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Abstract

The studies of the simulation of metallurgical processes have been
developed over the past decade, and this rapid development has rendered
the service to realize the available techniques for solving practical
problems in process metallurgy.

“Metallurgical Reaction Engineering” implies the academic subject
in the field of engineering, relevant to reaction or reactor in the field
of process metallurgy. Now, it has become an essential subject in
metallurgical engineering, and its methodology is used in the practice
of metallurgical process development. Obviously, this small article
cannot cover all the topics which are concerned with the metallurgical
reactions and transport processes.

This article primarily provides a rational and rigorous approach on
the basis of the mathematical expressions for the important phenomena
occurring in metallurgical processes, and the mathematical modelings
of both lumped and distributed systems are presented.

This article is organized into two main parts: Part 1 is concerned
with the topics in ironmaking processes and Part 2 includes those in
steelmaking processes. Each part provides the methodology of metal-
lurgical reaction engineering, beginning with the fundamental principles
and continuing to the practical applications.
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1. Preface

A mathematical model is useful for the successful design and operation of
metallurgical processes and for the deeper understanding of the phenomena occuring
in them.

This review is intended to present the fundamental procedure for building the
mathematical mode! which should be developed to reach and grasp the essential
facts without getting too much involved in the details of the phenomena.

Modelling procedures given in this review are primarily concerned with the
application of both the theories of transport phenomena and the well-known
principles of chemical reaction engineering. Thus, a new field which can be called
as “metallurgical reaction engineering” is developed here, and its applications to
some metallurgical plants are presented individually.

This review is divided into two parts. In Part 1, we deal with the modelling
of the ironmaking processes, and Part 2 is concerned with the modelling of the
steelmaking processes.

Most of ironmaking and steelmaking processes include a complex phenomena.
Especially in blast furnace, a theoretical approach is obstructed due to the com-
plicated reactions, the severe nonuniform temperature distribution and also the
lack of practical and reliable data.

In general, since the metallurgical operations are conducted at relatively high
temperatures, mass transfer may mostly play an important role in determining the
rate of overall reaction, where the mixing phenomena become a crucial problem.
Particularly, in steelmaking processes, the kinetics of many reactions can be con-
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trolled by mass transfer, and both the intensity of mixing and the temperature of
melt affect the selectivity of the complex reaction, for instance, the preferential
oxidation of silicon in comparison with decarburization as in LD converter.

This review cannot cover all the existing ironmaking and steelmaking processes.
Lack of space forbids us to discuss about the other furnaces which are running in
metallurgical industry.

Finally, the authors would like to express their appreciation to Mr. Alireza
Radjai who is a graduate student in Nagoya University for his help in editing of
the manuscript and to Research Associate Mr. Kensuke Sassa for his efforts in
typing the manuscript.

Part 1 Modelling of Ironmaking Processes

2. Basic Concepts in Modelling

2. 1. Vectorial Evgun’s Equation

Pyrometallurgical processing of solid natural resources is frequently performed
in the packed beds through which gas is flowing to promote the convective mass
and heat transfer and the rate of the chemical processes involved. Therefore, flow
structures in the beds strongly affect the performance of the processes.

Extensive investigations have been conducted to obtain the momentum transfer
equation characterizing the flow dynamics in a porous media. Nevertheless, it is
virtually intractable to solve the Navier-Stokes equation for the fluid flow in
multiply connectd interparticle regions despite a few attemptsl»2) hitherto made.
A preliminary, yet alternative approach to this problem was devoted to developing
the “hydraulic” or “pipe-flow” equations for the one-dimensional flow of fluids
through granular beds. Employing this type of approach, Kozeny-Carman equation?®)
for laminar flow and Burke- Plummer equation®’ for turbulent flow were success-
fully derived making allowance for the mean hydraulic radius of the flow capillaries
and for the effect of voidage. Ergun® comprehensively correlated these two equa-
tions by simply adding to yield an expression in the form:

Af _ 15(()1,:5% (1—83@2 +1.75 J% (d=e) @2.1)

4
where ug is the superficial velocity and pg is the density of the fluid at the arith-
metic average of the end pressures. This additive characteristic of the viscous and
kinetic pressure loss terms has been confirmed theoretically from the Navier-
Stokes equation by Irmay®>.
A transformation of the Ergun equation is represented in dimensionless groups
of Blake as:

EE e e

where Gg(=pgsue) is the mass velocity and Rep(=dp,Gg/1s) refers to the Reynolds
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number.

One should by careful here that the particle size dp in the Ergun equation is
defined in terms of the specific surface area of a unit volume of solid particles S,
as:

d,=6/S, (2.3)

That is to say, dp denotes the diameter of equivalent spheres having the same
specific surface area as the non-spherical packing employed. For dispersed beds
with a wide range of particle size, it is necessary to calculate a representative
mean diameter. For the multiply-sized packings with the representative diameters
dp; (i=1 to k), an expression of average specific surface area consequently allows
to give the average particle size in the form:

dy=1/ 33 (n/dse) @.4)

where #; stands for the fractional volume of the i-th classified size-segment.

It should be noted furthermore that several investigators?~9) have critically
evaluated the Ergun equation without producing consistent viscous and inertia
tortuosity constants. However, the scatter of data has been attributed not to the
Ergun type expression but rather to the influences of packing shape, orientation,
voidage, entrance effects and excess voidage at the walls 8~10),

The study of pressure loss in the moving bed has recently become an interest-
ing subject for solid processing. Yoon and Kunii'? have confirmed that the Ergun
equation for the fixed bed system is well applicable also to the moving bed system,
provided a slip velocity of the fluid relative to the descending solid particles is used
instead of the superficial fluid velocity in fixed beds as well as taking the variation
of voidage with the gas velocity!® or with the desceending velocity of solid
particlest3~15) into consideration.

Special attention should be paid to the nonuniform flows associated with the
voidage and particle size variations in beds. We are particularly concerned with
those aspects which are relevant to the blast furnace operation. The proper approach
to the problem can be accomplished by using the equation of continuity as well as
the Ergun equation in their vectorial forms!®™. When the gas evolution is
relatively negligible, the set of the governing equations are as follows:

div G,=0 (2.5)
grad P=— (fi+£:|G,)Gs (2.6)
Fr=150(L— &) 2/ 0y (9d,) %<,

Fr=L1.75(1—e) /py(¢dy) €° (2.7)

where Eg is the mass velocity vector and f's stand for the Ergun’s coefficients of
resistance.

Subsequent to the preliminary application!”~1%) to the idealized simple systems,
this set of equations has been applied to the blast furnace system with more
complicated numerical techniques originally by Radestock and Jeschar!®), Szekely et
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al.20~22) and Kuwabara and Muchi23~25) resulting in a great amount of information
on the behavior of nonuniform flows through the layered configuration of burdens.

We now proceed to describe the way to solve Egs. (2.5) and (2.6) for the
fluid flow through two-dimensional or axi-symmetrical beds having spatially variable
resistances. The equation of continuity given by Eq. (2.5) can be satisfied by
working in terms of the stream function ¢ which is defined as:

Ger=r""(0Y/02) 2.8)
Ge=—r""(0%/0r) 2.9)

where m=0 for two-dimensional! flow and m=1 for axi-symmetrical flow. Thus,
if the terms involving velocity are displaced by the stream function, there will be
no need to make any explicit expression of the mass-conservation principle.

The directional components of the Ergun equation, Eq. (2.6), can be written as:

0P /0r=— (f1-+£:|Ge)) Gy, (2.10)
3P /9z=— (f1+£:|C,) Gy 2.11)

Gas pressure P can be entirely removed from Egs. (2.10) and (2.11) by using
a mathematical relationship described as:

0°P/0r0z=0%P /0207 (2.12)

The resultant equation in terms of the stream function v is as follows:
ofs 0¥ | 0fs 0¥ o 9% m 0y } AN RN
et (G Sy “/(37) +(35)

ro G e S NG

() G G+ (3 (G55

PELIEAN

Equation (2.13) in a finite-difference form, together with the appropriate
boundary conditions, gives the value for v at any point in the field, provided the
spatially distributed flow resistance has been specified. Once the solution for ¥ has
been obtained, velocity can be evaluated by Egs. (2.8) and (2.9). Pressure recovers
basically through the appropriate integration of Egs. (2.10) and (2.11). However,
the following numerical scheme may be advantageously applied to avoid the accom-
panying integration error. That is, the divergence of Eq. (2.6), combined with Eq.

(2.5), vields:

0P, 1 o ( ,0P ow ow
AP~ Gt g ("G )= Cogy —Cugy @10

where W =fi+f.|G,| (2.15)
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The iterative solution of Eq. (2.14) also gives the pressure at all points in the
furnace. During the course of the solution for ¥, we usually need to know the
pressure and the temperature because their variations may affect gas density which
in turn requires recasting of the flow resistance.

Photograph 2.1 shows the experimentally observed streamlines of nitrogen gas

Photo. 2. 1. Visualized gas-stream-
lines in packed bed.
(a) Gas-streamlines near the top
surface.
(b) Gas streamlines in the layered
structure of burdens.

(b)



98 I. Muchi, S. Asai and M. Kuwabara

flowing through a two-dimensional rectangular bed (200x15x660 mm?) packed with
silica-gel particles. Auxiliary flow of steam injected from six injectors attached
to the back of the bed allowed to visualize the streamlines. In Photo. 2.1-(a), we
can find the centralized flow near the inclined top surface of the bed. Photograph
2.1-(b) shows the zigzag flow regime in the layered structure of burdens, where
the particle diameters in the bright and dark layers were 4.4 mm and 2.6 mim,
respectively. These gas flow-patterns, basically simulating the gas-flow through the
shaft of the blast furnace, can be also predicted based on the numerical scheme
described in this section.

2. 2. Estimation of Reactor Model Parameters

In order that a mathematical process model can be completely specified, we
need the transport and thermodynamic properties which must supplement the govern-
ing equation. Some representative relations wlll be given here.

(1) Dispersion Coefficient of Fluid (Dj,)

As for fluid flow in porous media, dispersion of mass stems from hydrodynamic
fluctuation of fluid velocity rather than molecular diffusion and can be evaluated
on the basis of the empirical relationship?é’ between Péclet number Pe;, (=doVj./
D;,) and particle Reynolds number Rep; where V,, designates the axial linear
velocity of fluid. Over the Re,; range greater than about 100, Pe;, normally takes
the following constant values:

Pe,, =10, Pe,,=2, Pe, =50, Pe,,—=0.5 (2.16)

whereas in the low Rep; range, the Pe;, regardless of the flow direction, increases
linearly. with the increase in Rep; according to a constant Schmidt number (Sc=
te/PeDy).

(2) Effective Thermal Conductivity of Fluid (X;,)

For the turbulent regime likely in the ordinary solid-processing, the same
magnitude of thermal diffusion as of mass diffusion may prevail, and we have the
following relation:

Pejn=d,V i/ (Kin/Cs00), (=g, 1; n=v, 2) 2.17)

(3) Effective Thermal Conductivity of Burden (X,)

Since the solid-solid thermal conduction through the point of contact is relatively
small, K, is governed by the indirect and direct radiation whose mechanism was
formulated by Shotte24> as follows:

Ky=A—e)/A/kt1/k,) + <k,
k,=2.29%107"d,(T)* [W/m-K] (2.18)

(4) Interphase Heat Transfer Coefficient (%)

When we define the parameter, %p, based on a mean temperature of solid
particles with and without the surrounding melt, %, should be an overall parameter
involving the true gas/burden film heat transfer coefficient (s,") and the burden
conductivity (k). The expression for spheres was given by Stuke?® in the form:

Byl =1/(1+Bi/10) (2.19)
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where Bi=h;dp/k, stands for Biot number. Thermal conductivity of solid takes
the values of about 0.58 W/m-K for coke and 1.63 W/m-K for ore materials2®.

True heat transfer coefficient k; can be estimated by the empirical relation-
ship for the Nusselt number (Nu=1%;dp/ke), where kg is the thermal conductivity
of the fluid. Heat transfer around a single sphere is well correlated according to
the Ranz and Marshall’s equation3?® represented by:

Nu=2.0+0.6(Pr) ¥ (Re,)* (2. 20)

where Pr(=cgite/ke) is the Prandtl number.

For the packed granular beds where interparticle jets impinge against the
downstream particles, Eq. (2.20) with the Reynolds number multiplied by a factor
n(=9 to 10) may be also working®1>. Shirai®2’ has proposed an alternative correla-
tion which allows to evaluate the effect of the voidage(e) as follows:

eNu=2.0+0.75(Pr) ¥ (Re,)* (2. 21)

(5) Mass Transfer Coefficient (kj)

Based on the similarity between the heat and the mass transfer phenomena, the
preceding relationships for the heat transfer coefficient, hj;, may be available in
similar forms provided the Nusselt number and the Prandtl number are replaced by
the Sherwood number (Sh=Fksdp/D;) and the Schmidt number, respectively.

(6) Specific Heat of Gas/Burden (¢;)
Specific heas of multicomponent gas or burden can be evaluated by:

¢r= 3 (C)Me/ 3 (C).M: (=g, b) (2.22)

where ¢; is the specific heat of each component ¢ and is expressed as a function of
temperature , and C denotes the molar concentration.

Nomenclature

Bi : Biot number (—)

C : molar concentration (kmol/m3)
¢ : specific heat (J/kg-K)

D : dispersion coefficient (m?/s)

dp : particle diameter (m)

f1, fo : Ergun’s coefficient of resistance (1/s), (m?/kg)

G : mass velocity (kg/m?2.s)

hp : heat transfer coefficient between gas and solid particles (W/m?:K)
K : effective thermal conductivity (W/m-K)
k : thermal conductivity (W/m-K)

ky : mass transfer coefficient (m/s)

L : bed height (m)

M : molecular mass (kg/kmol)

Nu : Nusselt number (—)
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P : gas pressure (Pa)

4P : pressure loss (Pa)

Pe : Péclet number for mass transfer (—)
Pr : Prandtl number (—)

Rep @ particle Reynolds number (—)

: radial distance (m)

: Schmidt number (—)

: Sherwood number (—)

: specific surface area (m?2/m3)

: temperature (K)

: superficial velocity (m/s)

: linear velocity (m/s)

: axial distance (m)

: voidage (—)

: viscosity (Pa-.s)

: density (kg/m3)

: shape factor of solid particle (—)

: stream function (m=0:kg/m-s, m=1: kg/s)
(Subscripts)

:burden, g:gas, /:liquid, 7 :radial direction, s: solid particle,

z : axial direction

%
cov R e n S P8

<o
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3. Mathematical Deseriptions for Ironmaking Processes

3. 1. Model for Prediction of Gas Temperature at the Top of Blast Furnace

Iron ore and coke are fed batchwise into the top of bed in blast furnace. Thus,
during the descending of the burden, the temperatures of gas and burden at the top
of bed change unsteadily. The information concerning variation in the temperature
of top gas is used to control the actual operation.

One charge of burden is intermittently fed into the top of blast furnace. Now
we designate the bed height of one charge as, z, which can be determined from the
following expression:

() (2]
e= () +(52)/4 (3.1
where p, and p, are the bulk densities of coke and iron ore layers (kg/m? (bed)),
respectively, w, and w, are the masses of coke and iron ore per one charge (kg/ch),
respectively, and A is the cross sectional area of the top of furnace.

The bed of one charge descends gradually, and when the top level of the bed
reaches to the height specified previously next charge is fed into the top of the
bed.

Here we develop a simple model! to determine the temperatures of top gas at
two different times, namely at the time just before the next charge is fed, Tz, and
at the time immediately after the charging is finished, T'.

For simplicity, we assume that coke and iron ore have the same specific heats,
temperatures and particle diameters. Furthermore, we assume that the surrounding
surface of the blast furnace is made of adiabatic wall, and also we can neglect the
heat of reaction.

By taking heat balance for gas around the differential bed height in one charge,
Eq. (3.2) can be obtained.

aT _ o
dx ~ WC

where T is gas temperature, ¥ is distance from the top of bed, W is mass flow
rate of gas (kg/s), C is specific heat of gas (J/kg-K), ¢ is temeperature of solid
particles. We refer to a(W/m-K) as a=6(1—e&)hpA/dy, where ¢ is voidage, hp, is
heat transfer coefficient between solid particle and gas, and d, is diameter of solid

(T-1) (3.2)
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particle.
Similarly, Eq. (3.3) can be obtained by taking heat balance for solid particle
around the same differential bed as mentioned above
dt o
= (T —¢ 3.3
p ar el C i) (3.3)
where w is mass flow rate of solid particles and ¢ is specific heat of solid particle.
The values of W and w can be determined from the following equations. From
the mass balance for nitrogen gas, we have

W=79F,0/(%N,) 3.4

where F, is blast volume (Nm3/s), ¢ is density of gas at the top of bed (kg/Nm?)
and (%N,) is the mean concentration of N, in the gas exhausted from the top of
bed, and

w=n(w,+w,) (3.5)

where 7 is the number of charges per hour (ch/3600s). Now, we use the symbols
B=ajwe, r=wc/WC and 6=8(1—7). From Egs. (3.2) and (3.3), we have the follow-
ing equations.

dT =ydt (3.6)
AT —1) /(T —t)=—38dx @.7

Integrating Eq. (3.6) and Eq. (3.7), respectively, we have
T=rt+C, (3.8)
T—t=exp(—38x+C,)=Bexp(—odx) 3.9

where C; and C, are constants and B=exp(C,).
From Egs. (3.8) and (3.9),

t=cexp(—dx)+c, (3.10)
T=cirexp(—é6x)+c¢, 3.1D

where ¢;=B/(y—1) and ¢;=—C;/(r—1), In Eq. (3.11), we put 7=7, at X=z, and
T'=T, at x=0, thus

T.,=crexp(—0z2) +¢, (3.12)

Ty=c+c, (3.13)
Furthermore, in Eq. (3.10), putting t=t, at x=0 we get

Co=lko—Cy (3.14)

where £, is the temperature of solid particles to be fed into the top of furnace.
From Egs. (3.12) and (3.14), we obtain

T,=c\+1, (3.15)
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where 1=rexp (—dz)—1. Now, the top gas temperature varies from 7T, to T, and
we designate the mean temperature T, which can be expressed as Eq. (3.16).

1t 61T 1 _ |
TM"‘;S Td«c-—~§z—{1 exp(—02)}+c, (3.16)

0

We substitute Eqgs. (3.14) and (3.15) into Eq (3.16) to get

T, ={T,+t,(v—1)}/v (3.17)
where v=[7{l—exp(—dz)} —dz]/10z. Now, from Egs. (3.15) and (3.17), we obtain
¢1=(T—to) /v (3.18)

When the data of A, &, hy, dy 7, We, W, C, ¢, Fo, (BN3), P, Pe, Po, 20nd Th
are given, we can determine the values of ¢; and ¢, by Eq. (3.18) and Eq. (3.14),
respectively. Thus, we can evaluate T, and 7, from Eq. (3.12) and Eq. (3.13),
respectively.

Furthermore, if the supply of burden is suspended due to problems in the
feeding machine during the time period, ¢, but the blast is successively continued,
then the temperature of top gas can be estimated from Eq. (3.19).

T =c,+cyrexn(—du0) (3.19)
where #,=z# is the descending velocity of solid particles.

3. 2. Layered Structure Model of Blast Furnace

() Introduction

In the steady state operation of blast furnace, layered configuration of ore and
coke burdens is accompanied by not only the longitudinal but also the radial
variations of the process variables which would fluctuate periodically with the
alternate passage of the layers. This
section is devoted to describing such
situations in blast furnace based on a
mathematical model2~3. Fundamental
notation for the physical and transport
properties is the same as in section 2.

(I) Radial Distribution of Gas Flow
Rate

The interrelation between a burden
distribution associated with the charging
arrangement and the resultant radial dis-
tribution of the gas flow rate is analytically
formulated here. Assumptions made are
as follows:

(i) As shown in Fig. 3.1, the layered
ore and coke burdens charged to the top
of the furnace descend with V-shaped
contours whose apparent angles of repose

are a; and a3, respectively. Fig. 3. 1. Schematic illustration of the
(ii) When the two adjacent layers are layered structure model.
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considered as one block, the i-th block is a cylindrically packed bed having an
average diameter R;, and the resistance to flow at a given dimensionless radial
position ({=7/R;) is the same in any block.

(iii) Ore and coke burdens are prepared through sufficient screening, conse-
quently resulting in no radial distribution of the particle size dp; and the voidage
e; in each layer,

The Ergun equation, making allowance for the radial distribution of the longi-
tudinally averaged particle size g, and the voidage g, takes the form:

OP/0z=p{1—=e(D} PO -4 (/{32 - dp(D) (D)} (3.20)
where ¢ ({) is the shape factor and the drag coefficient 7 (&) is defined by
T =150{1—c(O)}/Re,(O) +1.75,
Rey (D) =6(0) +dy () +e(0) - 145(0) 0/ i 3.2

Because the value of Rej is very large in blast furnace, the radial change in
T (0 is slight even if there existed radial changes in dp; and ¢; in each layer.
Hence, it may be assumed as ¥({)=const. =¥. Additionally, it is assumed as
PO =¢1=¢,=¢=0. 64.

Let each volume of ore and coke burdens in a block enclosed between the radial
positions { and ({+d{) be designated by V. and V2, respectively. Then, &({) can
be readily expressed as:

e =(erViete V) /(Vig+-V o) = A+ BC (3.22)

where the dimensionless factors, 4 and B, are related to the charging conditions
through the following expressions:

A= Vit eV ot @/ 7 (R (1 =)}/ (Vi 4V,
B=—n(Ry)*d(e1—e,) /(V1+V,), A=tana,—tana, (3.23)

The mean particle size gy () should be determined so as to meet the stipula-
tion that the pressure drop of gas through a certain block having & (¢) and gp (&)
must be equated to the sum of that through each layer in the block. This implies
that 4,/{2¢d»s/3(1—%)} is expressed as the sum of 4;/{2¢dpje3/3(1—e;)} in each
layer. Rearrangement of this expression consequently gives:

dr (O =4{1-2()}/{e (- (Ci+ D)} (3.24)
where, 4;, C; and D; are represented by :
di=dyy+ 4y, 4y, =V 1+7(R)4(2/3-0)} /n(R)?,
4y i={V,—m(R1)*4(2/3-0)} /= (R)?,
Ce={Vi/Dp+V,/Dyy— (2/3) 7 (R IA/m (R)?, Dy=I'4(R,)*/(R)*
I'=1/Dy—1/Dy1, Dypy=dye;/(1—¢;), (=1, 2) (3. 25)

Substituting Eq. (3.24) into (3.20), we have



Principles of Metallurgical Reaction Engineering 105

0P /0z= {pggf/ <¢Ai)} (Ci+Di,:> ‘1 (0)® (3. 26)

If the pressure gradient expressed by Eq. (3.26) is approximately the same at any
radial position,

0(0P/0z)/0Z=0 (3.27)
On the other hand, the mass balance regarding gas gives:
1
Fo=2r(R)*| ¢+e () u(O)de (3. 28)

where F, in Nm?/s denotes the volume flow rate of gas at the standard state.
Combination of Eqgs. (3.26) through (3.28) yields the expression for the radial
velocity profile for the standard state as:

__F, A+BC
= g R Ve T (3.29)

where E; is a dimensionless factor defined as:
E,=2{+/C,+D,[B(C:+D,)?/5+ (D;A—2BC,)
x (C;+ D)) /3—C,(D;A—BC,)]—/C,[B(C;)?/5
+C;(D,A—-2BC,)/3—C,(D;A—-BC)1}/(Dy? (3.30)

Equation (3.29) gives the resultant radial profile of gas flow rate, when the
changes in the apparent angles of repose, ore/coke and coke base are caused by
different charging arrangements.

() Mathematical-kinetic Model of Blast Furnace

Because the apparent angles of repose of ore and coke differ from each other,
the vertical depth of each layer varies radially. Thus, the radial distributions would
be expected to concern not only the aerodynamic situation but also the thermal and
the chemical aspects. Heat, mass, and momentum balances are formulated here for
the region from ¢ to ({+d{) under the following assumptions:

(1) Gas and solid particles are piston flow through the specified region.

(iiy Two adjacent layers of ore and coke, as one block having the thickness 4,
as shown in Fig. 3.1, move down instantaneously after a lapse of the residence
time ©(=4;/us,;) to meet the cyclic steady-state changes in process variables.

(iii) The chemical reactions to be considered here are the indirect reduction
of ore and the decomposition of limestone which take place in the ore layer and
the Boudouard reaction in the coke layer according to:

(1/3)Fe,0,;+CO=(2/3)Fe+CO, (3.31)
CaCQ,;=Ca0+C0O, (3.32)
CO,+C=2C0 (3.33)

(1) Unsteady-state Heat Transfer in Ore and Coke Layers
By taking account of heat-in-mass transfer, the heat of reaction and the heat
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exchange between gas and solid particles, the heat balance equation for the ore
layer in the ¢-th block can be expressed as follows:

L@%@(;iz)_,: Gl (T3 —15) +C,, 0( LZJ;; ) {M ;(cp) co—M0.(C5) o}

Xty=Coro( VM 1, (0) oot t Coro L) (— 41

+Cyo &) (—am) (3.34)

where £, and T, are the temperatures of solid particles and gas in the ore layer
suffixed by 2, “a” denotes the specific surface area, p, is the bulk density, C,,o
and C,,, refer to the initial molar concentrations of combined oxygen and CaCOj,
respectively, f’s are the fractional conversions, ¢’s are the specific heats, M’s stand
for the molecular masses, (—4H)’s denote the heats of reaction, and ¢ is the time.

The change in the bulk density of the ore layer caused by the progress of the
reactions can be expressed by :

05 = Py2,0— (16C,, o fo+44C,, 0 ) (3.39)
Substituting Eq. (3.35) into Eq. (3.34), and assuming that the gas temperature

in the ore layer may be kept at T,,; during the period 7, the resultant heat
transfer equation can be obtained as:

At/ d0=Ky(T 5 —1,) +H,(—4H,) +H,(— 4H,) + {H,[28(¢5) co
—44(¢)) co,+16¢5, 1+ 44H [ co— (€5) co.} 22 (3. 36)
where K, and H;(k=o0, [) are defined as follows:
Ky=a3Rp3,:/002{Cea+12(dCsz/dl )},
Hy=C0(dfs/d0) [0ve{Csatto(dCs/dln)},  (B=0, 1) (3.37)

In an analogous manner, heat balance equation for the coke layer and its bulk
density can be represented by Egs. (3.38) and (3. 40), respectively.

dtl/dﬁzKl (Tl,i"tl) +Hc <_ AHc) +Hc[44 (Cp) 00:‘“56 (Cp) coT 12031]t1
(3. 38)

where ¢, is the temperature of solid particles in the coke layer suffixed by 1,
—4H, denotes the heat of Boudouard reaction, and K, and H, are defined as
follows:

Ki=0a,lp,:/00{Ca+1t:(dcs/dty)},
H.=C,,,(df./d0)/esi{ca+1 (desi/dty)} (3.39)
pblzpb110*12cc,0fc (3 40)
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where f, denotes the fractional gasification of carbon.

(2) Overall Heat Balance in Ore and Coke Layers

Integration of Eq. (3.34) from 0 to r with respect to ¢ will give the heat
balance equation in the ore layer in the form of Eq. (3.44) described later. In
carrying out the intergration, the relations which will follow have been taken into
account.

Taking the overall heat belance for gas side, we have:

(A, )@k (To=)d0+ {Coyo(df./d8) X [Moo(e) oo
_MC'Oz (Cp) coz]tz"cb 0 (dfl/d0>MCO:<CP) coatz} ao

= [ {(Ge6e T (Cr0.T D) i} d0—27 R (GO (22~ T} d0 (3. 41)
where A, is the cross-sectional area of the i-th blok of burdens, U denotes the
overall heat transfer coefficient and T, is the temperature of the cooling water
around the furnace. The first and the second terms of integrals in the left-hand
side of Eq. (3.41) represent the amounts of heat transferred by the heat exchange
between gas and solid particles and by the heat-in-mass transfer, respectively. Each
integral term on the right-hand side shows the change in the heat content of the
gas and the heat transferred in the radial direction, respectively.

To estimate the value of the correction factor &, an effective thermal conduc-
tivity4) has been applied for analyzing the observed temperature distribution in a
cylindrical bed®. As a result, the following simple correlation has been obtained.
That is, é=(.

For the sake of further simplification, the terms involved in each integral in

the right-hand side of Eq. (3.41) and the heats of reaction, (—4H,) (k=o0,) are
assumed to be kept constant throughout the period r. Namely,

—4H = —4H,,,;, (k=0 1),
(G T3) in—(GeCeT3) gue= (FgpsCeT )y, i — (FepgCeT) 2 s
T,=Ty; (3. 42)

Equation (3.41) subject to Eq. (3.42) ultimately yields the expression for the
temperature of gas entering into the ore layer of the i-th block as follows:

Ty i=Loy T sy i+720:(day o/ 45) (by s— My by 11— AT o, ;— AT 4, )
+N,y, (Tyi—T o) (3.43)
where
T2r i =F5 (056 20 i/ (Fe0sC) 1y i Loy 1= (Fe05Ce) 20 i/ (FsbsC) 1y 15
M, = (0562 121/ (06) 20 s Ny 1 =27CR A5, SU/ (FepsCe) 1, 1
AT 4, =Chyo(fuss—firs-0) (—dH ) /(06€) 20 r - (B=0, ) (3.44)

where F, denotes the volume flow rate of solid particles.
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In Eqgs. (3.43) and (3. 44), variables, t,, f1, Ps2 and c,,, with suffix i are defined
as the values at f=r.

The temperature of gas entering into the coke layer can be likewise written
as follows:

T o1=L1, Ty i+71, 1 (dyy o/ 4) (try i— My, ity s — AT, )
+ Ny, (T, i —T o) (3. 45)
where
70 i =F:(00C) 1, i/ (FeeCo) 2 ti1s Ly 1= (Fg05Ce) 1, o/ (Fg05C5) 5, 141,
My, = (006) 15121/ (06D 1510 N1y =27l R My, FU/ (Fp04€,) 5, 541,

ATc: iECc’ 0<fca i—fcy i—-l) <_AHc’ i)/((obcs}l, i (3' 46)

In Egs. (3.45) and (3.46), variables, #y, f. ,0»1, and ¢y, with suffix / are defined
as the respective values at d=r.

It should be noted in Egs. (3.43) and (3. 45) that the gas temperature in layered
burdens case is governed by three thermal flow ratios (7, L, and 3) instead of 7
alone for a homogeneously mixed burden.

(3) Overall Mass Balances in Ore and Coke Layers

Taking the mass balance with respect to total gas during the period r, the
average flow rates of gas entering into ore and coke layers of the i-th block can
be represented algebraically by Egs. (3.47) and (3.48), respectively.

Fgl, i:Fg27 i(l_“AYla i) (3. 47)
ng, i:Fg‘la i(l_—'AYmi) (3. 4;8)

where 4Y,,; and 4Y,,; denoting the dimensionless volume changes of carbon dioxide
are defined according to:

4Y 4, ;=22.4C,, o (fay i—Far 1-1) (F/Fygs, ) (dy,5/45), (kR=o0, 1)
AYc: 1522 4Cc7 O(fcs i—fu i-«l) (Fs/Fgl’ i) (Al’ z/A1,> (3' 49)

The molar fractions of gas species entering into the ore and coke layers can
be obtained from mass balances.
Namely, from CO balance for each layer we have:

Yeor 1= (Veor 2t AV, ) /(1= 4Y,, ;) (3.50)

Veos 20 101= (Yo 14— 24Y o, ) /(1= 4V, ) (3.51)
Similarly, from CO, balances, we have:

Yeow 5= (Yeom 2y s =AY oy s —4Y,, ) /(1= 4Y, ) (3.52)

Yeow 21i= YVeow s+ 4Y ., ) /(1—4Y, ) (3.53)

Also, from H,, H,O and N, balances, we have
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Bayi =Ny ;A—4Y ) (B=Yu, Ymor Vx.) (3. 54)
h27 i+l :hly i(l_—AYtn i> (k:yi{” V.0 ny) (3° 55)

Summing up the products of density of each component of gas and its composition
represented by Egs. (3.50) to (3.55), the average densities of gas entering into
each layer can be expressed as follows:

Pe1y 1= (sz, i"o- 727AY0’ i—l' 977AYL) i)/(l - AYL: z) (3- 56)
Per 01 = (g1, :—0.5234Y , ) /(1—4Y (, ) (3.57)

(4) Pressure Drop of Gas Flowing through Ore and Coke Layers

Pressure drop of gas passing through each layer of burdens with thickness of
4;,; can be evaluated on the basis of the Ergun formula described by Eq. (3.20),
Then, the gas pressure at the lowest end of each layer is given as follows:

Pu i::P2$i+AP2vi (3- 58)
Pz» i+1:P17 it APh i (3» 59)

(5) Numerical Method for Computation

The mathematical kinetic model mentioned above, combined with the radial
profile of the gas velocity given by Eq. (3.29), allows us to predict the longitudinal
variations of the process variables along each dimensionless radius of the lumpy
zone provided the initial conditions have been specified at the top of the bed.
Figure 3.2 schematically illustrates the interrelation among the temperatures
shown in Fig. 3.1. A combination of the temperatures, f;,;_1 and T,,; according to
the unsteady-state heat transfer equation gives the temperature t,,;. A subsequent
combination of the temperatures, fa,;_1, T2, and fs,;, according to the overall heat
balance equation leads to the temperature
Ti,;. The obtained Ty,; follows to combine
with tq,;_1 according to the unsteady-state
heat transfer equation to yield the tempe-
rature fq,;. Such calculating procedure,
which may be successively continued till
the melting point of ore, consequently
results in the radial as well as the longi-

tudinal distributions of the process vari- ty \\>~~\

ables in the layered lumpy zone of blast ~"‘é To 541
furnace. Detailed discussion with respect Fig. 3. 2. Procedure for temperature
to computed results is available elsewhe- calculation.

re?¥).

3. 8. Sintering Machine

(1) Introduction

The commonly used Dwight-Lloyd sintering machine involves a moving bed of
granulated solid materials which are crossly countered by the down draught air to
propagate the reaction zone, gradually raising the temperature of solid particles to
the level at which fusion of particles can occur.

This DL sintering system has been mathematically formulatedé~12> on the basis
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of the balances for the heat and mass transfer processes. In this section, the
governing equations for preheating, cooling and combustion zones of the DL sintering
bed are derived from a set of generalized equations which allows to cover various
problems on the moving bed as well as the fixed bed systems. Notation employed
is basically the same as in section 2.

(2) Mathematical Formulation

(i) Overall Continuity

For a gas-solid reactor involving the convective flow as well as the mass
generation by chemical reactions, the overall mass conservation per unit volume of
bed is expressed in general form as:

¢;(90;/80) = —divG,+0;8,R%, (=g, ) (3. 60)

where d,=1 and ds=—1, ¢; is the fractional volume (eg=¢, e;=1—¢), p; is the
density (pg=pe, 0s=0p), 0 is the time, and R¥ denotes the overall reaction rate. g,
is the rate of mass generation defined by 31,(v;;M;)e¢ where v,; is the stoichi-
ometric coefficient for species % appearing in the i-th reaction and v;;>0 for
generation of species 2 whereas v;;<{0 for its dissipation, and M, denotes the

= . .
molecular mass, G; is the mass velocity vector expressed by :

—>

Gi=pj¢; Zj (3.61)

where #; designates the moving speed of solid or the linear velocity of gas.

For the DL sintering process, we now proceed to derive the overall continuity
equation from Eq. (3.60). In developing the mathematical formulation, this process
is usually handled as two-dimensional system with the coordinates of x and z which
denote the moving direction of the pallet and the downward direction, respectively.

Assuming that the gas is flowing only downwards (thus Gg,=0) and the
accumulation term for gas phase is negligible, we can readily reduce Eq. (3.60) for
the gas phase to the following:

0G,,/02=313;R} (3.62)

For the solid phase with no downward movement and with a constant pallet
speed, #,, Eq. (3.60) consequently leads to:

(1—¢) (90,/00) = —u;a[ 0{p;(1 — &) } /Ox | — 2B, R (3.63)

Assuming the bed voidage to be kept constant during sintering, we can rewrite
Eq. (3.63) into:

Dp,/Do=—3:;R¥ (3.64)

where 0, =p, (1—e¢) is the bulk density and the substantial derivative is defind as
Do,/D0=00,/00-+us,(0p,/0%), represening a derivative on the coordinate moving
with pallet.

(ii) Continuity of Species

For a species k in the j-th multicomponent phase, the conservation principle
can be given by:

¢;(8C;,/00) = —divN ;,—divN;+SwuRY, (=g, s)  (3.65)
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where C;, denotes the molar concentration, the third term on the right-hand side
expresses the generation rate of k-th species per unit volume of bed, and ~—divj‘7,~v
and —-divﬁ jq stand for the net rates of inflow by the convection and the diffusion,

respectively. The convective molar flux N j» and the diffusive molar flux ﬁ jq can
be represented by:

J'v:C.ikstj k (3. 66)
N;y=(=D;,(0C;;/0%), —D;,(9C;,/02)) (3.67)

L=

where D;, denotes the dispersion coefficient.

For the DL sintering process, we can eliminate the dispersion term entirely.
Hence, Eq. (3.65) subject to the assumptions that #.,=0, #,,=constant and #.,=0,
consequently results in the following expressions for gas and the solid phases.

e(0C,,/00) = —0(Cyretty,) /0z+ v, R (3. 68)
(1—e)[0C,; /00 1= — s 0{Cs, (1 — &) } /O } + >y, ¥ (3. 69)

Equation (3.69) is rewritten as:
D{Cu(1—e)}/Do=21wu:R7} (3.70)

where C,;(1—e¢) represents the molar concentration per unit volume of bed.

(iii) Heat Balance

Taking the terms related to mass flow, conduction, heat exchange and heat
generation by chemical reaction into consideration, we can express the conservation
equation of thermal energy in the form:

e310(c;0,T;) /30 = —div qyu—div @ra—0,5,a (Ts— T + 1SR ¥ (— 4H),
(=g, s) (3.71)

where 6g=1, 6,=—1, peg+7:=1, ¢; is the specific heat, T; is the temperature, /i,
is the heat transfer coefficient between gas and solid particle, « is the specific
surface area, 4H stands for the enthalpy change accmpanied by chemical reactions
or phase transformations, 7; is the fractional heat acquisition of heat of reactions

including the extent of heat-in-mass transfer, and the convective heat flux _(Zav and
the conductive heat flux ;]_),-d can be represented as follow:

Ziv =C; T,-éj 3.72)
Qo= (—K;,(0T;/0%), —K;,(3T;/32)) (3.73)

In the case of DL sintering process, owing to the lack of information concerning
the value of 7; we often assume as 7;=0. As for the heat balance equation for
the gas phase, this assumption together with the additional assumptions neglecting
both the heat accumulation and the heat conduction terms, consequently transforms
Eq. (3.71) into:
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div(c,T,G,) -+ hya(T;—T5) =0 (3.74)
Equation (3.74) is rewritten into:

—

G, grad(c,T,) = — ¢, T, divG,—hya(T,—T) (3.75)
Based on the assumption that Gg,=0, Eq. (3.75) reduces to:
ng {a (Cng> /az} = Cng (ang/az) _ kpa (Tg‘_ Ts) (3 76)

Substituting Eq. (3.62) into Eq. (3.76), we ultimately obtain the expression
as:

Ge{0(ceTy) 02} = — ¢, T 20B:RT —ya (T4 —Ty) (3.77)

As for the heat balance equation for the solid phase, Eq. (3.71) leads to:

e{0(c,0.T)) /90) = —div (¢, T,G) + hya (T, — T) + SuR* (— 4H,)
3.78)
In Eq. (3.78) assuming that u,,==constant, #,,=0, and ¢=constant, we have
¢.T(Dpy/DO)+0,{D (¢, T)/ DO}y =hpa(T;—T,)+>uR¥(—4H,)
(3.79)
Substituting Eq. (3.64) into Eq. (3.79), we obtain
04{D(c.T) /D0} =6, T, SBR: + hpa (To—T) + 4R} (— 4H,)  (3.80)

(iv) Momentum Transfer
The vectorial Ergun equation for gas is expressed as:

grad P=— (f1+1.|G,) G, (3.81)
For the sintering process with G.,=0, Eq. (3.81) is reduced to:
0P/0z=— (f1+f:1Ge) G (3.82)

which allows to evaluate the mass velocity of gas under the given back pressure.
(v) Auxiliary Relations
For the ¢-th reaction considered, the stoichiometric coefficient v, and pB;
associated with the mass generation are, for example, as follows:

(reaction 1) C+0,—C0O;:vo,1=—1, vco, 1=1, Br=Mco,—M,,=M.
(3.83)
(reaction 2) CaCO; — CaO+CO, : vo,, =0, veo, 2=1, fa=M o, (3.84)

In order that the DL sintering machine can be fully described, we would
require to formulate some other phenomena including drying of solid particles,
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melting and solidification, mineralogical changes, etc. that occur during the sintering
process. Preliminary approaches to these problems may be available in the litera-
turesé~12), In recent vyears, detailed investigations have been devoted to the
clarification of the change in permeability of bed during sintering process. Shibata
et al.13,14) measured the permeability in each characteristic zone in a sintering pot.
Kasai et al.1® formulated the transitional changes in voidage and apparent size
of solid particles on the basis of the information obtained from a laboratory-scale
sintering simulator. Sato et al.1®) proposed a comprehensive model to interrelate
the melting process in sintering to the physical and chemical properties of iron
ore.

3. 4. Moving Bed Reactor

(1) Introduction

The moving bed reactor is advantageous for the continuous processing of solid
particles. Current topics on the transport phenomena in this reactor are reviewed
elsewhere!”. In this section, the generalized formulation and the thermal chara-
cteristics of the moving bed reactor are outlined.

(2) Generalized Formulation for Distributed System

As described in the preceding section, the vectorial conservation equations
characterizing also the moving bed reactor take the forms as Eq. (3.60) for total
mass, Eq. (3.65) for each chemical species, Eq. (3.71) for heat, and Eq. (3.81) for
momentum transfer.

A combination of these equations with the appropriate intial and boundary
conditions completes the statement of this system and may be numerically solved
in the finite-difference forms.

(3) One-dimensional Heat Transfer Process

From the generalized conservation equations mentioned above, we now derive
the fundmental equations describing the one-dimensional heat transfer process in
the co- and the counter-current moving beds. Assumptions made in developing the
present formulation are as follows:

(i) The system is assumed to be in steady state.

(ii) Gas and solid materials are assumed to flow straight, without thermal

conduction

(iii) The wall is assumed to be impervious to heat flow.

(iv) Thermal properties are assumed to be kept constant.

The assumptions (i) and (ii) allow to write as 8(c;0;7;)/06=0 and 2a=0 in
Eq. (3.71) representing the heat transfer process, thus we have the following
expression for j(=g,s) phase:

—div(c;T,G;) —8;hya (T y—T) +1,54R* (— 4H,) =0 (3.85)
Equation (3.85) can be rewritten as:
¢;T3div G, +grad(c;T ;) -G y+0;h,a(Ty—Ts) —1, 4R} (— 4H;) =0
(3. 86)

Combining the relation div(?,-:&,-Ei‘BiR’}‘, which can be derived from the overall
continuity equation written by Eq. (3.60), with constant specific heat c;, conse-
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quently Eq. (3.86) can be expressed as

—

¢;G;-gradT;+ 0ihpa (T g—T)+0;¢;T;3,0,R* =10, 20R¥(—4H,) =0
(3.87)
Equation (3.87) in the one-dimensional system with z-direction takes the form :

(gas side) : ¢,G.(dT./dz)+ hoa(Ty—T )+, T SBRE

— 02087 (—4H ;) =0 (3.88)
(solid side) : ¢.G.,(dT./dz) —hya(Ty—T,) —c.T PR
=207 (—4H ) =0 (3.89)

It should be noted here that the component of the mass-velocity vector, in the
z-direction, G (j=g, s), is positive when the j-phase is moving in the positive
direction of z, and vice versa.

These two equations are rewritten in dimensionless forms as:

dT%/dz* = —St(T5—T%) —S;T%+1,S, (3. 90)
dT3/dz"=—(St/r) (Ti—T%) + (S1/S) T5—,S,/r (3.91)
with the dimensionless parameters defined by :
Ti=T,/Ty, T =T,/T,, z2°=2z/L,
St=hy,al/c,G,,, r=-—c¢G,/c,G,,
S1=L2ERY /Gy, S, =L3R}(—4H,) /¢,Gy. T o,
S;=G,,/G,, (3.92)

where S¢ stands for the Stanton number and 7 refers to the thermal flow ratio.
Here, 7 is positive for the counter-current bed as seen in the case of blast furnace,
and negative for the co-current bed because of the sign of G,

The boundary conditions for gas and solid particles are specified at the two
ends of the reactor in the case of the counter-current moving bed, whereas at the
same inlet position in the co-current case. In the absence of chemical reactions,
the exponential type solution to this problem has been well known hithertol19),

Now we proceed to correlate the gas-to-solid heat exchanging regime without
chemical reactions explicitly to the value of the thermal flow ratio for the case of
counter-current moving bed. The effect of chemical reactions is neglected here,
thus §;=5,=0.

(i) Interrelation between dT%/dz* and dT%/dz*

Combination of Egs. (3.90) and (3.91) results in:

dT3}/dz*=y(dT%/dz") (3.93)

(ii) Axial variation of (T%—T%)
Subtraction of Eq. (3.91) from Eq. (3.90) consequently gives:
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Ii=d(T;—T%/dz*={(SO) /r} A=) (T5—T%) (3.94)
Taking the relation (7%—T%) >0 into consideration, we have
I,>0 for y<1, I,=0 for r=1, I,<0 for y>1 (3.95)

(iii) Curvature of temperature profile
Differentiation of Eq. (3.90) with respect to z*, together with Egs. (3.90) and
(3.91), leads to the following relations:

I,=d*T%/dz" =y (d*T%/dz*") =(SO*(T:—THD G- /r (3.9
I,<0 for y<1, I,=0 for yr=1, I,>0 for r>1 3.97)

On the basis of the relations from Egs. (3.93) to (3.97), we can elucidate the
general characteristics of the temperature profile in the counter-current moving
bed heat exchanger.

Furthermore, the temperature profile in the upper part of blast furnace, where
the heat of reaction is negligible, may correspond to the situation for the case of

r<l.

Nomeneclature

A : cross-sectional area of the top of furnace (m?)
a : specific surface area (m2/ms3(bed))
C : specific heat of gas (J/kg:K)
Cj, : molar concentration of k-th component in j-phase (kmol/m?)
Ce, o : initial concentration of carbon in coke layer (kmol/m3(coke bed))
C,, , : initial concentration of CaCQ; in ore layer (kmol/m3(ore bed))
C,, o : initial concentration of oxygen combined with iron in ore layer
(kmol/mS3 (ore bed))
¢ : specific heat of solid particle (J/kg«K)
¢j : specific heat of j-phase (J/kg:K)
D : dispersion coefficient (m?2/s)
dp : diameter of solid particle (m)
dp : particle size longitudinally averaged over adjacent two layers (m)
F, : blast volume (Nm3/s)
Fg : volume flow rate of gas (Nm3/s)
F, : volume flow rate of solid particles (m3(bed)/s)
f : fractional conversion (—)
G; : mass velocity of j-phase (kg/m?2.s)
—4H; : heat of reaction (J/kmol)
Jip @ heat transfer coefficient between gas and solid particle (W/m2.K)
K; : effective thermal conductivity (W/m-K)
L : bed height (m)
M, : molecular mass of component £ (kg/kmol)
N;: molar flux vector (kmol/m?2.s)
(%N,): mean concentration of N, in exhaust gas (%)
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: number of charges per hour (1/3600s)

: gas pressure (Pa)

: heat flux vector (W/m?)

: mean radius of ¢-th block in blast furnace (m)

: overall reaction rate (kmol/ms3 (bed)-s)

: particle Reynolds number (—)

: radial distance (m)

: Stanton number (—)

: gas temperature (K)

: temperature of j-phase (K)

: temperature of gas through j-th layer in i-th block of burden (K)

: mean temperature of top gas changing transitionally from T, to T, (XK)
: temperature of top gas at the time immediately after the charging is

finished (K)

T, : temperature of top gas at the time just before the next charge is fed (K)

t:
U:
uj .
Un ©

Sj(j:l,
ei(j=g

©
SR oS oy oo

)
o D I

Pey Po:

temperature of solid particle (XK)

overall heat transfer coefficient (W/m2?-K)
linear velocity of j-phase (m/s)

superficial flow rate of gas (Nm3/m?2(bed)-s)

: descending velocity of solid particles (m/s)

: volume of j-th layer per one charge (m3(bed))

: mass flow rate of gas (kg/s)

: mass flow rate of solid particles (kg/s)

: mass of coke and iron ore per one charge, respectively (kg)
: distance (m)

: molar fraction of component & (—)

: distance (m)

: apparent angle of repose of j—th layer (j=12) (—)
: rate of mass generation (kg/kmol)

: thermal flow ratio (—)

: vertical depth of i~th block (m)

: vertical depth of j-th layer in i-th block (m)

2) : voidage of j-th layer (—)
s) : fractional volume of j-phase (m3/m3(bed))
mean voidage of adjacent two layers (—)

: dimensionless radius (=7/R;) (=)

: fractional acquisition of heat of reaction (—)

: time  (s)

: viscosity (Pa-s)

: stoichiometric coefficient for species k appearing in i-th reaction (—)
: correction factor of U (—)

: density of gas (kg/Nm?)

: bulk density (kg/m?)

bulk density of coke layer and iron ore layer, respectively (kg/m3(bed))

Pic=g, sy  density of j-phase (kg/m?)

N el a

: residence time of solid particles in each block (s)
: shape factor (—)

: mean ¢ of adjacent two layers (—)

: drag coefficient of Ergun equation (—)
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s mean ¥ of adjacent two layers (—)
(Subscripts)

0 : inlet conditions, c¢: coke, cw : cooling water, d : conduction,

i : block number marked from top level to tuyere level of blast furnace, or
kind of reaction, i#: inflow, j: layer number (1 : coke, 2:ore), or phase
number {(g:gas, s:solid), k: chemical species, [:limestone, o : ore,

out ; outflow, p: particle, v :convection, « :lateral direction, z:axial
direction

S|
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Part 2 Modelling of steelmaking processes

4. Fundamental principles in theoretical analysis

4. 1. Application of Navier-Stokes Equation

(1) Introduction

In many practical operations of metallurgical processes fluid motion plays an
important role together with mass and heat transfer phenomena. The fluid motion
observed in these operations is turbulent, in which irregular fluctuations, eddying
motions and random mixing are superimposed on the stream.

The quantitative description of the fluid flow phenomena would be helpful for
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a better understanding of metallurgical processes. In the following we shall present
a general mathematical statement of the fluid flow including recirculating turbulent
flow.

(2) Formulation

Let us consider the steady flow of the incompressible Newtonian fluid in an
axi-symmetric cylindrical or a two-dimentional cartesian coordinate system. Now
we designate the distances along the axial or longitudinal coordinate and the radial
or lateral coordinate by Z; and Z,, respectively, and also we refer to V', and V,
as the corresponding components of velocity.

The equation of continuity is given by the expression

0(Vy) 1 9(esV,) _
0Z, tF 07, =0 @D

where £€=Z7, is adopted in cylindrical coordinates and £=1 in cartesian coordinates.
The equation of motion is expressed by Eq. (4.2) in the axial or longitudinal
coordinate and by Eq. (4.3) in the radial or lateral coordinate.

e Wy Ly avl>:_ oP +ﬂ[1 ? G aV1>Jr azvl}_”1 w2

Z, oz, EYA E0Z,\"02,) " 9z7¢
v, W,\_ P o (1 02V, \, 8V,
(v 9z, "oz )= 07, o] 07, (= 97, )+ YA [+fe @3

where o is density, # is molecular viscosity of fluid and P is static pressure in
fluid. Body forces in directions Z; and Z, are designated by f; and f,, respectively.

The buoyancy and the induced electromagnetic forces belong to the category of
the body force appeared in the equations of motion. On the other hand, the shear
stress caused by an impinging jet or a surface tension is introduced by boundary
conditions.

For the convenience of computation, Egs. (4.1) to (4.3) can be written in
terms of the vorticity, , and the stream function, v, defined as:

_ v, oV,

=%z, oz, @D
Vo= — pl %’_— (4.5)
= (4.6)
From Eqgs. (4.2) and (4.3), we obtain the vorticity transport equation :
52{ agl (? aa}oz )‘ aazz (? aa,%bl >}" a?zl %53 agl (“%)%
—5z; oz (G )=0 @)

By combining Egs. (4.4). (4.5) and (4.6), the stream function and the vorticity
can be related by the following equation:



Principles of Metallurgical Reaction Engineering 119

(o are) tar e an) T =0 (4.8)

Equations (4.7) and (4.8) may be applied to turbulent flow provided the
molecular viscosity, g, is substituted by the effective viscosity, u#.. The effective
viscosity is defined as

He=H [t 4.9

where the turbulent viscosity, ., is not a physical property of the fluid but may be
dependent on the position and structure of turbulence.

Since the development of an acceptable expression for g, is considered as a
crucial factor in the mathematical model describing the turbulent flow system, a
brief discussion on this problem is given below.

In the simplest formulation for the turbulent viscosity, the value of p, is
maintained at a constant higher than that of the molecular viscosity.

Another expression for the turbulent viscosity is given as follows:

=K1 (4.10)

where [ is the length scale of turbulence for which an accurate value is not
reported yet. The value of K can be quantitatively determined from the solution
of the differential equation expressing the conservation of turbulent energy (so-
called one-equation model).

Furthermore, the turbulent viscosity is also represented as follows:

p=pCK?/e (4.11)

where Cp is a constant. In Eq. (4. 11), both the turbulent energy, X, and the tur-
bulent dissipation energy, e, can be determined by using the solution of the
respective differential equations concerning K and ¢, (so-called two-equation model).

The length scale of turbulence is not involved in Eq. (4.11) and therefore
two-equation model may be expected to be a more reliable procedure than one-
equation model. It must be noted, however, that this additional reliability can be
achieved at the expense of an increased computational labor.

The turbulent models were proposed by Spalding and his coworkers? who did
pioneering works on the actual quantitative computation of the complex recirculating
flow. The detailed discussion of the relative merits of these models were outlined
by Launder, et al.2).

Applications of these meodels to metal processing have been presented by
Szekely and his coworkers.3~%) Their interesting applications have been developed
over a wide range, e. g., stirring and solidification of molten metal, and coalescence
and floatation of inclusion particles.

The numerical computation of the three dimensional mathematical models of
fluid flow, although available nowadays, is costly because of the excessively long
computation time required. Moreover, the simulation to be obtained by such
computation is apt to give comparatively approximate results. The problem
especially arises in the case of turbulent flow in which the lack of experimental
data renders the verification of the results difficult.
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4. 2. Mixing Phenomena of Liquid Bath Stirred by Gas Injection

(1) Introduction

With regard to the concepts expressing the aspect of mixing, two kinds of
technical terms have been extensively used hitherto in metallurgical processes.
Namely, one is “mixing power density” which is a function of the operating
conditions and the physical properties of the system, and the other is “mixing
time”, by which the rate of approach to the uniformity of system can be estimated.
The relationship between these terms was proposed by Nakanishi and Fujii,® which
enables us to evaluate the required flow rate of gas and the approximate degree
of mixing.

In this section, the relations between the uniform mixing time, , and the mixing
power density, ¢, are analyzed from the viewpoint of transport phenomena, and the
validities of the theoretical results are verified by cold model experiments for
various types of metallurgical vessels.

(2) Relationship Between Flow Velocity and Mixing Power Density”

Navier-Stokes equation is applicable to both laminar and turbulent flows of a
homogeneous fluid. Now, Eqgs, (4.2) and (4.3) can be expressed as

0 o\ N
.o(—a-ﬁv 171))_ PP+ pf o+ F (4.12)

where F refers to the body force and is generated by the injection of gas.
Focussing on the term involved in Eq. (4.12) which competes with the magni-
tude of the body force, we classify the fluid motion as follows:
(i) Case where the viscous force predominates
From Eq. (4.12), we can obtain as

wp=—F (4.13)

Now, it may be considered that the operator, 7, in Eq. (4.13) is in inverse
proportion to the characteristic length, L. Thus, Eq. (4.14) can be derived from
Eq. (4.13) on the basis of the procedure of the dimensional analysis.

voc (FFLE/ 1) (4.14)

where v is the characteristic velocity in the vessel.
(i) Case where the inertia force predominates
We simplify Eq. (4.12) as

00 FVo=F (4.15)
Following the same manner as in the derivation of Eq. (4.14), we can obtain as

voc (FL/o)* (4. 16)

(iii) Case where the turbulent viscous force predominates
We can write an equation similar to Eq. (4.13), but ¢ has to be replaced by .,

pVo=—F (4.17)

From the Boussinesq and Prandtl hypothesis, the turbulent viscosity can be
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expressed as
pe=pl*|grad v| (4.18)

Substituting Eq. (4. 18) into Eq. (4.17) and adopting a procedure similar to the
derivation of Eq. (4.14), we obtain

voc (FL3 /pl?)* (4.19)

The mixing power density expresses the energy dissipated per unit time and
per unit volume, and thus, the following relation may be written.

eock v (4. 20)

Applying Eq. (4.20) to Eqgs. (4.14), (4.16) and (4.19), we can write the
following relations between v and e.
(i) Case where the viscous force predominates

voc (Lee /i) (4.21)

(ii) Case where the inertia force predominates

1
voc(Le/p)3 (4.22)
(iii) Case where the turbulent viscous force predominates
1
voc (Lie/pl?)® (4. 23)

Now we can express the mass balance equation for a key component as Eq.
(4. 24),

%"t_w.mzpem (4. 24)
On the basis of the predominant mechanism in the mass transfer, Eq. (4.24)
can be simplified as in the following cases (A), (B) and (C).
(A) Case where the molecular diffusion predominates
In this case Eq. (4.24) reduces to the following equation.

0C _ nmpe
-3-;-—DV c (4. 25)
For Eq. (4.25), we make an approximation with the following expression:
dC/dt=—kDC/L? (4. 26)

where % is a constant and C is the characteristic concentration.
By integrating Eq. (4.26), we obtain as

Cocexp(—kDt/L?) (4.27)

Now we suppose that the mixing time, 7, is the time elapsed till the value of
C becomes invariant. Thus, by keeping the exponential power in the right-hand
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side of Eq. (4.27) constant, we can write the following expression:
roc(L2/ D) (4. 28)

In practice, the mixing time is considered as the time when the concentration
of the tracer falls in to a narrow range near the final concentration. The size of
the range defined by researchers differs from one to another. It should be noted
that it is meaningless to compare the values of the mixing times based on different
definitions.

(B) Case where the convection predominates

In this case Eq. (4.24) is simplified as the following equation:

oc _ =
=0T (4.29)

Replacing 7 by the characteristic velocity, v, and adopting a procedure similar
to Case (A) mentioned above, we write as

dC/dt=—kvC/L (4.30)
Integrating Eq. (4.30), the following expression yields
Cocexp(—kvi/L) (4.31)
Similarly, the mixing time may be described as
roc (L/v) (4.32)

(C) Case where the turbulent diffusion predominates

In this case, the molecular diffusivity, D, in Egs. (4.25) and (4.28) is replaced
by the turbulent diffusivity, D,. Thus, the mixing time in this case can be expressed
as

toc(L2/D)) (4.33)

Since the value of D, can be regarded as large as the eddy kinematic viscosity®,
v, (=pu;/p), thus from Eq. (4.18) we have

D,=1[*grad v| (4.34)
Combining Eq. (4.33) and Eq. (4.34), we obtain as
toc L3 /1% (4.35)

Equation (4.36) shows the effects of &, L, /, p, # and D upon r in the specific
case of combining the predominant force in fluid motion (i, ii, iii) and the predo-
minant dispersion process in mass transfer (A, B, ©).

roce LT o uf D" (4. 36)

It may be found that the mixing time in the case of combining (i) and (B) is
independent of the characteristic vessel size (y=0) and is inversely proportional to
the square root of the mixing power density (#=1/2). Similarly, we can see that
n=1/3 and y+&=2/3 are given in the respective cases of combining (ii) & (B),
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(i) & B), (1) & (C) and (i) & (C).

(3) Experimental Confirmation

The values of ¢ and v were measured through experiments conducted in the
cylindrical vessels in which water was agitated by air blown from the center of
the bottom. The diameter of the vessels were 0.405, 0.20 and 0.10 m, and the
liquid depth was kept at a value equal to the diameter.

Experimencal results obtained from a vessel of (.20 in diameter are shown in
Fig. 4.1. It is found from Fig. 4.1 that there exists an inflection point at about
¢=8W/m3, and that the relations between v and e are shown as poce0.48 and
voce0.25 on the left and right sides of the inflection point, respectively. On the
other hand, the theoretical relations have been given as vocel/?2 and vocel/? from
Eq. (4.21) and Eq. (4.22) or Eq. (4.23), respectively. Thus, it may be found that
the measured values of the power of & are nearly equal to the theoretical values.

Lehner, et al.9) observed the surface velocities of molten steel agitated by
argon gas in 60t-ladle at various radial positions and found that the surface velocity
at any radial position was in proportion to the one-third power of the flow rate
of gas. Since e is approximately proportional to the flow rate of gas?, the
relation of vocel/3 may be verified from the results observed by them.

Figure 4.2 shows the relations of r and ¢ observed in the three vessels having
different sizes. It may be seen from Fig. 4.2 that in the case in which the inertia
force or the turbulent viscous force predominates the relation rocL9-36 holds, but
in the case in which the viscous force predominates ¢ is independent of L.

(4) Evaluation of Mixing Power Density

The equations for evaluating the value of ¢ are given as below:

(a) BOF process!®
¢=3.95Q°%/(d*hV,) (W/m®) (4. 37)

where d is the nozzle diameter, i is the distance between nozzle and metal surface
and @ is the gas flow rate.
(b) RH degassing process

e=Q,0,(1,)?/2V

where @, and #, are the flow rate (m3/s) and velocity of liquid in the down-leg,

(W/m?) (4. 38)
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Fig. 4. 1. Effect of mixing power density
on mixing time and fluid velocity?.

(case of 200¢ >200%)
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Fig. 4. 2. Effect of vessel size on the
relationship between mixing time

and mixing power density”.
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respectively.

4. 3. Evaluation of Interfacial Area in Gas-Liquid System

(1) Introduction

On the gas-liquid reaction in the metailurgical processes, abundant literature
has been reported hitherto. In these reactions, the evaluation of the interfacial
area between gas and liquid phases becomes an important subject.

It is desirable that the empirical determinations of the mass transfer coeffici-
ent, k; (m/s), and the volumetric interfacial area, a (m2/m?), should be handled
independently. However, generally their product is obtained from the experiments
concerning metallurgical processes.

Now, two techniques for measuring the interfacial area between gas phase and
liquid phase are mainly adopted in the field of chemical engineering. One of these
techniques which is chemical by nature employs the absorption process accompanied
by reaction. The other technique being physical by nature utilizes optical proper-
ties of dispersion. However, in metallurgical fields, it is difficult to find out a
reaction system which may be available for the former techinque, and for the
latter one, a transparent liquid is required.

(2) Chemical Method of Measurewent

The governing equation for a simultaneous absorption and reaction process can
be described as follows:

0%¢ _ 0c _
D—'"‘axz = Fr(c) (4.39)

where 7(c¢) denotes the reaction rate and is a function of the concentration of the
key component.

In the case where the reaction is fast enough to take place appreciably during
the life of the surface elements of fluid, which appear on the gas-liquid interface
from the bulk liquid, » (¢) may be much larger than (dc/0t). Thus, Eq. (4.39)
reduces to:

2
D2C=r(c) (4. 40)

The boundary conditions are as follows:
c=c, at x=0 (4. 41)
de/dx=0, ¢=0 at x=o0 (4.42)

where ¢, is the concentration at interface.
Now, if a new variable § is introduced as

B=dc/dx (4. 43)
Equation (4.40) can be reduced to Eq. (4.44).
Dp(dp/de)=r7(c) (4. 44)

The integral of Eq. (4.44) satisfying Eq. (4.42) is
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C
D(/JZ/Z):S r(c)de (4. 45)
0
It is seen from Eq. (4.43) that B denotes the concentration gradient and is an
intrinsically negative variable, hence from Egs. (4.43) and (4.45), we have
C

Integrating Eq. (4.46) under the condition of ¢=c¢ at x=x, we obtain as

SC" de —x (4. 47)

c 1

©{e/D r@dey?

Equation (4.47) gives the concentration distribution along the x-axis. Thus the
absorption rate can be obtained directly from Egs. (4.41) and (4. 46).

Ve=—Dp, ,— {zﬁgj“r(c) de)? (4. 48)

where V is the mass flux at the interface.

Whatever the analytical form of »(¢), Eqs. (4.47) and (4.48) are available, and
without adopting any special form for » (¢) we can study the properties of a fast
reaction succeeded to absorption process. In fact, we can conclude from Eq. (4. 48)
that in the case of a fast reaction, the absorption rate does not depend on the
flow conditions of the liquid phase.

This conclusion becomes the basis of the method for the measurement of
interfacial area.

Now, it may be assumed that 7(c) takes the form of the following expression:

r="Fk,c" (4. 49)

where k£, is the reaction rate constant.
Then, from Eqgs. (4.48) and (4.49) we can obtain as

1

s {(_._2_.__) Dkn}?(coynﬂ)/z (4. 50)

—_pdc
V= n+1

dx

(8) Measurement of Interfacial Area

According to Eq. (4.50), the absorption rate in a fast reaction succeeded to
absorption process is independent of the flow conditions. This concept can be
applied to the measurement of interfacial area, provided the conditions described
below are satisfied.

(a) Gas-phase resistance to the mass transfer is negligible.

(b) Absorption process takes place with a fast reaction.

Two kinds of absorption processes have been widely used for the measurement
of interfacial area. Namely, these are, the process in which CO, gas is absorbed
in NaOH aqueous solution and the one in which O, gas is absorbed in the sodium
sulfite aqueous solution in the presence of a liquid-phase catalyst.

Yoshimatsu, et al.1V) applied the chemical method of measurement to a model
experiment of the metallurgical process. They injected CO, gas into the bath of
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NaOH aqueous solution from the bottom of a cylindrical vessel. Since the reaction
system of CO,-NaOH solution may be considered as a pseudo-first order, by
putting #=1 in Eq. (4.50), we obtain

V=1+/DF, ¢, (4.51)

where k; is the reaction rate constant
— /9.

Figure 4.3 shows the the relation
between the interfacial area, A (m?) and
- - the various blowing rates of gas, Qg

(m3/s). Here, the interfacial area can be
determined as

A=N/V  (4.52)

! w10-1 Where N is the rate of absorption (kmol/
Qg (m*/s) ). ' '

Fig. 4. 3. The relation between the inte- R It 1's found from Fig. 4.3 that the
rfacial area and the gas blowing interfacial area does not depend on the
rate. position of the injecting gas and A is in

proportion to the blowing rate of gas.
Milleri2 reported the results of the
experiments in which oxygen was absorbed in the sodium sulfite aqueous solution in
the presence of cobaltous sulfate catalyst.
(4) Physical Method of Measurement
A beam of light passing through a dispersed system is deflected by obstacles.

If we can select a suitable condition such that the deflected light can not reach

the receiver, we can measure only the light which has not encountered an obstacle.

This method was developed by Calderbank?!?.

Landau, et al.14) improved this method and proposed the following empirical
equation:

I/I,=exp{—6.59(1—e"0%82rp)} (4.53)

where I/I, is the transmitted fraction of light (—), 2 is the optical path length

(m) and a, is the interfacial area per unit volume of the dispersed system (m™1).

Equation (4.53) is exactly applicable for the value of 2a¢p up to the order of 80.
Another physical method is to measure the distribution of bubble diameters by

taking a photograph through the vessel.
When the distribution has been obtained, Sauter mean diameter, dgi can be

calculated from the following expression:
doy=3md}/>ndi=6a/a, (4.54)

where #; is the number of bubbles having spherical diameter, d;, of equivalent
volume and « is the hold-up of the bubbles. Then, the interfacial area per unit
volume of liquid phase, @ (m2/m3), can be expressed as

a=6a/{(1—-a)dsu} (4.55)
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Nomenclature

: interfacial area (m?2)

: interfacial area per unit volume of the dispersed system (m~%)
: characteristic concentration (kmol/m3)

: concentration (kmol/m3)

: constant  (—)

: concentration at interface (kmol/m3)

: molecular diffusivity (m?/s)

: effective diffusivity (m2/s)

: nozzle diameter (m)

: bubble diameter (m)

: body force (N/m3)

: body force in directions Z; and Z, (N/m3)
: distance between nozzle and metal surface (m)
: turbulent energy (m?/s?)

: constant  (—)

: reaction rate constant ((m3/kg)""1/s)

: characteristic length (m)

: length scale of turbulence (m)

: rate of absorption (kmol/s)

; : number of bubbles having spherical diameter, d; (—)
: static pressure (Pa)

: gas flow rate (Nm3/s)

i : blowing rate of gas (m?3/s)

: metal flow rate (m3/s)

: reaction rate (kmol/m3s)

: time  (8)

: velocity of metal (m/s)

: mass flux at interface (kmol/m?2s)

: metal volume (m3)

: velocity in direction Z; and Z, (m/s)

: velocity  (m/s)

: distance from gas-liquid interface (m)

: axial or longitudinal coordinate (m)

: radial or lateral coordinate (m)

« : hold-up of bubbles (—)

: concentration gradient (kmol/m*)

: turbulent dissipation energy (m?2/s?), mixing power density (W/m?)
: optical path length (m)

: molecular viscosity (Pa-s)

: effective viscosity (Pa-s)

: turbulent viscosity (Pa-s)

: density  (kg/m3)

: mixing time (s)

: stream function (kg/s)

: vorticity (1/s)

127
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5. Mathematical Descriptions for Steelmaking Processes

5. 1. LD Converter

(1) Basic Concepts of the Model

The variations in the concentrations of the components present in the steel
bath of LD converter caused by oxidation, may be determined by the balance of
the two different tendencies namely, the one which allows the system to approach
equilibrium, and the other caused by oxygen which is fed into the bath and keeps
the system away from equilibrium.

In Fig. 5.1 (a), the solid line (1) represents the equilibrium line between C and
O and the dotted line (2) shows the trajectory path along which C and O actually
shift during refining.

In the first and second refining periods, a large part of oxygen is consumed
by decarburization and the rest may be accumulated in the bulk of molten steel.
Taking the mass balance for oxygen at any elapsed time of blowing, ¢, Eq. (5.1)
can be obtained:

[ srmyao=C,~Co )+ MM €, —C 5. 1)

Equation (5.1) represents the operating line (3) which moves in the direction of
the arrow as @ increases. If the feeding of oxygen is ceased at the moment when
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the concentrations of carbon and oxygen

are showen by point J, then this point S
moves toward M along the path of the
operating line (3), and finally the system
reaches its equilibrium state at point M.
Since the epuilibrium relation between C
and O can be expressed as Eq. (5.2), the ©
intersection of the operating and equili-

brium lines can be determined by Eqgs. 65

(5.1) and (5. 2) as a function of the elapsed L,(SIW)dei
time of blowing, the temperature of

molten steel and the partial pressure of (a) T;

1 operating line

(1) : equilibrium line
(2):actual trajectory

carbon monoxide. z
wn
CO’CCZPCO/K(T> (5- 2) o 1(Ce-CIN |(Ce.Co)
If the concentrations of carbon and L{:\

oxygen are shown by point L and the I8
intersection of the operating and equili- ! S
brium lines is given by point N which has \} =
Nz e Jp

the coordinates (C%, C%), then the system
moves from L to N by the driving force
IN. Fig. 5. L.

Figure 5.1 (b) is a magnified figure (a) Relations between the conce-

. o — ntrations of carbon and oxygen
of Fig. 5.1 (a), The driving force, LN, in molten steel and the operating

can be resolved into the two driving forces line.

7O and LP. The smaller the resistance (b) Illustration of the driving force.
of mass transfer is, the more rapidly the
system moves toward the point N.

As is shown by dotted line in Fig. 5.1 (a), the actual relation of C and O

found in practical operations can be determined from the driving force LN and the

resistance of mass transfer. The driving force LN increases the increase in the
moving rate of the operating line which can be controlled by the feeding rate of
oxygen.

The resistance of mass transfer may be connected with the circulating flow
rate of molten steel in the bath (or mixing intensity) as will be discussed later.

From the considerations mentioned above, the difference in oxygen level among
the experimental data obtained from open-hearth, LD converter and crucible can
be explained as follows. Examining the experimental datal> reported hitherto, the
largest gap between the observed and equilibrium oxygen levels can be seen in
open-hearth and the second in LD converter. The data obtained from crucible
almost coincide with equilibrium.

In open-hearth, because of the low feeding rate of oxygen, the driving force,

() (CECH)

Z—TV, is small. Moreover, the mixing intensity may be very weak. Hence, the balance
of the driving force and the mixing intensity may produce the largest deviation
from equilibrium.

In the case of LD converter, though the feeding rate of oxygen is very large,
the mixing intensity is also remarkable. Consequently, it may be inferred that the
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data of LD converter are located more close to equilibrium than those of open-
hearth.

In the case of crucible experiments using an induction furnace, the feeding
rate of oxygen is very low. On the other hand, the mixing intensity induced by
electromagnetic force is striking. Thereby, the data of crucible may closely approach
to the equilibrium line.

On the basis of the above considerations, the governing equations of the
concentrations of C and O can be expressed as Egs. (5.3) and (5.4)

dC./de=1(C%—C.) (5.3)
dC,/de=1(C5—C,) (5. 4)

where the position (C¥%, C¥) corresponds
Z(0) to that of point N in Fig. 5.1 and 7
(3) denotes the inverse of the mass transfer
resistance.

In Fig. 5. 2, the concentration relations
of C-Si-O and C-Mn-O systems are
illustrated in the rectangular coordinates
(X, Y, Z). The coordinate axes, X, 7,

(N 5

)
<\

HO and Z denote the concentrations of €, S

or Mn and O, respectively. The equili-

BB = [M(srao brium lines of X to Z and Y to Z are
12,3, illustrated by curve 1 on X-Z plane and

Equilibrium line

4 Projection of curve 2 on Y-Z plane, respectively, and
curve 3. each equilibrium line forms a curved plane
vesi,mm A 5 Opexating plane parallel to the Y- and X- axes, respecti-

vely. The intersection of these planes is
the equilibrium line, i.e., curve 3 in three-
dimensional system. Under the equilibrium
state, the concentration relation of each
component should be represented by this

Fig. 5. 2. Schematic diagram of the equi-
librium operating planes given
in rectangular coordinates.

curve.
Taking the mass balance for oxygen in the ternary system (C-Si-0), Eq, (5.5)
can be obtained.

[ (s/mydo=(Co—Cy o) + (Mo/M2) (€ s—C)
+2(M /M 5) (Co 5= Csd (5.5

As is shown in Fig. 5.2, Eq. (5.5) represents the operating plane moving in the
direction of the arrow as @ increases. In the same manner as the case of binary
system, the transisional path of the system is driven toward the point where the
operating plane and the equilibrium line intersect.

(2) Modelling

Based on the general concepts of the oxidation process mentioned above, a
simplified model for LD converter is proposed, paying a special attention to the
effects of the feeding rate of oxygen and the degree of mixing of molten steel on
the transitional variations of composition.
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Now, the following assumptions are
adopted.

(i) Bath is divided into the reaction )
zone (i, e, a hot spot) and the bulk of
steel as is shown by Fig. 5. 3.

(ii) Each component of steel flowed

into the reaction zone instantaneously Slag
arrives at an equilibrium state due to the
reaction with the absorbed oxygen, and @

then discharges from the reaction zone. C.
(iii) The discharged molten steel cir- Mecal J
culates again into the reaction zone after
being completely mixed with bulk steel S c*
in the bath. C j
(iv) Since the accumulation of any d a
component in the reaction zone is small
in comparison with the bulk steel itself, Metal
it may be neglected. retal Bath
(v) Carbon depletion by dissolution
or other effects of scrap is neglected. Fig. 5.3. Schematic drawing of the con-
The relation between the concentration cept of the mathematical model.

of the j-th component flowing into the
reaction zone, Cj;, and that of the same
component discharging from the zone, C%, is obtained as Eq. (5.6)

w{dC; @) /dt} =q¢{C; @) —C; (@)} (5.6)

Focussing on the initial stages of refining, the reactions in the reaction zone
are considered as follows

C+0=2C0(g 5.7
Si+20 2 Si0, (5.8)

To consider both of the oxidation reactions given in Egs. (5.7) and (5.8), Eq. (5.9)
should be added to Egs. (5.3) and (5.4)

dCg/do=1(C%—~Csy) (.9

The equilibrium relations between the i-th component in the systems of Egs.
(5.7) and (5.8) and oxygen are known as a function of temperature?’.

Ki:f(cb CO: T) (5- 10)

Taking the mass balance for oxygen in the reaction zone in which each component
is in equilibrium with oxygen, we obtain as

$+q(Co—C3) =qL(Mo/Mc) (Co—CE +2(Mo/M ) (Co—C%)] (5.11)

Let us prove that Eq. (5.11) is mathematically equivalent to Eq. (5.5).
Substituting Eqgs. (5.3), (5.4) and (5.9) into Eq. (5.11), we obtain as
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$+(q/I) (—dCo/d) = (q/I) (Mo/Mc) (—dCc/db)
+2(g/D) (Mo /M) (—dCy/d0) (5.12)

Integrating Eq. (5.12), yields Eq. (5.13) which can be found to be equivalent to
Eq. (6.5), if I=¢q/w holds.

[ sa0=(a/D) (Co—Cyy )+ Mo/M @/ (€, o —Co)
+2Mo/M ) (a/1) (Cy, 5i—Cyy) (5.13)

Thus, it is noticed that the basic concepts of the model mentioned in section (1)
are physically reflected in the assumptions (i)~ (v) in this section. Furthermore,
I, which was introduced in section (1), is found to be the circulating flow rate of
molten steel per unit volume.

To extend the mathematical model from the initial stage to the middle stage
of refining process, the reaction Fe+4Q=FeO should be considered and Eq. (5.11)
is modified as Eq. (5. 14)

$+q(Co—Cy) =g (Mo/Mc) (Co—CE)+2(Mo/Ms,)
(Csi=C5) 1+ (Mo/M 1100) @ oo (5.14)

Substituting Eq. (5.10) and the relation® between ¢g;0, and a@rq given in the phase
diagram of @s;0.—are0? into Eq. (5.14), a polynominal function of C¥ is obtained,
and the function should be solved for C%. Then substituting C¥ into Eq. (5.10),
C¥(l) (j=C, Si) can be calculated. Thus,
substituting C*¥(¢) into Eq. (5.6), C;(t+41)
can be obtained. Repeating this procedure,
2800 ° Q-Bop the variation of C; with time can be
e LD estimated.

24001 230t The only parameter which appears in
- this model is the circulating flow rate of
2000 ¢ molten steel, g. By selecting a suitable
B / value for ¢, the variations of concentration

were computed and fairly good agreement
1600 1 ® was obtained between the predictions of
" / the model and the observed data®). Figure
1200 /‘ 5.4 shows the relation between the value

(kg(Fe)ls)

q

( of ¢ adopted in calculation and the flow
800t ® rate of oxygen, s, which is one of the
' o’ operating conditions. The results obtained
i / from LD converters of different capacity
400¢ have shown that there exists a linear
r/ relation between ¢ and s. However, the
012 L 1 ] . calculated values for Q-BOP deviates above
0 4 8 1216 the straight line for LD converter. This
S (kg(0)/s) infers that the circulating flow rate of

Fig. 5. 4. The relation between circulating =~ Q-BOP is larger than that of LD con-
flow rate and gas blowing rate.  verter under the same feeding rate of
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oxygen gas.

5. 2. Ladle Furnace

(1) Introduction

The ladle refining process is drawing attention due to the growing demand for
high grade steel and the spreading of hot metal pretreatment. Theoretical and
experimental approaches have been developed to improve the refining operations in
the field of ladle metallurgy.

In the previous section (4.2), the relationship between the mixing time and the
mixing power density was derived on the basis of the procedure of dimensional
analysis. In this section, a more precise approach for determining the mixing
quality is given by using the rate of decrease in the fluctuation of concentration.
The recycling model related to the mixing rate is developed by use of the transfer
function. Furthermore, a mathematical model based on the operating conditions for
evaluation of the recirculating flow rate is developed.

(2) Transfer Function for Recycle Mixing Model

(a) Tanks-in-Series Model

Here, we introduce the tanks-in-series model which is widely used to represent
nonideal flow. We consider the fluid flow through a series of equal-size ideal
stirred tanks. For large N, a residence time distribution (RTD) approaches to
that of plug flow, and the mixing condition is complete when N=1. Thus, the only
parameter of this model is the number of tanks in the chain. If we introduce a ¢
signal into the N-th stage system as shown in Fig. 5.5, the recorder will measure
the tracer as it flows by the first time, the second time, and so on. The output
response is the superposition of all these signals.

The trasfer function of an ideal stirred tank can be expressed as

g(s)=1/{(t.s/N)+1} (5.15)

where s is an operator of Laplace transformation, ¢{,=V /@, is the circulation time
of fluid and N is the number of tanks. Then, the transfer function for a series of
N tanks, F(s), is expressed as

F(s)=[g()J'=1/{s/N)+1}¥ (5.16)

If we introduce a d-signal into a closed system where the output signal of the
N-th tank is connected with the input signal of the first tank, the total transfer
function, Y (s), can be written as Eq. (5.17) ‘

Y(s) . F(s) _ 1
. 1=F(s)  {GS/MF1F—1

(5.17)

€ Ce Con Qe

(ij 12 i N ;;)

Fig. 5. 5. g-input signal into a multistage closed system.
(number of stage: i=1, 2, ...., N)
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Inverting Eq. (5.17), for large 7T, the impulse response for a recycle system
becomes! 9

y(@) =1+2exp(—27%/Nt,) cos {27t /t,+27/N} (5.18)

Equation (5.18) represents a sinusoidal wave with the decaying amplitude, 4. The
variance of y(#) over one period, ¢2, is found as Eq. (5.19).©

0= (t.)?/N=(0t.)* (5.19)

Then, the decaying amplitude is given as:

A=2exp{—2r2(c,)?/t.} (5. 20)

(b) Experimental Results and Discussion

Maruyama et al.®) conducted impulse response experiments to measure the
mean circulation time. Figure 5.6 shows an example of the impulse response in
which damping oscillation appears. Figure 5.7 shows a typical series of decaying
amplitude as a function of time. The decay of amplitude is independent of the
tracer injecting position and also of the measuring position, and it can be correlated
by the solid line representing the theoretical prediction given by Eq. (5. 20).

T T T T T T
H=104cm D= 104 cm
4 - tlrg=09  Qg=1400 cms |
q T ] T T T T H
; = - Tracer injection 1
3 HID =10 position
10k rirg =09 , —
@ E Qg=1400cm’s o Al D 3
2 37 ] © D=104cm o B1 (ABC :
o N n C1 4
% L. v D1 4
@ o A2
o | 0 : g% ——
@ - o T
3 | - 1 %ouo ° 63 [T57] -
g zf E ) Gas® i
= < r XS ( = Measuring -
L RE position) -
A 28, ]
v \epA
Tr 18] = <SRN 3
F o Vg,g 3
o v% a 3
C o) ]
_ AV
L S o
1 OI
OO] 1 1 1L ] L
0 20 40 60 0 20 40 )
t (s) t (s)
Fig. 5. 6. Typical example of impulse Fig. 5. 7. Amplitude, A, as a function
response for bubble-plume of time. (By the courtesy of
mixing. (By the courtesty of Maruyama et al.5)

Maruyama et al.)
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(3) Mathematical Model of the Gas-blown Ladle
(a) Mathematical Formulation
A quantitative macroscopic mode! and

a sophisticated microscopic model deve- D
loped by employing partial differential
equations were presented by Sszhai and Yes
Guthrie.s7 *—;;L \g‘OCD nga—_,z

An intermediate lumped model®) de- A - v
scribed by ordinary differential equations Yhiu eje c‘- cing
is presented in the followings. The concept Plure \© flow zome
of the model is schematically shown in ~one

Fig. 5.8 The bath is divided into three =
zones, i. e., the plume zone where bubbles
rise into the stream of liquid, the ejecting
flow zone where liquid exhausted from
the plume zone is assumed to have only ‘ vl
the radial velocity component, and the
descending flow zone in which liquid flows

o 7| flow zone

downward. The liquid velocities in each i&l X
zone aref assumed to be uniform. Fig. 5. 8. Schematic view of bottom
Taking the mass balances of gas and blown vessel.

liquid in a differential element 4Z in the
plume zone yields Egs. (5.21) and (5.22)

(for gas) Mg::g:pg%gfb.?frx dx (5.21)

(for liquid) (d/dZ)§;(1~¢) o275 di = (2 %00) o (5. 22)
The momentum balance equation is given by Eq. (5.23)
S;g¢»<m~ 0.)27% dx= (d/dZ)S; (1—¢) () 227 % dx (5.23)

The term (27xp,u,),-, appearing in Eq. (5.22) is the mass flow rate of the liquid
entrained in the plume zone from the descending flow zone. The entrainment rate
is assumed to be in proportion to the relative velocity and the interfacial area
between the plume and the descending flow zones.

QCrxo ) ser=Eo{2rrp,(1—0) (1)} (5.24)

The mean velocity u,. in the descending flow zone is determined by the over-all
mass balance in the horizontal cross section.

D/
r

g:umz—mﬁx di={ 0275 dx (5. 25)

The slip velocity, u,, being defined as Eq. (5.26)
U=, — 1, (5. 26)

can be expressed as a function of the gas hold-up ¢ and the ascending velocity of



136 I. Muchi, S. Asai and M. Kuwabara

a single bubble, #,, in the form®
=1,/ (1—9) (0. 27)

The bubble diameter can be evaluated by Eq. (5.28) which is obtained by Davidson
and Amick!?,

dyo=0. 569(Q,d, %) 28 (5. 28)

The bubble volume during ascending can be expressed using the ideal gas law

Ho,g

V,=V Ds 120, 5.29

=V - 2y0d ©-29
where V,, is the initial bubble volume introduced from an orifice and is given as
Vie=(1/6)7(dso)3. If no interaction between the dispersed bubbles is assumed, u,
as the ascending velocity of a single bubble is given by Eq. (5.30)

uy=+/0.5d,g (5. 30)
The density of gas is based on the ideal gas law.
H—Z

pomp e LU 2008 (5.31)

Substituting Egs. (5.24) to (5.31) into Egs. (5.21) to (5.23) and rearranging, the
first order differential equations regarding u,, r and ¢ in the plume zone are
obtained.

du, _ g  2E,(R*—e¢r¥)u,
az =~ dA—du, ¥ (RZ—77) (0. 52)
dr _ 1 { 2E,(R*—9r®u, gor
dz 2(u,+ 1) R2—y2 (d—o)u,
R AGCVLDEA gmubo(kl/kz)“e}
Q=7 Lo ® D=0 T,
_r _8010¢s”
% F(u, v, ¢, Z)-+ 20,0, (5. 33)
de _ | 8010e(1—9)
——-—-—~—-—F u ] 3 ¢, Z R R A U +us
& ~Fuy, 1,9, 2)=] a2 et )
_ 2E,(1—9¢) (R*—¢r?) _ 8%us | 8Py, (Ri/Ry)E
,',<R2_7,2) (ul+2us) u? + 6k2 }/
(uytu,) | uy,(Ry/Ry)SE
{ ) + 1—9¢ } (.34

where ky=p.+Hpig, ka=ps+ (H—2)0,8, %s0=+/0.5d,,2 -
Since Egs. (5.32) to (5.34) do not hold in the ejecting flow zone, another
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approach will be required. Taking the mass balance in the ejecting flow zone, we
obtain

i (74) %0, 1- 1) =277, hit,;0, (5. 35)

Equation(5. 35) shows the balance between the vertical input from the horizontal
plane at Z=H —h and the radial output at r=#,. Based on the energy balance, we
can write as

an (11— Pu) 0K (241) *dx+ S:h¢m0g7fx (ugn) ddx
N TXCE +S w0 277,82 A7 (5. 36)

where Z'=Z—(H—h).

The computing procedure is to calculate Egs. (5.32) to (5. 34) simultaneously
from Z=0 to Z=H—h, where & is determined to satisfy Egs. (5.35) and (5. 36).
By using the values of 7,, #;, and ¢, at Z=H-—h, the liquid flow rate, @, can be
calculated by the following equation.

Q=7 (re) "1 (1 —24) (5.37)

(b) Results and Discussion
One of the calculated results is shown in Fig. 5.9. Along the upward direction,
the radius of the plume increases and the liquid velocity and the gas hold-up

decrease.
Figure 5. 10 shows the effects of liquid

depth on the circulation flow rate. The

027 5=022m/s solid lines predict the results calculated
— by use of the present mathematical model.
E h=002 m The observed values were obtained from
N the experiments, in which the method of

020r pursuing a tracer particle was adopted®.

(0]
027%027' m
Qq=5x10"mys 0.20
g — ) H
» 0.277x0,32"m
G
010} o~ 0.27%x0.27"n s
& 0.10fF ?
i
// aeq :0bsd,
L N L 0.05¢ 027050, 22" :Caled,
0073345 6 rx02(m 27 x0.22 m
g o 02 03 04 05 06 Uy (m/s) 0.03f———¢ ——5 55
0O 02 03 04 05 06 ® (=) € W/m3)
Fig. 5. 9. Calculated results of the longi- Fig. 5. 10. Effect of liquid height on the
tudinal distribution of process relation between circulation
variables. flow rate and applied power

density.
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020 1~ The agreement between the calculated
= Q2% 020" m results and the observed data is fairly
E — / good. With increase of liquid depth. the
«E / recirculating flow rate per unit volume of
~—u /0 liquid is increased under the same mixing

a- power density.
a—" Figure 5. 11 shows the effects of vessel
6010 size on circulation flow rate. It is found
20| that the mathematical model can fairly
r o\ 0405005 m ’ predict the experimental data.
0By 20

€ (w/m?)

Fig. 5. 11. Effects of vessel size on the
relation between circulation
flow rate and applied power
density.

5. 3. RH Degassing Vessel

(1) Introduction

The degassing rate in RH process is mainly determined by one of the following
three processes, i. e., the degassing process by an inert gas bubble injected into the
up-leg, the free surface of molten steel in vacuum chamber, and the splash of
molten steel in vacuum chamber. Concerning the first process, a mathematical
model for the degassing in a two-phase flow is developedi®,

(2) Mathematical Model

To develop the mathematical model, the following assumptions are adopted.

(i) The flows of both the gas phase and the liquid phase in the up-leg are
piston-type flows.

(ii) No bubble coarsening takes place in the up-leg and the shape of a bubble
is spherical.

(iii) The rate controlling step in the degassing process is the mass transfer in
the side of liquid phase.

On the basis of these assumptions, the following mass balance equations for C,
0O and H in molten steel can be written.

dczc/dzz“kcha(Czc“‘Cfc)/Qz (5.38)
dCio/dZ=—k,nAa (Cio—Cio) /@ (5.39)
dC,,/dZ = — k. Aa (lef”*cézz> /€ (5. 40)

where C,, and Ci, are the bulk and interface concentrations of k-component in
steel, k,; is the mass transfer coefficient of k-component in molten steel, A4 is
the cross sectional area of the up-leg and @, is the recirculating flow rate of
liquid, ¢ is the interfacial area per unit volume of the ascending two-phase and is
given as follows: ‘

a=6Q,/DA(u,+u,) (5. 41)
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where u, is the ascending velocity of molten steel, D is a diameter of bubble and
u, is the relative velocity of a bubble.

On the other hand, Egs. (5.42) and (5.43) are derived from the respective mass
balances for H, and CO in a bubble.

ngH/dZZ kU{Aa; (CL!['_CZH) /ZQg‘_ <CgH/Qg) (ng/dZ> (5 42)
dCoco/dZ =k Aa(Cic—Ci o) /Qs— (Cyeo/Qy) (dQ,/dZ)  (5.43)

where Cg; is the concentration of j-component in a bubble, @ is the volumetric
flow rate of rising bubble.
The equation of continuity in the two-phase flow can be written as

Qu/u+Q/ (wt+u,)=A (5. 44)

It has been reported that #, is a function of u,, the ratio of the volumetric flow
rate of steel to that of gas and the diameter of a bubble!2:1®, Here. %, is expressed
as

#,=B~D (5. 45)

where B is a constant.

Differentiating Eq. (5.44) with respect to Z and substituting Eq. (5.45) into
the resulting equation and using the relation of (Q,/Q%)/3=D/D°, (where D° and
Q¢ are the bubble diameter and the gas flow rate at the point the gas is injected,
respectively.), Eq. (5.46) is obtained.

(2Au,~Q—Q,+ ABV D) (du,/dZ) —u,(dQ,/dZ)
+ (B/2vD) (Au,— @) (dD/dZ) =0 (5. 46)

To calculate the circulating flow rate, the pressure drop in the up-leg should
be evaluated. Regarding the pressure drop in the two-phase flow, a number of
theoretical and experimentical works have been conducted hitherto. Here, the
theory of Stenning et al.l®) is introduced.

To take the momentum balance in the up-leg, let us take into account the
gravitational force, Fg, the force due to pressure, Fp, and the friction force, Fas
external forces.

Fe=—Apg(l—e)dZ (5.47)
F,=—AdP (5. 48)
Fy=—Q1/2)p,(w)?*zD.fdZ (5. 49)

where p, is the density of liquid, g is the gravitational acceleration, D, is the
inner diameter of the up-leg, f is the friction factor at the wall of the up-leg and
¢ is the void fraction in the two-phase flow and is equivalent to the volumetric
bubble ratio.

e=Qq/A(u,+u,) (5.50)

The effective buoyancy force is expressed as Eq. (5.51).
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Fy=Ae(0,—0,)8dZ*=Ac0,8d7Z (5.51)

where pg is the density of gas.
The difference between the input and the output momenta in the differential
length dZ can be written as Eq. (5.52).

dm=Au,)?0,(1—e) — Al —e—de) (u,+du,) e,
=—Apd{(1—e) (u)?} (5.52)

By using Egs. (5.47) to (5.52) the equation of motion for molten steel is given as
Eq. (5.53).

Qo (du,/dZ) + Apg (1—2¢) + A(dP/dZ)

+1/2) 0, (u) 7D, f=0 (5.53)
The pressure in a bubble can be determined from the ideal gas law.
P= (Cgi+cgco+ Cen) RT, (5. 54)

where T¢ is gas temperature and R is gas constant. Differentiating Eq. (5.54)
with respect to Z and substituting Egs. (5.42) and (5. 43) into the resulting equation,
Eq. (5.55) is obtained.

dP _ RT.,aA
dz Q.

{ kZLI{ (Czu'"—cfﬂ) *?“ktc(Cw“C§C>}—~ gg ’ dd%

(5. 55)

By solving the simultaneous ordinary differential equations ((5.38) to (5.40),
(5.42), (5.43), (5.46), (5.53), (5.55)), the circulating flow rate of molten steel and
the degassing rate in the up-leg can be obtained.

(3) Calculated Results

The rising bubble grows in volume along the longitudinal direction due to the
decrease in pressure and the mass transfer from molten steel. The circulating
flow rate increases with the increase in the rising velocity of bubbles. On the
basis of the mathematical model mentioned above, the longitudinal distributions of
the process variables in the two-phase flow and the circulation flow rate of molten
steel, @,, can be evaluated.

Figure 5.12 shows the longitudinal distribution of the process variables under
the flow of an injected inert gas, of the rate 140 Nl/min. The vertical axis
indicates the dimensionless distance in the up-leg measured from the blowing point
at which the inert gas is injected. The dimensionless concentrations of CO and H,
in a bubble are expressed on the basis of the equilibrium concentration of each gas.
The diameter of a bubble, D*, and the concentration of each component in molten
steel, C;; (k=C, H, 0), are shown in dimensionless form by use of an initial
bubble size and the value of the concentration of the respective component at the
point the gas is injected.

The relation between @, and the injecting flow rate of inert gas, @2, is shown
in Fig. 5.13. The calculated results of @, are reasonable in comparison with the
data reported by several investigators!s~17),
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Fig. 5. 13. Relation between circulation-flow rate of molten
steel @; and blowing rate of inert gas Q3.

5. 4. Stream Drop Degassing Vessel

In stream drop degassing process, it has been known that when the diameter
of molten steel drop is less than 1 mm, the effect of the absolute pressure in a
vacuum tank of the degassing vessel on the degassing efficiency becomes small.
Now we consider the quantitative relationship between the drop size and the final
concentration of a key component in-a drop.

By taking the mass balance for hydrogen as the key component around a
differential shell in a spherical drop, we obtain Eq. (5.56)
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aC [ #C 2 aC
06 _D( 7 T oy ) (5.56)

where C is the concentration of hydrogen, D is the molecular diffusivity, » is the
radial position in the drop and 4 is time.
The initial and boundary conditions are as follows:

C=C;, at 0=0, »>0
C=C* at r=r, 6>0
C is finite (C<C)) at #=0, >0

where C; is the initial concentration, C* is the equilibrium concentration and 7, is
the radius of the spherical drop. Solution of Eq. (5.56) can be expressed as Eg.
(5.57).

(2n-+1)7o+7
~erfe LT H (5.57)

Now, we refer to the mean concentration of the drop as C which can be
described as

6:§Z"c (Arr?)ydr) (4)3) nr} (5. 58)

Substituting Eq. (5.57) into the right-hand side of Eq. (5.58), and then
integrating we obtain

C=C*+ (C,—C¥H[1—3c{(2/v/7) —c+4 éierfc(n/r)}j (5. 59)

where t=4/Dg/7, and ierfc (x) =S:erfc(x) dx=(1/+/7)exp(—x2)—x-erfc(x). When
0 becomes sufficiently small, then (#/r)—co, and thus it can be found that ierfc

(n/7)—0.
Namely, when 6 becomes small enough, we can describe Eq. (5.59) as

F=1-3t2// 7 —71) (5. 60)

where F=(C—C*)/(C;—C¥%).
Differetiating Eq. (5.60) with respect to r, we obtain

dF 6
ar W—i—&* (5. 61)
Furthermore, we have (d2F/dz2)>>0; then, it can be found from Eq. (5.61)
that the value of I* becomes minimum at r=1/+/7. Therefore, Eq. (5.60) is
applicable over the range 0<(c<((1/+/7%)=0. 564.
Namely, we have a lower limit of 7, at which Eq. (5.60) becomes applicable
as follows:
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ro=1+/Dp /(0. 564) (5. 62)

Sheridan!® reported the empirical equation concerning the equilibrium concen-
tration of hydrogen as follows:
1

Jog C¥— — 1290 +0.928+ log P (5. 63)

whereP, is the partial pressure of hydrogen in the vacuum tank. In Eq. (5.63), Py,
T and C* have the units of Torr=mm Hg, K and ml/100 g, respectively. Thus,
from Eq. (5.63), the value of C* can be determined from the data of Py and T.
Therefore, when the data of 7y, 6, D, C; and C* are given, we can evaluate c
from Eq. (5.60), as far as ¢ is sufficiently small. Moreover, we can find from the
numerical computation that when the diameter of drop is less than 1 mm, the
pressure in the vacuum tank which is required for degassing up to the designated
C may be rather high.

Nomenclature

A : amplitude (—), cross-sectional area of up-leg (m?)
« : interfacial area per unit volume of the ascending two-phase fluid (1/m)
C : concentration (kg/m3), (kmol/m3)

C;, ; : initial concentration of j-component (kmol(j)/kg(Fe))

Cj: conentration of j-component (kmol(j)/kg(Fe))

C* : equilibrium concentration (kmol/m3)

C : mean concentration (kmol/m3)

cg; © concentration of j-component in a bubble (kmol(j)/m?)

€14, ¢4 bulk and interface concentrations of k-component (kmol(k)/m?)

D : diameter of vessel, diameter of bubble(m), molecular diffusivity (m?/s)

D, : inner diameter of up-leg (m)

dpo : bubble diameter at nozzle tip (m)

d, : nozzle diameter (m)

E, : entrainment coefficient (—)

I, : effective buoyancy force (N)

Fy : friction force (N)

Fg : gravitational force (N)

F, : force due to pressure (N)
f : friction factor (—)
g : gravitational acceleration (m/s?)

g(8) : transfer function (—)

H : liquid depth (m)
I : inverse of the mass transfer resistance (1/s)

K : equilibrium constant

ks : mass transfer coefficient of k-component (m/s)

Mg : mass flow rate for gas (kg/s)

M; : molecular weight of j-component (kg(j)/kmol(j))

m : momentum rate (m-.kg/s?)

N : number of tanks (—)
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P, : pressure of CO (Pa)
s pressure at surface (Pa)
Qreo : production volume rate of FeO (kg/s)
Q¢ : volumetric flow rate of rising bubble (m3/s)
Q, : liquid flow rate (m3/s)
q : recirculation flow rate (m3/s)
R : radius of vessel(D/2) (m)
R : gas constant (J/kmol.-K)
7 : radius of plume (m), radial position in a drop (m)
7, : radius of a spherical drop (m)
7, : radius of plume at Z=H—h (m)
s : feeding rate of available oxygen (kg(O)/s), operator of Laplace trans-
formation (1/s)
T : gas temperature (K)
te : circulation time (s)
#, : ascending velocity of a single bubble (m/s)
ug : velocity of gas (m/s)
ugy : velocity of gas at Z=H—h (m/s)
u, : velocity of liquid (m/s)
#;. : mean velocity in the descending flow zone (m/s)
u;y, « velocity of liquid at Z=H-—%
u, : relative velocity of bubble to #, (m/s)
#s : slip velocity (m/s)
V : volume of liquid (mS3)
Vs : bubble volume (m3)
Vso @ initial bubble volume (m3)
w : metal volume (m3)
Zy : distance between gas injecting point and surface (m)
Y (s) : total transfer function (—)
Z : vertical distance from bottom or from blowing point (m)
¢ : void fraction in two-phase flow (—)
6 : time (s)
0¢ : density of gas (kg/m3)
0gs : density of gas at surface (kg/m3)
o, : density of liquid (kg/m3)
¢? : variance (s?)
o? : dimensionless variance (—)
¢ : gas hold-up (—)
@, ¢ gas hold-up at Z=H—h (—)
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