown in Figs. 2 through 4, in terms of iso-pressure,
iso-Mach-number and iso-temperature lines. Convergence to a steady state is
reached at N=1600 steps, by adjusting a local time and the artificial viscosities
appearing in the right-hand-side of the Beam-Warming finite difference equation;
the utilized convergence criterion is a per-grid residue of p less than 1076.

As shown in the flow patterns, a typical bow shock wave is formed in front
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of a two-dimensional blunt body with a certain shock standoff distance. The shock
wave is normal and strongest at the stagnation region, and gradually weakens
thereafter eventually down to a Mach wave in the far wake region. However, the
thickness of the bow shock is already considerably large in the observed domain
where we should still be seeing a discontinuous shock. This shock spreading seems
to be unavoidable in the Beam-Warming scheme particularly when it is applied to
a hypersonic flow.

The reason is attributed to the use of artificial viscosities in the right-hand-
side of the Beam-Warming scheme. Due to an enormous jump across a shock wave
caused by a hypersonic flow Mach number, a shock wave is always accompanied
by strong Gibbs phenomena, generating oscillations during the process of converging
to a steady state, leading to divergence. Such oscillations can be suppressed by
introducing artificial viscosities of second and fourth orders; however, this in turn
causes the thickening of a shock wave unfortunately. Thus, a thick shock wave is
considered a tradeoff from stable convergence to a steady solution.

From Figs. 2 through 4, it is possible to know the shock standoff distance and
the location of a sonic line. The obtained shock standoff distance, shock shape and
sonic line location are compared with the values from other authors in Fig. 25.
The calculated shock wave for M.=25.2 (K;=0.15, K;=0.01) gives a good agree-
ment with the results obtained by Fuller and Belotserkovskii using a direct
method;®) the present M=25. 2 result is right between M..=10 and co. Note, how-
ever, that the shock location is defined as a M=1 locus out of a number of iso-
Mach-number lines within a shock wave.

The distributions of mass density, pressure and temperature along the stagna-
tion streamline are shown in Figs. 5 through 7. With regard to the peaks im-
mediately behind a bow shock wave, we can see a good agreement with the Rankine-
Hugoniot relation which is indicated by a horizontal line in each figure.!1®> However,
we can see the existence of Gibbs phenomena behind a shock wave, most notably in
the pressure profile in Fig. 6.

It has been realized after calculation that a finer grid clustered in the shock
wave region would have given a thinner shock wave and there is an accuracy problem
on the determination of mass density on the body surface; instead of using the
present linear extrapolation, a different method having higher order of accuracy
should be used.

Chapter 2. Chemically Reacting Flows
1. Introduction

Based on the previous ideal gas calculations, the analysis is upgraded to include
a set of elementary reactions corresponding to the dissociation of air molecules
(oxygen and nitrogen) and associated endothermicity. As is well known, the
realistic elementary reactions that are occurring in the high-temperaure shock
layer are categorized into dissociation, exchange reactions, associative ionization
and electron impact ionization;!?> a typical example of such a complicated com-
bination of high-temperature reactions associated with hypersonic entry into the
earth atmosphere is illustrated in Table 2. Out of these 47 different reactions,
only 8 reactions allowing O,;, N,, O and N are taken into account in the first
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Table 1. Set I of the chemical reactions used in the analysis, corresponding
to the dissociation of nitrogen and oxygen molecules, where the
influence of different collision partners is taken into account.

Chemical equilibrium Forward reaction
No. Chemical constant term rate term
;) reaction ACE ACE ACE ACE ACE ACF ACF ACF
(€3] @) @ “) ® ®:C; @:8; 3: Dy
Dissociation K
1 03=0+0M=N) 2.855 0.988 -6.181 -0.023 -0.001 0.8250E+20 -1.000 59500.0
2 0,=0+0(M=0) 2.85 0.988 -6.181 -0.023 -0.001 0.8250E+20 -1.000 59500.0
3 0;=0+0(M=N,) 2.855 0.988 -6.181 -0.023 -0.001 0.2750E+20 -1.000 59500.0
4 0,=0+0M=0;) 2.855 0.988 -6.181 -0.023 -0.001 0.2750E+20 -1.000 59500.0
5 Ng=N+NM=N) 1.858 -1.325 -9.856 -0.174 0.008 0.1110E+23 -1.600 113200.0
6 Ny=N+NM=0) 1.88 -1.325 -9.856 -0.174 0.008 0.1110E+23 -1.600 113200.0
7 Npy=N+NM=N;) 1.858 -1.325 -9.856 -0.174 0.008 0.3700E-+22 -1.600 113200.0
8 Ng=N+NM=0;) 1.858 -1.325 -9.856 -0.174 0.008 0.3700E-+22 -1.600 113200.0

phase of calculation. Such a simple reaction system, called Set I, is shown in
Table 1, while Set I is the most complicated one allowing 5 neutral species N3, O,,
NO, N, O and their positive ions, along with electron (total 11 species), defined in
Table 2. Set Il consists of 24 reactions, shown in Table 2 with superscript =,
eliminating nearly all the ion participating reactions. All the chemical data are
taken from Ref. 11.

2. Fundamental Equations of a Chemically Reacting Flow!3,17)

Since the conservation forms remain unchanged for momentum and energy
equations even in the presence of chemical reactions, only the equations of species
conservation need to be written:

(@Y, |, 9(puY,)
% ax oy
where Y, are the mass fraction of species ¢ and the only non-conservational term

W, indicates the rate of mass production of species i. The equation of state is
expressed as

Wl _w, (66)

- == _ R, =
Pi':piRiT:pi_M—‘i—Tr (67)

which are summed up with respect to ¢ to give
p=pRT, (68)
where the gas constant for a gas mixture is defined as

F:EOZ (Yi/Mi). <69>
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Table 2. Set I of the chemical reactions involved in the AOTV entry into the earth
atmosphere at a hypersonic speed, corresponding to the mechanism of
dissociation and ionization of air molecules, where a total of 47 elementary
reactions and 11 chemical species are considered.

In Set m, the elementary reactions with superscript # are chosen into
the calculation, corresponding to the elimination of all but one ion participat-
ing reactions.

No. CHEMICAL REACTION CHEMICAL EQUILIBRIUM CONSTANT TERM FORWARD REACTION RATE TERM

ACE(1) ACE(2) ACE(3) ACE(4) ACE(5) ACF(1) ACF(2) ACF(3)
ISSOCIATION

1% g2 o + 0 2.855 0.988 -6.182 -0.023 ~0.001 0.8250E+20

2 % g2 0 + 0 2.855 0.982 -6.121 ~0.,023 -0.001 0.8250E+20

3% o2 Q + 0 2,855 0.9828 -6.181 ~0.023 ~0.001 0.2750E+420

4 ¥ 02 0 + 0 2.855 0.¢982 -6.181 -0.023 ~0.001 0.2750E+420

5% 02 0 + 0 2.855 0.938 ~6.181 ~0.023 ~0.00% 0.2750E+20

6 02 0 + 0 2.855 0.983 ~6,182 -0.023 -0.001 0.2250E+20

7 02 o + 0 2.855 0.928 ~6.181 ~0.023 -0.001 0.8250E+20

8 02 0 + 0 2.855 0.982 -6.181 =-0.023 ~0.001 0.2750E+20

9 02 0 + 0 2.855 0.988 -6.181 =0.023 ~0.001 0.2750E+20
10 ¥ 02 ] + 0 2,855 0.938 -6,181 -0.023 -0.001 0.,2750E+20
11 % 02 0 + 0 2.855 - 0.938 ~6.181 ~0.023 =0.001 0.1320E+23
2% K2 i) + N 1.852 -1.3225 ~9.856 -0.174 0.008 0.1110E+23
13* N2 N + N 1.858 -1.325 ~9.856 ~0.174 0.008 0,1110E+23
16 % N2 N + N 1.858 ~1.325 -9.856 -0.174 0.008 0.3700E+22
15 ¥ N2 N + N 2.858 ~1.325 -9.856 -0.174 0.008 0.3700E+22
16* H2 N + K 1.858 ~1.325 -9.856 ~0.174 0.008 0,3700E+22
17 N2 N + N 1.858 -1.325 ~9.8356 —0.174 0.008 0.1210E+23
18 N2 N + N 1.8%8 -1.32% ~9.856 -0.174 0.008 0,12108+23 -1.600 113200.0
19 N2 N + N 1.858 -1.325 -2.856 ~0.,174 0.008 0.3700E422 ~1.600 113200.0
20 N2 N + N 1.858 ~1.325 -9,856 ~0.174 0.003 0.3700E422 -1.600 113200.0
21 % w2 H + N 1.858 -1.325 ~9.856 ~0.174 0.003 0,.3700E+22 ~1.600 113200.0
2%y N + N 1.858 ~1.325 -9.856 ~0.174 0.003 0,1110E+25 ~%.600 113200,0
23% qo N + 0 0.792 ~0.492 -6,761 ~0.091 0.004 0.4600E+18 -0.500 75500.0
24 % Ko N + 0 0.792 -0.492 6,761 -0.091 0.004 0,466Q00E+18 ~0.500 75500.0
25 ¥ no N + 0 0.792 ~0.492 ~6.761 ~-0,091 0.004 0.,2300E+28 ~0.500 75500.0
26 O + 0 0.792 -0.692 -6,761 -0.09% 0.006 0.2300E+18 -0.500 T5500.0
27 HO N + 0 4,792 ~0.4692 ~6,761 ~0,091 0,004 0.2300E+13 -0.500 75500.0
28 Ko N + 0 0.792 ~0.692 -6,761 =0,091 0.004 0.6600E+18 ~0.500 75500.0
29 HO N + 0 0.792 -0.692 ~6,761 ~0.091 0.006 0.4600E+18 ~0.500 75500.0
30 NO N + 0 0.792 -0.492 ~6.761 ~0,091 0.004 0.2300E+18 -0.5¢0 75500.0
31 NO N + 0 (M= 02+) 0,792 -0.492 6,761 ~0.091 0.004 0.2300E+18 ~0.500 75500.0
32 % Ko N + 0 (M = HOH) 0.792 ~0.492 ~6.761 -0.091 0.004 0,2300E+18 ~0.500 75500.0
33 % N0 = N + 0 (M =E-) 0.792 -0.492 ~6.761 -0.091 0.004 0.7360E+20 -0.500 75500.0

EXCHANGE REACTIONS
36 % NO + 0 =N + 02 ~2.063 -1.480 ~0.580 -0.114 0,005 0.2610E+09 1.290 19220.0
KXo + N2 =N + NO 1.066 -0.833 ~3.095% -0.084 0.004 0.3180E+14 0,100 37700.0
36 [} + 02+ = 02 + 0+ -0.276 0.038 -2.180 0.055 ~0.003 0,6850E+14 -0.520 18600.0
37 N2 + N+ = N + N2+ 0.307 ~1,076 -0.878 -0.004 -0.00% 0.9850E+13 -0.180 12100.0
38 0 + R0+ = HO  + O+ 0.143 ~1.011 -4.,121 -0.132 ¢.006 0.2750E+14 0.010 510008.0
39 N2 + 0+ =0 + N2+ 2.979 ¢.332 -3.237 0.168 ~0.009 Q.6330E+16 ~0.210 22200.¢
40 N + HO+ = NO 4+ N+ 2.821 2.4648 ~-6.48% 0.040 ~0.002 0.2210E+16 -0.020 61100.0
41 o2 + NO+ = NO + 02+ G624 ~1.09¢ ~1.961 -0.187 0.009 0.1030E+17 =0.170 32400.0
42 NO+ + N = N2+ + 0 2.061 ©.204 -4.,263 0.119 ~-0.606 0.1700E+14 0.400 35500.0

ASSOCIATIVE IONIZATION
3% 0 + N = NO+ + E- ~7.053 -0.532 -4, 429 0.150 -0.007 0.1530E+12 -0.370 22000.0
44 ] + 0 = 02+ + E- ~-8.692 ~3.110 ~6.950 ~0.151 t0.007 0.3850E+12 0.490 80600.0
45 R + N = N2+ + E- ~-4,992 -0.328 -2.693 0.269 =0.013 0.1790E+12 ©.770 67500.0

ELECTRON IMPACT IONIZATION
46 0 = Q0+ 4 E-~ -6,113 -2.035 =-15,312 ~0.073 0.004 0.3900E+3¢ ~3.720 158500.0
47 N = ¥+ 4 E- ~3.64% -0.577 ~17.671 0.099 -0.005 C.2500E+35 -3.820 162600.0
1 0.0558EC

The fundamental equations are non-dimensionalized by introducing the following
dimensionless quantities:

U=u/w., V=0/W.,  p=p/p. W,
x=x/L, y=y/L, T=T/(wi/R.),
R=R/R., C,=C,/R., W,=W,/(@..w../L), (70)
e=e/ptk, 0=p/bw t=t/(L/w.),
h=h/w2, M, (molecular weight)=H,/M,,,. .
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where M., .. = molecular weight of incoming uniform flow, and R.=gas constant
of incoming uniform flow.

The fundamental equations are rewritten in the following non-dimensional
vector form:

oU | oF |, oG
+ =W 71
or  ox 0y ’ 7L
where the each vector has seven components including four mass densities in the
present case, as shown below:

Oy Pt Oxv Wy
o Poll Po¥ Wa
O, Oyl Ot Wy,
U=l po. F=| pou G=| po,¥ W=\ w,, (72)
ou pu*-+p puLv 0
ov puv ov®+ p 0
e /s (e+p)u /, (e+pmv /, 0 ;
and the equation of state is expressed as
p=pRT, (73)
After the coordinate transformation, Eq. (72) is rewritten as
055y @
where the following quantities are defined:
U=]"U,
F=y,F—x,G,
- (75)
G=x.G—y.F,
W=JW,

3. Chemical Reactions

As explained in Section 1, the adopted chemical reactions are of three sets
(Set I, I and Il in Tables 1 and 2). In Set I oniy the dissociation of molecular
oxygen and nitrogen

N,+M = N+N+M,
0,+M = O+0+M,

(76)
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where the third body M is either of the four existing species N, O, N and O.
The rate constant of the forward reaction in Eq. (76-1) is assumed to have a form

k;;=C;T%exp(—D;/T) in mole-cm-sec-K system. )

The rate constant of the reverse reaction in Eq. (76-1) is expressed in terms of
the concentration equilibrium constant of the reaction and the forward rate constant
as

k.j=ksi/K; (78)
where the equilibrium constant K is a function of the temperature only;
K;=exp(As;+ Ay InZ + Ay, Z + Ay Z2+ Ag,Z%), Z=10000/T.  (79)

This equilibrium constant for the reaction (76-1) can easily be constructed by
using the species equilibrium constants tabulated in JANAF Tables. The constants
appearing in Eqs. (76) and (79) are listed in Tables 1 and 2.1 Thus, the rate of
molar production can be expressed as

d[N]
dt

:2<kfm[Nz:]_ kr‘m[sz) EMmj’

ALP) — — (TN~ W NIDIMLT, .

d[O]

=2(kn[O,]— k. [OTH[M,],

A0 (h[0,]~ kA [OTHIM.],

where /=1~4 and m=5~8 with respect to the reaction in Table 1.

4. Beam-Warming Difference Scheme for a Chemically Reacting Gas

Applying the Beam-Warming scheme to the fundamental equations (74), we
obtain

AU"— ﬂ( AF)”-}— ( AG) +AW™, (81)
or 0%
Thus, the following difference scheme is reached by treating the source terms
explicitly :

‘n__@A'T i___ i\ n __@____ AN\ n irn
40 “—"1+a[aé( 4P)" = (—46) +AW]

dr 0 __"n;i_”n irn 0 n-1
s T (7O FW 4y 40
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+O[(a-}2~—a)472+473]. 82)
We use here the Taylor expansion given by
AP = ( g’;) A0 +0 (4r?) = A" 40" -0 (472,
An aG n Y13 n
46 ( aU) A0+ 0 (4r?) =B 40"+ 0 (47, (83)
A= @Vg) 40"+ 0 (47%) =C" 40"+ 0 (49,

where the matrices 4, B and C are defined as

. oF 0
A= T:]W(yﬂF_xﬂG>:]<yﬂA—x’lB>7

U
590G 12 o p Gy J(—y Atx.B 84
aU aU (—yE X )”" (*“ys TXe )» ( )
) aW oW
C=%5 /a0 7 (W) ==,

the details of which are given in Appendix A.
Using Eq. (83), we acquire a difference scheme

TE S T

Ao, d
= 1+5[asFTan

Py

R S
" }‘Lwa (85)

+0[ (65 —3)dr*+4r°],

which can be factorized into the final convenient form:

{I—}- gdr [ aA" ——LC”]?{{ . 84T [@B" 1 énJ}AUVL

Q:}x

T+l o7 2 1 2

+oL oy 2
140 [ aap*n aGn ]

+O[<0~-§#a)4~rz+ms]

With regard to the artificial viscosities, Eqgs. (35) through (39) are used as
well. The same expression for a local time step (40) is also used; however, the
magnitude of the time step is considerably reduced to overcome the stiffness

appearing in chemically reacting flows. 47...=0.25~1.0 is chosen in the present
calculation instead of 1.0.

407 (86)
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5. Physico-Chemical Considerations

Since the dependent variable in the energy equation is the energy e in the
present formulation, the temperature, the most important physical quantity in a
chemically reacting flow, has to be calculated through the process of sulving
algebraic equations. From the definition of the energy e, we have

N wZ
et p=0] DY (CuT+AN+2], (87
where the assumption

h,=C,,T+h? (88)

is utilized. h{ denotes the enthalpy of formation of species i. Since the dependent
variables ¢, o, w and Y, are solved, the remaining unknowns turn out to be p and
T only, whereas they are related with each other through the equation of state
(73). Thus, the final explicit form for the temperature is given as

T=[e—o( v +20) | /o] £7.CoR), (89)

The utilized grid system is changed from Fig. 1 to Fig. 12.

The initial conditions for a chemically reacting flow is unchanged except for
the conditions on the species concentrations. The mass fractions of each species
are set in an incoming flow to

V,=0, Y,=0, ¥,,=0.7596, ¥, =0.2404 (90)

With regard to the boundary conditions on species concentrations at the exit
boundary of the calculation domain, an analysis of characteristics allows linear ex-
trapolation. In order to minimize the error, the grids are clustered in the vicinity
of the exit plane, as indicated in Fig. 12. On the other hand, the species concent-
rations on the wall boundary are specified by the non-catalytic wall boundary
condition. Since we are based upon the Euler equations, there is no effect of
species diffusion onto the wall boundary. In such a situation, the postulate of no
heterogeneous chemical reaction on the wall gives zero gradient on the concentration
profile of each species. Thus, the value on the wall is set equal to the upper one.

6. Resulis and Discussions on Chemically Reacting Flows

The first phase of analysis on chemically reacting flows is performed using
Set I chemical reactions shown in Table 1. The obtained results are shown partly
in the form of distribution along the stagnation streamline in the shock layer
behind a bow shock wave, as shown in Figs. 8 through 11. In fact, the same reaction
mechanism Set I is used in extending the computational run from N=3000 to N=
3200, while the numerical parameters 4z... and K, are altered after N=3000. As
illustrated in Fig. 21, the per-grid density residue decreases down to less than 10-7
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at N=3000 when we maintain the same parameters. Figs. 8§ through 11 are at this
instant of good convergence.

In order to decrease the thickness of a bow shock wave the artificial viscosity
K, is lowered from 0.15 to 0.10 at N=3000 steps, when a sudden jump of the
residue is observed in Fig. 21. After a gradual decrease, the residue again inCreases
by the use of a longer local time at N=3100, followed by the decrease less then
105 at N=3200. Figs. 13 through 20 are at N=3200.

Comparing Figs. 8~11 to each other, we can notice that the chemical reactions
greatly change the structure of the shock layer: (i) The shock standoff distance is
reduced to about 3/5 of the ideal gas case, as shown in the figures and Fig. 25.
(ii) The pressure is seen to be slightly altered, if we compare between Figs. 6 and
9. (iii) In contrast, the density is greatly increased in Fig. 8, while the temperature
is much lower than the Rankine-Hugoniot value; this is a result of the equation of
state, because the pressure is nearly unchanged as shown in Fig. 9. Why the
pressure is unchanged can be explained by the position of a bow shock wave; the
shock wave position is determined by the force balance in the shock layer, retaining
the pressure at the same leve! while adjusting the shock standoff distance. On the
other hand, the temperature is controlled by the endothermic dissociation of oxygen
and nitrogen molecules. Due to the extended thickness of a bow shock caused by
the essential character of the Beam-Warming technique and a higher secod-order
artificial viscosity K,=0.15, the present shock capturing technique allows chemical
reactions to proceed within the otherwise infinitesimally thin shock wave. In other
words, the Rankine-Hugoniot relation is not maintained, as seen in Fig. 10, the
temperature peak being nearly 1/2 of the R-H value. The doubled density is ex-
plained by applying this tendency to the equation of state. The direct effects of
chemical reaction are seen in the concentration profile of each species shown in
Fig. 11. Oxygen dissociation has completed prior to the arrival at the body surtace,
and interestingly the mass fraction of equilibrium atomic oxygen remains exactly
at the same level as the level of the incoming molecular oxygen, indicating no
significant influence of artificial diffusion. Nitrogen dissociation starts later than
oxygen and is incomplete even upon arrival at the body surface. This implies that
the influence of catalytic recombination of atomic species on the body surface
would be overestimated if we assume a fully dissociated flow in the shock layer at
the present flight Mach number range M..=25.2.

The calculated results will be altered by increasing the local time and reducing
the second-order artificial viscosity K,. The results at N=3200 are shown in Figs.
13~20, where the thickness of a bow shock is hopefully reduced due to a lower
artificial viscosity. As typically seen in the distributions along the stagnation
streamline in the shock layer of a blunt body, shown in Figs. 17~20, the thickness
of a bow shock wave is certainly reduced, leading to a higher peak in the tem-
perature distribution. Chemistry, however, is not significantly altered, giving the

same species concentrations on the body surface (stagnation point), as seen in Fig.
20.

The second-phase analysis of a chemically reacting flow is done using Set Il
chemical reactions (full mechanism) listed in Table 2. Although the calculation is
incomplete due to (i) the stiffness caused by the participation of 47 elementary
reactions and 11 chemical species, and (ii) a large block tri-diagonal matrix consisting
of 14 dependent variables, half-way results are given in Figs. 22 and 23. In order
to overcome strong oscillations encountered in the initial phase of calculation, the
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second-order artificial viscosity K;=0.25 is used. It is noticed, however, that the
calculation is unable to resume after about N=85, due to an instability conceivably
caused by the stiffness. A good remedy would be to use an implicit expression to
the source terms W, instead of the present explicit form, along with more cluster-
ing in grids. Nevertheless, a global behavior is close to reality, because oxygen
dissociation is completed and in a quantitatively accurate equilibrium state, while
nitrogen dissociation is incomplete as pointed out in the case of using Set 1.

The final phase of the analysis is performed by using Set Il in Table 2 as a
reaction mechanism, while the same artificial viscosity K,=0.25 is used. In Set I
all the elementary reactions except one are among neutral species, and therefore
the chemical system is simplified including 7 species and 24 reactions. Stiffness is
fairly reduced, allowing more stable calculation. A typical halfway result (N=
100) is shown in Fig. 24, where the mass fraction distribution of 7 species along
the stagnation streamline in the shock layer is plotted in a logarithmic scale.
Since electron mass is too small, its distribution does not show up in the figure.
With regard to the dissociation of molecular oxygen and nitrogen, the behavior is
not essentially altered from the mechanisms in Set 1 or Il

7. Conclusions

A chemically reacting hypersonic flow can be handled by the Beam-Warming
scheme with its explicit source terms consisting only of chemical reactions. Using
3 different mechanisms for the dissociation of oxygen and nitrogen molecules and
simultaneous high-temperature reactions up to 47 in numer, the fundamental
equations consisting of maximum 14 dependent variables are solved in a conventional
method of inverting block-tridiagonal matrices. Although stiffness problems are
coupled with temporal oscillations of physical properties inherent in the Beam-
Warming scheme, it is found out that the essential difficulties can be overcome by
adjusting the artificial viscosities appearing in the explicit side of the Beam-Warm-
scheme. If the source terms be handled implicitly, the stiff character of the
problem would have been far more improved, although instead more complicated
matrices would necessitate a longer run time. However, the encountered stiffness
would not have been as bad as the one in an exothermic reacting hypersonic flow
like a reacting flow in a SCRAMJET (Supersonic Combustion Ramjet) engine; in
an exothermic chemical process, in principle, there exist multi characteristic times.

One difficulty is a thick shock wave captured by the Beam-Warming scheme
which allows chemical reaction to proceed within the otherwise infinitesimally thin
width. The temperature immediately behind the shock wave is significantly lowered
by this effect, conceivably changing correct characters of chemical reaction. This
phenomenon, caused by the artificial viscosities that are introduced for the purpose
of maintaining numerical stabilities, needs to be eliminated in the future calculations.
Possible remedies are (i) grid clustering at any locations of shock wave (solution
adaptive grid), (ii) a combination of shock fitting (this is also a kind of solution
adaptive gridding) and the Beam-Warming scheme, and (iii) implicit source terms.
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Appendix 4

The matrices A and B defined in Eq. (32) are derived here. We define the
following three quantities m, » and p:

m=pu,

n=p0,
p=G—1)(e—gow?) (90)

= =1 fe— g (mr 9],

from which we obtain

,8_2—— 7’"’1 2.1 12
ap = 2P2 (m N ),
op _ _r—1
e m, 91
op _  r—1
E
0p _
B¢~ 71
Thus, we reach the final explicit forms:
0 1 0 0
S bl QPN et B B—nu —G—Du, r—-1
2 2
A=9F _
oU —uv v u 0
— I8 4 D o), L& 124 Gui+ot), —G—Dun, u

92)
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0 0 1 0

—uv v u 0

_0G _|3—r 2, 71, e (r— — —
B= U Ve G—Du @B=7rv r—1
T4 G=Do@ 0", —¢—Duv, LI L@un),

93)

The matrices defined in Eq. (84) can be explicitly derived. In the process of
derivation, we first calculate the following quantities:

alo i afol apz —_
d0;  op; T 00; T =1
(94)
0pite) _,, 00:  , Ou _, 0o, —o 2
oo, "op, do; 8@; ‘o
[~Ya  G=9)
= | (95)
la=7) G=7),
d(mu+tp) . u , 0p _ m*+n® .. Cy T
T o el G
= —w+G(E+K),
2
G=r—1, E=E0 b, K =CT, (96)
(o) 0¥ m) Y, 1 9, 1 8p)\_
om ~ om =Yitm om ;=Y er(p om p? 8m>ﬂyi’ 7
SOAD) B B gy (r-Du=(2-G)u, 98)
o(mu-+p)  0p _ . L
an - an - (7 1)7)" GU, (99)

ol(etpnu] _ 3(e+p>
api + <e B p) pz

(N[ MEERE C, T §
Db G ) e

—uG(E+K,) — u< +ﬁ%;2_2 yn 2_)

:uG(E+Ki>~u(k+_--—m22';2”2 )
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_ (g mP+n’
_u[G(E+Ki> (hTT)] (100)
ol le+pul _, | ou , , 0(etp) _eth ..
om =(e+5) om U om 0 w*(r—=1)
(101)
=k+é—(uz+vz)—u2G:—E+(u2+7)2)—u2G,
ol (e+pul _ , | ou ole+p) . an.
g =(e+p) 5 +u TR u(r—1v=—Guv, (102)
OLEDU] (o4 p) 0% 402D —yu(r—1) = (G+Dw,  (103)
ow; _
o, =0, (104)
Thus, we reach the final forms of 4, B and C:
_OF
oU
uw(1-Y,) ) SR Y, 0 0
—uY, u(1=Y,) veeeee Y, 0 0
—u?+G(E+K,) 2—Gu —Gov G
—uv b U 0
u[G(E+K1)—(k+ m“g’“)] o —E—u?G (4207, —Guw, A+Gu
20 ,
(105)
oG
oU
v(1-Y)) —0Y e 0 Y, 0
—’Z)YZ v(l_.Y2> ......... 0 YZ 0
— v v % 0
—v2+G(E+K,) e —Gy 2—-G)v G
v[G(E+K1)—<Iz+—7—”—22l;2ﬂiﬂ o —Guv, —E+ (u?+0%) —0°G, (1 +G)v

(106)
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0 0 - 0
0 0 . 0
oW :

C=%u = =
0 0 ceeenernnnns 0
0 0 - 0
0 0 cerereennnns 0) a107)
Appendix B

The source terms of chemical reaction, the rate of mass production of each
species, can be expressed for the reaction mechanism Set I as in the following:

A =2k (NI B NI Mo (B [NOT— r INTODIM, ]
s [NOTLOT— g INICO, T+ Apas[OTIN; 1= s [NOTIN
s NN I oo INTING T s NTNO T+ o [NOTIN'
ksl NOTIINT o No* O]~ s OJIN T+ Ay io[NO* I
~2(knus LN~ ryio Ny JLe D) = (s NI= [N T DleT,
(108)
L= st IN NI s [NTIN 4 By INTNO* T~ £y, o INOTIN]
o+ (ks NJ= ks N“JLe D) (e (109)
D] 2k, L0,1— R LOTIMI+ U NOT— i, INTODIM,
A3 LNOJLOT+ B LNILO, 1~ Epss[OJN, 1+ Frsss[NOTIN
~kpas[OJINO™ 1+ Epygs[NOTLO* T4+ Ryso [ N; L0 Iy 5o[OTN, ]
R ulNO TN~ By s Ny TO1~ Ryl 0170, 7T+ B 0,10
~ i ia[OJINT+ Bryis[NO* I 12 ([ OT — s [0, T D)
— (ke[ O] ki 0*ILe DeT, 110)
O] k1sOTC0, ]~ Fss[ 0,70 T+ o[ OTNO™ 1~ s [O*IINO]

dt
— k3ol N JLO* 4 &1y3l OILN, "I+ (R46[ O] — &40 O JLe~ D],
11D
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d[%j: kf’s 7[N23[N+] - kraS?[N][NZ+] + kfiSQ[N.?][O%] - krﬁg[o][N;j
+ kf,42[NO+][N] - kr742[N+][NO] + kfwisEN]Z" kr’45[N2+][e—]’

(112)
AN ] (BN T By N M T — s [OTTN, I+ rasNOTEN]
A ENG TN 1 By ENTING T o [NL L0+ Bysa[OTTN, T,
(113)
ANOT_ (_,, " NOT+ p NTODIM, ]~ Ese LNOTLOT+ 1,5 [NTCO,]

dt
+ k7,35 OTIN, =k 55 NOJIN I+ & 1,5 OTNO* ] — k5, LO"JLINO]
+ ko [NIINO™ ] =&y o [INOIIN* ]+ k1, [O, [LNO™ ]
—kna NOJLO, ", (114)

O] = ([0, 1 s LOTI M+ yys [NOTLOT ks, [0, ]IN]
3o 01005 T = Rrssi 07 T[0T = ks [0, TNO*]
+kr141[NO][OZ+]’ (115)

ALNO ] — kool OTINO* T Fss NOTO* I s [NIINO*]

+ ko[ NOJIN*J =k, i[O, INO* ]+ £, [NOJLO, "]
— ks NOTIINT+ R, ol No*JLO T+ K, LOJINT = &1, s [NO 7,
(116)

L9 ] — e[ OTL0; T+ Rryse[ 0,100 T+ s [0, TINO*

i[O3 IINO 1+ e[0T — i[O, e, ain
L] — Ry iol OTNT = By io[ NO* I e T+ s [012 — Eryis 0y T

lepis TN T sl Ny I I+ (ool 01— Brnual O* Je DLe]

+ (B [N]— k., [NTJe"D[e],
where  [=1~11, m=12~22, n=23~33, (118)
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Fig. 1. (a) The algebraic grid utilized to solve an ideal flow at M«=25.2 where there
is no chemical reaction.
(b) A detailed distribution of grid points (total 129x3l1).
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Fig. 2. The pressure distribution in an ideal hypersonic flow of
M:=25.2 around a blunt body at angle of attack zero.
Convergence criterion is that the sum of the residues
of all the dependent variables, per grid point, decreases
below 10-6, which is realized at N=1600 steps.
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Fig. 3. The Mach number distribution in an ideal hypersonic

flow at Mo.=25. 2.
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Fig. 4. Iso-temperature lines in an ideal hypersonic flow at
Meo=25. 2.
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Fig. 5. The density distribution along the stagnation streamline in
the shock layer in front of a blunt body at angle of attack
zero and Mw=25.2, where no chemical reactions are taken
into consideration and the gas is assumed ideal. The Rankine-
Hugoniot relation (a horizontal solid line) is held correctly,
while a Gibbs phenomenon is observed immediately behind
the shock wave, due to a low artificial viscosity.
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The temperature distribution along the stagnation
streamline in the shock layer of an ideal gas.
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Fig. 8. The density distribution along the stagnation streamline in the shock layer at
Maw=25.2, where the chemical reaction Set I shown in Table 1 is utilized. It is
noticed that the density greatly increases while the shock standoff distance is
remarkably reduced by the dissociation of oxygen and nitrogen molecules. At
time step N=3000 the residual decreased down to 10-7-35, showing a rapid
convergence, conceivably due to a large artificial viscosity K;=0.30 compared
with the other cases.
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Fig. 9. The pressure distribution along the stagnation streamline in the shock layer
for the chemical reactions in Set I. Considerable deviation from the Rankine-
Hugoniot relation (a horizontal solid line) is caused by a thick bow shock wave
as a resulti of the Beam-Warming technique; chemical reacton can proceed
within the otherwise infinitesimally thin inert shock wave.
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temperature distribution along the stagnation streamline in the shock
Because of the dissociating en-

dothermic chemical reaction within the thick bow shock wave inherent in the
Beam-Warming scheme, the temperature is greatly reduced from the Rankine-

Hugoniot relation.

The shock wave becomes thicker due to a high second-

order artificial viscosity K;=0. 30.
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concentration distribution of each chemical species along the stagnation
Oxygen dissociation has

reached equilibrium in the shock layer while nitrogen is still chemically non-
equilibrium. Measuring from the body surface 0. 00, the shock standoff distance

non-
with

dimensionalized by the radius of the blunt body is 0.16, in good agreement
existing experimental or calculated results.
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. A grid system utilized for chem-
ically reacting flows where the
chemical reactions in Set I or in
Set I are considered. Although
the grid number is held identical
with the case in Fig. 1 (31x129),
the clustering is clearly seen dif-
ferent.
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Fig. 13. Overall pressure distribution for a chemically reacting flow using Set I around
2 blunt body with angle of attack zero at Me.=25.2. Convergence criterion
10-5-316 is realized at N=3200 steps. In contrast with the case shown in Figs.
8~11, a smaller artificial viscosity K;=0.15 is used to yield, in principle, a
thinner bow shock and an increased Gibbs phenomenon.



208 T. Fujiwara, K. Horie and K. Masuda

[50-MACH LINE GRID25A
GRID OATA
LL

29

1
Mt 31

WF1.80
RB 0.50

MACH NUMBER 25.2

CALCULATIGON
NSTEP 3200
OMEGA 0.13333
T min. 0.02259
T ref. 0.50000
ERROR  -5.316

Fig. 14. Mach number distribution for a chemically reacting
flow using Set I and K,=0. 15.
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Fig. 15. Density distribution for a chemically reacting flow
using Set I and K;=0. 15.
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Temperature distribution for a chemically reacting flow
using Set I and Kp=0.15.
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Fig. 17.

The density distribution along the stagnation streamline
for a chemically reacting flow using Set I and Ky=0.15.
The deviation from the Rankine-Hugoniot relation is
large due to the chemical reaction within a bow shock
wave. However, because of a thinner shock wave
caused by a lower artificial viscosity K;=0. 15, the value
immediately behind the shock is seen slightly closer to
the Rankine-Hugoniot relation (compared with Fig. 8).
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Fig. 18. The pressure distribution along the stagnation streamline for
Set I and K3=0.15. Due to
the lower artificial viscosity a considerable Gibbs phenomenon
is seen immediately behind a bow shock wave.
from the Rankine-Hugoniot relation is much smaller compared
with the density in Fig. 17 and the temperature in Fig. 19.
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Fig. 19. The temperature distribution along the stagnation streamline
for a chemically reacting flow using Set I and K;=0.15.
Compared with Fig. 10, the deviation from the Rankine-Hugoniot
relation is mitigated due to the obvious sharpness of a bow
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Fig. 20. The distribution of chemical species along the stagnation
streamline for a chemically reacting flow using Set I and
Ky=0.15. Except for the thickness of a bow shock wave,
there is no significant difference from Fig. 11
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Fig. 21. The temporal behavior of the residue of the continuity equation during the
solution process of a case (chemical reaction Set I and K3=0.15). Both the
local time and the second-order artificial viscosity were changed during a
case for the purpose of reducing the thickness of a bow shock. As seen in
the behavior, a sudden rise of error is caused by the reduction of artificial
viscosity and by the increase of time step, in particular, at Regime K.
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Fig. 22. The distribution of chemical species along the stagnation streamline for
a reacting flow using Set I (47 elementary reactions) and K,=0.25. The
results at N=85 steps yet to converge. Serious stiffness is encountered.
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Fig. 24. The concentration distribution of chemical species along the stagnation
streamline for a chemically reacting flow using Set 1 (only the reactions
with superscript % in Table 2) and K;=0.25. The results are at N=100
yet to converge. Stiffness problem is mitigated due to the elimination of
a number of ion participating elementary reactions.
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A HYBRID TECHNIQUE FOR
HYPERVELOCITY FLOWS
AROUND A RE-ENTRY VEHICLE
WITH REAL GAS EFFECTS

K. V. REDDY and TosHl FUJIWARA

Abstract

A computational procedure which is capable of determining the
three-dimensional flowfield surrounding a reentry body traveling at
hypersonic velocity in a real gas medium is presented. The strong
peripheral shock treated as sharp discontinuity is automatically generated
as part of the solution. The governing equations in conservational law
form are solved using an implicit finite-difference scheme between the
peripheral shock and the body, using a floating mesh system. Resulting
two-dimensional as well as three-dimensional flowfields about a typical
blunt-nosed reentry body are illustrated for various hypersonic Mach
numbers. The differences between perfect gas and real gas are discussed.

1. Introduction

The flowfields around a vehicle re-entering into atmosphere are characterized
by a peripheral bow shock, multiple internal shocks, expansion waves and slip
surfaces. Because of the size of the vehicle and the low temperature and high
velocity freestream requirements, the flow cannot be easily simulated by current
ground based facilities. Hence numerical computation of such flowfields is of con-
siderable interest to the vehicle designer. There are at least two numerical
approaches for calculating flows with discontinuities in flow variables. In one, flow
discontinuities are treated separately and independently by applying appropriate
Rankine-Hugoniot relations or slip surface conditions. Although it is conceptually
possible to treat all the shock waves and slip surfaces as sharp discontinuities,
the method would involve complex logics and would be particularly difficult to setup
for automatic computation. The other procedure which uses shock capturing
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techniques is inherently capable of predicting the location and strength of all the
shocks without explicit use of any shock fitting procedures. However, the shocks
captured by these methods spread over several mesh intervals and require a sufficient
number of grid points to accurately capture them. The well known numerical
algorithms such as MacCormack’s second-order non-centered difference algorithm,
Beam-Warming’s impliclt one and Harten's TVD schemes are proved to be capable
of capturing these shocks in ideal gas flows very accurately. When the temperature
in the flow regime is high enough to cause the flow to dissociate, then the ideal
gas formulation of the problem is no longer valid and one has to consider the real
gas effects and chemical reactions that occur in the flow regime. The diffused
captured shock and the oscillation in the temperature associated with the captured
shock may change the chemical composition of the flow medium in the neighborhood
of the shock wave, and the capability of these algorithms to capture the shock in
a reacting flow is yet to be proved.

Fortunately, as the strongest shock associated with a reentry vehicle turns out
to be the peripheral shock, it seems plausible that in order to improve efficiency
and accuracy of the numerical algorithm and at the same time to alleviate the
problems encountered in locating and treating all shocks as sharp discontinuities,
a hybrid scheme that treats the peripheral shock as sharp shock and captures all
the other shocks may be appropriate. Similar hybrid schemes are developed by Thomas
et al. (1) for ideal gases and Kutler et al. (2) for real gases. They all constructed
explicit hybrid schemes. In the last decade, since the introduction of an efficient
implicit shock capturing scheme by Beam and Warming (3), a number of authors
have calculated various flowfields over a variety of geometries where the scheme
has been proved successful in calculating ideal flows. In particular, implicit
schemes are superior to explicit ones in handling stiffness problems associated with
nonequilibrium flows. The purpose of the present work is to construct a hybrid
implicit scheme to solve flowfields over a rocket nose configuration moving at
hypersonic velocities in a real gas medium.

2. Governing Egquations

The fluid dynamic equations in conservation-law form for an unsteady, inviscid,
three-dimensional and compressible flow can be written in &, n, {, = general co-
ordinates (4) as follows:

2.4+0.E+8,F+3,G=0, 1
where
0 U
ou oulU +&,p
i=J" v |,  E=J7| ppU+E,p ;
ow owU-+E,p
e (e+U—E,p
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oV ow
puV +n,p puW +C.p
F=]7 ooV +n,p . G=T7 oo W+E,p ,
owV +1,p pWwW+,p
(e+D)V —np (e+p)W—Lp

and
U=&+ 8 u+-5,04+5w,
V=n+nu-+n,0+nw,
W={+u+0+w,

In this formulation, the cartesian velocity components #, v and w are retained
as independent variables and the velocity components U, V and W are contravariant
velocities written without metric normalization. Here the velocities are non-
dimensionalized with respect to «. (the freestream speed of sound), the density p
is referenced to p., and the total energy ¢ and pressure p are nondimensionalized
with respect to p.e2. The pressure p is given by the equation

p=h+0.5xp(u*+v*+w?) —e, 2

where the enthalpy is nondimensionalized by «2.
The temperature T is obtained from the equation of state

T=p/0R, 3

where R is the gas constant equal to R,/M, with R, as the universal gas constant
(8.3144 J/gm-mole-K) and M as the molecular weight of the gas. In the present
formulation the gas medium is considered to be air with 79 percent nitrogen and
21 percent oxygen.

The enthalpy % is a thermodynamic property, a function of temperature only.
In the case of an ideal gas % can be related to p and p as h=7y/(y—1)p/p; but in
the case of a real gas no such simple explicit functional relationships exist. The
usual procedure in evaluating a real gas state relation is to use a combination of table
lookup and curve fitting procedures. In the present work, thermodynamic properties
h and ¢ (specific heat) are generated for air from the data obtained for nitrogen
and oxygen using JANAF Tables (5) at various temperatures. For a given tem-
perature state properties are calculated by interpolating the data at two neighboring
temperatures using spline curves.

Metric terms appearing in the governing equations are obtained from chain-rule
expansion of x., y,, etc. and are solved for &,, &,, etc. to give

=] (¥22¢—5¢2,), No=J (Y2 —¥e2¢),
fyZJ(qug—ngn), ny:](zgxe“‘zsxs'):

Ez:]<xﬂy§_x§yﬂ)7 Et:'—xfgw——y'rsy_‘z'rgzv
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=T (V2= Y4%2)y 0e=—%:0— Y0y =27
Cy:](zexﬂ—zvxe)’ C;:“‘XTCx—yTCy—‘ZTC,,

L= (XY —2%05e),

and

]ﬂ:xeynzg“}‘xgyezn TX YR =X YRy X1 YeBe—X¢Y02e,
3. Grid System

Nose portion of a reentering rocket is shown in Fig. 1. The simplified body
geometry consists of a sphere-cone portion and a long cylindrical portion. A
body-oriented coordinate system shown in Fig. 1 is chosen in order to simplify
the boundary treatment. The grid system consists of fixed radial rays (&=const
and (=const) and floating n=const surfaces. The innermost n=const surface
coincides with the body surface and the outermost one always coincides with the
moving shock surface. All the other np=const grid surfaces filling the shock layer
are distributed exponentially between these two boundary surfaces. Exponential
stretching is used to allow grid points to concentrate near the body surface and
the peripheral shock surface; and the transformation equations are given by

n=a.(e”""—1.0) for 0<y'<n,, 1

) ) )
N=1-+a,[1.0—e?1""77] for 5, <<yp'<l, J

where @, a,, 8, and S, are the constants to be determined from the given grid
spacings near the body and near the shock wave and the value of 7.* is usually
set equal to 0.5 (.* represents the point at which both of the algebraic expressions
should give the same value). Clustering grid points near the shock wave is necessary
to decay the propagation of oscillations in the flow variables generated at the shock
wave. Though, for real gas inviscid flow calculations, clustering of grid points
near the body is generally not necessary, it is required especially when the method
is extended to calculate reacting and viscous flows.

4. Numerical Method

A finite-difference form of the governing equations has to be integrated
between the shock and body surfaces from the given initial conditions to yield a
time-evolving solution. Since we are interested only in a steady solution, the
integration in / direction should be carried out until the solution converges to a
steady one. Once the solution becomes steady, it is assumed that the peripheral
shock has moved to its equilibrium position and the mesh velocities at all grid
points have become zero.

The governing equations given by Eq. (1) are approximated by adopting the
noniterative approximate factorization implicit method of Beam and Warming as
follows:
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(1478, Ar— 4rD,| . [T+ 476 ,B*— 47D, ]

[I+470,C"— 47D,| J4§" = — d7 (8 . E*+8 ,F"+5 .G+ D ", (5)
where A, B and C are the Jacobian matrices %%—, ”qu’ and %% The Jacobian

matrices are given in Appendix. Here 4., §, and 6, are typical three point central
difference approximations that are second-order accurate, so that the factored left-
hand-side operator forms block tridiagonal matrics. The operators 7 and 4 simple
backward and forward differences. The terms D, denote the numerical dissipative
terms given by

Dili=eJ D], Dils=¢€J72(F4),J, Di|¢=e&J (P4 ], (6)

The operators D; which are inserted into the respective implicit block operators
are central three point second-order differences. The dissipative term D, added
to the explicit side of the algorithm is a combination of second-order and fourth-
order smoothing terms (6). Second-order smoothing terms added in order to
dissipate the severe oscillations that occur mear the internal shocks are effective
only when there are large gradients in density values. The numerical dissipation
model used for D, is of the form

D=V (0507t 50 (€84.4;,,— €947 . 4.4;,), @
with
€ =R drf (Fiinms oty Vicri),
efy=max(0, k,dr— €],

Typical values of the constants are k;=1/4 and k4=1/100 while f(») is some
smooth function over the domain of interest. Similar terms are used in the & and
{ directions. In this work the function f(») has been taken as a simple weighted
average of the variable # at three grid points, 1. e.

FO) =W ¥y, s+ Wo o T gy T Wa 1,4, ®

In the above expression 7 is the variable used to detect the large gradient in
the flow variable such as density or pressure.
For example,

10521820554 T0i-14] ©)
| 0je19 2+ 2054014

Vine=

gives a large value near a steep density gradient region.

The coefficient oj,, used in Eq. (7) is the spectral radius which in three di-
mensions is defined as oj,,=|u|+a vEZ+E] +g§+|v[+a\/7)§4_7;§+]wl¢a\/g FZ%; asum
of the spectral radii of A, B and €. The subscript ¢ is omitted in Egs. (7) to (9).

The first part of Eq. (7) is a second-difference dissipation with an exstra
density gradient coefficient to increase its value near shocks and highly reacting
zones. The second part is a fourth-difference dissipation where the logic to compute
€®, switches itself off when the second-difference nonlinear coefficient €?, is
larger than the constant fourth-difference coefficient. This occurs right near the
shock and within the highly reacting zones.
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5. Acquisition of Physical Variables

Once we have known all the physical variables at n-th time step, then RHS of
Eq. (5) can be easily calculated. The conservational variables 4§ at (#-+1)-th time
step can be calculated by inverting the block tridiagonal matrics of Eq. (5). The
physical variables p, u, v, w, p and T must be decoded from the conservational
variables ¢ in order to proceed to the next integration step. p, #, v and w can be
obtained directly from the conservational variables p, pu, pv, pw. In order to
decode the pressure and temperature, a table-look-up/curve-fitting procedure must
be adopted.

By using the state equation (3), the pressure relation (2) can be rewritten as
follows:

h

T:?

1
~ L s, (10)

Since p, B, ¥ and ¢ are known, the above equation can be written as
T=ah+b, (1)

From the physical data we know /% as a piecewise cubic spline function of
temperature 7

h=h(T). (12)

Egs. (11) and (12) are solved by using the Newton-Raphson method for T and
. Once the temperature and enthalpy are known, the pressure can be calculated
from Eq. (2).

§. Boundary Conditions

Since the flow is symmetric about a plane passing through the velocity vector
and the body axis, only one half of the flowfield is considered. There are five types
of boundaries; (i) body surface, (ii) shock surface, (iii) exit flow plane, (iv) plane
of symmetry and (v) the singular line encountered in this formulation.

(i) Body surface: On a rigid surface, flow tangency condition must be satisfied
for an inviscid flow. This is done forcing the contravarient velocity vector per-
pendicular to the body surface (p=const) to zero, i. e. V=0, and by extrapolating
the other two contravarient velocity components U and W from the respective
values at the grid points immediately above the body surtface. The Cartesian
velocity components are then obtained from the contravarient components by using
the relations

2 (‘%C;“’%Cy) - (Ey[;z“fzcs’) (5;«7);"537}5’) U
v :]“1 - (%Cz*ﬁzix) (5.2:2“526:3:) - (é_xnz_'sznw> V. (13}

w (UmCy"“ﬁyCz) - (ggCy““fny> (51:77:#4?37]-2) w
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A relation for the pressure along the body surface is obtained from the normal
momentum relation

Da(i 05+ = (Em,+E,1,+£.1,) b
+ (775 _‘[_7],% “'f"’]f)ﬂn _§_ (Cznx_}-cyny—!—éznz)p‘:
==0U (1t + 10,0 +0,00.) — 0 W (ot e +1,0¢ 1,00 (14)

Using second-order accurate central differences in & and { directions and one-
sided first-order-accurate differences in 7 direction, the differential form of Eq.
(14) is replaced by the factored differential equation

(A+4nd.a™) (14 498 :0™) p™
==0oU ot 41,0 +00,) —0W (th e +1,0, +1,00) (14a)

With the known values of velocity components on the body surface and the
extrapolated values for density, Eq. (14a) is solved for the surface pressure.
In the present formulation the thermally insulated wall condition is assumed :

oT

e, | =
an wall ’

(15
or

Eale T, +E0) T e+ (Lot 8+ ) Te - (i +02+92) T, =0, (16)

With this assumption, the surface temperature is deduced from the field points
and the enthalpy at this temperature is obtained from Tables. Finally by solving
the pressure relation (2), the energy on the wall surface is calculated.

(ii) Shock surface: The peripheral shock that separates the disturbed flow
from freestream is treated as sharp discontinuity, forming a boundary. This boundary
is allowed to move freely on radial rays and the movement of shock on each ray
is determined by integrating

—C%-(Ans) —w,, an

where w; is the velocity of the shock on 7, k-th ray.

This moving boundary can be further explained with reference to Fig. 2.
If R, represents the radial distance of the shock from axis of symmetry, then the
shock surface can be represented as f,=R,(x, ¥, 2)—R,=0 at a particular time.
The unit outward normal to the shock surface is given by

.y
s:-——.__s O 18
=T r (18
- _ R,i+R,j+R,E 1
U RITRITRE (19

If ¢ is the angle that a radial ray makes with the axis of symmetry, then the
unit vector in the direction of the radial ray is given by
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7. —cos i+ sin 0 cos ¢+ sing sin ¢k, (20)

where ¢=={.
Meanwhile a freestream velocity vector is

V=V|cosai+|V]|sinaj 21)

where « is the angle of attack and V is the freestream velocity. Calculations at
this boundary have to be done twice during the solution process for one time step:
First, before the integration process, to obtain flow variables behind the known
peripheral shock and next, after the integration process, to move the shock to satisfy
the new flowfield.

(a) Determination of flow variables behind a known bow shock: Once the
shock locations on all radial rays are known, the unit outward normal # can be
determined using Eq. (19). The shock angle with respect to the freestream velocity

7 . .
vector V is given by

p= sin-l(%). 22)

The Rankine-Hugoniot shock conditions in a real gas can be written as follows :

o=l Vzﬂi (1—%&) (23)
po=Dut oV im(1~—§;i), (24)
V=V o[ (o= 0 (- =)] (25)

where the subscript 2 indicates the value downstream of the shock and the subscript

oo the freestream value. V. is the freestream velocity component normal to the
-

shock wave, written as V.4,

Egs. (23) through (25) and the state equation (3) are to be solved iteratively
to obtain the flow variables downstream of a shock. The procedure can be written
as:

Step 1: Assume 03=03)iaviscid»
+1 .
l—Z——Mi sin?p
Ioz)iuviscidzpm _‘_1
147
T2

MZsin®p

Step 2: Calculate ki, and p; using Egs. (23) and (24).

Step 3: Obtain the temperature for the enthalpy ho from the physical data by
using table lookup procedure and Newton-Raphson’s root finding method.

Step 4: Then calculate p, using the state equation (3).

Step 5: Repeat Steps 1 through 4 until convergence.
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Step 6: The velocity vector behind the shock szvwm(Vnmenz)ﬁ is to be
calculated using Egs. (21) and (25).

(b) Determination of shock movement: The new flowfield between the shock
and body surfaces at time (#-+1)4¢ can be obtained from the flowfield at time #4¢
by integrating the difference form of the governing equations. Now it is necessary
to adjust the peripheral shock to match with the new flowfield. This can be done
if we know the downstream pressure value. By rearranging the Rankine-Hugoniot
relations, the shock velocity Agnecx normal to the shock and the enthalpy can be
expressed as functions of the downstream pressure P2 as follows:

hzzhw—l—O.B(pz—pm)(%Jr?l;), (26)
hassa=| (2223 (=) | @n

The downstrem pressure p, can be obtained by extrapolating the pressure
values at the neighboring field points. The procedure of calculating Aok Can be
listed as:

Step 1 : ASSume 02 :PZ)extrapmlated-

Step 2: Calculate the temperature using the state equation (3).

Step 3: Obtain the enthalpy from the physical data (JANAF Tables).

Step 4: Then calculate p, using Eq. (26).

Step 5: Repeat Steps 1 through 4 until convergence.

Step 6: Shock velocity Zg.c is calculated from Eq. 27).

Once the shock velocity normal to the shock is known, the shock velocity in ¢, k-th
ray direction can be obtained from the relation

W= )‘Shock/ﬁs ° ﬁs.

By integrating the Eq. (17), the shock movement on each ray can be calculated.

(iii) Exit boundary condition: Since the flow across this plane is supersonic
everywhere, the flow variables on this boundary are extrapolated from the upstream
values.

(iv) Plane of symmetry: The grid system is chosen such that there are a pair
of windward and leeward planes ({=const) adjacent to the calculation domain
across the place of symmetry. Flow variables on these planes are obtained simply
by applying the reflecting image principle, i. e. all the flow variables except w are
reflected symmetrically whereas w is reflected anti-symmetrically that w=0 on the
plane of symmetry.

(v) Singular line: Though a limiting form of the governing equations is used
on the singular line, the choice of a spherical body-oriented coordinate system
allows us to avoid the singularity in the finite-difference formulation. This is
because, on a singular line, & and ¢ derivatives of %, y and z (e.g. x.ls, y.s etc)
are zero; x, y and z do not change with the change in & and ¢ on this axis and
hence £ and G fluxes are identically zero on the singular line. In order to use
consistent dissipative terms in & direction near the singular line, it is necessary to
know the values of the conservational variables on the singular line. Simple extra-
polation procedure is used in the present formulation. Though it is not correct to
extrapolate the flow varibles on the singular line from the interior variables since
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the singular line is completely immersed in subsonic flow (up to moderate angles

of attack), it would not introduce significant errors because these extrapolated
values are used only to calculate dissipative terms.

7. Stability and Initial Conditions

By applying linear stability analyses to the one-dimensional operators in the
finite-difference scheme, Eq. (5), the stability criterion can be obtained as (7)

4z A‘O_AC}

dr—mi {
T mln 7\ﬂ"lax ’ /Lmax Gmax

Where Amas, fmae and Oma. are the eigenvalues of the matrices A, B and C, respectively.
In our present analysis, calculations are started with the CFL number as high as 5.
As the solution proceeds toward a steady state, the CFL number can be increased;
but in most of our calculations it has been preferred to use a constant CFL number
equal to 5.

In order for the peripheral shock to be fitted to the flowfield, one has to in-
itiate the calculations by assuming an initial shock and a flowfield. All the real gas
calculations are started from the perfect gas solutions.

8. Results and Discussions

The present hybrid implicit scheme is superior to generalized shock capturing
methods in calculating hypervelocity flows. This is mainly because of the negligibly
weak oscillations appearing in the flow variables near the shock. This method
requires minimum number of grid points whereas, for generalized SCM'’s, grid points
have to be clustered near a shock wave to obtain correct jump values, and requires
appreciable number of grid points between the outer boundary and the peripheral
shock, for example, within the freestream just to allow the oscillations generated
in the upstream side of the shock wave. MacCormack (8) has suggested that shocks
can be captured most accurately with minimum number of grid points when the
coordinate mesh is aligned with the shock. Adaptive grid and floating-mesh shock-
capturing methods (9) use such techniques. To show the advantages of the present
method simple calculations are made with an ideal gas model. The solutions
obtained with a 2020 grid system, in the form of shock structure and Mach line
contours, are shown in Fig. 3(a). The solution has converged to machine zero
accuracy in less than 800 time steps, taking less than 20 sec cpu time on a Fujitsu
VP-100 computer. The same calculations are repeated with a floating mesh shock
capturing method. In this method shock has not been treated as discontinuity and
is captured completely by the algorithm; but the mesh coordinate has been adjusted
to align with the shock wave. Computed results are also shown in Fig. 3. The
present method and the floating mesh SCM gave identical results while the solution
has reached steady state quite rapidly in the present method. Such an oscillation-
free completely-converged solution can not be obtained by the generalized shock
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capturing methods at these high Mach numbers. This study suggests that special
shock capturing methods such as the present one are preferable to compute
hypersonic flows.

Using the present hybrid method, the flowfields over two-dimensional and three-
dimensional rocket nose configurations are calculated for several Mach numbers
using real gas models. Used freestream conditions are the density p.=0.8728x 1074
kg/cm3, the pressure p.=5.5kg/m? and the temperature 7.,=218.36K. In Fig. 4
isobars, constant density lines and isothermal lines in the two-dimensional flowfields
are shown for the freestream Mach numbers 15 and 25, where a 100x40 grid
system having clustered grid points near the shock and body is used. The ex-
pansion fan emanating from the shoulder portion is clearly visible in the figure.
Computed shock structures are very smooth; the present method does not pose any
difficulty even if the shock wave weakens.

The pressure, density and temperature distributions along the stagnation line
for three Mach numbers are plotted in Fig. 5. Absolutely oscillation-free distribu-
tions can be seen. For the same freestream conditions a perfect gas would give
P/P.=575.42, 0/0.=6.4259 and T=27319.2K at the stagnation point at a Mach
number 25. Due to the real gas behavior, T has been dropped by 29.7 percent and
hence the density increased by 40.1 percent whereas the pressure did not change.
Shock standoff distance has been reduced by 27.33 %. For M.,=20, the convergence
history is shown in Fig. 5(b). The residual has become less than 10719 within 2000
steps for which a Fujitsu VP-200 computer takes 450 sec.

Similar caluculations are made on an axisymmetric body at angles of attack
(Fig. 6). Computed isobars and isothermal lines in the plane of symmetry are for
M..=20 at angles of attack 0, 5° and 10°. For these calculations a 40x20x20 grid
system has been used and the steady state is reached in less than 1500 steps. The
isothermal lines in flows around an axisymmetric body are very much different
from those on two-dimensional bodies. In flows around an axisymmetric body, all
the isothermal lines approach tangent to the body. This is because of a thin entropy
layer that exists only in the flows around axisymmetric bodies.

9. Conclusions

Through a variety of calculations on two-dimensional and three-dimensional
bodies flying at the Mach numbers ranging between 15 and 25, the present analysis
proved to be efficient and accurate in calculating hypersonic flows around rocket
geometries. It is efficient because of its minimal requirement on grid points.
It is more accurate compared to general shock capturing methods because the
strongest shock in the flow is treated exactly. The boundary treatment of a shock
wave shows excellent matching with the implicit Beam-Warming scheme; as a result
calculations are started with the CFL number as high as 5. This combination of
shock fitting and implicit approach would provide a powerfull tool to handle
chemically reacting flows.
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Appendix

Ar, B, and C* in Eq. (5) are the Jacobian Matrices obtained in the time
linearization of E», F» and G», respectively,

. an 0E s 0F A. 3G
1.e.A_ad,B—aé,C——aq

After performing differentiation on each term, A®, Br, and C» can be written
as follows:

A, B or Cr=

KO K:c Ky Kz O
—uf+K, W ﬁi?{Kz(l—}*l/S) Ku+K,p Ku+Kw —K,/e
0
—00+K, ¥ Ko Ku ISR R K,/
[ 0
—w0+KT Ko+ Kou Kw+Kwp 0 i%zfg(w Vo) _k /e
0
(o K.(e+p) K,(e+p) K. (e+p) g(1—1/e)
T emD0 " e Fovse +ow)/e +K,
where
0=Ku+Kp+Kaw ; e=1—c,/R ; R=L0 ; pf— 1 ;
M F/M A+ A—f)/M,,

Lo V=Ll h— e, T 0.5 0P+ w?)],
To obtain  A» set K =¢, K,=%, K,=%, K,=Z, and
to obtain B, set K,=7, K,=7n, K,=7, K,=n, and
to obtais (C»,  set K.z, K,=¢, K,=t, K, =,
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Fig. 1. Body Geometry and the Moving Grid System.

BODY AXIS

Fig. 2. Geometry for Shock Velocity Evaluation.
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