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Abstract

A two-dimensional flow behind a splitter plate is solved using a
numerical technique. Free shear layer is formed behind a splitter plate,
when velocity difference is present upstream of the plate. An approach
is attempted to observe the behaviors and stability of the flow. The
flow properties are checked from a number of viewpoints, in order to
see whether the numerical scheme and the calculated results are appro-
priate to express the real flowfield: The vortex pairing, the critical
Reynolds number, the effect of viscosity, the distribution of Reynolds
stresses etc. As a result, most of the important flow phenomena are
both qualitatively and quantitatively reproduced in the solution at the
Reynolds number lower than 10, 000.

1. Introduction

In the present analysis, a mixing shear layer is studied using a finite difference
method that is third-order accurate with respect to space and first-order accurate
in time, originally given by Kawamura (Ref. 3). The first part of the study is
reported in Ref. 17. where the calculation still needed improvements in connection
with conservation of mass and the boundary condition on the splitter plate. Since
our ultimate purpose is to treat a chemically reacting flow where mixing and com-
bustion occur between fuel and oxidizer generally in a free shear region near in-
jectors, a most simple shear layer behind a splitter plate is chosen as the present
problem.

The purpose of the analysis is te solve incompressible Navier-Stokes equations
as correctly as possible, to provide a number of features essentially observed in
mixing shear layers without introducing a modeling, and to find out good relation-
ships with the experimental observations by Brown and Roshko (Ref, 1), Dimotakis
et al. (Ref. 2), Oguchi and Inoue (Ref. 4), Chih-Ming (Ref. 7) and Hussain et al.
(Ref. 8).
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The Kawamura scheme is used because of its third-order accuracy in space,
even if it is not of conservation form, where the leading truncacion error term
consists of the third-order mesh size multiplied by a fourth derivative (short-
range diffusion term). By carefully constructing the grid system, this error term
can be much smaller than viscous stress terms in Navier-Stokes equations, then
yielding physically meaningful solutions.

Similar finite-difference analysis is done using the Quick method by Davis and
Moore (Ref. 14) where thc flow is artificially perturbed to show vortex shedding;
this is not necessary in the present numerical calculation. There are other finite-
difference calculations successfully reproducing vortical structures in two-dimensional
mixing shear layers (Refs. 9, 15). Interesting results are obtained by Jacobs and
Pullin (Ref. 16) in a basic problem of vortex stretching and pairing. The vortex
method is applied to the same mixing layer problem (Refs. 10-13), showing similar
results to essentially inviscid flows.

The characteristics of the incompressible Navier-Stokes solutions are checked
from various viewpoints: (i) Nonlinearity and linearity in applying the Kawamura
scheme, (ii) implicit and explicit schemes, (iii) the influence of mesh size and trunca-
tion errors, (vi) coalescence of vortices, (v) comparison with inviscid solutions,
(vi) transition Reynolds number, (vii) turbulence energy spectra, (viii) Reynolds
stress, (ix) average velocity distribution (x) mass conservation and (xi) average
third-order moments of fluctuating velocities. The effect of boundary conditions
is also discovered quite essential to hold mass conservation throughout the flowfield.

2. Fundamental Equations

As to the entrance condition, a laminar boundary layer profile is assumed only
until the entrance to the domain; the laminar boundary layers are assumed until L,
upstream of the trailing edge of a splitter plate. Therefore, the splitter plate is
extending to upstream, forming a Blasius-type velocity profile until the entrance
to the computational domain, the downstream ot which is solved by the Navier-
Stokes equations. Thus, the interaction between the upstream of the trailing edge
and the downstream vortices can be introduced here.

The two-dimensional incompressible Navier-Stokes equations are given in the

following form:

Mass ; V-v=0, €Y
Momentum ; %K+ Vrv= ~~1711+—R—}—:VZV, (2)
where the physical quantities are non-dimensionalized by the following constants:

Characteristic velocity ; U,=|U,—U,|,

Characteristic length; Xo=13yo=L, 5
Characteristic time; ty=L,/U,, ©

Characteristic pressure; DPo=0,U,%,
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Fig. 1. The geometry of the flow and boundary conditions.

As shown in Fig. 1, the computational domain consists of a channel sandwiched
by two frictionless walls (there is no interest in the wall boundary layers); 6 cm
widthx 14.66 cm or 42.16 cm length. Out of the entire plate length, only the final

=2.0cm sticks out into the computational domain. At the inlet, as mentioned
adove, the flow is assumed to have velocity profiles of laminar Blasius boundary
layer on both sides of the splitter plate. The whole length X of the plate is adjusted
to yield a 0.5 cm-thick boundary layer at the inlet of the (upper) faster flow; for
example, X=15.1cm for R,=1577 and X=85.4cm for R,=10013. Here the Reynolds
number is defined as

R,= PoLo“{Lz‘_Uzi , (4)

where g is the viscosity of air at STP.
According to the Kawamura method, the pressure field is solved using the
following Poisson equation derived from Egs. (1) and (2):

Vip=—div (V-FV), b)

The velocity field was solved by the Euler backward scheme in the original
paper (Ref. 3), as shown in the difference equation

| A A i, nbl_ 1
T (VN 5 (6)
where the convection term was linearized as
(Vn+1,V) Vn+1:<Vn,y) Vn'i*l. (7)

In the present analysis. the following schemes are tested in order to find out
the simplest method of calculation:
(a) Forward scheme (nonlinear convection term, explicit) ;

vy 1

At +(Vn,V>Vn:_Vp+ Re Van. (8>
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(b) Backward scheme (nonlinear or linear convection term, implicit) ;

+ 7 n+1
VRV Ly Tetie p gk pryen, )
At R,
After comparing these two schemes, it is found out that the expliclt method
(8) is stable but not much faster, although the pressure field (5) is solved im-
plicitly using the SOR method. In addition, the calculated vorticity field showed
quantitative but no qualitative differences. Sensitivity of the flow to the inlet amd
downstream boundary conditions is also different among such different versions of
the Kawamura scheme.
The convection term is approximated by the following upwind scheme where
the leading error term is of the order of /3 x fourth derivatives:

ou
<f 88 >i’j
{fi’ i@z j—205q, ;492 ;—10u,_ 1, ;+2u, 5, ;)/64& for fi =0,

foo i (=284, 410,00, ;=% ;420 1, j—Uu;_y, ;)/64%5 for fi,; =0,
(10)

The utilized grids are shown in Figs. 2 (2) through (c), where the number of
the mesh points is (a) 43x61 for the 6cmx14.66cm computational domain and
(b) 43x181 for the 6 cmx42.16 cm domain. In fine mesh regions, the mesh size is
less than 1 mm which corresponds to the dimensionless mesh h=4x/L,<1/20. Com-
paring the truncation error term with the viscous stress term with respect to order
estimation, we find

B<1/R., an

when R,<5000. Thus the present grid system can resolve, only in the fine mesh
regions, the viscous features of a flow with such a Reynolds number. In the follow-
ing calculations, the Reynolds numbers are chosen R,=1588 and 10013 from such
reasons, although R,=10013 slightly fails to satisfy the above inequality. The
importance of this criterion (11) is justified by improving the spatial resolution;
(¢) the mesh number is increased to 85x 122 for the 6 cmx14.66 cm domain. The
essential flow characteristics remains unchanged, while snapshot flow patterns at
fixed times are extremely altered. In order to increase the Reynolds number above
5000 and still retain quantitative accuracy in the calculated results, the mesh size
has to be chosen smaller, resulting in the increase of computing time.

3. Detailed Method of Analysis

The boundary and initial conditions, stability, magnitude of errors and turbulence-
related quantities are discussed before the calculated results are shown.
(a) Boundary conditions:

(a-1) Velocity:
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On channel walls (y=+3cm) ; du/dy=v=0 (slip wall), (12)
At exit (x=x,=14.66 or 42.16 cm) ;
du/dx=dv/dx =0, 13

At inlet (x=x,=0cm) ;
u and v are given by the Blasius profiles. (14)

The entire length X of the splitter plate is given by the condition that the
displacement thickness of the upper boundary layer (faster side)

el L X—L] \*?_
5"5<——‘“p0U1 ) —0.5cm,

Thus, the length X is given as a function of the Reynolds number R, and the
upper velocity U; :

R, U, (cm/sec) X (cm)
95 12 2.8
1577 200 15.1
10013 1270 85.5
On splitter plate (y=0, 0<x<L,=2cm) ; u=v=0, (15)
(a-2) Pressure:
On channel walls: op/oy=0, (16)
At inlet: 9p/0x=0 or p=p.=const. an

At exit (x=x,) :

The following interpolation is used between one mesh before the boundary x=x,
and x=oc0 (%.—%x, is approximated as x,—x.), where x,=the trailing edge of
the splitter plate:

Xp—%,

xb - xe :
This is given by assuming that the pressure reaches p.. at x=co; p, is calculated
by linearly interpolating between p, and p..(Ref. 3).

On splitter plate:
Since #=v=0 on the splitter plate, the Navier-Stokes equations give the follow-
ing conditions on the pressure distribution;

1

Fp=——s

% (19)

The Poisson equation (5) is solved under the boundary condition (19) as the
Neumann condition.
(b) Initial conditions :

Since the present purpose is to generate an unsteady flow field, the resulting
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flow is considered insensitive to initial conditions. Therefore, attention is focused
on reducing computer time by imposing initial conditions as realistic as possible.
Upstream of x=2cm, the flow imposed at the inlet boundary is assumed, while at
x>2cm an artificial distribution is given; on the other hand the initial pressure is
assumed uniform at p=p..
(c) Utilized grid systems:

High resolution is necessary in the vicinity of trailing edge and highly mixing
regions, suggesting the use of adaptive grid systems. As such orthogonal and linear
systems, the following is used:

x=Ae% —e %t - A4,,
(20)
y=A;sinh(a:7),

where the coefficients @; through @, and A;through A; are chosen in three ways;
(a) normal mesh 43x61 for 6cmx14.66 cm domain, (b) stretched only in the x
direction, 43x 181 for 6 cmx42.16 cm domain, and (¢) two-fold fine mesh, 85x122
for 6 cmx14.66 cm domain.

As a special case. a finite-width splitter plate (thickness=0.172cm) is also
considered where the grid (a) is employed.

n u EXPLD.0459202)-EXP(~0. 1046224058 MINIMUM MINIMUM MESH
Saslunio 008e, L1 3:0es Y~SPRCING  X-SPACING  NUMBER
![ } EE CASE '(a) 0.0434cm 0.0594cm  61%43
! CASE (b) 0.0434 0.0405 181%43
CASE (c) 0.0217 0.0297 122%85
{ CASE (d) THE SAME AS CASE (a)
XPLO. 0“4 GE) ~EXP(~.09983»02)-0.6
;mgrﬁﬁwwm«; SEfsssszssssss ;_;_u;ﬁ:[:.-H—i—H.H—H'i-—JI'H-%—-)—!-‘

« G.412EXP(.02295207)-EXP(-0.06x02)+0.59
Ccd viosestuno.oasseny 106
i i :

1368 en 0.0en 2.0n

Fig. 2. The utilized grid systems: (a) Coarse, (b) long, (c) fine and
(d) finite-width splitter plate in coarse mesh system.

(d) Pressure on splitter plate:
On the splitter plate; the pressure p, is given by

Pe= D gf; @1)

where 0p/0n is written as
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g'g . Zée { PR ("’”vs+3+47)3+2'—503+1>~ 23;17:2
and -+ corresponds to the upper surface while — to the lower.

At the splitter edge, the value of the pressure is a three-valued function which
is determined by the Eq. (5) from the three directions; above, right and below.
Note that the pressure condition at this splitter edge must be of high accuracy
because this condition is essential to trigger the generation of vortices in the
downstream mixing layer region.

(e) Explicit and implicit schemes for velocity freld:

The pressure field needs iterations because the Poisson equation must be solved
by SOR, whereas there is a choice in the velocity field on whether an explicit or
an implicit method is used.

When a forward difference is used, the seheme becomes am explicit scheme and
the Navier-Stokes equations reduce to Eq. (8). Here the convection term has a
nonlinear form. When the Euler backward difference is used, on the other hand, the
scheme becomes implicit, as shown in Eq. (9), where the nonlinear convection term
is either retained or linearized to check the effect of linearization. The solution
of nonlinear implicit equations is acquired using the SOR technique for the flowfield
as well.

{f) Reynolds stress and energy spectra:

The Reynolds stress and third-order moment of fluctuating velocities are

typically defined as

(—ps+z+4vs+1>} (22)

oYy = —p( S uitevit)/ (n—mo), (23)

W', ;= <$u,”‘, viev) ,)/(mzmnl), 24)

The energy spectra of fluctuating velocities defined by

Epilw)=— ui j(w)} P> (25)
| <tuis(@)>do

can be expressed by the Fourier transformation of the velocity fluctuations as

2

N
N 4t @3
N-1 N-—1
27 g‘g ’;z —Iwkf,,

Eyi(w)= . (26)

(g) Streakline defined by the trace of a marker particle:

Marker particles are placed along a vertical line at an upstream portion, thier
subsequent motion being observed in a Lagrangian manner. The volocity (s, ,vp) of
a marker particle at time f=ndf is interpolated dy the values of 4 neighboring
points. Then the position of the marker particle at the next time step f==(n-+1)
At is calculated by the following first-order formula:

X, =, AL
@7
ypn+1 :ypn+vpn. At,
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New marker particles are introduced in a similar manner at every several time
steps to visualize the streaklines. In particular, the interface between the upper and
lower fluids is well identified by streaklines, thereby enabling us to observe the
feature of entrainment by the faster flow.

4. Results and Discussions

Computed results are examined from various aspects, to check whether the
scheme and boundary conditions are correctly applied and whether the results
possess necessary turbulence characters. Since some of the flow properties are
already reported in Ref. 17 in detail, only subsequent progresses are mentioned here.
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Fig. 4. Distance-time diagram of vortices, their rollup and merging into
larger ones, while convecting with nearly at a velocity averaged
between faster and slower flows. (a) R,=1577 (U;=2.0m/sec,
U2=0.8m/sec) and (b) R,=10013 (U;=12.7 m/sec, U;=5.08m/sec).



Stability of Free Shear Layer 255

(i) Development of vortical mixing layer: As shown in Fig. 3, the case of R.=
1588 shows the generation of vortices in the mixing shear layer region. The vortices
are produced by the instability of the flow conceivably generated in the vicinity of
the trailing edge of the splitter plate. In the downstream the pairing of two
vortices occurs; two vortices come close and merge after rollup, generating a larger
vortex. Such merging occurs in sequence, as shown in Fig. 4 and Ref. 1, reducing
the total numder of vortices in the downstream. The convective velocity of the

FREE BOUNDARRY LAYER PPROFILE i (KRWAMURA METHOD)
Re = 1577 INLET VELOCITY V(FASTER)= 2.000 (M/SEC) :RIR
INLET VELOCITY V(SLOWERY= 0.800 (H/SEC) :RIR (MESH:1B1=43)

CYCLE » 1215. TIAE » 405.0 (MSECY. CPUTIHE » 1500 (SEC)

CYCLE = 1260. TIME = 420.0 (MSECY. CPUTINE ~ 1584 (SECT HN = 8583

~CWLE = 130S. TIME « 435.0 (MSEC). CPUTINE » 1629 (SEC) nN - B772

CICLE =« 1305, TINE » 435.0 (HSECY. CPUTIHE =

4IN

CYCLE = 1350. TINE = 450.0 (HSEC). CPUTIME = 1721 (SEC) Hu = BB32

N
i
§

CYCLE = 1395, TIHE « 465.0 (HSEC). CPUTINE « 1797 (SECH HN = 8804

Fig. 5 Behaviors of streaklines between #=390 and 465 msec for R,=1577.
A pressure distribution is also shown at #=435 msec. Formation of
new vortices, their merging, rollup and growth into a larger vortex
are clearly seen.
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Re = 1577

)= 2.000 (M/3EC) :R
RH)= 0 gg)D (M/8EC) A

CYCLE = 1750, TIME = 350.0 (HSEC)., CPUTIME = 1478 (SEC)»
MN = 4522

Fig. 6. Streakline and vorticity distributions at #=350 msec for R.=1577.
(a) Streakline and (b) vorticity show a good resemblance.
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Fig. 7. Pressure and velocity vector distribution at #=350msec for R.=1577.
(a) Pressure and (b) velocity vector. Pressure shows a good
agreement with streakline and vorticity shown in Fig. 6.
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vortices naturally agrees with the average value between the upper and lower flow
velocities.

A typical streakline behavior is shown in Fig. 5, where the entrainment of
slower fluid by faster one is clearly seen, indicating a considerable increase of
contact area between the two fluids. The distribution of pressure and vorticity
tells the flow features more clearly because unlike streaklines the instantaneous
flow patterns can be observed in it (Figs. 6 and 7).

(ii) Stability limit of flow: As a criterion to judge whether the flow is stable
or not for a given Reynolds number, the temporal variation of the following quantities
is monitored during the present calculation:

I J

[ > X (ab;—aiih)? :lx/z 0.02

P=1j=1
Ix] 4r 7
(at x=14.66 cm, y=0), @9

(at x=14.66 cm, y=0), 30)

n

(28)
B,=|a*—a"""|
C,=a"—a"!

The results show that the centerline fluctuations B, and C, attenuate at R,=

FREE BOUNDARY LAYER PPROFILE: (KAWARMURA HETHOD) FREE BOUNDARY LAYER PPROFILE: (KAWRHURA HETHOD)

= 7 HLET VELOCITY V(FASTER)= 2.000 (H/SEC) 1AIR Re « 16577 IHLET VELOCHTY V(FASTER)= 2.000 (H/SEC) AIR
Re- 1877 HRET VELDELHY  VEEURNERDT Big00 uirSEC) imin H
EXPLICIT SCHEHE CHESHI 6Hwd3)
CYCLE =800 . BIHE = 300.0 (HSEC). CPUTIHE « 239.6 (SEC) CYCLE =600 . TIHE = 300.0 (HSEC), CPUTIHE = 230.1 (SEC)
- HH = 11594

JHCET VELGCITY  YCSLOWER)- O
£ULER enciliane senene (s sagre (/PECT IR

HH

e NGy g T e
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HH = 11273

CYCLE =800 . TIHE = 400.0 (MSECY, CPUTIHE » 320.0 (SEC)
Hit « 12105

CYCLE »800 . TIME = 400.0 (MSEC), CPUTIHE = 336.7 (SEC)
HH = [1440

e

CYCLE =900 . VINE = 450.0 (HMSEC). CPUTIHE = 384.8 (SEC) CYCLE =P00 . TYIHE = 450.0 (HSEC), CPUTIHE = 370.1 (SEL)Y
HH = 11597 HN o« 12094
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(a)

CYCLE «1000 . YIKE = 500.0 (HSEC). CPUTIHE » 417.3 (SEC)
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s p—— ptn, o
i et i S
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Fig. 8. Comparison between explicit and implicit scemes of Kawamura
method; R.=1577, ¢=300~500 msec, coarse mesh in Fig. 2(a),
U1=2.0 m/sec and Uz=0.8 m/sec. (a) Explicit and (b) implicit.
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197, while they amplify at R,=237, indicating the critical Reynolds number between
197 and 237. On the contrary, the average per-mesh and per-step variation 4, shows
attenuating tendency for any Reynolds numbers, and therefore is inappropriate as a
criterion.

(iii) Stability of flow against artificial perturbation :

In agreement with the critical Reynolds number shown in (ii), the flow is found
stable for R,=95. In order to artificially disturb this stable flow from outside,
sinusoidal velocity fluctuations with a frequency 0.625/f, are applied at the channel
entrance during = (3.0~6.2) x?¢,. Although the flow yields a periodical oscillation
in 4, only during the perturbed time interval, a rapid return to original stable
state is observed thereafter.

(iv) Explicit and implicit schemes: By setting the Reynolds number at R.=
1577 and using the grid (a) in Fig. 2, the solutions are compared in Fig. 8. As
shown in the streakline patterns, the explicit schcme shows more entrainment, wider
mixing layer thickness and more extended vorticity distribution than the implicit
one,while the pressure distribution behaves alike and the mass conservation throug-
hout the flowfield is held quite accurately in both cases.

As to CPU time, there is not essential difference between both schemes,
because most of computer time is spent for the pressure SOR which is implicit and
necessitating 1 through 20 iterations (very rarely over 100 iterations).

Generally speaking, there are no essential differences between the explicit and
implicit schemes, regarding the quality of results or economy of computing time.

CYCLE « 800 . TIHE = 400.0 (MSEC). CPUTIHE = 336 (SEL) CYCLE = 750 , TIME = 150.0 (MSEC). CPUTINE = 451 (SEC)
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|,EHYCLE . ’9000 . Tll‘1£° = lSt’J.‘DD (HSEC)’.DCPUIH:EO- 385 u(DSEC) CYCLE = 1000. TINE = 200.0 (HSEC). CPUTIHE = B44 (SEC)
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SN
e Sy

0.0 2.0 4.0 6.0 8.0 18.0 12.0 1. 0.8 3.0 . - 1.0 0 100 -
CYCLE = 1000, TIHE = 500.0 (HSEC), CPUTIHE = 432 (SEC) CYCLE = 1250, TINE = 250,0 (MSEC). CPUTIHE = 1059 (SEC)

°
-

(a) (b)

Fig. 9. Comparison between coarse and fine grids; R,=1577. (a) Coarse
for #=400~500 msec, (b) fine for #=150~250 msec.
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(v) Coarse and fine grids: The same calculation is performed using a coarse
grid (a) and fine one (c¢) shown in Fig. 2. The results are compared in Fig. 9
where the fine mesh (c) gives much better resolution in vorticity. pressure, streak-
line and more conspicuous entrainment, due to one-order smaller truncation.

(vi) Constant-pressure boundary condition at inlet: From fundamental point of
view, the Blasius velocity profile assigned at the inlet is consistent only with a
constant pressure there. However, the calculated results show a number of
unrealistic flow phenomena like large mass flow fluctuations, a strong pressure
gradient near entrance, a longer distance of transition to vortical structure and
the existence of small scale turbulence already near the trailing edge. It is considered
that such strange behaviors are caused by imposing a constant pressure at the inlet
and preventing the upstream propagation of presure disturbances generated by the
motion of downstream vortices. In real experiments, in fact, it is hardly possible
to maintain a constant pressure at the inlet as well.

(vii) Finite-width splitter plate: The thickness of the splitter plate is increased
to 0. 172cm (two meshes). Although the boundary conditions are not elaborated on the
splitter edge, the caiculated flowfields are essentially unchanged from the case of
infinitesimally thin splitter plate. This is due to the existence of much thicker
boundary layers on the splitter plate, masking the effect of plate thickness.

5. Coneluding Remarks

Through several examination procedures, the present finite difference method
proved to be useful in computing mixing shear layers, because the calculation was
able to provide nearly all the necessary characters of turbulent flows. In order to
increase the accuracy of calculation, the mesh size must be reduced not only in the
near wake, but also considerably in the far wake region.

It can be pointed out that starting from an initial condition a vortical flow
structure was established without introducing artificial perturbations at the inlet,
i. e. somewhat periodical vortex shedding processes were inherent to the imposed
flow characters.

There is essentially no difficulty in extending the present calculation to a flow
with compressibility, three-dimensionality and exothermic chemical reactions,
although virtually numerical-diffusion-free schemes need to be used in handling
strong gradients in concentrations and temperature existing in flames.
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