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Abstract

A hybrid computational procedure is developed to compute three-
dimensional, hypersonic and chemically reacting flowfields around reentry
vehicles. The medium is assumed to be a multi-component mixture of
thermally perfect but calorically imperfect gases. As the governing
equations are integrated between the peripheral bow shock and body
surface using an implicit finite-difference scheme, stiffness in species
conservation equations did not pose any difficulty. Results for two-
dimensional and three-dimensional flows show that chemical reactions
render the bow shock close to the body.

1. Introduction

It is well known that air in non-equilibrium flows undergoes vibrational ex-
citation, dissociation, and ionisation. These chemical phenomena absorb energy,
change compressibility and cause temperature to fall and density to rise. At low
altitudes, where the air density is high, these chemical phenomena quickly reach
thermodynamic equilibrium and the nonequilibrium state appears as a transient
phenomenon. At high altitudes, where the density is low, chemical states do not
necessarily reach equilibrium and the non-equilibrium state appears as a steady
state phenomenon. If a space shuttle chooses a high-altitude trajectory (1), a con-
siderable period of nonequilibrium flow occurs during atmospheric reentry. This
leads to a renewed interest in flows with finite-rate chemical reactions, that is,
non-equilibrium flows generated by reentry vehicles.

Computing a non-equilibrium reacting flow around a reentry body of three-
dimension is considerably difficult. In such a flow, the dynamic behavior of the
flow is affected significantly by chemical reactions, hence the momentum equations
must be solved simultaneously with the species conservation equations governing
the chemical phenomena (2). The purpose of this work is to develop a versatile
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code, which can handle stiff problems associated with fast reactions, by extending
the implicit hybrid numerical scheme developed for real gases by the same authors

3.

2. Mathematical Formulation

Formulation of a fluid dynamics problem including chemical reactions depends
on general concepts from the three areas: Chemical kinetics, thermodynamics and
gas dynamics.

(@) Chemical kinetics: Suppose that a mixture consists of N chemical species
undergoing m elementary reactions. The n-th reaction may be written as
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where v$"" and v{"" are the stoichiometric coefficients of reactants and products,
respectively, giving the number of moles participating in that particular reaction,
A, denotes the chemical symbol of the I th species, k¢ and k(" are the forward
and reverse specific reaction rate constants for u-th reaction. Progress in the
forward direction of the n-th reaction is expressed as

{(n) () ¥ U(")/ (s) ¥ i ‘W(f””
R :kf [[~[1[Cl] ! —’kr l/fIIL 1 ! 3 <2>
where [C,]=Y,/M, is the molar concentration, ¥,=p,/p the mass fraction and M,
the molecular weight of /-th species. Since n-th reaction yields v —u{”" moles of
A,;, the corresponding mass rate of production of A4, is
WP =M [ v IR™, 3

It follows that the net mass rate of production of A, in an m-elementary-reactions
system is

W= 3> W, )

n=1

Combining Egs. (2) to (4), we have

; w . - Y (ny x oy
W= 31 M DA = Lk LC, 7~k HLC, T (6)
If n-th reaction is in equilibrium, it follows from Eq. (2) that
. B ¥ L)y
K(c V= k(-:n) = l[i’IECIJ(y! Y )1 (6)

which is the chemical equilibrium condition of the n-th reaction and K{ is the
corresponding equilibrium constant. From statistical thermodynamic principles,
K can be expressed as a function of temperature.

The chemical kinetics of air dissociation generally involves the interplay of
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about 20 different chemical components entering into over 100 elementary reactions.
Fortunately, most of these reactions involve only chemically minor species and

therefore only 5 species Oj, Ny, N, O, and NO participate into the five significant
reactions:

0, +M =0 + 0+ M, %)
N, + M — N + N + M, (8)
NO+ M — N + O + M, )
O + N, = NO + N, (10)

NO-+ O == N + O, D

where M is an any third molecule serving to absorb excess energy released during
the collision process.

Chemical source functions for these five species can be written, following Eq.
(D), as

Wo,zMo,dgfﬂ:Mog_ Co Ok D+ C8. Ol +CyoCok) —CyCo kT, (12)
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Oddct =Mo[2C0,Cuk P —2C3C,EY + CroCyk i — CxCoCuks®
(15
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7 O =Myol —CroCik® 4+ CxCoCyk +CoCy B¢ — CyoCy kS

WNO:MNO

—CrnoCoky+CrCo k5], 16)

In Reactions (7) through (11) M can be any molecule other than the two reacting
molecules that are involved in the collision process. In a certain reaction, the
reaction rate constant depends on the molecules that serve as M. By assuming no
priority among the molecules representing M, the probability of a particular species
to act as the third body M can be proportional to its number density. With this,



Computation of Hypervelocity Three-Dimensional Reacting Flows 399

the terms Cyk$ and C,k$” appearing in Egs. (12) through (16) can be replaced by
the summation

5
CukP'=31C kY and Cuk¥= 3 CiRY, an
=1 1=

where k¢, and k%, represent the specific forward and backward reaction rates
of n-th reaction when /-th species is acting as the third body.
Determination of reaction vate comstants: The reaction rate is a function of

temperature expressed in a modified Arrhenius form as

k=5, T*Exp( - ?) (18)

k=R /K, (19)

where the equilibrium constant K¢ is again a function of temperature only. Although
from the available spectroscopic data one can evaluate K¢ for a given reaction at
a given temperature, a unique correlation between K¢ and T is hardly available.
Park (4) fitted the natural logarithm of computed K¢ values using the following
expression in 2=10000/T":

K, (T)=exp(A;+ Aln(2) + Asz+ A2+ Asz?), (20)

The constants in this expression are evaluated using spectroscopic data at tem-
peratures of 1000, 2000, 4000, 8000 and 16000°K. In the present work the same ex-
pression is used to calculate equilibrium constants. The coefficients A; through As
are listed in Table 1, along with the constants appearing in the Arrhenius equation

(18).

Table 1. The Constants Appearing in Egs. (18) and (20) for Different Reactions

Reaction S, B E. Ay A, Az Ay As
0,+M2?0+0+M M=0, 2.75E19 -1.0 59500 2.855 0.988 -6.181 -0.023 -0.001
M=N, 2.75E19
M=0 8. 25E19
M=N 8. 25E19
M=NO 2.75E19
Ny+M2N+N+M M=0, 3.70E21 -1.6 113200 1.858 -1.325 -9.856 -0.174 0.008
M=N, 3.70E21
M=0 111E21
M=N 1.11E21
M=NO 3.70E21
NO+MZN+O+M M=0; 2. 30E17 -0.5 75500 0.792 -0.492 -6.761 -0.091 0.004
M=N, 2.30E17
M=0 4.60E17
M=N  4.60E17
M=NO 2.30E17
O+NZN+NO 3.18E13 0.1 37700 1.066 -0.833 -3.095 -0.084 0.004
NO+0ZN+02 2. 16E08 1.29 19220 -2.063 -1.480 -0.580 -0.114 0.005
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(0) Thermodynamics: The thermodynamic state of a gaseous mixture of N com-
ponents among which chemical reactions may occur is completely specified by
N-+2 independent variables. A study of thermodynamics (5) shows that other
relations can be found that define a new set of variables, each as a function of the
N--2 independent variables. A fundamental thermodynamic equation is any equa-
tion relating these new variables to the N--2 independent ones. For example, the
fundamental thermodynamic equation

17:1)<;0, e, Yl>7 (21)

relates the pressure p to the N4-2 independent variables; the density p, specific
internal energy ¢ and mass fraction Y, of N species. Assuming that the gas
under consideration is in thermal equilibrium and all the chemical species are
thermally perfect gases, an explicit form of the equation of state (21) can be
obtained in a dimensionless form as

b= IF;JI Yzht"{”%‘P(u2+7)2+w2)”“e, (22)

where %, is the specific enthalpy of /-th species. The thermodynamic properties
h; and ¢, for all the five species are obtained from JANAF Tables (6). In addition
an expression for the temperature 7" can be derived as

T=p/(oR) where R=R, 3} (V,/M), (23)

(¢) Gasdynamics: The flow condition is

completely specified by the requirement

that mass, momentum and energy are

conserved throughout the flowfield and <
along its time and space boundaries. A
Therefore the complete formulation of “:’::%
a reacting gas mixture of N species is ,:‘}‘::::“:“‘:‘:‘w“:‘.-
made of N+5 coupled non-linear partial o
differential equations of continum mecha-
nics; the mass of N species, momentum
and energy conservations and equation of £
state. The solution of these coupled equa- 7 e e
tions in N+5 variables yields the com- :

position, density, velocity, and thermal
state of the system at every point. A
complete system of equations that describe
the adiabatic and non-diffusive flow of
a mixture of reacting gases in chemical
non-equilibrium can be written in a con-
servation law form in a &, 7, ¢ and <
general moving coordinate system (Fig. 1)  Fig. 1. Body Geometry and Moving Grid
as System.

24 | oF
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oF | G |
+ 5 52 +H=0, (24)
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and the contravariant velocities are given by
U=¢,+¢u+t0+80,
V =90, 0,0-+1,0+1,20,
W={+ut+lo+w,

and ¢=1/p.a2 and all the other variables are defined in Ref. 3. In the above equa-
tion, the flow variables are non-dimensionalized as

X 2 14
X, Y, Z:—",_Z)‘;L'W p:"-o‘?—’ P: Ppaz ’ e= ) az s
— u, 'l), w k___ h d i Qe
wv W=t h=gy e IE

where L* is a reference length.
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3. Numerical Scheme

The differential form of governing equations given by Eq. (24) is replaced
by the non-iterative approximate factorization implicit scheme of Beam and Warm-
ing (7). The scheme can be written as

[1+47 8 A" dr D,| [T+ 47 8,B"— 47 D,|, I+ 4dr 5.C*— 47 D,| ;144"
= — 47 (0. E"+5,F"+0.G"+H+Dg", (25)

where A, B and C are the Jacobian matrices and are given in Appendix. 8., &, and
6, are three point central differential operators. The numerical dissipative terms
denoted as D; and D, are given in Ref. 8.

4. Boundary Conditions

A bow shock in the present formulation is treated as a sharp shock and the
computational domain is bounded between the peripheral bow shock and the body
surface. The peripheral shock is moved along all the fixed radial lines at the shock
velocities W, after integrating the difference equation (25) over one time step.
The floating grid system formed between the moving peripheral shock and the body
is generated algebraically (3), such that grid points are clustered near the bow
shock and body. The shock velocities Ws are calculated using the pressure p,
which is extrapolated from the field points, and the Rankine-Hugoniot relations for
the moving discontinuity which are given as

h=het0.5(03= 0 (--+-L), 26)
soa=| (B2 0) (=) | =V @

where Agnoe, iS the shock velocity in the outward normal direction. The frozen
shock conditions are explicitly imposed in the formulation by allowing no reactions
across the peripheral shock wave. Hence the densities p, behind the shock are
calculated from the density behind the shock

Lol O 28
Pl ol @)
ie. mlz-—-—%wmlz. (29)

Using these relations Egs. (26) and (27) can be solved for the shock velocity
Asnock, ' The other details on the shock treatment are discussed in Ref. 3. On the
wall surface the flow is tangent to the body whereas the insulated wall requires
the temperature gradient on the wall to vanish. The pressure on the wall is
obtained by integrating the normal momentum equation (9)
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Do (2 En2 )V 2= (E .+, E0.) be
+ (et LM+ 80 e+ (i 15 +18) b
= — pU (it + 10,0 +10,00) — oW (Nalhg +1,0¢ +71.0¢) (30)

The density along with species concentration is extrapolated from the corres-
ponding value at the neighboring grid points.

5. Stability and Initial Conditions

If the chemical production terms @ were identically equal to zero, then the
linear stability analysis suggests (10)

o | 4F dn AL }

AT ——mln*ln’HlX, /Lmax’ 6max ’ <31)
Where Ames, fmex 804 @n.x are the eigenvalues of the matrices A, B and C, res-
pectively. Although the production term i is too complex for a stability criterion
on Ac* to be determined analytically, but an empirical condition can be derived
from the consideration of chemical relaxation times. In the present experience,
it is found that the relation 4r=0.247* allows a stable integration process. As a
CFL value equal to 5 works out well for real gases, a CFL number equal to unity
is used throughout reacting flow calculations. The initial data for reacting flow
calculations are supplied by the real gas code.

6. Results and Discussions

Numerical calculations are performed for the reacting flow around a rocket
nose geometry at different flight speeds and angles of attack. The body configuration
is obtained by smoothly joining a sphere head of radius R, a conical cylinder of 20°
half angle and a cylinder of radius 1.8R. The freestream is a mixture of 21
percent oxygen and 79 percent nitrogen. T he freestream ambient pressure is 5.5
keg/m?, while the density p..=0.8728x107* kg/m?. The ambient temperature is
218.36 °K. Calculations are made for the Mach numbers equal to 15, 20 and 25.
These Mach numbers correspond to the flight velocities 4.45, 5.93 and 7.42 km/sec,
respectively.

The computed shock structure and shock standoff distance for a two-dimensional
body are presented in Fig. 2 and Table 2. For comparison purpose the solutions
obtained for the real gas and perfect gas models are also shown. The shock
structure is smooth and due to chemical reactions the peripheral shock is moved
very close to the body.

The isothermal lines in the reacting flows over a two-dimensional body at three
Mach numbers are shown in Fig. 3. For a Mach number 15, calculations are made
on the full body configuration whereas for higher Mach numbers calculations are
made only near the front region.
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e Table 2. Shock Standoff Distances in Perfect
L7 - Gas, Real Gas and Chemically React-
- ting Gas Models.

PERFECT ’ .
FECT Gas .~

e

Shock Standoff Distance §/R

s

.” REAL GAS Mach

e

Perfect Real Chemically
P ’/ - Number Gas Gas Reacting Gas
%
. CHEMICALLY
L/ REACTING GAS 15.0 0. 40294 0.29910 0. 20494
Vi 20.0 0. 38311 0. 28289 0. 14768

25.0 0. 37196 0. 27029 0. 10952

/
’ +
/

Moo =25
(742 Kmisec ) Fig. 2. Comparison of Shock Structures among
Perfect Gas, Real Gas and Chemically
Reacting Gas.
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Fig. 3. Isothermal Lines and Convergence History.
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As endothermic reactions absorb thermal energy from the system, the local
temperature drops where these reactions are significant. If a fluid particle is at a
temperature lower than the threshold one, then only a negligibly small number of
air molecules will result in reaction products. It is also known that in a real gas
flow (3), temperatures monotonically increase from the shock to body surface.
Therefore, in the present reaction model, when the temperature reaches a threshold
value, reactions occur at a faster rate and thereby the local temperature will drop.
This phenomenon results in a hot surface in the flowfield. In other words, the
temperature in the flowfield will be maximum at the hot surface and this maximum
should correspond to the threshold temperature. In addition this hot surface can
be identified as a surface separating the reacted flow from the nonreacted one.
This has been clearly observed in the isothermal line plots for the Mach numbers
15 and 20. For these Mach numbers the temperature contours above the hot surface
are not different from the real gas solution. For the Mach number 25, the flowfield
under consideration is completely reacted and hence no hot surfaces are observed.

The convergence history for the Mach number 20 is shown in Fig. 3, where a
4040 grid system is used. The total residual is dropped to below 1071° within
4000 iterations, for which a VP-200 computer takes 28.3 min cpu time. The
pressure, density, temperature and species concentration distributions along the
stagnation line are shown for these three Mach numbers in Fig. 4. At the Mach
number 15, more than 70 percent of oxygen has dissociated whereas only a small
amount of nitrogen has reacted. Even at this Mach number, the density at the
stagnation point is doubled from its non-reacting value and the stagnation temperature
has dropped to 3560K. At the Mach number 20, oxygen molecules immediately
after passing through the shock wave dissociate almost completely. However,
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when the temperature drops further due to nitrogen dissociation, oxygen molecules
reappear in an appreciable amount. When the flight velocity reaches 7.43km/sec
(M.,=25), numerous oxygen atoms form along the stagnation streamline. Nitric
oxide formed behind the shock wave dissociates again near the body. At this Mach
number the temperature drops rapidly downstream of the shock. The density at
the wall is 3.5 times the value immediately downstream of the shock wave. From

Moo= 15 TEMPERATURE IN SHOCK LAYER Mo =25 TEMPERATURE IN SHOCK LAYER

TR
,

G

3 i

& ‘.:‘p
Wi

OGEN ATOM CONCENTRATION

T

Fig. 5. Flow Visualization.
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these calculations it is observed that chemical reactions are very sensitive to the
flowfield and, most importantly, nearly all the reactions have completed within a
narrow region behind the shock wave. Therefore, in general, shock capturing
methods which capture the peripheral bow shock as a diffused shock may change
the chemical reaction considerably. The entire flow is visualized in Fig. 5 for the

& =10

150BARS

Moo =25
£ =5

1SOTHERMAL LINES

Fig. 6. Isobars, Constant Density and Isothermal Lines in Flows around
Axisymmetrics Bodies at Angles of Attack.
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Mach numbers 15 and 25. For the Mach number 15, a hot surface can be seen in
the temperature plot. The scales are different from one picture to anoother.

For the same ambient flow conditions, reacting flows over the axisymmetric
nose portion of a rocket body are computed for the Mach number 20 freestream
flow at an angle of attack 10° and for the Mach number 25 at an angle of attack
5°. The results in the form of isobars, constant density lines and isothermal lines
are shown in Fig. 6. The calculation is performed over a 40 30x% 20 grid system.
A steady state solution is obtained after 2000 time steps. For each case, a VP-200
computer takes nearly 2 hours cpu time. Hot surfaces are observed in these flows
as well. The pressure, density, temperature and species concentration distributions
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along different radial lines are shown in Figs. 7(a) through 7(d) for the Mach
number 25 and a=5°. Weak oscillations in the flow variables are observed near
the body surface. These are due to the insufficient grid spacings near the body.
Nitrogen atom concentrations everywhere along the body surface are high and as
a result are the dominant species near the wall surface. Far downstream of the
stagnation streamline, i.e. at £=2.07R, oxygen molecules dissociate gradually.
At this location the solution is yet to be stabilized. In these problems, since the
shock standoff distance is very small, the time step calculated from the stability
criterion corresponds to the grid spacing on the stagnation streamline. The flow
computed at the far downstream using the same time step converges slowly. A
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variable time step does not seem to work in reacting flow calculations. To avoid
such difficulties the production terms in Eq. (25) had better be treated implicitly.
Note, however, that this increases computer memory enormously.

7. Conclusions

Reacting flows over two-dimensional and axisymmetric bodies at angles of
attack are computed successfully using an implicit hybrid scheme. Large amount of
computer time is necessary partly because of the increased number of independent
variables and partly due to the severe restrictions on the time step caused by the
chemical production terms. A more logical way of increasing the time step is by
solving two different sets of governing equations separately: One set of equations
are usual ones whereas the other set of governing equations can be written only
for chemical species conservation. The latter set of equations can be solved at a
smaller time step until the solution catches up with the time step allowed for the
complete governing equations (time step for the complete governing equations is
calculated by making the production terms identical to zero). Then the complete
governing equations can be integrated at a larger time step. Such an investigation
is currently going on.
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Appendix

Ar, B and C7 in Eq. (25) are the Jacobian matrices obtained in the time
linearization of E», F» and G», respectively,

OE" o 3P pn_ 9G”

ie. Ar=9= —, -
oq" oq" oqr

An
, B

After performing differentiation of each term, A® B» and C» can be obtained
as follows:
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where

To Obtain
To Obtain

To Obtain

K. V. Reddy and T. Fujiwara

Ay GT Ry 22 g2
o, [fijlphl 5 0.5 +v+w)]

A9 set k():gt; kz:é&z» kyzgy and kz:é‘z.
B: set k0:7]t7 kx:nm ky:ny and kz:nz.

o

set kf):Cn kz:C.m ky:Cy and kz:Cz.





