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Abstract

The basic analytical methods for expression, the separation of liquid
from solid-liquid systems by compression, are presented from the view-
point of the flow through compressible porous media. The mathematical
models of the Terzaghi model, the Terzaghi-Voigt combined model and
a simplified semi-theoretical equation are summarized. On the basis of
the theory, constant-pressure expression of both semisolid materials
and slurries, and two-dimensional expression on a tubular filter element,
are discussed. It is also shown that the constant-rate expression process
is well described from calculations based upon constant-pressure ex-
pression data. Internal mechanisms of settling sediments are mathe-
matically analysed on the basis of consolidation theory, and the basic
differential equations for settling of concentrated suspensions are
presented. The hydraulic expression phenomenon in ordinary filter
press operation, which depends on a change in filtrate flow pattern, is
also described and analyzed.
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Introduction

Expression is the operation of separating liquid from a two-phase solid-liguid
system by compression under conditions that allow the liquid to escape while the
solid is retained between the compressing surfaces. Expression is distinguished
from filtration in that pressure is applied by movement of the retaining walls
instead of by pumping the mixture into a fixed chamber. In filtration, the original
mixture is sufficiently fluid to be pumpable; in expression the material may appear
to be either entirely semisolid or a slurry.

In spite of substantial progress in filtration theory in the past several decades,
the theory of expression is far from complete. Most previous experimental work
has been done on a particular material and has led only to the development of
empirical equations which definitely lack general application.

Gurnham and Masson?? studied the equilibrium conditions of expression, i. e. the
conditions after a constant pressure has been maintained until no further flow
occurs. Koo?) studied the expression of various oil seeds over ranges of pressures,
temperatures, pressing times and moisture contents, and presented an empirical
equation relating the expressed liquid weight to pressure, time and viscosity, while
Nagai and Taguchi®’ attempted to apply filtration theory to expression of fermenta-
tion mashes and Kérmendy4) concluded that the pressing time required to achieve
the same percent yield of fluid is proportional to the square of the initial thickness
of the material to be expressed.

The principal objective of this paper is to present logical analytical methods
for practical expression. The paper is composed of six chapters. Chapter 1 deals
with the analytical method for constant-pressure expression.’~7 To analyze the
consolidation period, the Terzaghi model and the Terzaghi-Voigt combined model
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are introduced. Chapter 2 gives a simplified computation method for constant-
pressure expression.®?9 Mathematical solutions for constant-pressure expression
based upon the Terzaghi and the Terzaghi-Voigt models are simplified and a semi-
theoretical expression equation is presented for practical convenience in data analy-
sis in industry. Chapter 3 is concerned with two-dimensional expression under
constant pressure.l® The two-dimensional expression problem can be solved by
use of the effective consolidation area factor. Chapter 4 deals with constant-rate
expression,which is often encountered industrially.!?> The previous analytical method
for constant-pressure expression is extended to expression under variable-pressure
conditions. Chapter 5 presents a method for analyzing the settling of thick slurries
due to consolidation.!® A useful method for obtaining compression-permeability
characteristics of sediments is also discussed. Chapter 6 is concerned with hydraulic
expression,13,14)  Filtration-consolidation phenomena due to the change in filtrate
flow pattern are described in detail.

1. Theory of Constant-Pressure Expression

According to the variation of expression pressure and flow rate with time,
expression (like filtration) can be classified into the three categories of constant-
pressure,~9 constant-rate,1,1% and variable-pressure, variable-rate!s) expression.
In this chapter, theories regarding constant-pressure expression will be discussed.

Fig. 1. 1 shows the assembled view of one of the compression permeability cells
used to study dewatering rates of filter cakes during constant-pressure expression.
To investigate the correlation between theories and experiments, various kinds of
materials are used.

In expression experiments under constant-pressure conditions, the solid-liquid
mixture is introduced into a cell-cylinder and a constant mechanical pressure is
applied to the piston. Liquid squeezed from the mixture is allowed to drain from
either the upper side or from both the top and bottom drainage surfaces, and time,

@, vs. thickness of compressed mixture, L,

APPLIED PRESSURE is recorded.
P N In dealing with the mathematics of
¥ expression, the operation should be divided

into two parts in view of the mechanism
of flow through porous media. In the
first part, the flow mechanism is actually
filtration; in the second part, the mecha-
~DIAL GAUGE nism is so-called consolidation.

In general, the original mixture to be
expressed may be thick, and may appear
to be a semisolid or slurry. Provided the
original mixture in the cell is virtually a
: MATERIAL slurry, applying mechanical pressure to the

L R - | piston causes a sudden, uniform increase
N f hydrauli hrough the sl
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up to the same pressure as that applied,

Fig. 1. 1. Compression permeability cell.  and expression may proceed on the principle
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of filtration at constant pressure.

FILTRATE i

1. 1. Filtration period
PISTON T } FILTRATE

A schematic picture of the filtration
period is shown at the left in Fig. 1. 2. :
Filtration will terminate in consolidation SLURRY

when the whole slurry forms filter cakes, N\F T
CYLINDER ~ 2 CAKE

MED!UM\
N

L MAXIMUM -
FILTER CAKE
THICKNESS, L

as shown at the right in Fig. 1. 2. By

means of a mass balance, it is possible to TRATE

calculate the maximum filter cake thickness FILTRATE FILTRA

L, in accord with Eq. (1.1). Fig. 1. 2. Schematic picture for filtration
period.

L=(2 v Lows QLD
e Os

In Eq. (1. 1), w, represents the total volume of dry solids per unit sectional
area, p the density of liquid, p, the true density of solids, and m the ratio of wet
to dry filter cake mass. The maximum filter cake thickness L, is the transition
point from filtration to consolidation.

In Fig. 1. 3, expression data for Hara-Gairome clay — Solka-Floc mixture are
shown. The thickness of the mixture in the cell is plotted against the expression
time. In these plots the transition point L; from filtration to consolidation is not
quite clear. However, the transition point L; can be easily determined by a graphical
method, as illustrated in Fig. 1. 4.

As shown in Fig. 1. 4, it is apparent from both theoretical and experimental
points of view that —4AL/4+/F14, is constant for constant-pressure filtration if
Ruth’s filtration equation holds true, where @ is the expression time and &, is the
fictitious time of filtration which accounts for the medium resistance. As il-
lustrated in Fig. 1. 4, graphical determination of the transition point is rather simple

2.5
! ! HARA-GAIROME CLAY —
LeQ _SLURRY (s:033) | SOLKA-FLOC MIX. (I:])
m . T I I
S Wo=0.423 cm
|
1.5 ‘ -
FiLTRAT!ON{ CONSOLIDATION
L= perioD ’TﬁxxD{xO{D~{}_ PERIOD -
O- O
1.0 4 -
\_SEMISOLID P=785kPa, we=0.418cm
| ) l | |
0355 500 1000 1500

(6+6m) L[sl

Fig. 1. 3. Experimental results under constant-pressure expression.
Thickness of mixture, L, vs. expression time, 0.
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33— . T and very accurate. We shall also rely on
2 HARA-GAIROME CLAY— | a calculation using Eq. (1. 1) and assuming
SOLKA-FLOC(BW-200) MIX.(1:1) the value of m to be known. As may be
10"~ SLURRY ($=0.33), P=686 kPa _| seen in Fig. 1.4, the experimentally deter-
8r ey, “=0.475 cm mined transition point and the theore-
6r 7 tically calculated one showed remarkable
4 - coincidence.

When the solid concentration in the
original mixture exceeds a limiting value,
the mixture passes into a semisolid state
- and the filtration portion of the operation
i disappears. Then the graph of —4L/
44/§+§, has no horizontal portion, as
shown by the lower curve in the graph.
This critical value of concentration is
equal to the solid concentration of a
sediment deposited from a slurry at zero
- pressure. The porosity corresponding to
L , Ll b the critical slurry concentration is equal
4 6808 2 4 ©810° 2 to the porosity e; of the surface layer of
(0+8m) I[s1] a filter cake. Therefore, the critical con-
Fig. 1. 4. Determination of transition centration is a property of the material

point between filtration and itself. .

consolidation periods. To derive the fundamental mathe-
matical equations for expression, we begin
with Ruth’s filtration equation in the form

CALCULATED
BY Eq.(1.1)

N
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¥
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i P=98 kPa
wWe=0.317 cm

-aL/8/8+8m [cmss’2]
6:
D D®
T T ’

N

%
T

[
T

dv, _ p(1—ms)
dﬁf Mgy 0S (Uf+7)m)

(1.2)

where 0y is the filtration time.

The filtrate volume v,-time @, relation at a constant pressure is represented
by Eq. (1.3), because the average specific resistance ag, and the ratio m of wet to
dry cake mass are virtually constant.

(Vs +0,) 2 =K (0;+0n) (1.3)

By using the thickness L of the mixture under compression instead of the filtrate
volume vy, Eq. (1.3) may be rewritten as

(Lo=L) 4 Ln=i{K(0,+0n)} "2 1.4

where L, is the initial thickness of the mixture and i/ is the number of drainage
surfaces. The value L, is numerically equal to the fictitious filtrate volume Wy
which accounts for the medium resistance.

Dividing Eq. (1.4) by (Ly—L1)= (1—ms)p,w,/0s and defining a filtration ratio
Uy, a filtration time factor T, and a modified filtration coefficient K, yields a
very simple form:5,8

UsrtUn) = (Ts+Tp)'? 1.5
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where
TootBle o R (1.7)
Ky=K__ 08 ___  2p ps (1.8)

ot (L—ms)? M0t 1—ms

In these equations, s represents the concentration of the mixture, and X the
so-called filtration coefficient at constant pressure. By using the relation 6,=
wo2Un2/12K,, of fictitious filtration time, Eq. (1.5) can be rewritten as

U, =V (o — T (1.9)

Wo

It is apparent that the filtration ratio U; equals zero at the beginning of
expression when the load is applied and that it increases gradually to one in
accordance with the progress of filtration. These equations are the basic formulas
for obtaining solutions of the filtration period of constant-pressure expression.

In accordance with the theory indicated by Egs. (1.5) and (1. 9),we find a unique
linear relationship between Uy and i(v/@,;+d,— V8,)/w, as illustrated in Fig. 1. 5.
It is now apparent from both theoretical and experimental points of view that the
time for filtration period is exactly proportional to the square of the solids volume
w, in the original solid-liquid mixture.

0 I I I I I I I I l
_—  Eq.(.9)

0.2 : _
- HARA-GAIROME CLAY —
Looal SOLKA-FLOC MIX. (1:1)
- $=0.33
D _

0.6 - CEMENT p=98 kPa _

MATERIAL
0.8+ $=0.5 : _
p =245 kPa
1.O | | I |
0 20 40 60 80 100

i(/6t+0m —V/Om)/wo  [s72/cm 1]

Fig. L. 5. Filtration ratio, Uy, vs. i(/fr+0n—v0m)/wo-
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1. 2. Consolidation period

When L decreases to a definite thickness L, the filtration period ends and
further expression proceeds on the principle of consolidation.

Generally, the consolidation period starts after the filtration period, the transi-
tion point being L,. Dehydration by consolidation is distinguished from dehydration
by filtration by the fact that the hydraulic pressure in a compressed cake decreases
continuously, whereas that in a constant-pressure filter cake is maintained sub-
stantially constant. Even when the hydraulic pressure throughout compressed cake
becomes zero, a further small decrease in thickness of the compressed cake occurs
because of secondary consolidation. The secondary consolidation continues at a
speed which depends on the plastic characteristics of the solids.

When the original concentration of a solid-liquid mixture is larger than the
critical value, applying a load to the mixture develops an approximately uniform
distribution of hydraulic pressure which is lower than the applied pressure, and
cake compaction proceeds on the principle of consolidation theory.

1. 2. 1. Terzaghi model

The process of consolidation may be better understood by reference to the
famous piston-spring analogy of Dr. Terzaghil® in the field of soil mechanics, as
shown in Fig. 1. 6. In (a), a spring is immersed in a cylinder of unit sectional
area filled with water. In (b), a frictionless piston has been placed in the cylinder
and loaded with a load p. As the piston is provided with a closed stopcock, the
piston cannot descend and the liquid pressure p; is equal to the applied pressure p.

Now suppose the stopcock is opened. As the water escapes, the piston sinks
lower and lower. At (¢) in Fig. 1. 6 the liquid pressure is p; and the spring
carries the load p,, which is equal to (p—pz). Sketch (d) represents the final
equilibrium condition. Water no longer escapes and the piston ceases to sink. At

LOAD P
R STOPCOCK  STOPCOCK
NO LOAD CLOSED Q QF’ENED
&N AW r
(a) (b)

LOAD carried. _ _
by water . pL—O pL- p p;_:O
LOAD carried . _ _ _
by spring . Ps=0 Ps=0 Ps=P-P_ Pg=P

Fig. 1. 6. Schematic picture of Terzaghi model.
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this time, the spring must be carrying the total load p and the liquid pressure
becomes zero.

In this mechanical analogy, the spring represents the solid particles and the
water in the cylinder represents the liquid in voids. The spring force is analogous
to the solid compressive pressure p;.

The one important detail in which this analogy fails to agree with the process
of expression is that pressure conditions are the same throughout the height of the
cylinder, whereas expression of a solid-liquid mixture begins at the top and bottom
drainage surfaces and gradually progresses inward, resulting in uniformly comi-
pressed cake of very low moisture content.

To derive the equation for the con-

solidation period, we begin with the basic PRESSURE , p BRELED o
equation of flow through porous media. 4 {
In the conventional Terzaghi theory of H ﬂ
consolidation, the x-coordinate distance . .
has been used exclusively, as shown at the ] I He A

o ===t | 4l
left in Fig. 1. 7. However, not only the ol NG B 1 3
A . . . . XL SOLID | LIS
liquid but also solid particles in an in- “Liouip dw| APPARENT
S . VELOCITY -
fx.mtesnnal thickness of layer dx at a o RECATIVE TOw
distance x measured from the septum do el limijine-id o P oo
move towards the drainage surflace,. in LIQUID LiQuiD
accord with the progress of consolidation. (a) X— COORDINATE  (b) @ — COORDINATE

Consequently, to derive the consolidation
equations it is definitely more convenient
and more accurate to use solid particle
distribution » instead of the x-coordinate,
as shown at the right in Fig. 1. 7, where o is a moving plane which contains
m?3/m? of solids between the plane and the septum.

The apparent velocity of liquid # viewed from the w-plane can be represented

Fig. 1. 7. Schematic picture of cake under
consolidation.

by

1 9p, ;____ 1 0p,
nolps Ow Hep, 0w (1.10)

The mass balance of liquid in the layer leads to the continuity equation in the
form

de _ ou
00, dw 1.11)
where e is the local value of void ratio and @, is the consolidation time.
Combining Eq. (1.10) with Eq. (1.11) yields the well-known form of the
Diffusion Equation?’

aps/aeczce(azps/awz> (1' 12)
where C, is the so-called modified consolidation coefficient defined by Eq. (1.13).
Co=1/{pap,(—de/dp,)} (1.13)

Eq. (1.12) is similar to Terzaghi’s basic consolidation equation'®’ in soil
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mechanics with spatial fixed coordinate. It should be noted, however, that Eq.
(1.12) can be used even in the case of a large strain,'”’ leading us to a rigorous
analytical solution provided the change in C,-value is not so large, while Terzaghi's
basic consolidation equation is applicable only within an infinitesimal strain range.
As far as the expression experiments attempted in this study are concerned, the
change in C.,-value was not so large when the stages of filtration and consolidation
were clearly treated separately.

To obtain the solution of Eq. (1.12), it is essential to know the inital condition,
specifically the hydraulic pressure p;-distributions in expression materials. The
hydraulic pressure distributions in filter cakes of moderate compressibility can
approximate a sinusoidal curve.l®

Then, the mathematical solution for Eq. (1.12) in the case of a constant-
pressure expression of filter cake is given by Eq. (1.14):5®

Ue=Un—L)/(Li—Leo) =1—exp(—n*T/4) (1. 14)

where U, indicates the so-called average consolidation ratio, and L, L and L. are
the thickness of materials at 6,=0, . and co, respectively. T, is the consolidation
time factor defined by Eq. (1.15):

T.=1%C,0,/w,* (1.15)

The mathematical solution for Eq. (1.12) in the case of a constant-pressure
expression of homogeneous semisolid materials is given by Eq. (1.16):

L,—L e 8 { (2N —1)%x? }
:,...-_.—__::1——— e O — T X
= o Z Ny T Ly (116)
00 I
MITSUKURI—GAIROME CLAY
\ O P =490 kPa,wWo=0.354 cm, $=0.30
ozr ° . | ®:p=490 kPa,wo=0382 cm, s=0.30
o4
T 1
1 04 ——-—— ! NUMERICAL —
D EQ.(L1A)
o
oD
0.6 ]
0.8 _
1.0 l | !
0 50 100 150 200 250

i/0./we [s¥2/cml

Fig. 1. 8. Constant-pressure expression of Mitsukuri-Gairome clay filter
cakes. Average consolidation ratio, U, vs. i4/6,/wo.
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Figs. 1. 8 and 1. 9 compare the ex-
perimental data for consolidation of a o0&
Mitsukuri-Gairome clay filter cake and a KOREAN KAOLIN
homogeneous semisolid Korean kaolin with 0:p=1176 kPa, ewau=17
calculations based upon Egs. (1.14) and 02 Wo= 0673 cm
(1.16), respectively. The agreement is ©:pZglz kP Crou=IST
rather poor, although the calculated U, , :
vs. i4/@,/we curves are similar in shape =04l CEaie) -
to the experimental curves. In Fig. 1.9, -
¢1.q» iS the initial average void ratio of =)
semisolid material. 06k -

In view of variations of C,, Egs. (1. 10)
and (1.11) are solved numerically2® by
the Runge-Kutta-Gill method, and the 0.8 —
results are illustrated in Fig. 1. 8 by a \
dot-dash line. The agreement is still poor. goe&?

l'OD 1(‘3@ 200 300 400

Modified consolidation coefficient

Ce

The most important variable C, can
be easily determined by the “fitting me-
thod” in view of the similarity in shape
of the theoretical U,.-curve and experi-
mental observations. The two curves
shown in Fig. 1. 10 represent theoretical
calculations based upon the approximate
solutions (1.14) and (1.16). By the fitting
method, 6 44, the consolidation time required
for attaining 90% of U,., may be read from
experimental data, and C, is calculated
from the following equations (1.18) and
(1.19), as shown in Figs. 1. 11 and 1. 12.

C,=0.933w,2/1%04, (1.18)
C,=0.848w,2/i%04, (1.19)

When @4, is known, the final thickness
L., of consolidated mixture is calculated.
C, can also be calculated in another

way, from the compression permeability data.
compression permeability measurements are shown.

V8. /wo

Fig. 1. 9. Constant-pressure expression of
semisolid Korean kaolin. Average
consolidation ratio, U, vs. £4/8,/wq.

[s"2/cm]

o T
Eq.(0 ‘4) iV Eq.(1.14)
X AC/AB=1.08
02 N (Telgo= 0933 40
\\ \ Ce=0.953 wo/i1¥8so
o N u)E_qil.l?L
n aF 7 AC/AB =115 0.2
A 3 (Teloo= 0.848
Eq.{LIB}7N Ce=0.848(wy/1%/8s0
s 0.6 -04
0.8 ~06
AlUc=0.9) XN '
N
Lok NN \f‘\ HJo.8
A (Ue=0.9) NG
RN
1 H n ¥ vy
o 05 1.0 Lo
/Te -1

Fig. 1. 10. Fitting method for determining
experimental Ce-value.

In Fig. 1. 13 the data obtained from
At the left the variation of

specific resistance a with solid compressive pressure p, is shown and at the right

the variation of void ratio ¢ with p, is shown for different solids.

Compression
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permeability data of « and ¢ can be represented in the following form.

0.5

a=ca,+a,p . Ruth’s form

e=e¢,—C Inp, : Terzaghi & Peck’s form

KOREAN KAOLIN (1)
p=784kPa, s=0357
wy= 0.895 cm, i =2

AC/AB =1.08
Ce=0.933(wo/1)% B0

0

[sV2]

Fig. 1. 11. Fitting method for filter cake consolidation.

— p=|27 MPO, epqv‘l.z‘!‘

KOREAN KAOLIN (2)

we=0.723¢cm, =2

1 Ce=0.848(wy/1)%6,,

AC/AB = 115

] 1

50 75 100
[sl/?‘.]

Fig. 1. 12. Fitting method for semisolid consolidation.

(1. 20)
(1. 21)
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T T T T
6+ —HARA-GAIROME CLAY —
SOLKA-FLOC MIX.
(1:1)

. 251 -

HARA-GAIROME CLAY—
SOLKA-FLOC MIX. (I:1)

™ 2r .
ng 2.0
~
S 102 —
8t KOREAN KAOLIN
3 6 - ® 1.5

1.0
2+ -
\CEMENT MATERIAL

ol M_ o5k ZCEMENT MATERIAL 1
8 -
s -
|

l III 1 | | | | { |
4 68,52 2 4 683 4 6852 2 4 683

Ps  [kPal Ps  [kPal

Fig. 1. 13. Compression permeability cell data. Specific resistance, @, and
void ratio, e, vs. solid compressive pressure, ps.

Using the empirical equation of (1.20) for specific resistance « and Eq. (1.2D)
for void ratio e, both obtained from Fig. 1. 13, one can derive the following equation
for the modified average consolidation coefficient C..

— pS'(lv
Ce /“psca (a'o "’f”a{lps-avn) <1. 22)
where ps.q, denotes the average solid compressive pressure, which is the arithmetic
mean value of the initial average solid compressive pressure p;(¢1.c») and the
applied expression pressure p.
Essentially, Eq. (1.22) affords a prediction of C,, and thus one can theoretically
predict the consolidation process from calculations based upon data of compression
permeability measurements.

1. 2. 2. Terzaghi-Voight combined model

In the previous section, local void ratio e during the consolidation period was
dependent only upon local compressive pressure p;, and the so-called creep effect
was neglected. To obtain more rigorous equations of consolidation, the creep effect
of secondary consolidation should be taken into account.

Since the variation of e is caused by both the change in local compressive
pressure p, and the simultaneous effect of creep of solids, ¢ is not a single-valued
function of p;, but is a function of both p, and time 6. Then the mass balance
of liquid in an infinitesimal layer of consolidated cake leads to a continuity equation

in the form721
de [ oe de \ _ ou
a0, ’< 90, )ﬁ( 90, >c" dw (1.23)




54 M. Shirato, T. Murase and M. Iwata

In Eq. (1.23), the term (9¢/86.)r represents the time rate of change in ¢ due
to the so-called primary consolidation and depends only upon the change in p;.
Therefore, the term (de¢/06.)» can be rewritten as

de \ _( Oe 8ﬁ3>:_ <ap5>
< a0, )E ( 0P, >E< 00, @s 00, (1.24)
where az is the coefficient of compress-
(ps_.ps.l) ibility defined by ar= — (9¢/8p;) n.
The second term (9e¢/860,); in Eq.
“““““““““ A (1.23), which accounts for the secondary
consolidation, is not a single function of
bs, but is a function of both p, and ¢..
On the assumption that the rheological
—~—  constitution of the secondary consolida-
tion is constructed by the Voigt element
shown in Fig. 1. 14, the term (9e¢/36.)¢
can be given by2D

m
0
m
TERZAGHI

VOIGT MODEL { MODEL

I
|

ELASTIC COEFF. Es

\VISCOSITY,G

Fig. 1. 14. Schematic picture of Terzaghi-
Voigt combined model.

T( ps‘ p3.| )

(aa; )f a@S a[1—exp{l—7(0.—)}] apsdﬂ (1. 25)

where ao=(1+¢e)/E,, n=E,/G, E, is the elastic coefficient of the spring, G is the
viscosity of the dash pot of Voigt’s model, and ¢ is a dummy variable representing
an arbitrary consolidation time up to a given elapsed time 6,.

Substituting Egs. (1.10), (1.24) and (1.25) into Eq. (1.23), one obtains the
consolidation Eq. (1.26) in the form?7.2D

0p, , a, T@S . . s =C 0% P,
a0, +aE 20, (Ds— Ds1) exp {—0(0.—7)}dr= ThE (1.26)
where p;.; is the local value of p, of the material when ¢,=0. C, represents the
modified consolidation coefficient defined by

Cm b 1.27)
ﬂpsaavaf’]
and is assumed to be a constant in Eq. (1.26); and a,, in Eq. (1.27) is the average
specific resistance of cake during consolidation and is assumed to be constant.
The analytical solutions of the consolidation equation based upon the Terzaghi-
Voigt model are given by

U—fl L ~(1fB){l—exp(-—i;iTc)}—i—B{l——exp(——”f]@c)} (1. 28)
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for constant-pressure expression of filter cakes, and by
L,—L
Li—L,

—a-nfi- ém,gl_)_z_ﬁm(__@ﬁ%n_zmc)}

+B{l—exp(—70.)} (1.29)

for constant-pressure expression of semisolid materials.”

In Egs. (1.28) and (1.29), U, is the average consolidation ratio and indicates
the degree of deliquoring under a constant pressure. T is the consolidation time
factor defined by Eq. (1.15). B is an empirical constant defined by

B: ac/<a£/’+a0> :vsc-maa:/vc-maa: (1' 30)

U=

where V;e.map 18 the maximum liquid volume removed by the secondary consolidation,
and ¥,.me, the total liquid volume removed before final equilibrium condition is
attained. Fig. 1. 15 illustrates the experimental results of consolidation of filter
cakes of Korean kaolin.

Since C,(ir/2w¢)2>>n, Egs. (1.28) and (1.29) become approximately Eq. (1.31)
when 4,.>0.

= Li=L

_mzl—B exp(—n0,) (1.3D)

In consideration of Eq. (1.31), the values of both B and 7 can be graphically
determined from the later stage of the experimental results of [n(1-U.) vs. d.
as illustrated in Fig. 1. 16.

It can be seen from Fig. 1. 16 that the B-value of semisolid materials depends
upon both the applied pressure p and the initial average void ratio ei.co, whereas
the n-value is virtually constant. The experimental values of B vs. p/ps(€1.av) are
shown in Fig. 1. 17, where p.(¢1.4,) denotes the solid compressive pressure for

o]
8lo T T KOREAN KAOLIN
6E° o (i=2)
0 T T T T “ " ° og
KOREAN KAOLIN r ° SEMISOLID B
ozl 1 p=78akPa e.qv=1.72, P=235kPa
- 5=0357 T2
! B T T T =
“oakell Lo )
4rE 2, ———— EqlLI) 5 Ol
3 3 i3 ;8 eiov=1.57, P=784 kPa-
>, < | Eqll28 - & Co
081~ G\ 3 7 o
%\ > = s,  [SLURRY - -
o8k -’( : _ B 00369 €rav= 173, p=784kPd
‘N\ ) SLOPE
1.0 L =l R S - = o 0.01 | { MM
0 20 40 60 80 100 120 140 160 “o 5000 10000 15000
Jo.  [sv2] 8 Is2
Fig. 1. 15. Constant-pressure expression Rig. 1. 16. Determinations of creep
of Korean kaolin filter cakes. constants, B and 7.

Average consolidation ratio,
Ug, vs. '\/5:.
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|.O [ l
O KOREAN KAOLIN
08 p=118~19200 kPa
' €.av=0.57~ 1.80
™
4 06 | A SOLKA-FLOC (BW-200)
‘ p=392~98lkPa
m €Lav= .39~4 62
04+
02 -
ANYA
om®.
Ol 2 3 4 5 6
P/Ps(€rav) [-1
Fig. 1. 17. Creep constant, B, vs. p/ps(e1.qv).
9 : T T T T obtaining final equilibrium void ratio e1.q,

P/Ps(erq) [-1

MITSUKUR| - GAIROME CLAY —
STANDARD SUPER-CEL MIX. {I:1) 7

2 1 1 Il | { 1 1
0 02 04 06 08 10 12 1.4 1.6

P [MPa]
Fig. 1. 18. Theoretical p/ps(e1.qs) values
of filter cakes.

in compression permeability cell measure-
ments. It is apparent from Fig. 1. 17 that
B is substantially constant for p/p;(e1.qv) -
values larger than a limiting value, although
it seems that B is a single-valued function
of p/ps<el~av)~ In Fig' 1 18: p/ps(el-cw)
vs. p for filter cake expression of three
materials are shown when expressions are
conducted under the same pressure as the
filtration pressure. The p/p;(e1.4,) values
for filter cake expression in industrial
practice are larger than about 3 or 4, as
may be seen from Fig. 1. 18. Therefore,
it can be safely concluded that the values
of both B and 7 are approximately con-
stant for practical expression operations,

and they can be viewed as the expression characteristics of the materials themselves.

Modified consolidation coefficient C,

For determining the experimental C.-value in Egs. (1. 28) and (1.29), a fitting
method based on the similarity in shapes of the theoretical U,-curve and the

experimental one can be used.
rearranged as

Eq. (1.28) for f{filter cake expression can be

U a=L)—B(L~L) {1—exp(—10.)}

c-corr T

=1-—exp<—-7§;—Tc>

(Li—L.)(1-B)

(1.32)
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and Eq. (1.29) for semi-solid expression becomes

Upssrr=1— 31 8 MTC}

SN exp |- (1.33)

The experimental values of B, n and the U,— +/g, relation being known, the
Uec.corr— /@, curve can be pictured from the calculations based upon Eq. (1.32)
or Eq. (1.33).

In the fitting method for filter cake expression, the time (040). required for
attaining 90% of U..corr is read in Fig. 1. 19, and C. is determined by

C,=0.933w,%/2*(090) (1.34)
00 T
MIT SUKURI-GAIROME
00 | CLAY— STANDARD
KOREAN KAOLIN SUPER-CEL MIX.(1:1)
p =784 kPa 02 4 P = 882 kPo
e =0357 erqv= 2.17
o2+ — T": 2'895 cm Wo= 0.832 cm
i= 1
Ce =0.933 (wo/11¥(Bs0)c
: E 0.4 T Ce=0.848(wo/i)2/(Bs0)e
T 0.4 - T T
w =
(=3
= S
5 o
= = o6l i
06+ -
o8l | 0.8 ~
/Bl = 46.0 {/Bsolc= 165
10 TR S 1o I
0 20 40 60 80 o] 10 20 30 40 50
/6, rs”2] ‘[é: [s72]
Fig. 1. 19. Fitting method for filter Fig. 1. 20. Fitting method for semisolid
cake consolidation. consolidation.

In the fitting method for semi-solid expression, the time (fq0). is read and C,
can be calculated by Eq. (1. 35) as shown in Fig. 1. 20.

C,=0.848w,/i%(050) . (1.35)

To determine the theoretical C,-value, eliminating ¢ in Eq. (1.27) by using
Eq. (1.30) and the empirical equations of compression permeability cell data, one
can derive the following equation.

C,= Dean 1.36
/Lloscc (1_‘3) (a0+a1ps'avn) ( )

where C,, ag, @1, and % are empirical constants for compression permeability cell
data, and p..., denotes the average solid compressive pressure, which is the arith-
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metic mean value of the initial average solid compressive pressure p;(€1.q,) and
the applied expression pressure p. Eq. (1.36) gives a prediction of C,, and thus the
consolidation process can be predicted from calculations based upon compression
permeability cell data.

2. Simplified Computation Method

It is apparent that analytical solutions based upon the modified Terzaghi model
give somewhat less satisfactory results, especially in the later stages of consolida-
tion. Elaborate solutions based upon the Terzaghi-Voigt combined model coincide
very well with experimental data. However, these solutions may not be considered
useful mathematical tools in industry, since they include the three empirical con-
stants C,, B and 7, which have to be determined by two graphical plots.

2. 1. Simplified equation for constant-pressure expression of semisolid
material

To evaluate the modified consolidation coefficient C, on the basis of Eq. (1.16)
and experimental data, a rather complicated method of curve-fitting has to be
employed, since the analytical Eq. (1.16) is not represented by a simple explicit
equation but by an infinite series.

It is apparent from Fig 2. 1 that the U, vs. +/g, relation calculated by Eq.

(1. 16) is linear and nearly coincides with
o experimental data in the early stage of

A MITSUKURI-GAIROME CLAY constant-pressure consolidation. In the
n.n—|xs 'fIN‘D'A)RD SUPER-CEL later stage, agreement is poor and the
ok p=392kPa, erav=227 oo
w0776 cm, iz
B=0.053, +=0.70 0 I I i | i
i O : KOREAN KAOLIN
02 p=15.8 MPa, €,0y=0.802 404 &\
\ wo=0.987 cm; i=2 on ve = [57/{14(57'}"] ]
B=0.03, 1=1.50 ’
T | l I
- \
04 i - —— Eq.(LI6)H06 ..
© | 04— -
- e ——  Eq.(1.29) -
Q30
=t 05
—08
06— X! —
%
€0
~10 0.8+ %o
qi}e"
Al'so
|
. 1.0
0 50 100 150 0 1.0 20 3.0
{Te -2
@ [sY27] ¢
Fig. 2. 1. Constant-pressure expression of Fig. 2. 2. Average consolidation ratio, U,
semisolid Korean kaolin. U, vs. ' vs. /T, diagram.

Vb,
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calculated curve approaches the final equilibrium (U,=1) more rapidly than the
experimental results. Since U, is directly proportional to +/g, for small §, values
and asymptotically approaches 1 for large . values, one of the simplest equations®’
for use instead of Eq. (1.16) may tentatively be devised, by reference to Eq. (1. 17),
as

L YT i Y

In Fig. 2. 2, the average consolidation ratio U, calculated by Ea. (2.1) is
plotted against the square root of T, i. e. i2C.0,./w,?, for different values of v.
The maximum percentage error in U, calculated by Eq. (2.1) with v=2.85 com-
pared to the theoretical Eq. (1.16) is only 0.60. Recently, Sivaram and Swamee??
presented Eq. (2.1) with v=2.8 on purely empirical grounds.

It was previously pointed out that Eq. (1.16), i. e. Eq. (2. 1) with v=2. 85, gives
less satisfactory values. However, it can be seen from Figs. 2. 1 and 2. 2 that Eq.
(2.1) with »<2.85 may give quite satisfactory values, and the secondary consolida-
tion effect may be taken into account by setting v as v<{2. 85.

In accordance with Eq. (2.1), experimental values of U, plotted against 4§,
yield a straight line in the early stage of constant-pressure consolidation of a semi-
solid material, as shown in Fig. 2. 1, and the slope of the line equals {4i2C./
(rwo2)}172. Thus, the value of C, being known, rendering the experimental values
of /7, in the dimensionless form /7 ,= (i2C.0./wo?)'/? enables one to obtain the
value of v by comparing the experimental results of U, vs. +/g, with Fig. 2. 2.
Fig. 2. 1 compares the formula of Eq. (2.1) with experiments, agreement being
quite good.

In Fig. 2. 3, experimental values of v and B are shown. Values of both v and B
are approximately constant for each material; v can be viewed as a creep charac-

1.6 T T T T T T T T 08
o o
2 oe: KOREAN KAOLIN )
ot P =127 ~ 19200 kPa 106
_ €Lov = 0.576 ~ .74 N
L L
08 —104
A A A A m
s a MITSUKURI-GAIROME CLAY—
STANDARD SUPER-CEL MIX. (1:])
04 -10.2
Pp=127~ 1960 kPa
Erav= .90 ~ 2.54.
0 | ) ! & : o T‘ .l‘ 0
| 2 3 4 5 [S) T 38 9 10

p/psteay) L[]

Fig. 2. 3. Consolidation behavior index v and creep constant B as
a function of p/bs(e1.40)-
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teristic of the materials themselves and may be called the consolidation behavior
index.

2. 2. Simplified computation method for constant-pressure expression of
filter cakes

The analytical solutions (1.14) and (1.28) and the experimental data for con-
stant-pressure expression of filter cakes present inverted S-shape curves of U, vs.
v@,, as shown in Fig. 2. 4, whereas the relation for expression of homogeneous
semisolid materials is a straight line in the early stage of expression, as shown in
Fig. 2. 1. The difference in shape between the two expression curves may be due
to the difference in initial voidage distribution in the original materials to be ex-
pressed. It has long been known that filter cakes are not uniformly deposited.
The cake layer near the filter medium is compact and dry, while the cake surface
is wet and soupy. In other words, a portion of the filter cake is already com-
pressed at the beginning of expression. Consequently, the expression rate at an
early stage is much lower than that for semisolid materials. As expression
proceeds, however, the difference between the two expression curves narrows and
is not appreciable at the later stage of expressions of practical importance in in-
dustry.

On the basis of the considerations mentioned above, U. values for expression
of filter cakes are calculated by using the simplified Eq. (2.1) and are illustrated
in Fig. 2. 4 by the broken lines. It is apparent from Fig. 2. 4 that the simplified
computation method for filter cake expression is fairly accurate at the later stage
of U.=0.70.

0 : JAPANESE MIRIN MASH

P=392kPa,wo=0.134cm, $=:0076

- i=2,B=0l5, v=13

A HARA-GAIROME CLAY—
SOLKA-FLOC MIX. (1:1)

0.2

™
Loak p=588 kPa, we=0.5/8cm, $=0305
. i=2,B=0082, v=14
- — T T
o8 —-—  Eq.(L14)
——— 1 Eq.(1.28)
o8 B \ Xy, T

10 [N =1 \\‘ |
O 20 40 60 80 100
\/9_0 [SI/Z']

Fig. 2. 4. Constant-pressure expression of filter cakes. U, vs. +/g,.
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3. Two-Dimensional Expression on Tubular Element

There are many types of expression apparatus used for advanced stages of
deliquoring. In an expression-type filter press, the process is one-dimensional
expression, with the material being compressed on a plane filter element and the
expressed liquid flowing uniaxially, perpendicular to the drainage surface.

In a tube press or a belt press, on the other hand, the material is compressed
on a cylindrical filter element and the expressed liquid flows out radially, two-
dimensionally, with the rate of expression being quite different from that associated
with one-dimensional expression.

In this section, we develop a technique for analyzing the process of two-
dimensional expression on a cylindrical filter element.

3. 1. Effective consolidation area factor

Fig. 3. 1 shows the experimental two-dimensional expression apparatus. The
central cylindrical filter element is surrounded by an intermediate cylinder which
forms the separation chamber, and next
to this is an outer cylinder for supplying

the compressed air. The circumference . ?UQU[D
of the cylindrical filter element is pierced Féh <] QTH
with a large number of holes and covered o ._}L_Q
with a filter cloth. PRESS MEDIUM 4 -

Fig. 3.2 shows the empirical relation- CONSOLIDATEC ) B2l | L
ship between the consolidation ratio U, DIAPHRAGM——L2 % o
(=Ve/Vemas) and the consolidation time — PERFORATED |7 Di 2
v/@, of semisolid material, while Fig. 3.3
shows the empirical relationship between
U.and VT, (=+/C,0,/00). V. is the liquid saN= N s
volume expressed during the time 6., éi DS NN '1/ f%
V ¢maz is the total volume of liquid ex- U l/’ A g

pressed during the compression stage
before the equilibrium state of compres-
sion is reached, 7. is the consolidation

TCOMF‘RESSED AlIR

Fig. 3. 1. Experimental apparatus for
two-dimensional expression.
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Fig. 3. 2. Average consolidation ratio, U, Fig. 3. 3. Average consolidation ratio,

vs. 4/f.. (Korean kaolin)
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time factor (i=1), and w, is the volume of solids in the original material per unit
drainage area. When a material is expressed one-dimensionally, that is, on a plane
filter element, the consolidation ratio U, varies linearly up to U.~0.7, and the
consolidation time required to reach a particular consoclidation ratio U, is directly
proportional to the solids volume @,%2. In two-dimensional expression on a cy-
lindrical fliter element, on the other hand, the U, curve is shaped like a reverse S,
as shown, and there is as well some skew in the proportionality between the con-
solidation time #, required to reach a particular value of U, and the solids volume
wo?. These differences are more appreciable as the difference increases between
the external diameter D, of the original material and the external diameter D; of
the filter. As Fig. 3. 3 shows, the two-dimensional rate of expression varied quite
considerably depending on the value of D,/D;. This increase in the two-dimensional
rate of expression and the change in the shape of the curve are due to the fact
that the effective consolidation area A, which is determined by the surface area
A, of the expressed cake and the drainage area A,(<(A,), is larger than its corre-
sponding value for one-dimensional expression for the same solids volume w,(4.=
A,=Ay), so that expression occurs more readily in two-dimensional expression
operations.

The two-dimensional rate of expression can be expressed approximately in the
following way. If the effect of creep is so small as to be negligible, the degree of
deliguoring in one-dimensional expression can be expressed by Eq. (1.16). If Eaq.
(1.16) is approximated by the first term of the series, the rate of expression is

au,\ _ 7*C, _

<d@c>1" iwaayT AU 3.1)
where W, (=Anw,) is the total solids volume of expressed material. The subscript
I signifies one-dimensional expression. If we assume that the two-dimensional rate
of expression (dU./d6,)y is controlled by the effective consolidation area A, and
substitute A4, for A, in Eq. (3.1), and if we assume that the value of C, is the same
for two-dimensional expression as for one-dimensional expression, the two-dimensional
rate of expression can then be expressed in terms of the one-dimensional rate of
expression as

(%), =(a) T a-Uy =it (L), (3.2)
or
(7)), @9

ji(=A./Ay) is called here the effective consolidation area factor. It is the ratio of
the effective consolidation area A, taking into account the two-dimensional effect,
to the drainage area A, and represents the ratio of the rates of expression at any
value of U,, namely ~(dU./dT )/ (dU:/dT )

The effective consolidation area factor j; is determined from consolidation
theory in the following way.

Let us assume that, when an expression pressure is acting on a material in a
cylindrical filter, all the expressed liquid flows toward the center of the filter and
is expressed, with the material all the time maintaining its cylindrical shape, as
shown in Fig. 3. 4. When liquid is expressed from the infinitesimal thickness of cake
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shown in the figure, the porosity is reduced APPLIED PRESSURE,p
in proportion. If we now apply the mass z
balance equation and the equation for the
apparent liquid velocity, and for the sake
of simplicity use the approximate relation- P
ship for one-dimensional expression (p=
pr+ps) as the relationship between the
expression pressure p, the hydraulic pres-
sure p,;, and the compression pressure p,
of the solid cake, rather than the general
relationship, the consolidation equation 5 E

4 p
i COMPRESSED CAKE
PRESS MEDIUM

will be (assuming negligible creep in the

granular structure) DIRECTION OF EXPRESSION

— | elf——

Fig. 3. 4. Compressed cake on cylindrical | H "
press medium. i

G ey ) 00
) dps

Solving Eq. (3.4) for constant-pressure expression of a semisolid material with a
uniform initial void ratio ¢4,19:23) we obtain the equation for two-dimensional

expression

U=l 3 a?(nf—l)i%(]ﬁ—(}ﬁ) oxp {— e S ciez 5”}
(3.5)
where
Uo=Jo(anp) Y (a) =Y (any) J.(a) 3.6)
Ui=J1(a)Y (@) —J(a)Y (@) E.7
ny,=D,/D;=v,/7; 3.8
C,= 1 (1.13)

de )
o — ——
wo.a( ~5=
Jo, J1, Yo and ¥V, are Bessel functions of the first and second kind of order 0 and
1, respectively, 7, and #; are respectively the external and internal radii of the

semisolid material at the beginning of consolidation (6.=0), and @y, a@,, a5 etc,
are the first, second, third, etc., roots of the equation,

Jilan,)Yo(a) =Y (any) Jo(a) =0 (3.9

If we approximate Eq. (3.5) by the first term of the series, as was done with
Eq. (3. 1), the rate of expression will be
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r2C,

<Lfllﬁf:>}[:{ }2 oW, ay” 1Y

Comparing this equation and Eq. (3.2), we obtain the following expression for
the effective consolidation area factor ji:

a,(n,*—1)
T

(3.10)

i :_al_ﬁz?{_ixo. 297n,+0. 703 (3.11)

The approximation on the right-hand side is used over the range #,<3.0.
Although creep has some effect in an actual expression process, the effect is con-
sidered to be about the same for two-dimensional as for one-dimensional expression.
For the purpose of determining j; from the ratio of the two expression rates, we
can assume ‘that creep has virtually no effect, and that j; values of most actual
expression processes can be approximated by Eq. (3.11).

Fig. 3. 5 shows the value of j;, as calculated from the formula, j;=
NU.JdT )1/ @U /AT o) 1+ by determining the rates of expression for various
values of the consolidation time factor T,
from the experimentally determined U,

z_ | AVERAGE VALLE | KOREAN KAOLIN curve. The results shown were obtained
I *’C;;‘(;‘l‘:)" 52063 with U.<<0.95. Near the beginning of
oAb Ty %O 4 copsolidation (T.=0), jy=~1. As con-
L2 e T e solidation proceeds, j; increases gradually
B o“"'l"”";""'l ”""‘”“'I"'Ig;,mﬂ.w - and then begins to fall, the graph being
2 ; : . . TR convex upwards. It is thought that j;—1
‘no‘,_o-_u_-___:_u_e _______________ = | as T.—oo., If #p<C3.0, as it is in these

S L 0{2 L O{ S L — experiments, the convexity in the curve is

1. -1 extremely slight, and for most of the

Fig. 3. 5. Effective consolidation area
factor, 7y, vs. T

consolidation stage j; can be taken as
being constant. The broken lines in the
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Fig. 3. 6. Effective consolidation area factor, j1, vs (Do/Dy).
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graphs represent the calculated results by Eg. (3.11), which are very close to the
average for the experimental results during the main consolidation period.

Fig. 3. 6 shows a comparison between the average value of j; during the main
expression period and the value given by Eq. (3.11). The experimental values of
jp are the average values, which for the sake of convenience were calculated from
the mean rate of expression at U.=0.9 rather than using values of dU./dT. in
Eq. (3.3). This graph shows that the average value of j; during the main ex-
pression period is independent of the nature or the properties of the material,
being determined only by the ratio #, of the external and internal diameters of the
material. In short, this value could be expressed to a good degree of precision by
Eq. (3.11).

3. 2. Computation method for constant-pressure expression

is

(3.12)

The general expression for the consolidation time required to attain a value U,
arT, > au.,

T"S:( au.,

If we substitute Eq. (3.3) into Eq. (3.12) and treat j; as constant, the time
for two-dimensional expression is
aT, ) AU, = 1 B

T"E:SZC 5 <dU yix

In other words, if the U.—+/T, relationship for one-dimensional expression is
known, the two-dimensional expression process for the same expression pressure
can be estimated from Eq. (38.13).

Fig. 3. 7 shows that the two-dimensional expression time +/7,.; for any value
of U, is point B, or (1/j;) times the one-dimensional expression time +/7°,, (point
C). The solid curves in Fig. 3. 7 represent
the results as calculated from Eq. (3.5).

(3.13)

The broken lines in Figs. 3. 2 and 3. 3 R ' ' ' oso)

represent the estimated results, obtained 5l N\ = coeoeee e -

by calculating j; from Eq. (3.11) and R\ ) RB =R/l

multiplying by (1/j;)? the time as given 1 o4F \\ ONE-DIMENSTONAL -

by the U, curve for one-dimensional ex- . < (FTe)y \\\\

pression. At the beginning of the con- = 0'6;(/??)}1‘ \\\\ TWO-DIMENSIONAL

solidation, the difference between esti- osl N\ ‘D°’D"’§ i

mated and experimental results is greater,

the higher the value of D,/D;,. In most 1.0 L I L

industrial tube presses, however, D,/D;<< © 03 e ' '°
= -

1.5, so that, for practical purposes, the

error of estimation can be disregarded at

the beginning of the consolidation stage.
If creep is taken into account, the

Fig. 3. 7. Prediction of U,curve for

two-dimensional expression.

one-dimensional expression of a semisolid material is given fairly accurately by the

expression,

U=

VAT ,Jm

T UT./m)7 )7

2.1
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The value of U, for two-dimensional expression can be determined by sub-
stituting Eq. (3.13) into Eq. (2.1), thus:

__ NET ]
Ve @ T /07w (3.14)

where v is the consolidation behavior index, which expresses the effect of creep in
the granular structure. The dot-dash line in Fig. 3. 2 represents the results as
calculated from Eq. (3.14), using the value of v for one-dimensional expression,
and by substituting into the formula, 7.=C.0./wy2, the value of the consolidation
coefficient C, as obtained by curve fitting of empirical data obtained in one-
dimensional consolidation experiments.

4. Constant-Rate Expression of Semisolid Material

In previous chapters, the analysis was limited to constant-pressure expression.
Constant-rate and variable-pressure, variable-rate expression operations are more
often encountered in industry. However, relatively little work has been reported in
connection with constant-rate and variable-pressure, variable-rate expression.ls’
This chapter is devoted to extending the previous amalytical method for expression
under constant pressure to expression under variable pressure. In doing so we shall
restrict ourselves here to the constant-rate expression of semisolid material.

4. 1. Estimation of expression pressure

Owing to common engineering practice in constant-rate expression operations,
the process may consist of two stages. In
the first stage, the deliquoring rate is
held constant and the applied pressure 2
i";fgfg;Z?g_‘;‘:i;/i’:’fﬁ’gssggim may be increased up o a pre-determined
I T 8 maximum pressure pn..; in the second
stage, the maximum pressure is maintained
—0—0—0—0—C until the final equilibrium compression is
P attained. Fig. 4. 1 shows such an expres-
sion process. In the figure, ¢ means the
rate of deliquoring per unit area (the ex-
pression rate) in the constant-rate expres-
sion period. In the constant-rate opera-
CONSTANT - tion, p vs. 0, is the most important
PRESSURE relationship to be estimated.
For the purpose of determining the

N N relationship between p and 4., we introduce

the following assumption:11)

KOREAN KAOLIN

Lem]
P [MPal

L

o |c|>o 200 “Internal condition of consolidated

Gc [s1 cake in the constant-rate operation

Fig. 4. 1. Experimental results under con- under the expression pressure p is the
stant-rate expression. Thickness of same as that in the constant-pressure
mixture, L, and expression pressure, operation under such a pressure p,

P, vs. expression time, 0. when the same volume of liquids is
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PRESSURE PRESSURE
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o
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DELIQUORING INSTANTANEOUS
RATE q DELIQUORING
RATE 4
(A) CONSTANT (B} CONSTANT
RATE PRESSURE
EXPRESSION EXPRESSION

Fig. 4. 2. Comparison between constant-rate and constant-pressure
expression processes.

removed from the same amount of the original materials in both operations.”

Fig. 4. 2 illustrates both the constant-rate and the constant-pressure operations
when the same decreases of average void ratio (— 4e.,) are attained from the same
amount of original materials. At this moment, suppose the expression pressure p
is the same in both operations. Then, if the above assumption is valid, the in-
stantaneous rates of void reduction (—de,,/dd.) in the two operations should have
the same value.

In the constant-pressure expression operation, remembering L=w,(1+¢4,) and
rearranging Eq. (1. 29), the decrease of average void ratio (— ge4,) is represented
by

~deey=—dees | (1= B)[1= By Py onp { - BRI TR

+BL1—exp(—760.)]] 4D

where @,' is the consolidation time, (— ge,,...) is the total decrease of average void
ratio until the final equilibrium compression is attained under the pressure p and
can be calculated from the eqation

—dlgy.w=Clnp/p.,(1.4) (4.2)

Differentiating Eq. (4.1) with respect to 8.’ yields the rate of void reduction
(—deq,/do."):
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- fzgj;f = — deq.[20-B) ZOCZ 3 exp -G Dw izac)zfc'}
1By exp(—10.) | “.3)
For constant-rate expression, the following equations are applicable.
__%_ef_: fi (4.4)
— e, =y, (4.5)
Wo

If we know the compression data, as shown in Fig. 1. 13, and the relationship
between the modified consolidation coefficient C, and p, as shown in Fig. 4. 3, in
advance, we can calculate the pressure change in the constant-rate stage by using
Egs. (4.1), (4.3), (4.4) and (4.5). If the creep effect of the material is negligible
(B=0), we can draw Fig. 4. 4, which shows the relationship between p, (— 424»)
and (—wo%/i%-de,,/d?.), by using Egs. (4.1) and (4.3). In this case, it is easy to
obtain the p vs. (— geq,) relationship at a given expression rate, as shown in the
figure. Then the expression pressure change with time can be calculated from Eq.
(4.5).

Fig. 4. 5 compares the experimental pressure change with the theoretical value
based on the above method. The solid line in Fig. 4. 5 represents the calculated
result which takes the creep effect into account, while the broken line is based
upon the theory in the case of B=0. Because of good agreement between theory

KOREAN KAOLIN KOREAN KAOLIN
Ps(€.av) = 98 kPa 8 Ps(€rav) =98kPa, B=0
T T T I T T T TTTT T7 T T TTTIT Ty
x107°
1.5 P 7
/oﬂ6
6 -
™ Q"\
o nc_ / oq?
3 Z F S ®
§ 10 - P S Eew
= o 4/ PSdng
® S o
o RN
:/ A 00_”3 B
Lol I R
0 I | [ | l ! 95 1074 5 107 5 1072
0] 2 4 6 _i& deav [ 2
P [MPal #dge  tem¥sl
Fig. 4. 3. Relationship between modified Fig. 4. 4. Graphical determination of p
consolidation coefficient, C,, and vs. —Adegy.

expression pressure, p.
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and experiment, it is safe to say that the
above assumption is acceptable.

4. 2. Average consolidation vatio

The average consolidation ratio U, is
defined here in the following form.

'“Aeav
—Aeav 'oa<pmax)

where (—4¢4y.0(Pmaz)) is the total de-
crease of average void ratio under the
maximum expression pressure pPmar. I
the constant-rate stage, (—4deé,,) can be
calculated from Eq. (4.5). In the con-
stant-pressure stage, we should obtain the
time 6., in Eq. (4. 1) at first, which
corresponds to (—d4e,,) value when the
constant-rate stage is terminated. Now
we introduce a new dummy time 6&..5
which is the sum of #4..;’ and the time
required since the constant-pressure stage
began, 46,., as follows.

U,= (4.6)

66-2,:66.1I+A60

(—4eg,) in the constant-pressure stage can be calculated by substituting 6.5

Eq. (4. 1).
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KOREAN KAOLIN
Ps(erav) = 98 kPa, Pmax=6.86MPa
8 iq=2.92x10"2mm/s, Wo=0.505 cm
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Fig. 4. 5. Comparison of theory and ex-
periment for constant-rate ex-
pression.

4.7
into

U, values are calculated by using Egs. (4.1), (4.5), (4.6) and (4.7) and are

illustrated in Fig. 4. 6.

KOREAN KAOLIN
Ps(erav) = 98 kPa, Pmax=6.86MPa
o iq=2.92%x10"2mm/s, Wo=0.505 cm
l 1 ]
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: o i
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2 0.5k _
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— CONSTANT RATE PRESSURE
\lbOOOQQOQQD.(L_Q___O__
L0 | | 2 |
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6. sl

Fig. 4. 6. Average consolidation ratio,

Ue, vs. 0.. (Constant-rate expression)
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5. Settling of Thick Slurries due to Consolidation

Sedimentation phenomena occur on a universal scale in both nature and man-
directed operations. In spite of the basic importance of these phenomena in widely
divergent fields, most previous works were mainly concerned with dispersed sus-
pensions of rather low concentrations, and few quantitative results for flocculated
suspensions of high concentrations have been reported. In the higher initial con-
centration region, solid particles form networks with one another, and a slow sub-
sidence of the interface between the concentrated suspension and clear supernatant
occurs. The settling rates in this region may be placed under the control of the
internal mechanism of the consolidation or compaction in the suspensions.

The main objectives of this chapter are to present a theoretical and experi-
mental analysis of the settling behavior of fine-particle sediments, which settle by
the mechanism of compaction from the beginning of batch sedimentation, and to
derive methods of predicting the settling behavior in view of the internal mechanism
of consolidation in sediments.12

5. 1. Basic equations for settling due to consolidation

In reference to Fig. 5. 1, which shows a differential element in a settling
sediment, the driving force for liquid flow
through the networks of particles is the

| SUPERNATANT hydr_auhc excess press.ure D Faused by the
= gravity force of particles lying above the
i=0 networks.
INTERFACE
" | To derive a basic partial differential
o 2 equation for hydraulic excess pressure we
3 Coe begin with Darcy’s equation (5.1).
Jue T
. pL Y
: — 1—e) 0 0
RS o st wei, (=) 90y 00
~ T p.+dp, |— SEDIMENT Iz w w
-3 6. 1)
n-z where # is the local apparent relative
i A velocity of liquid to solids of their dif-
—e1=n ferential volume element dw, ¢ the local
Fig. 5. 1. Schematic diagram of solid porosity, and K, and K, the local values
volume element in settling of the permeability coefficient and of a
sediment.

modified one, respectively.
The basic differential equation relating
the change in# to the time rate of change in local void ratio ¢ can be expressed as

oo o
00 dw

In Eq. (6.2), w is a volume of solids lying above the element as shown in Fig.
5. 1, and the positive signs of w and # are taken in the same downward direction.
The gravity force of the particles lying above the element is entirely sustained
by the hydraulic excess pressure p, and the solid compressive pressure p,, provided

(5.2)
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side-wall friction between the particles and the container is neglected.

D+ p=8(0;—p)w 5.3
Differentiating Eq. (5.1) with respect to o gives
ou o*p, [ dK, 0P, op,
dw Ky dw? < dp, >< Ow >< ) ) G4
and substituting the above equation into Eg. (5.2) leads to
de _p 9°h, dK, \( 0ps\(_0b
00 =K, dw? +( dp, >< Jw >( ow ) (5.9

where it is assumed that K,=f(p,). On the assumption that the void ratio e is
also a function of the solid compressive pressure p; only, combining Eq. (5.5) with
Eq. (5.3) and rearranging yields

() o) (NG oS @

Eq. (5.6) can be rewritten by using the following variables;

p=p./wo(p,—0)g : reduced hydraulic excess pressure
C,=—K,(dp,/de) : modified consolidation coefficient
C/=(dK,/de)w,(0.—0) &

C,, . C,~value for the bottom of sediment (w=w,) at T =00 5.7
2=w/w, : modified demensionless distance expressed in

solids fraction

T=C,0/w,® : time factor
in a dimensionless form as
09 _ 9% | { 09 _ng)_} 5
oT < eb> zzT eb><8z> 0z .8

In solving Egs. (5.8), the boundary conditions and the initial condition for batch
sedimentaiton are

(i) ¢=0 at z=0
(ii) 99/0z=0 at z=1
(iii) o=z at T=0

For numerical treatment, the height of sediments is divided into 7 parts of
equal solids volume. Then the right-hand side of Eq. (5.8) can be transformed to
the following Egs. (5.9), (5.10) and (5.11) by using a finite difference in place of
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the derivatives.
Using the boundary condition (i) at =0 (the sediment surface) gives

6,=0 (5.9)

at i=1~n—1

( [?% ):722< g:; >(¢i+1~2¢i+¢i"1> +<%L> {'Zii((bi—i-l-'/ji—l)Z

n
A ORENY (5.10)

and using the condition (ii) at i=# (the bottom of sediment) gives

(%")ZZ”Z( (C;::><¢n_1—¢n> (5.11)

where the suffix ¢ denotes the i-th value of the variables from the surface as shown
in Fig. 5. 1. The values of the consolidation coefficients C.; and C,.; in Egs. (5. 10)
and (5.11) depend on the reduced hydraulic excess pressure ¢; for a given system
and may be determined from the characteristics of the sediments.

The simultaneous differential Egs. (5.9), (5.10) and (5.11) can be solved by
the Runge-Kutta-Gill method by using an electronic computer. To execute the
numerical computations, the data of ¢ vs. p, and K, vs. ¢ can be obtained by batch
sedimentation tests as described below.

5. 2. Compression and permeability characteristics of sediments

The compression-permeability cell method may generally be worthwhile for
analysis of internal flow problems through compressible porous beds under a
moderate or relatively high applied pressure.2®> For low compressive pressures of
the gravity force of settling sediments, however, it may be safely concluded that
the C-P cell method is not adequate for the analysis, because appreciable side
friction between the wall of the cell and the compressed cake may lead to substantial
errors in the C-P cell data. In addition, the compressed cake under such a low
pressure may be too soft for permeability measurements without additional disturb-
ance in the compressed cake. In this chapter, batch sedimentation data are used
for determining the compression and permeability characteristics of the sediments.

5. 2. 1. Compression characteristics

Under a given condition of inital concentration of a slurry, the more of the
total solids volume w, in a settling container, the higher the sediments H. at the
final equilibrium state. The w,—H. relation may not be linear because of the
difference in degree of compression.

On the assumption that the wall and bottom effects of a container can be
neglected, the final porosity ¢ at a definite depth is a unique value without reference
to the total solids volume w, in the container. Then the final porosity ¢ at the
bottom of the container is given by

(Q—e)=dw,/dH., - (5.12)
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On the basis of Eq. (5.12), the local porosity ¢ vs. the compressive pressure
ps(=w,(p;—p)g) can be determined by graphical or numerical differentiation of
the H.,—w, curve experimentally obtained.

5. 2. 2. Permeability characteristics

Provided the suspension is homogeneous at time zero, the distribution of the
hydraulic excess pressure p, is linear and the term (0p,/8®)4-¢ in Eq. (5. 1) equals
to (ps—p)g throughout the suspension. The modified permeability coefficient K,
can be calculated by

(K3) -0=0o/(0s—0) g (5.13)

where v, is the observed value of the initial settling velocity.
In comparison of Eq. (5.1) with Kozeny's equation of flow through granular
beds, K, can be represented by

K,=c%/{kSy*(1—¢) i} (5.14)

where % is Kozeny’s constant and S, is the effective specific surface area of the
flocculated particles. To evaluate the values of kS,2, Eqgs. (5.13) and (5.14) can
be used. As sedimentation progresses, an increase in local compressive pressure p;
may break down the structure of flocs of particles and may result in an increase
in £S,2. In this study, however, computations are executed by using Eq. (5.14) on
the assumption of constant kS,2 calculated from the initial settling velocity v,.

5. 3. Numerical computation procedures

Numerical solutions of the simultaneous differential Egs. (5.9), (5.10) and
(5.11) are obtained by making use of the compression-permeability characteristics
determined from settling data as described before. In numerical calculations by
the Runge-Kutta-Gill method, the equally spaced volume fraction of solids (dz=
dw/wy) is set to 0.1, i. e. the number of partition #=10, and the interval of time
factor (47T) is set to 0.01 or 0.005 if

necessary. FERRIC OXIDE

In general, the local compressive 0 ; €o=(l:),84l, H[o=4o om 4
pressure p, at a time 7 is calculated by o 8
Eq. (5.3) if the hydraulic excess pressure THEORETICAL &
distribution is known. The p,-distribution 08~ o H
being known, the local porosity ¢ and the A
local permeability coefficient K, at the L osl-
time T are given by compression-permea- é’ ' 16
bility data. The values of C,; and C.;’ are &
determined by Eq. (5.7) and the value C,; 5. 04 24
is constant at a given batch sedimentation.
Starting from the above-mentioned values oal 2
at the time 7, the distribution of the |
reduced hydraulic excess pressure ¢ vs. z
at the time 7+4T is evaluated by using 05 0‘2 0'4 01,6 0‘.8 o
Egs. (5.9), (5.10) and (5.11). x/H -]

As a matter of practical computation, Fig. 5. 2. Hydraulic excess pressure

starting from the known p,-distribution distribution at various times.
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at T=0, numerical procedures are successively repeated for each time interval.
The computed results of the variations of p,/p, vs. x/H, (1—¢) vs. w/w,, and C,/
Cep vs. w/w, are illustrated in Fig. 5. 2, Fig. 5. 3 and Fig. 5. 4, respectively, where

FERRIC OXIDE
€,20.841, Ho=40cm
0 T T T T
——— THEORETICAL FERRIC OXIDE
€=0.841, Ho=40cm
1.0 T T T T
02 .
08} _
- 04 _
A, T
“ o8l
3 3
3 o6 - <
© o4k
08 _
02
8=0
1.0 I fo) t i +
0/4 016 0I8 020 022 024 026 0 02 04 06 0.8
l-€ [~1 w/wo  [~]

Fig. 5. 3. Concentration distribution at
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Fig. 5. 5. Consolidation ratio (Ho—H)/(Ho—Hw) vs. 0/Hy.

Fig. 5. 4. Distribution of consolidation coef-
various times. ficient at various time factors.
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po is the maximum hydraulic excess pressure at the bottom at #.=0, x the distance
measured from the surface of settling sediments, 7 the height of settling sediment,
H, the initial height of suspension and e, the initial porosity of suspension. It
can be seen from the figures that a reasonable coincidence between theories and
experiments is attained.

The change in porosity distribution with time being known, the settling curve
(the degree of consolidation vs. time) can be determined as illustrated in Fig. 5. 5.
In the figure, the observed results (H,—H)/(Hy—H.) vs. 8/H, are also plotted.
In later periods of settling, the calculated lines tend to approach the final equi-
librium, i. e. (Hy—H)/(H,—H..) =1, faster than the observed results. This may be
primarily due to the presumption of constant kS,%, which may vary more or less
during actual settling operations.

6. Principles of Hydraulic Expression

Filter presses are used widely in the chemical and food industries, in sewage
sludge treatment and in other applications. In the operation of a conventional filter
press, the pattern of filtrate flow changes after the filter chambers of the press
are completely filled with filter cake. This change in pattern necessarily causes a
change in the hydraulic pressure and compressive pressure distributions through the
filter cake, leading to a reduction in the moisture content of filter cakes. This
phenomenon is called here filtration-consolidation.

In this chapter, filtration-consolidation in filter press operation is discussed by
using a two-dimensional consolidation equation.

6. 1. Mechanism of filter press deliquoring
In Fig. 6. 1, idealized operation of a filter press is shown. In the normal

z CLOTH
1. .

T CAKE
el PLATE
'

VT T

[ .

S S plow

FRAME

NORMAL FILTRATION FILTRATION — CONSOLIDATION

Fig. 6. 1. Flow patterns of filtrate in plate-and-frame press.
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filtration period, the surface of the filter cake becomes parallel to the filter
medium, and the direction of filtrate flow is perpendicular to the filter medium as
illustrated at the left in Fig. 6. 1. When the press becomes “full” of filter cakes,
the filtrate will flow only through the portion of the cake near the feed inlet as
illustrated at the right in Fig. 6. 1. The solid compressive pressure p; in cake is
produced by the frictional drag of filtrate as it traverses the cake solids. The
porosity distribution in a filter cake varies from a maximum at the unconsolidated
cake surface to its minimum at the medium, where the py-value is maximum and
equals the pressure drop across the cake. When the filtrate flow pattern through
the filter cake is changed, a new p,-distribution will develop in the cake, resulting
in substantial decrease of local porosities. The filter cake is thus changed from
its initial form, which may be termed normal.

In dealing with the mathematics of this deliquoring process, the operation
should be divided into two parts, because different flow mechanisms occur in each
part. In the first part, the flow mechanism is actually filtration; in the second
part, the mechanism is filtration-consolidation.

6. 2. Filtration period

In the filtration period, Ruth’s filtration equation in the form

d'Uf :f_{_ 1
d@f 2 Z)f+vm

6.1)
K= 2p(—ms) (6.2)
/’Lpsaav

is applicable. By means of a mass balance, it is possible to calculate the maximum
filtrate volume ¥;.n., in the filtration period in accord with Eq. (6. 3).

1072k ]
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1073k : = :
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Fig. 6. 2. Determination of transition point between filtration and
filtration-consolidation periods.
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—_ hlosCL'—mS) (1 _Eav)
Vfemaz= %o (6.3)

In Eq. (6.3), h represents the thickness of the filter chamber, and &,, the
average porosity of the cake. The end of the normal filtration period can also be
easily determined by an experimental method, as illustrated in Fig. 6. 2. It is
apparent from both theoretical and experimental points of view that (v-+vy)-(4v/
46) is constant for constant-pressure filtration if Ruth’s filtration equation holds
true, where v is liquid volume removed per unit area of filter medium, ¢ the
deliquoring time and @, the fictitious filtration time accounting for medium
resistance.

6. 3. Filtration-consolidation period

The filtration period ends when the
filter chamber is “full” of a normal filter
cake, and further deliquoring proceeds on
the principle of filtration-consolidation.

We use a cylindrical coordinate to repre- . :

sent a circular filter press of center-feed dz | 7<%

type, as illustrated in Fig. 6. 3. = ’
The apparent velocity of liquid in the ‘ dr

163

y direction, #,, can be represented by
Fig. 6. 3. Cylindrical coordinate system
- (I1+e) 0p, (6. 4) to represent filter chamber.

U
" posel  or

In the z direction,

__ (d+4e) 05,
u,= PICRR T (6.5)

where ¢ is the local value of void ratio, and a the local specific resistance of filter
cake. The mass balance of liquid in an infinitesimal layer of cake leads to the
continuity equation in the form

% ——a+o

0 u, , ou,
o 4 ) (6.6)

(2
or 7 0z

where 6, is the filtration-consolidation time. To simplify the equation, we use the
relation between the solid compressive pressure p, and the hydraulic pressure p;
given by the following equation:

bs=p—b. 6.7)

The coefficient of volume change m, of the infinitesimal layer under con-
solidation is defined by Eq. (6.8) in soil mechanics.

_ 1 de
M= T dp, ©.8)

If Terzaghi’s coefficient of consolidation C, defined by
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cv:% (6.9)

can be assumed to be constant, substituting Egs. (6.4), (6.5), (6.7) and (6.8) into
Eq. (6.6) yields the consolidation equation

0P, 0°p, 1 0p, , 0%,
30, _C”< Sty g T a) (6.10)

For solving Eq. (6.10) under a constant applied pressure p, the following initial
and boundary conditions can be used for filter cakes of moderate compressibility.

L.C. @ p,=b-sin(xiz/2h) (6.11)
B.C.: p,=0 at z=0 (6.12)
B.C.:0p,/02=0 at z=h/i (6.13)
B.C.: p,=p at r=r, (6. 14)
B.C.:0p,/0r=0 at r=7, (6. 15)

where 7 is the number of drainage surfaces, 7» the radius of channel for carrying
slurry, and 7p the radius of filter chamber.

The solution of Eq. (6.10) for filter cakes of moderate compressibility is given
by13,14)

_ © (2N——1)7r_z'_z~H 2,
pL~2pN2:13m{ 5 7

@EN—-1D=
+ ﬁgl ﬁzjﬂz CNﬂfexp[~{¢ﬂ12 +W%}C” Gc:{UOM} (6. 16)
where
E, = [Io{ (ZIV—Z—}ZI)HZ'?’ }KI{ (ZN—;,I)MW’F } +I1{ (ZN;}Z) Y, }
Rt ][ i i
_1_11{ (ZN—:-Z}Z)M"}’P }Ko{ (ZNE];?H”F}:[ '(6. 17)
L X NN
U= {JoWun)Y1(Wu7p) = J1 (W )Y o (Vs } /Y1 (V3 ) (6.19)

01~ is Kronecker’'s ¢, which is equal to 1 for N=1 and to zero for N#1. Jand YV
are Bessel functions of the first and second kinds, respectively. [ and K are
modified Bessel functions of the first and second kinds, respectively. The subscripts
are the order of the Bessel function. The % are the positive roots of the equation
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e _ re _ _ i%Cv6e «_(r-r)
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(a) (b) (c)

Fig. 6. 4. Change of hydraulic pressure pr-distribution with
time in filter press.

Jo@r )Y (¥rp) =T (0r,)Y o (Yr,) =0 (6.20)

The hydraulic pressure distributions in the circular filter press of center-feed
type are calculated by using Eq. (6.16), and the results are shown in Fig. 6. 4 in a
dimensionless form of 5,/p for i=2. In Fig. 6. 4, T, is the dimensionless time
factor defined by T ,=i2C,0./h?, and 7* is the dimensionless radius defined by
r¥=(y—7p)/(¥p—7rp). Fig. 6. 4 (a) shows the beginning of filtration-consolidation
when 7 .=0. Fig. 6. 4 (b) represents the condition of about 20¢% consolidation
compared with the final equilibrium filtration-consolidation, which is shown in Fig.
6. 4 (c). It is apparent from the figure that at the end of the filtration-consolida-
tion stage the hydraulic pressure is nearly equal to zero throughout most of the
filter cake. Therefore, the average porosity of the filter cake should be nearly
equal to that of the compressed cake under the expression pressure which is equal
to the final filtration pressure. In practical filter press operation, however,
movement of cake solids in filter chambers is considerably retarded by the friction
between cake solids and filter medium. Thus, such a marked deliquoring due to
filtration-consolidation is not expected in practice.

The filtration velocity in the filtration-consolidation stage is represented by

q;m..l__gi‘; 2r |t _o|dr (6.21)

B T (sz - TF'Z)

where #,., means the apparent velocity of liquid at the filter medium. If we
designate the filtration velocity at the beginning and end of the filtration-consolida-
tion stage by ¢.o and ¢.., respectively, a measure of the extent of filtration-con-
solidation is given by the average consolidation ratio U, for Eq. (6.22):
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U _ 4e0—4.
QCO Qcoo

_ s < <2N_1)1/’MCNM _
= [1;2:1 MZ:l Vi (ar ) Y Wure) Ja Wurp) =Y, W p) Ja (d’ﬂﬂ'ﬁ)}

<{t-en- e R e, )]/

[Nil P S =) (22;/‘7:(3&:][;_1)0“”[ {Yl u?p) J1 (W u? ) =Y Wu?p) J1 W u?y) }]

(6.22)
I x ) Eq. (6.22) has a rather complicated
c re/Te =10 form. As shown in Fig. 6.5, however, even
r N,M - 50 . . .
- ip without such tedious calculation we can use
- P a convenient first term approximation of
- aitome3 | EQ (6.22), in the following form.
altp/h=4
O"E— o r,,/h 5
TE E
[ r N
o i -
! - ~
0.0l —
| Ist~TERM APPROXIMATION- i
| | | | Fig. 6. 5. Comparison between Eq. (6.22)
000I5— >3 A é "5 2 and its Ist-term approximation.
{we+ (Ff}eee -
U,,.:l——exp{ <¢1 = kz)c 6 } (6.23)

Fig. 6. 6. compares the experimental data for filtration-consolidation of a mix-
ture of Mitsukuri-Gairome clay and Filter-cel with calculations based upon Eq. (6. 23).
Disagreement between the experimental data and the calculations may be due to the
fact that the movement of cake solids is retarded by friction between cake solids
and filter medium.

In a practical filter press, ¥,2&7?i2/(4h?) and Eq. (6.23) coincides with the
equation of average consolidation ratio of Terzaghi’s model for one-dimensional filter
cake consolidation.2®)
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Fig. 6. 6. Comparison of theory and experiment for a conventional filter press.

Conclusions

Analytical solutions and a semi-theoretical equation for batchwise expression,
settling of thick slurry and hydraulic expression are presented, and their industrial
applications are summarized.

1) The mechanism of both filter cake and semisolid expression consists of two
parts: primary consolidation and the secondary consolidation due to creep effect.
The expression process can be well analyzed by combining Terzaghi’'s and Voigt's
models.

2) The time for attaining a specified value of the degree of expression is pro-
portional to @,? and is inversely proportional to 2. Analytical determination of
the original thickness of the material plays an important role in equipment design.

3) On the basis of the analytical solution of Terzaghi's model, a simplified
semitheoretical equation is derived. This can be successfully applied to constant-
pressure expression, not only of semisolid materials but also of filter cakes.

4) Two-dimensional expression on tubular element can be analyzed well by
using the concept of effective consolidation area factor.

5) Constant-rate expression can be treated as a continuous succession of con-
stant-pressure expressions and can be analyzed well by using the analytical solution
of the constant-pressure process.

6) The settling of thick slurries can be well analyzed in view of the internal
consolidation mechanism. Compression-permeability characteristics in the low-
pressure region can be well obtained by batch sedimentation tests.

7) Hydraulic deliquoring occurs after the filtrate flow pattern in a conventional
filter press changes from linear to the non-unidimensional. An analytical method for
filtration-consolidation phenomena is presented.
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Nomenclature

=effective consolidation area [m?]
=drainage area of press medium [m?2]
=surface area of original semi-solid material [m?]

=coefficient of compressibility due to secondary consolidation defined by

ae=(1+e)/E; [Pa1]

=coefficient of compressibility due to primary consolidation defined by

ap=(1-+e)/E, [Pa~1]

=creep constant representing the ratio of consolidation by the so-called

secondary consolidation to the total consolidation [~
=empirical constant for compression data [ ]
=modified consolidation coefficient [m2/s]
=Terzaghi’s consolidation coefficient [m?/s]]
=diameter of cylindrical press medium [m]
=diameter of original semisolid material [m]
=elastic coefficient of Terzaghi element [Pa]
=elastic coefficient of Voigt element [Pa]
=local void ratio [—]
=empirical constant for compression data [—7]
=initial average void ratio [ —]
=viscosity of Voigt element [Pa-s]]
=acceleration of gravity [m/s?]
=height of settling sediment at time 6 [m])
=initial height of suspension, i. e. H at =0 [m]
=final equilibrium value of H, i. e. H at f=co [m]
=chamber thickness of filter press [m]
=modified Bessel function of the first kind of order v [—]
=number of drainage surfaces [ —]
=DBessel function of the first kind of order v [—]
=effective consolidation area factor [—]
—Ruth’s fi . - . _2p(A—ms) s
=Ruth’s filtration coefficient defined by K = osan. [m2/s7]
=modified filtration coefficient [m?2/s]
=modified Bessel function of the second kind of order v [—]
=Darcy’s permeability coefficient [m?2]
=modified permeability coefficient defined by Eq. (5.1) [m2/Pa.s]

They also wish to express their



Theoretical and Experimental Studies in Expression 83

L =thickness of solid-liquid mixture [m]

L, =initial thickness of the mixture [m]

L, =thickness of mixture at the end of filtration period, i. e. at the beginning
(6.=0) of consolidation period [m]

L. =final thickness of compressed cake at d,=c0 [m]]

Ly =fictitious (L,—L) value equivalent to medium resistance [m]

m =ratio of wet to dry cake mass [ —]

My =coefficient of volume change defined by m,= —1—}1.-{7;% [Pa~1]

7 =compressibility coefficient of cake [—]

Np =ratio of outer to inner diameter of original material [ —]

P =applied pressure [Pa]

b =local hydraulic pressure or hydraulic excess pressure [Pa]

Ds =local solid compressive pressure [Pa]

Dsu1 =]local solid compressive pressure of material at beginning of consolidation
[Pa]

Dsean =average p.-value of cake during consolidation process [Pa]

ps(eq1.45) =solid compressive pressure where final equilibrium void ratio e;.,, is
attained [Pa’]

Do =maximum liquid pressure at the bottom of sediments at ¢=0 [Pa]

q =rate of deliquoring per unit area [m/s]

7 =radial coordinate of the three-dimensional system of cylindrical coordi-
nates [m]

7r =radius of channel for carrying slurry [m]

73 =radius of cylindrical press medium [m]

7o =radius of original semisolid material [m]

7p =radius of filter chamber [m]

N =mass fraction of solid in original mixture [—]

T, =time factor of consolidation [—]

T, =time factor of filtration [—]

T =time factor accounting for medium resistance [ —]

U, =average consolidation ratio [—]

Uec.corr =average consolidation ratio defined by Egs. (1.32) and (1.33) [—]

Uy =filtration ratio [—]

Un =filtration ratio accounting for medium resistance [ —]

u =local value of apparent relative velocity of liquid to solid [m/s]

Uy =apparent velocity of liquid in the # direction [m/s]

U, =apparent velocity of liquid in the z direction [m/s]

v =liquid volume removed per unit area of filter medium [m]

Vemar  =total liquid volume removed before final equilibrium condition [m’]

vy =filtrate volume per unit area of filter medium [m]

Vm ={ictitious filtrate volume accounting for medium resistance [m]

Vg =initial settling velocity of surface of suspensions [m/s]

Y, =Bessel function of the second kind of order v [—7]

P4 =axial coordinate of the three-dimensional system of cylindrical coordinates
[m]

« =local specific resistance of filter cake [m/kg’]

Qg =average value of a [m/kg]

ag =empirical constant for compression permeability cell data [m/kg]
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a =empirical constant for compression permeability cell data [m/(kg-Pa®)’]

e =local porosity [ —]

7 =creep constant defined by »=E,/G [s71]

0 =deliquoring time [s]

0. =consolidation time [s]

Om =fictitious filtration time [s]

fg0 =consolidation time required for attaining 90% of U. [s]

u =viscosity of liquid [Pa-s]

v =consolidation behavior index [ —]

14 =density of liquid [kg/m3]

Os =true density of solid [kg/m37]

1) =variable for indicating an arbitrary position in cake, i. e. volume of solid
per unit sectional area [m]

W, =total solid volume in cake per unit sectional area [m]
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