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Abstract

Filtration of liquid suspensions is a widely practiced process in
many industries. While a substantial number of investigators have
made valuable contributions to the literature, experimentation still
plays the essential role in the prediction of filtration characteristics,
particularly when compressible cakes are involved. In an actual filtra-
tion, both the flow rate of liquid and migration rate of solids vary
throughout the cake. The internal flow variations in filter cakes have
a significant effect on the observed filtration behavior when the feed
slurries are highly concentrated.

Taking variable flow rates of liquid and solid into accont, the so-
called modern filtration theory is developed. Validity of the theory is
examined by considering experimental variation of porosity and hydraulic
pressure within the filter cake. Characteristics of constant pressure,
constant rate and variable pressure-variable rate filtrations can be
accurately predicted on the basis of compression-permeability cell data
corrected for cell-wall friction. In view of the effective filtration
area factor, non uni-dimensional filtration problems can be solved in
an analogous manner to conventional uni-dimensional problems. The
generalized filtration theory which can be applied to both Newtonian
and non-Newtonian fluids is developed on the basis of the power-law
model for non-Newtonian fluids.
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Introduction

Filtration is the operation of separating a dispersed phase of solid particles
from a fluid by means of a filter medium which permits the passage of the fluid
but retains the particles. Such filtration steps are required in many important
processes and in widely divergent industries. In recent years, the importance of
filtration techniques has been emphasized by the increased need for protection of
the environment and by the increasingly critical need for larger supplies of energy.
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The overall concept of Ruth’s average specific filtration resistance!> has long
played a central role in the development of filtration theories and experimental
works. This concept, however, shed little light on the internal mechanisms of cake
filtration operations nor properly explained many of the specific problems en-
countered in industry. Investigation of local cake conditions as controlling the
overall filtration resistance began with the theoretical and experimental develop-
ments by Grace,?2:3> Tiller,45 Ingmanson,s> Kottwitz and Boylan,” and Okamura
and Shirato,®9> while Carman,1%!1 and Ruth!? introduced the compression-
permeability technique for theoretical analysis of filtration. Starting from an
analytical study of the internal filtration mechanisms, the so-called modern filtration
theory has been developed.13~15

The principal objective of this paper is to present logical analytical methods
for practical filtration operations on the basis of the modern filtration theory
which involves variable flow rates through filter cake. This paper is composed of
seven chapters. Chapter 1 presents several important notes on the overall filter
cake characteristics.1¢:17) Chapter 2 deals with the internal flow mechanisms in
filter cakes under constant pressure conditions.8:13~15) Taking the variations of
both the flow rate of liquid and the migration rate of solids into account, the so-
called modern filtration theory is developed. Chapter 3 is related to the com-
pression-permeability test method which is worthwhile for the analysis of internal
flow mechanisms through compressible porous beds.?> Limitations of the compression-
permeability cell are also discussed.18~20) Chapter 4 is concerned with experimental
verification of modern filtration theory.}'®20) The theory is verified by direct
measurements of porosity variations through cakes by using an electrical method.
Chapter 5 deals with constant rate and variable pressure-variable rate filtration
operations which are the most important in the process industries.l8:21> Chapter
6 presents analytical methods for calculating non uni-dimensional filtration.22~25
Non uni-dimensional filtration problems can be solved in view of effective filtration
area factor. Chapter 7 is concerned with non-Newtonian filtration of power-law
fluids.26~30) The generalized filtration theory which can be applied to both Newtonian
and non-Newtonian fluids is developed.

1. Overall Filter Cake Characteristics

The overall filter cake characteristics have hitherto been discussed on the basis
of the so-called Ruth’s filtration theory31>. The conventional Ruth’s filtration rate
equation is given by

1 _de _ 2
q,  dv K
where ¢, is the filtration velocity, ¢ the filtration time, v the filtrate volume per

unit area, v, the fictitious filtrate volume per unit area, equivalent to medium
resistance, and K the Ruth coefficient of constant pressure filtration defined by

W+v,) (LD
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where p is the applied filtration pressure, # the mass ratio of wet to dry cake, s
the mass fraction of solid in the slurry, g the filtrate viscosity, g the filtrate
density, and «,, the average specific filtration resistance. Equation (I.1) is fre-
quently the starting point for the development of filtration equations. It serves as
the basis for interpreting test data carried out at constant pressure.

On the assumption that K is constant in a constant pressure filtration, in-
tegration of Eq. (1.1) results in

W+0,) =K (0+0,) (1.3)

where @, is the fictitious filtration time corresponding to the medium resistance.
Equation (1.3) is simply the equation of the well-known filtration parabola.

In the papers previously published by several other authors,®2:33) «,, for con-
stant pressure filtration was represented as a function of a single variable, that is,
the filtration pressure p. According to the results of our constant pressure filt-
ration experiments with the so-called ceramic slurries, the ignition-plug slurry is
the only case where «,, is a function of a single variable p; for all other slurries,
the dependence of «,, is more complex.1®)
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Fig. 1. 1. Relation between d0/dv and v. Fig. 1. 2. Effect of s on Kag3s.

Figure 1. 1 illustrates the experimental results of d0/dv vs. v of Gairome Clay
slurries during constant pressure filtration. The d6/dv vs. v relation indicates a
curve, which approaches asymptotically to a straight line as v increases. The value
of K can be determined from the slope of the straight portion of dé/dv vs. v on
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the basis of Eq. (1.1). Ruth coefficient at 293K, K,43, can be calculated from

Kiospaes=Kpu (1. 4

where (1,93 is the viscosity of filtrate at 293K.

In Fig. 1. 2, plots of Ky435 vs. s are shown. The behavior of K;435 vs. s for
each constant pressure filtration case tends to be curved convexly upwards. It is
expected that «,, is a function of s as well as of 2.

In Fig. 1. 1 d6/dv vs. v deviates from the linear relationship at the beginning
of the filtration. It then follows that «,, is a function not only of p and s but
also of v. Using Egs. (1.1) and (1.2) and applying the m-values predicted on the
basis of the compression-permeability data to the constant pressure filtration
results, the following empirical equation of «,, is obtained:

Hay :aapp+acorr
=8. 37 x 1083 p°-60s70-38 -2, 85 107s p*-80p72/3 (1.5)

Therefore, the average specific resistance, «,,, of the Gairome Clay cake at con-
stant pressure filtration can be represented as the sum of the term a,,, which
includes the variables p and s only, and the correction term ..., which includes
the variables p, s and v. The term a,,, in the empirical equation of a,, indicates
the influence of the degree of particle flocculation, the latter depending on the
slurry concentrations; while the term a,,.. in the expression of «,, shows the
occurrence of cake deflocculation due to the filtrate flow (in other words, the
existence of a kind of scouring effect). Studies on the aging of slurries showed
that in the empirical correlation a,,=a,p* for the average specific filtration
resistance, the a,-value decreased continuously with the elapsed time and the #u-
value remained practically unchanged.!?

2. Internal Flow Mechanism in Filter Cake

2. 1. Introduction

Development of filtration theory in recent years has been based upon differen-
tial equations involving local flow resistances and variable flow rates. The local
filtration resistances have been related to experimental values of compressive
pressure by means of the compression-permeability cell as designed by Carman!®
and Ruth.!® Recent work by Tiller and co-workers!3. 34> has led to a better
understanding of the internal flow mechanisms. Tiller and Cooper34> developed a
differential equation involving a variable fluid flow rate ¢. However, they failed
to recognize that the movement of the solids was such that the solid velocity
could not always be assumed to have a value of zero. This chapter demonstrates
how the basic flow equation can be modified to take into account the average
liquid velocity relative to the average solid velocity.14,15)

In Fig. 2. 1, a schematic diagram of a cake is shown. As the cake is compress-
ed, the porosity decreases with time at a given distance, x, from the medium.
Decrease in porosity is caused by solid flowing into the voids as the cake com-
presses. The compressive, squeezing action causes the flow rate of the liquid to



Theoretical and Experimental Studies in Cake Filtration 43

C F
1.0
{OROSITY AT SURFACE
N R BARHE-
q q | FLOW RATE g Go SOLID VOLUME WHICH
] . <—{ oFHaub < < DISPLACES LIQUID
"0l % @ ‘T' MicRATION RATE
@
ﬁ,l—.—‘o e Q°. OF SOLIDS <EF— o <T—.o w
Q o e ©
>;:.e,\/ € €u¢;\| < POROSITY M
P = ¥ .
+*Pm P R M e £ ST Sl B
Pg=P-Ppy, Py Pg=0 | = COMPRESSIVE POROSITY AT MEDIUM
PRESSURE
X dx (0] A D
L 0 L L+dl
X
Fig. 2. 1. Schematic diagram of cake. Fig. 2. 2. Porosity vs. distance.

increase as the medium is approached.t3, 34, 35

In Fig. 2. 2, plots of the porosity ¢ vs. x are shown in relation to cake thick-
ness L at time 6 and thickness (L-+dL) at time (6-+d8). The liquid volume
squeezed out from the cake during time dé is represented by the area MBE, the
liquid volume added to the cake by ABED, and the net solid volume is MBCFE.
The liquid volume squeezed out of the cake exactly equals the displaced liquid.

Variable flow rates of liquid and solid are of importance in short filtrations
involving concentrated slurries as often practiced in continuous, vacuum filters and
filter presses. Ordinary filtration equations as used by many investigators!i~3,11,36)
can be in error if the slurry is highly concentrated. Errors ranging from 5 to
25% may be encountered if the velocity variations are neglected.

The percentage of voids in filter cakes varies widely. In some cases a cake
will contain less than 5% solids by volume; while in other cases, it may run as
high as 709 solids. In general for filtration, the slurry must contain less solids
than the cake. In fact, the slurry will have a smaller percentage of solids than
the surface of the cake where the percentage of solids (1/m;) is a minimum.
Thus the slurry concentration s must be less than 1/m,, if the slurry is not, in
fact, a cake. A concentrated slurry is one in which s approaches 1/m; It is not
possible to define a precise limit for concentrated slurries because of the diffe-
rences in behavior of different materials.

2. 2. Basic differential equation of filtration

The basic differential equation for filtration has generally heen presented in
the form.1®

dps 1 dps
dw ~ odl—e) dx " @.1)

where p, is the true density of solids, p, the solids compressive pressure, w the
mass of cake solids per unit area, a the local specific filtration resistance and ¢
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the apparent flow rate of liquid at a distance x from the medium as shown in Fig.
2. 1. Equation (2.1) rests upon the assumption that the liquid moves past stationary
solid particles. The solids move toward the septum as the cake is compressed
during filtration, and it is false to assume that the solid velocity is zero. As a
practical matter the velocity of the solids is important for highly concentrated
slurries. Equation (2.1) must be modified where the velocity of the solids is
comparable to the velocity of the liquid. A concentrated slurry is roughly defined
as one in which the solid content in the slurry contains about 50 to 75% of the
solid concentration at the cake surface (s is greater than 0.5).

1t should be recognized that the internal flow rates of liquid, ¢ and solids, 7,
are not constant due to the continuous compression of the cake.

If ¢ is the porosity at x, the true average velocity of the liquid is represented
by g/¢ and the true average velocity of the solids is given by #/(1—e¢). Therefore
the true average relative velocity, U, of liquid to solids is represented by

g—4__ T 2.2)

€ 1—e

Multiplying Eq. (2.2) by the local porosity, e, yields the apparent relative flow
rate, u, of liquid to solids based upon unit cross-sectional area

u=elU=¢qg— 1i€ y=q—er 2.3)

where ¢ is the local void ratio. Replacing the flow rate of the liquid by the flow
rate relative to the solids in Eq. (2.1) leads to

dps 1 ap

= = — o (g —er 2.4
o (1=0)  d pa(g—er) @4
when flow takes place through a fixed, compressible bed in which the solids are
not moving, 7 is zero and ¢ is constant (although the average liquid velocity g¢/¢
may vary).

2. 3. Differential equations for q and v variation

In order to prove that ¢/q, is a function of x/L, a basic equation relating
flow rate to distance will be derived. The void volume per unit cross-sectional
area in a differential section of cake equals edx, and the total void volume is given
by

void volume _ L:SLsdx (2. 5)
unit area 0

where &,, is the average porosity of entire cake. If the upper limit in Eq. (2.5) is
replaced by z, the integral represents the void volume per unit area contained in
distance x. Since the porosity is decreasing throughout the cake contained in dis-
tance 0 to x, the rate of flow into this portion of the cake ¢ minus the rate of
flow out ¢, at the medium (see Fig. 2. 1) must equal the rate of gain of liquid.
Mathematically, a material balance gives

0 (., (* 0e
g ql——é-ﬁ——goedxwgowdx (2. 6)
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where it is assumed that ¢ is a function which can be differentiated under the
integral sign. If Eq. (2.6) is differentiated with respect to x, there results

0q _ Oe
ax 90 2.7
which was previously developed34’ with an altered sign. This equation was origi-
nally derived by Terzaghi3” in 1923 and is basic to rate-of-consolidation theory
in soil mechanics.
The total mass of dry solids per unit area between the septum (x=0) and a
distance x is given by

w::‘osg (1—e)d (2.8)
0
As the average porosity in the distance zero to x decreases, solids must flow past

the point x to replace the displaced liquid. A material balance over the cake from
zero to x yields

ow &‘ ¥ Oe
F == — d. 2.9
p Y Ps) 55 (2.9
provided there is no solids loss at the septum. The value of 7 gives the net flow
of solids into the given volume. If there is loss of solid through the septum
(cloudy filtrate), then Eq. (2.9) would not be valid. Differentiating Eq. (2.9) with
respect to x gives

or _  0Oe

ox 00 (. 10)
Combining Eq. (2.7) with Eq. (2.10) yields

dq-+dr=0 (2. 1D

which could be developed directly by considering the displacement of liquid by the
moving solids. Integration of Eq. (2.11) yields ¢+r=constant; and evaluation of
the constant at x=0 where =0 and ¢=¢,; produces

q-+r=q; 2.12)

Equations (2.11) and (2.12) clearly indicate that variations in ¢ are accompanied
by corresponding variations in 7.

It is necessary to have formulae for the rate of flow ¢; of the liquid and 7;
of the solids at the interface of the cake and slurry. Material balances over a
differential increase in thickness dL of the cake yield equations leading to wvalues
of g; and 7;. Tiller and Cooper®4 derived an incorrect expression for g¢;/q; which
was later corrected.

For constant pressure filtration with negligible medium resistance in which
the average porosity remains constant (dm/d@=0),13:3% it has been shown that
the flow rate ¢, at the medium is given by

_dv _ 1-—ms dw,
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where w, is the mass of cake solids per unit area. At the cake surface where
fresh solids are deposited, the apparent flow rate ¢, of liquid and 7, of solids
approaching the cake surface may be presented as:

_ 1—-s dw,

a= (2.14)
_ 1  dw,

7’0*773— 75 (2.15)

It should be noted that both ¢, and 7, are velocities with reference to any fixed
cooordinate or to the medium. Since ¢, and 7, refer to conditions approaching
the cake surface, the sum of ¢, and 7, does not equal ¢; as indicated by Eq.
(2.12). If ¢; denotes the porosity in an infinitesimal surface layer of cake dL
deposited in time d6, the solid volume which remains in the surface layer equals
(1—e;)dL. One then gets the apparent rate of flow of solids 7; at the cake sur-
face as

ro=r,— (l——ei)%%— (2.16)

Since wo=p;(1—e.) L and e,, is assumed constant, it is possible to eliminate L in
Eq. (2.16) and combine with Eq. (2.15) to give

—_— 1 €; " Eay dwg
"= ps( T—eu ) dg 2.17)
Dividing Eq. (2.17) by Eq. (2.13) yields
- ps<€i—‘eaV> — (ei_'eaV) (m"l) s
¢ ps(1—e) (1—ms) . (1 —mS)
05 (g5~ car) 2.18)

- (Os(l"_sav) ""S{(Os(l—"eav)_i“peav}

If the cake is uniform e;=e,, or $=0, then #;/¢;=0. Since the sum of ¢; and #;
equals ¢; as indicated by Eq. (2.12), ¢:;/¢: can be written as

G (e—en)(m—1)
a4 oy (1—mS)

=1 ps(si”t‘av)
=1 ps(l“eav>——S{‘Os(l—-eav)-g—psav} (2. 19)

Tiller and Shirato!3’ showed that it was possible to assume e=jf(x/L) for
constant pressure filtration with negligible medium resistance. Cake thickness L
is a function of §. Differentiating e=f(x/L) with respect to time yields

9 de  d@®x/L) _  x _ de _dL
00 d(x/L) ~ do  L* d(x/Ly db (2.20)

Substituting Eq. (2.20) into Eq. (2.9) and changing the limits from (0, ) to (eq,
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e) gives

2. (o

The value of #; is obtained when s=¢,. Solving for »/7; gives

r :LW[‘)‘ZS _ (e—ew) | % (2.22)

7 S? (x/L)de (e;—ew) L

where ..., is the average value of ¢ between zero and x. When x/L=1, ¢=¢; and
7/r;=1; and when x/L=0, e=¢,; and r/r;=0. Multiplying Eq. (2.22) by Eq. (2.18)
yields

r _ (m—1)s _ ER
o Cmsy T &2
Substitution of Eq. (2.23) into Eq. (2.12) yields
gy (m=Ds . yx
0 1 oA ms) (e— gaver) 7 (2.24)
Substitution for m in terms of porosity gives
4 g ple—ea)S(H/L) 2. 95
q: ps(l—«s) (1~53v> vpssav ( )

The value of ¢,, depends chiefly on the applied filtration pressure when the me-
dium resistance is negligible. Therefore ¢/¢; is a function of x/L alone at con-

stant s and p.
The apparent relative velocity of the liquid with respect to the solids divided

by ¢, is given by

q: 41

At the medium where 7=0, the expression in Eq. (2.26) is unity; and at the
surface of the cake equals

Lol T @.27)

where ¢; is the void ratio in an infinitesimal surface layer.

2. 4. Variation of p,/p and definition of average filtration resistance

Integrating the basic differential equation [Eq. (2.4)7] through cake thickness x
and the total thickness L and combining the results yields

z/ L _q_ . . -
p—be _ ) () a+o—eaa-ad@/D) 2. 28)

J) b S:{(_g?)<l+g) —eta(l—e)d(x/L)
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where p, is the local hydraulic pressure. A similar derivation in which 7 was
neglected can be found in reference 19. In deriving Eq. (2.28) the filter medium
resistance was neglected. The hydraulic pressure variation p,/p vs. x/L can be
obtained by utilizing Eq. (2.28) in connection with compression-permeability ex-
periments.

A new definition of average filtration resistance results when Eq. (2.4) is
utilized instead of Eq. (2.1). The average filtration resistance «,, is generally
given by

o dﬁ Py Wy 2 (davwo”g“ R‘m) (2. 29)

where p, is the pressure loss across the filter medium, and is related to the filter
medium resistance R, by pn,=p¢q, K, Employing the first and last terms in Eq.
(2.4) and integrating across the entire cake yields

Wo . N 1 » dpL—# 1 PP dps
O i (2.30)

The medium resistance is not neglected in Eq. (2.30), and it is assumed that dp,=
—dps; and p,+ps=p. The first term in Eq. (2.30) can be multiplied and divided
by q,w, to give

g —gw (4T Na(
[@-endw=guw,| (L—el)a(-2) (2.31)
Solving for «,, in Eq. (2.29) and substituting q,w, from Eq. (2.31) leads to
:w_.g_____p_'@.:: ! __q_~_ L w . p_pm
or 1 W, So( q: ¢ a1 )d( w, ) Sp"pm dp, (2.32)
0 a
Equation (2.32) may be written as
Ay :]sﬁ}%%s—:jsale (2.33)
0 o

where a, is the conventional filtration resistance defined by Carman!> and Ruth!®
and J; the correction factor for «,. For computational purposes [, can be placed
in the form

el e () e

As previously reported by Tiller and Shirato!®), a, is theoretically the average
specific resistance of a compressible bed with the slurry concentration equal to
zero. If s were actually zero, there would be no additional solids deposited. In
practice, a, is a good approximation of the average filtration resistance when the
slurry is dilute. While too little information is available to generalize, it is prob-
able that the effect of the solid movement can be neglected when the ratio of the
fraction of solids in the slurry to the fraction in the surface layer of the cake is
less than 0.5.
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2. 5. Measuvement of hydraulic pressure variation

The direct determination of porosities at different positions in a cake would
be time consuming, tedious, and probably inaccurate. An indirect method, con-
sequently, was. employed in which the liquid pressure drop was determined as a
function of the distance through the solid.®) With the hydraulic pressure p, known,
the cake compressive pressure p, can be calculated by using equation py=p—p,.
Knowing p,, one can estimate the porosity distribution from compression-cell
measurements.

In Fig. 2.3 the experimental apparatus
for determining the liquid pressure distri-
bution is pictured. On the left is the | ;
arrangement of probes as they are placed 150
in the cake. Placing them parallel rather
than perpendicular to the flow results in N 5
minimum disturbance of the filter bed. i |
In actual operation, it was essential to p—
avoid completely vibration of the probes
submerged in slurry to prevent channels
from developing along the probes with cake ~| L
resulting erratic pressure readings. The  gyrerwmepium—] |}
upper parts of the probes formed a part .
of the air-sealed manometers shown on 7
the right in Fig. 2. 3. These manometers . rrare riow /':‘ 0,00,
consisted of seven glass capillaries, 0.35
mm I.D., 3.0mm O.D., and approximately
150mm long. One end of each capillary
was sealed after a column of mercury,
approximately 10mm in length, had been introduced in the other end. Each capil-
lary was connected to one end of a brass tube 2.5mm I. D., by means of a special
fitting consisting of four parts, namely the body of the fitting, a rubber gasket, a
gland to retain the gasket, and a cap nut to retain the gland. The other ends of
these brass tubes were affixed so as to form a cluster, each tube being approxi-
mately 2 to 3mm consecutively shorter than the longest tube. Thus, fairly accurate
measurements of the hydraulic pressures at different positions within the filter
cake were ensured. The inside diameter of capillaries was limited and controlled
by the behavior of the mercury within the tube and was the smallest diameter
that would permit the mercury to move uniformly. With a very long hypodermic
needle and syringe, the brass tubes were completely filled with water to reduce to
a2 minimum the amount of slurry that could enter the tubes when the filtration
pressure was applied. The air in the sealed manometers of Fig. 2. 3 was com-
pressed as the mercury moved upward, the position of the mercury column being
calibrated against known pressures. The tubes had to be cleaned frequently, and
calibrations were repeated each time the manometers were changed. In Fig. 2. 4
the types of data which were obtained are illustrated for a ignition-plug slurry
having a mass fraction of solid equal to 0.367 and filtered at a constant pressure
of 496kPa. As long as a probe remained outside of the cake, the pressure was
constant and equal to the applied filtration pressure. As soon as the cake increas-

ed in thickness sufficiently to envelop a probe, the pressure began to fall. The
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Fig. 2. 3. Schematic diagram of air-sealed
manometers.
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thickness of the cake could be determined accurately as a function of time or
volume filtered by observing the time at which the pressure on a given probe
began to fall.
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Fig. 2. 4. Variations of hydraulic pressure Fig. 2. . Hydraulic pressure distributions
and cake thickness with filtrate in cake.
volume.

Based upon experiments similar to the one illustrated in Fig. 2. 4, plots of
pr/p vs. x/L were prepared as shown in Fig. 2. 5. It is apparent that time does
not appreciably affect the relationship. Previously it was demonstrated with theo-
retical calculations (Fig. 6 of reference 34) that ¢ was a function of x/L alone
and not @ for a dilute slurry of kaolin after 1 min of filtration. In the first few
seconds calculated values for the filtration of kaolin indicated that porosity was a
function of time as well as the normalized distance x/L. However a limiting
curve of ¢ as a function of x/L was rapidly approached. When the average experi-
mental filtration resistance becomes constant and the volume vs. time discharge
curve is parabolic in a constant pressure filtration, it would be expected that e
would have reached its limiting relation as a unique function of x/L. In short
filtrations with thick slurries, where «,, is expected to vary with time, the assum-
ption of a unique relation between ¢ and x/L would not be expected to be wvalid.
In addition to the previous evidence empirical expressions relating ¢ to the nor-
malized distance x/L were developed.2® Consequently it is felt that under a wide
variety of conditions it may be assumed that e depends only on x/L.

Since the solid is distributed nonuniformly throughout the cake, it is necessary
to show that w/w, is a unique function of x/L. The differential dw can be written
as

dw=0,(1—¢)dx (2.35)

and the total mass of cake w, is given by
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wy=p,(1—e, )L (2. 36)

Dividing Eq. (2.35) by Eq. (2.36) one gets an equation in which the normalized
variables can be presented as

Sw/wvd< w ): w :S:/.r, ll:ev d(x/L) (2.37)

0 W, Wy €,

Since ¢ is assumed to be a function of x/L and e,, is constant, w/w, is a function
of x/L alone.

2. 6. Graphical method for solving constant pressure filtration

The following graphical method is most convenient to evaluate the constant
pressure filtration characteristics using the data obtained in a compression-per-
meability cell.

Rearranging Eq. (2.4), and integrating it through cake thickness x and Z, and
combining their results leads to

» dp, /L q ] X
Loaoa |, () aro—dd(L)

atse L) aro—ed(E)

So d-o)a So g ) Ao —edl g
As a first approximation, the flow rate ¢ is assumed constant throughout the cake.
Then the right hand side of Eq. (2.38) becomes simply x/L. The integration of
the left hand side of Eq. (2.38) can be evaluated at any given p, using data from
compression-permeability experiments. Assuming ¢/q; equals unity, the cake com-
pressive pressure distribution p;/p vs. £/L can be calculated. Knowing the p,-
distribution, the e-distribution can be obtained using the compression-permeability
data. Knowing the ¢ vs. x/L curve, all terms in the right hand side of Eq. (2.24)
are evaluated and the flow rate ratio ¢/q; throughout the cake can be calculated
as a unique function of normalized distance x/L.

- As a second approximation, the g-distribution thus obtained is assumed. These
successive assumptions are continued graphically twice or three times until the
maximum deviation in the g¢/q; values of the assumption and the result are less
than 40.5%.

In Fig. 2. 6 calculations thus obtained illustrate the variations of g/q:, 7/¢:
and er/q, with w/w,. Figure 2. 6a corresponds to the case in which a slurry has
a concentration less than its maximum possible value of 1/m;. The value m; is
the ratio of the mass of wet cake to the mass of dry cake in an infinitesimal
surface layer. The reciprocal of m; is simply the fraction of dry solids in the
surface layer. When s=1/m,; the slurry reaches a solid state, and it is assumed
that lower values of s will normally be encountered. Figure 2. 6b corresponds to
the case in which s=1/m,.

When s=1/m;, Eq. (2.19) yields a value of ¢;/q1=¢;, and 7;/q;=1—¢; The
relative velocity (¢;—e;7;) at the cake surface is equal to zero. Therefore at the
limiting condition for s=1/m,, the liquid and solid are moving with same velocities
at the cake surface.

The difference between ¢/q; and e7/q; represents the average relative velocity.
The hatched area equals the value of J; as defined by Eags. (2.32)~(2.34). The

(2.38)
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Fig. 2. 6. Variations of ¢/q1, /g1 and er/q; with w/wy.

value of J, is at its minimum in the case illustrated in Fig. 2. 6b, and J; becomes
unity when s=0.

Calculations of rigorous internal flow variation require accurate data for
filtration resistance as obtained from a compression-permeability cell in the form
of a and & as a function of the applied compressive pressure p,. Using porosity-
pressure data obtained from a compression-permeability cell and hydraulic pressure
variation data from actual cakes with tubes connected to air-sealed capillary mano-
meters, values of ¢/q:, 7/q1 and ev/q, were calculated for various slurry con-
centrations for ignition (spark) plug (alumina and clay) and cement material in
Figs. 2. 7 and 2. 8. The area between the
q/q, and er/qy curves gives the value of 1.0

Js
It is apparent from Eq. (2.34) that

Q/q1,5=0,2

Js depends upon filtration pressure and 08~ 2:8277 )
slurry concentration. While the pressure ' €,=0.78
has relatively little effect, the value of 0.6

Js may change markedly for concentrated IGNITION-PLUG SLURRY

4/9y,1/9;,er/q, [-1

slurries of moderately compressible ma- P =496 kPg

terials as illustrated in Figs. 2. 9 and 2. 0.4 :

10. For ignition-plug (alumina and clay) _—::e:;q, 1$20.477
slurry filtered at 490kPa, the value of J; 0.2 }— 9,520.4

is about 0.835 which is much smaller than
the value reported on the basis of zero o) l
solid velocity.!?>

W/Wg [-]

Fig. 2. 7. Variations of ¢/q1, /g1 and er/q;
with w/w, for ignition-plug slurry.
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3. Compression-Permeability Tests

3. 1. Frictional dvag on particles

When suspended solids are deposited during cake filtration, liquid flows through
the interstices of the compressible bed in the direction of decreasing hydraulic
pressure. The solids are retained by a screen, cloth, porous metal, or other struc-
ture known as the septum or filter medium. The solids forming the cake are
compact and relatively dry at the medium, whereas the surface layer is in a wet
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and soupy condition. The porosity is minimum at the point of contact between
the cake and medium where x=0 and maximum at the surface (x=1) where the
liquid enters. The drag on each particle is communicated to the next particle;
consequently, the net solid compressive pressure increases as the medium is ap-
proached, thereby accounting for the decreasing porosity.

Assuming that inertial forces are negligible, the balance of forces acting on
the solids and the liquid over the slice dx can be represented by the following
equations, respectively.

OF, , 41 0 (1 _
s ot 40 {(1—) s+ AR =0 3.1
A aax (e8,) — ARdx=0 (3.2)

The term F; represents the accumulated drag on the particles and is communicated
through the points of contact. The term R represents the viscous drag per unit
volume of solids acting on the solid particles within the slice dx. If the particles
are in point rather than area contact, the hydraulic pressure p; may be assumed
to be effective over the entire cross-sectional area A of the cake. Combining Eq.
(3.1) with Eq. (3.2) and defining the compressive drag pressure by p,=F,/A
vields

0p, , 0bs _
e .9
or on integration
Dyt D=0 (3. 4)

The drag on the particles is a combination of skin and form drag produced by
friction developed at the surface of the particles. The drag is transmitted through
the points of particle contact. The cross-sectional area does not equal the surface
area of the particles or the contact area. Thus p, is a fictitious or pseudopressure
which is introduced for convenience. The applied pressure p may be a function of
time but is independent of distance x. Equations (3.3) and (3.4) simply state that
drag pressure increases as the hydraulic pressure decreases.

It is generally assumed that the mechanical pressure in the compression-per-
meability cell produces the same effects as the cumulative frictional drag of liquid
passing through the cake. In a filter cake, the drag is cumulative and the compres-
sive pressure varies throughout the cake. One of the most important postulates of
filtration states that the porosity and filtration resistances, determined under a
given mechanical loading p, in a compression-permeability cell, are the same as the
porosity and resistance at a point where the cake compressive pressure equals the
mechanical loading in the cell.

3. 2. Porosity and flow resistance

It is generally assumed in compressible cake theory that the local porosity and
flow resistance are unique functions of the drag pressure. These relations can
be determined by using the so-called compression-permeability cell.z~4, 8,9, 11,12
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Whereas p, is measured directly in the compression-permeability cell, it can be
calculated only indirectly in the filter cake by means of Eq. (3.4) with the directly
measurable quantities p and pr.

The apparatus employed consists essentially of a container in which samples
can be placed and subjected to vertical
loading, as shown in Fig. 3. 1. In the
simplest type of testing, the sample is plac- water mes T
ed between porous plate and kept saturat- :
ed with water while the load is applied.

At the instant the load is added, the stress

is applied to both the solid particles and

the liquid within the interstices. Since

the liquid is free to flow through and DAL GAUGE
around the porous plates, the excess of

liquid pressure above atmospheric, referr-

ed to as the neutral stress, causes the

moisture to leave the voids, resulting in

a consolidation of the solids. As the  ywarer outer
water flows out, the neutral stress drops,
the solids finally carrying the applied
load. After the entire load comes to be
borne by the solids, the equilibrium value
of the porosity ¢ can be determined. The
load per unit area is designated as the compressive pressure p,. The flow rate of
water from the sample depends upon the permeability, and the time required to
reach equilibrium ranges from several hours to 24h. Then, the liquid is allowed to
flow through the compressed cake under relatively small head p. The flow resis-
tance a can be calculated as follows:

/— PISTON

CYLINDER

CAKE

O-RING
PERFORATED PLATE

3 N
ZNIANN7Z
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227724

Fig. 3. 1. Schematic diagram of
compression-permeability cell.

FILTER PAPER

a=—2t (3.5)
P40,
where ¢, is the permeation rate and w, the solids mass of entire cake per unit
area.
As a fair approximation of compression-permeability data for many materials,
the various functional relations between the porosity, flow resistance and com-
pressive pressure can be used as follows:

£ &y, psil}zzo \I

(3.6)
e’::Eops_‘\’ ps>ﬁzf
e=8&, —Cclnpg (3. 7)
A=, psépl::o }

(3.8)

d:ﬁp%“a/oppsni:-“oppsn; b >b; j

It is assumed that the flow resistance and porosity take on constant values, «;
and ¢, at the same low pressure p; which is generally in the range of 10kPa. The
values of flow resistance and porosity are related by
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_ kS(—o)

a
pse®

3.9

where % is Kozeny’s constant, S, the effective specific surface of cake solids.

3. 3. Limitations of compression-permeability cell techniques

Development of the methematical art of filtration in recent years depends
upon several assumptions. Among the most important postulates are

1. Ultimate values of porosity are attained instantaneously in accordance with
the progress of filtration process. This assumption can be deduced to be valid for
filtration in which filtration pressure increases slowly just as usual practical filtra-
tion.

2. The local filtration resistance « of a given solid is determined by the local
porosity ¢, which in turn depends only upon the local cake compressive pressure
ps.  This assumption may be invalid when the filtration resistance is affected by
the velocity of filtrate flow. It may occur for filtration of slurries of very wide
particle-size distribution, and also may be likely to occur when the filtration
velocity is extraordinarily high.

3. The porosity and specific filtration resistance determined under a given
mechanical loading p; in a compression-permeability cell is the same as the local
porosity and local specific resistance at a point in a filter cake where the cake
compressive pressure (computed by po=p--p;) is the same as the mechanical load-
ing to the piston of the cell. To measure the porosity in a compression cell, a
definite period of time ranging from several hours to longer than twenty hours
(about ten hours being common for clay materials) is required to reach an equili-
brium porosity. Thus the assumption of item 3 is actually invalid if the filtration
characteristics of a slurry may change with the lapse of time. Furthermore, there
will be appreciable side friction between the wall of the cell cylinder and the
compressed cake.

As the mathematical theory of filtration may largely rest on the assumption
of item 3, it is the most important assumption. The results of Grace,?:3) Kottwitz
and Boylan,” and Okamura and Shirato®:®) lent validity to the postulate, and Oka-
mura and Shirato made verification of the postulate by simultaneous determination
of porosity!9:20) and hydraulic pressure variations® within actual filter cakes. It
should be noted that they used the slurry materials of finely ground natural clays
of various kinds. The filtration characteristic of finely ground clay slurries may
not so suffer the aging effect, whereas the chemical precipitates, diatomacious
filter aids produced by flux calcination, Solka-Floc and slurries which contain
organic matters including sewage sludge usually suffer the aging effect and it is
found that there is an appreciable difference between the compression-permeability
data and actual filtration results by experimentation of many workers.

Concerning the effect of side-wall friction on the uniformity of packing of
beds in compression-permeability cell, Grace2:3> mentioned that compression-per-
meability data showed good reproducibilities if thickness to diameter ratio Z/D of
a compressed cake did not exceed 0.5 or 0.6. Actually there is appreciable side
friction%39 between the wall of the cell and the compressed cake, and all data
obtained in compression-permeability cells must be corrected for the frictional
effects. Tiller, Haynes and Lu4® found that more than 20% of applied load on
the cake in a 5.lcm diameter cell was consumed as side wall friction in 2. 5cm
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cakes and 60% in 7.6cm cakes.
Although investigators?:3,8:9) recognized the existence of wall friction in the
compression-permeability cell, correlations were based upon the assumption that
friction could be neglected. No general correlation for the wall friction being
available in spite of the efforts by Tiller, Haynes and Lu‘® who measured stress
distribution in the compression-permeability cell, an approximate expression was
developed.18~20
In Fig. 3. 2, the horizontal and verti-
cal pressures in a cell are illustrated. In 1
the field of soil mechanics, it is assumed

| N
that the horizontal pressure p, is pro- \ N
portional to the vertical pressure p, which t .i,p N
can be expressed by & : L va‘ . ~
NE . R
Du=RoDs (3.10) CZDO I T
2L < mrkohy . R
where &, is the coefficient of earth pres- 25+ N — : N
sure at rest, and is assumed fo be a N L Tpv'*‘dpv N
constant for each material. Little infor- N TR N\
mation concerning the values of the coef- NI \LpT ©
ficient of friction f at the side wall is N - - :
available. Utilizing the concept of side D]

friction and assuming that the vertical i

load is uniformly distributed across the

cell and that there exists a constant cohe- Fig- 3. 2. Schematic diagram of vertical
sive force C at the wall, a force over a and horizontal pressures in com-
differential height of cake can be written pression-permeability cell.

as

(Z2) {5y (bu+d D} = Geof by O xDdz 3.11)

where z is the distance from the cake surface. Rearranging and solving Eq. (3.11)
for p, subject to p,=p at z=0 yields

1 kofp+C _
b= | "exp (ke f2/ D) C} (3.12)

where p is the applied pressure at the top. Substituting limits p,=pr at z=7
leads to

__1 Bofp+C
D= f { exp(4k.fZ/D) c} (3.13)

where pr is the transmitted value of p, at the bottom of the cake. The average
compressive pressure p, may be defined by

_1¢”
b=\ budz (3. 14)

Substituting Eq. (3.12) into Eq. (3.14) results the following equation.
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£
kof

Obviously, with variable stress through compressed cake, all data obtained in the
compression-permeability cell would better be correlated with p; defined by Eq.
(3.15) rather than with the applied load p as conventionally reported.

The compression cell used for studying the side wall friction is a modified
form of the compression-permeability cell commonly used. Mechanical pressure is
applied to the cell piston by weights and transmitted pressure to the bottom of
compressed cake is measured by a force transducer, with accompanying wire strain
gauges. The transmission mechanism is composed of a brass disk held between
two rubber membranes of thickness 0.4mm. The pipe leading to the strain gauge
pressure head is completely filled with water and the pressure head performance
is calibrated by blank tests. In addition to the side wall friction tests, the normal
compression-permeability tests are also conducted.

Compression results are shown in Fig. 3. 3, where the ratio of transmitted
pressure to applied pressure pr/p are plotted against final thickness at each con-
stant load. Numerous experiments for measuring pr and Z at various loads may
give the values of %,/ and C on the basis of the minimum root-mean-square
deviation of measured values of p, from those calculated by Eq. (3.13). The
values of k,f and C being known, a porosity-pressure relation as illustrated in
Fig. 3. 4 may be obtained using Eq. (3.15). It is apparent from Fig. 3. 4 that

_ b+ (C/kf)

b= LI (1 exp (ko 2/D)} -

(3.15)

.0 ] T | T x
1.0
0.9k ) ] 0.8 F=t=lr kg :
2 594 08 .
T 0.8 A - 0.4 —
peg o [ o
o Q T
~ P N0 L
& 0.7 /63 ] 0.2 —
w Ll [
L | | ! 0.1 | MITSUKURI-GAIROME: cLAY- | -
0.6| KOREAN KAOLIN | _ " | FILTER-CEL MIX.(1:1}
GUN METAL CYLINDER (1.D, 7 ~ FRICTION ACCOUNTED
ot ER (1D, 75mm) (I ===~ FRICTION NEGLECTED |
0.5 | !
0 02 04 06 08 10 1z L4 e 5 50 100 500
: Ps,P [kPal
Z [em3 :
Fig. 3. 3. Relation between fraction of Fig. 3. 4. Compression data.
transmitted pressure and
thickness of compressed cake,
there exists a difference between the conventional plots of e vs. p, and the e wvs.

p relation corrected for the wall friction.

With variation of compression stress through the compressed cake, it is im-
possible to assume that the cake in the cell has a uniform resistance. Therefore all
data conventionally obtained in permeability cells must also be modified. As a
first approximation for representation of permeability test data, the average com-
pressive pressure p; defined by Eq. (3.15) is utilized instead of the applied load p.
It may be seen from Fig. 3. 5 that there is an appreciable difference between the
relations of @ vs. p, and « vs. p. Since the analysis and the experiments for
determining the cell-wall friction are based on one side drainage (upward squeez-
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ing), all compression tests for this study

"
are conducted under the condition of one so0 S —
. : MITSUKURI-GAIROME CLAY~ [* -
side drainage. FILTER CEL MIX. (1:1) - _
The experimental results attempted —— FRICTION ACCOUNTED |
. . . ~—=--~ FRICTION NEGLECTED
in this study are tabulated in Table 3. 1. e
Side-wall friction and cohesive force of % 10 E
plastic cell cylinders are relatively large, “05 ]
possibly because the inner surface of L —gT T -
. . S5 ]
plastic cylinders may be depressed by
solid particles under compression. For i T
more accurate analysis of compressive To SR BT W SN S S 0 Y N N
e 2 5 10 T80 100 500
pressure distribution in a compressed cake Ps,P [kPal
which may vary both in the vertical and Fig. 3. 5. Permeability data.

radial directions, more accurate and ela-
borate theories and measurements might

Table 3. 1. Values of kof and C.

Material of kof C
side wall -] [kPa]
Gun metal 0.21 54
Plastic 0.43 69
Brass 0.56 44
Stainless steel 0.29 15

be required. However, authors are inclined to use the approximate modification
hased upon Eq. (3.15) which is felt to be fairly accurate for the prediction of
filtration characteristics.

It is well knownt® that the value of specific resistance increases with pro-
longed permeation time. In order to minimize the unfavorable effects (possibly
filtration effects, consolidation due to permeation, deflocculation, aging, etc.) asso-
ciated with long permeation times, the permeability tests are conducted only for
short times under a reasonable low pressure difference.

Although important to filtration theory, here is considerable difficulty in
obtaining accurate values of compression-permeability cell data in the low com-
pressive pressure range. In the low compressive pressure range, the compression-
permeability cell method is not adequate because of difficulties related to distur-
bance of the soft cake: such effects arising in both compression and permeation.
In order to determine accurately the compression and permeability characteristics
in the low pressure range, an analytical methodf! 42 using batch sedimentation
data of a slurry was developed.

When filtration operations are performed under the conditions of rapid pres-
sure increase, sudden change in pressure or rate, and oscillation of applied pressure
(as may occur when using a positive displacement pump), the postulate item 1 may
become invalid as the basic equivalence of equilibrium porosity conditions in the
cell and actual filter cake will not be attained. This fact was realized from
filtration experiments conducted under constant rate conditions as shown later in
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Chapter 5.

Many workers in this field have compared the results of experimental filtra-
tion and compression-permeability cell data. Several workers have failed in ob-
taining good agreement between the two and enormous errors in prediction have
been found. However, it should be noted that the compression-permeability cell
techniques rest on several important assumptions listed before. On the basis of an
extensive experimental analysis, the present authors have found reasonable, good
agreement for clay slurries and significant differences for organic slurries, and
others. It is believed that compression-permeability cell techniques are valid when
the compression-permeability experiments and the filtration experiments are con-
ducted under consistent conditions with careful consideration being given to the
selection of the slurries used in the experimentation. Furthermore, compression-
permeability cell techniques will be particularly useful for research oriented studies
because they can afford a firmer understanding of the internal mechanism of cake
filtration. On the other hand, they may not be well adopted for industrial practice
because they are tedious and time-consuming, and suitable slurries applicable for
investigation are limited.

3. 4. Approximate analytical equations for hydrvaulic pressuve
distribution
When the slurry concentration s is so small that the flow rate of filtrate ¢
can be regarded as constant through the entire cake, Eq. (2.38) simply becomes

51’ dp;
g (o2 - (3.16)
So (1-—8)&'

The power relation may be used to approximate the porosity vs. solid com-
pressive pressure data as follows:

1“521_"51'1 psgpzzo

1"*€:E/p3}\/, ps>pz

It should be noted that Eq. (3.17) is incompatible with Eq. (3.6). From experi-
mental results,®> 9 it has been known that the value of kS,2 in Eq. (3.9) varies
with the porosity e. In many cases, however, it can be assumed to be constant
for approximate calculations.

Neglecting p; and substituting Egs, (3.6), (3.9 and (3.17) into Eq. (3.16)
vields

(3.17)

r 803p8~3;\
gl’s kSO2E/3p32)\/ dpx - X 3 18
D Eosps—m P - )2 ( . )
). wSE
Calculation of the above expression results in
. _!ZS_ I*ZM"SA*‘ x
1 (p) =Z (3.19)
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or

(1_—_‘%>1'2M—3>\:1ﬁi (3. 20)

Equation (3.20) is an approximate analytical equation of the p;-distribution based
upon the validity of a power function relationship between & and (1—¢) vs. ps,
under the condition of neglecting the variation of flow rate and kS,2 through cake.
Permeability experiments are not required in order to calculate the p;-distribution

by Eq. (3.20).
Neglecting p; and substituting Egs. (3.8) and (3.17) into Eq. (3.16) yields
XP dps
Ds &,OPE'pSn-F)\’ — x
Sp b, 7 3. 2D
0 aopE’psnwL/\/
and, therefore
B _pi 1—n— A/ X
1 ( a ) =4 (3. 22)
or
- _p-i l—n—M_ B x
1 (p) =1-%_ (3. 23)

Equation (3.23) is also an approximate analytical equation of the p,-distribution
under the condition of neglecting the variation of flow rate through cake. Equation
(3.23) requires the both compression and permeability data, whereas Eq. (3. 20)
requires only compression data.

4. Porosity Variation in Filter Cake

4. 1. Introduction

In filter cakes the variation of porosity with distance from the cake surface
is important from both theoretical and industrial viewpoints. In the development
of filtration theory porosity plays a fundamental role in its relation to flow rates,
pressure, and other parameters involved in the differential equations of flow
through compressible, porous media. Porosity variation determines the average
porosity and liquid content of the filter cake in commercial operation.

In 1955 Okamura and Shirato?’ measured the hydraulic pressure variations
through filter cakes, initially using air sealed manometers and later strain wire
gauges. In 1967 Baird et al, %3 using nine pairs of metal electrode-pins of 1.27
cm length, measured the variations of electric resistance through a filter cake.
Although the resistances were not converted into local porosity values in the cake,
the authors deduced that a collapse occurred in the filter cake when filtration had
been going on for some time and a critical thickness had been reached. They
concluded that the porosity variation was not uniform, as had been conventionally
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assumed, and the minimum porosity in a filter cake was not always adjacent to
the filter medium. This special type of packing compressibility was formerly
called “retarded packing compressibility” (R. P. C.) by K. Rietema.?4

In this chapter, the local porosity variations in constant pressure filtration
cake measured by an electrical method are shown.19:29 Contrary to the conclusions
of Baird et al.,4®> the experimental results show the propriety of the fundamental
postulates of filtration theory.1®

4. 2. Electrical measurements of porosity

In Fig. 4. 1, a compression test cell used is shown. The cell consists essentially
of a piston with a porous end and a cylinder, both made of plexiglass which are
electrical insulators. At the center of the cell bottom, a wire-strain-gauge pressure
transducer is fixed to measure the transmitted pressure p,. In order to conduct
the electrical measurements of porosity in compressed cakes, a pair of platinum
electrodes are mounted in the cell cylinder with dimensions of the electrodes being
3mm diameter and 1 mm thickness. Instead of the pin-type electrodes which pro-
trude into cake as attempted by Baird et al.,*®> disk-type electrodes are employed
which are flush with the wall of the cylinder as shown in Fig. 4. 2 to minimize
interference with compressed cake. The experiments are carried out using 50wt%
Mitsukuri-Gairome Clay-50wt% Filter Cel mixture slurry with a solid concentra-
tion of 20wt% in 0.93wt% solution of salt.

AIR BENT
'I /-F’ISTON
' WALL OF CELL CYLINDER
| - /
PERFORATED PLATE—\ ] DISK TYPE ELECTRODE
, CYLINDER o
FILTER PAPER—\ I / -y
HEENEEN il
CAKE 3
W
) \Q"\_ J’y o
FACKING = N
T0 INDICATOB_\L glﬁf\‘PL;;SSURE
7% TRANjSD“CER YA/ /477
CELL BOTTOM
Fig. 4. 1. Schematic diagram of Fig. 4. 2. Schematic diagram of
compression cell. electrode assembly.

- In electrical measurements of the porosity of a porous medium, Archie®
showed empirically that the so-called “formation factor” F defined by

Fe Electric resistance of saturated porous medium, R 41
Electric resistance of the saturating fluid at the )
same temperature, K,
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could be related to the porosity ¢ of the medium by a relation of the form
e=F"* (4.2)

where B is a factor depending on the system concerned. However, Eq. (4.2) may
not necessarily be proper for all cases and an attempt should be made to find the
best correlation for each case.

First, a saline solution of 0.93wt% NaCl is poured into the cell cylinder and
the resistances, R,, of the liquid at various temperatures are measured, the results
being shown in Fig. 4. 3. Then, compression tests of slurry are carried out. The
resistance of the compressed cake R, the cake thickness Z and the temperature of
liquid are measured when the compression equilibrium is reached, and a further
load increment is applied. The formation factor is calculated from the electric
resistance of the compressed cake and the curve shown in Fig. 4. 3.

The value of the local solid compressive pressure p,» at the electrodes being
known from the following equation

C )p [ A4Rf ] C

exXpl——t (L —2Zp)t —
3% At By R Gl Ry v
the value of the local porosity ¢ at the depth of electrodes can be evaluated by
using the compression test results of e vs. p, corrected for the frictional effect.
In Eq. (4. 3), zp is the height of the center of the electrode disk measured from
the bottom of the cell.

bos=(p+ (4.3)

300
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260

R, L[al

_ [ e=exp{~0277(F-1}
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0.93WT% NaCl AQ. FILTER CEL MIX.(1:])
220 [ 0.4 |
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TEMPERATURE LK1 F=R/Ry C—J
Fig. 4. 3. Effect of temperature on Fig. 4. 4. Relation between porosity and
resistance Ry. formation factor.

As clearly indicated in Fig. 4. 4 of porosity ¢ vs. formation factor I, it is
apparent that semilogarithmic plots of the following form

e=exp{—0.277(F—1)} 4.4

are more appropriate rather than logarithmic plots of the form of Eq. (4.2).
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4. 3. Experimental equipment and procedure

To conduct constant pressure filtration experiments, the filter shown in Fig.
4. 5 is used to give the distributions of electric resistance R and hydraulic pressure
pr in cake. The filter consists essentially of a plexiglass cylinder of inside dia-
meter 200mm, a stainless-steel top disk and a bottom plexiglass disk which supports
a perforated plexiglass plate with a sheet of filter paper on it. The top disk is
fitted with an inlet and a returning conduit of slurry, six probes for measurement
of hydraulic pressure p, and two vertical sealed plexiglass pipes of outside diameter
20. 2mm having six pairs of platinum disk-type electrodes. FEach pair of electrodes
faces each other at a distance of 6cm. Fitting of the two vertical pipes to the
top disk is done carefully so that their bottoms contact the filter paper when the
filter equipment is assembled. The electrodes for measuring electric resistance R
are arranged at distance of 10.5, 20. 4, 30.4, 40.5, 50.4 and 60.5mm and the probes
for measuring p; at distances of 1.8, 6.4, 19.3, 28.1, 39.4 and 53. 2mm from the
medium. A plan view of the arrangements is shown in Fig. 4. 6.

TO KOHLRAUSCH BRIDGE

SWITCH BOX
""" PRESSURE
""" TRANSDUCER
SLURRY—> M —» TO SLURRY
e RETURNING OUTLET
o
Y
PROBES CYLINDERS WITH ELECTRODES
g
CAKE ~| IR 1=
St I EDRUROEI A | i et 60
N R /
R B 14 i
SRR IN: BRI o
[ o e
L — INLET

-.'\_ __l

|
ELECTRODES §£ PERFORATED PLATE
| FILTRATE $200
Fig. 4. 5. Schematic diagram of the Fig. 4. 6. Plan view of the arrangements
filter used. of filter.

Filtrate passes through a rotameter and runs into a measuring cylinder.

To avoid sedimentation of solids in the flow line and the filter chamber, a
portion of slurry is recirculated by a small centrifugal pump. The rotating blades
of the pump are made of rubber so that the effects on the particles in slurry can
be minimized. In Fig. 4. 7, the flow lines and wiring diagrams of the measurement
devices are shown schematically.

After the filtrate line from the medium to the rotameter is filled with 0.93%
salt solution of the same concentration as that of the filtrate, the filter equipment
is assembled and then the filter chamber is filled with slurry with the pump.
Constant pressure filtration experiments are carried out by applying compressed
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Fig. 4. 7. Flow lines and wiring diagrams of measurement devices.

air pressure. K-distributions are measured by using a Kohlrausch bridge and an
oscilloscope, p;-variations by a pressure transducer and an indicator, and the volume
of filtrate and its temperature are obtained at various intervals of filtration time.
The slurry used in these experiments is the same as that used in the compression
cell test.

4. 4. Experimental vesults and discussion

Figure 4. 8 illustrates the experimental results of the variations of the for-
mation factor F defined by Eq. (4.1) during a constant pressure filtration. Figure
4. 8 was prepared from the measured values of R at various depths in the cake
and accounting for the pre-determined temperature dependency of R, of each pair
of electrodes; the latter shown in Fig. 4. 3.

MITSUKURFGAIROME CLAY~
FILTER-CEL MIX.(1:1]

ézgék!’c 06— ~{ FILTER-CEL MIX.(1:1}

L
MITSUKURI-GAIROME CLAY=—

0.93WT% NaCl AQ. L

$:0.2
. P=309kPa

1.0 L | . 2 0.5 { !
° 2 4 5 8 oxio 4 3 s j0x102
v mymty ]
Fig. 4. 8. Variations of formation factor Fig. 4. 9. Variations of porosity with

with filtrate volume. filtrate volume.



66 M. Shirato, M. Sambuichi, T. Murase, T. Aragaki, K. Kobayashi and E. Iritani

By using Eq. (4.4), the formation factors in Fig. 4. 8 can be converted into
the porosities as shown in Fig. 4. 9. Figure 4. 9 indicates that the porosity at any
point in cake decreases monotonously with the filtration time and approaches a
constant value depending on the filtration pressure. In this study, the so-called
“retarded packing compressibility” is never observed (see Fig. 4. 9), and the poro-
sity variation is consistent with the so-called “modern filtration theory”.

Contrary to the results obtained in this study, Rietemat4) and Baird et al.4®
reported that R. P. C. phenomena were observed, using metal pin-type electrodes
which were 1.27cm in length and ran parallel to each other at a horizontal distance
of 1.27cm. It might be concluded that abnormal phnomena had occurred, perhaps
because the metal pins had supported the cake.

Figure 4. 10 shows the experimental data of porosity versus normalized distance
x/L, where cake thickness L is determined from pz-variations shown in Fig. 4. 11.

1.0
MITSUKURI-GAIROME CLAY— | | < ' 0.874
Fl_LTER-CEL MIX. (13 1) U MITSUKURI-GAIROME CLAY- FILTER-CEL MIX.(1:1)
's’-gozng‘c $=0.2 ,P=309kPo .
=0. 1.0 10x10”
T !'W
HO'B T 1 5.3
4 . 08— 394 8
257
W E 06— “oz 67
0.6 L - = E
o - -
QO v=7.32cm¥cm? =04 -4
A v=9.76 © o oss
] | | 0O veil 02— X:0.18cm . 2
0.4 - I i | T
[¢] 0.2 0.4 06 08 1.0 5 > " 5 . 02
x/L -1 v [m¥m]
ig. 4. 10. ation t 1081 ig. 4. 11. Variations of hydraulic pr r
Fig. 4. 10. Relat between local porosit Fig. 4. 11. V t f hydraul essure
and normalized distance. with filtrate volume.

In Fig. 4. 10, the theoretically determined porosity distribution curve!® is also
shown; the latter utilizing compression-permeability measurements. In modern
filtration thery, there is a basic assumption that under constant pressure filtration
the local porosity depends upon the normalized distance x/L only when filtration
has proceeded for some time. Figure 4. 10 may support the validity of this basic
assumption.

Some doubt exists concerning the accuracy of measurements of local porosity
by the electrical method as attempted in
this chapter. Because of the rather long
distance between the electrodes, the flux X
of electric current may naturally bend X=%(Y)
towards the direction of smaller resis-
tance in the cake, i. e. of larger porosity
as shown in Fig. 4. 12. Therefore, one Xg ELECTRODE
may obtain a somewhat larger value of
porosity than the actual local value and a

necessary modification to the observed Yo Yo
value of formation factor should be made. 2277772222227 >
It appears that the good agreement shown FILTER MEDIUM

in Fig. 4. 10 rests on the fact that the Fig. 4. 12. Schematic diagram of electric
cake thickness attempted in this study is current path.
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very thick, up to 7 cm.

To improve further the accuracy of measurements of local porosity by the
electrical method, the distance between electrodes should be minimized to the
extent possible without having serious negative effects. Furthermore, one should
make a possible modification for the electric flux path.

On the rough assumption that the electric current may flow mainly along the
path of minimum resistance, electric resistance R, for filtrate may be written as

_1 . 25,
R,= AL (4.5)

where y, is a half distance between electrodes, Ay the plate area of disk type
electrode and ¢ an empirical constant depending mainly on the electric conductivity
of filtrate. The apparent electric resistance of cake, R4, can be expressed by

Yo e(x)

for the system in which the porosity changes in accordance with a continuous
relation of e=¢e(x). The current-path function x=x(y) in Eq. (4.6) means a sta-
tionary curve, i. e., the minimum resistance curve for the function expressed by

" \/1+(%’“y—~)zdy
- e (x())

On the other hand, one should obtain the true local value of electric resistance Ry
in the cake corresponding to the straight path of current exactly at height x5 of
the electrode, i. e.,

dx 2
R=—2{" \/1+<@;>,dy (4.6)

GAE

O{x)= S 4.7)

_ 1 . 2, .
T O'AE E(x[«;) <4 8>

Combination of Egs. (4.5), (4.6) and (4.8) vyields the relation between the
true and the apparent value of the formation factors in the form

R, /Ry=(R,/Ro) fr 4.9)
or
F=F,fr (4. 10)
where fp is defined by
(lx 2
1+{ ==
— _ 2y, (" \/ T(dy)
E:RT RA: 5 — =l d .11
f / 8(353) §~yo e(x) Y <4 1 )

Therefore, the apparent value of formation factor F, may be modified by using
the correction factor fp defined by Eq. (4.11).

In most cases, the correction factor f» seems to be nearly unity and can be
accurately determined except for the case where the electrode is extremely close
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to a discontinuous layer such as a cake surface. Although the correction factor
fr is assumed to be approximately unity in this study, experimental values of
porosity show good agreement with those determined from the so-called modern
filtration theory.

5. Constant Rate and Variable Pressure-Variable Rate Filtration

5. 1. Introduction

Filtration .operations have been clagsified into three classes—constant pressure,
constant rate, and variable pressure-variable rate filtration—according to the varia-
tions of pressure and flow rate with time. In the literature. by far the greatest
attention has been focussed on constant pressure filtration which is tractable
mathematically.6» 7,11, 12,16, 18)  Constant rate and variable pressure-variable rate
filtration operations are more often encountered in industry, and, in particular,
where a centrifugal pump is used for pumping the slurry into the filter chamber.
This may be the most important operation in the process industries. However,
relatively little work has been reported in connection with constant rate and
variable pressure-variable rate filtration.5» 9 In this chapter methods of solving
constant rate and variable pressure-variable rate filtration problems are presented
on the basis of modern cake filtration theory.1%, 21>

5. 2. Variation of q through the cake

The equation for the flow rate variation through cake can be derived on the
basis of the continuity Eq. (2.7). Integrating Eq. (2.7), one gets

q—a :’aaﬂ edc .1)

0

The average porosity ¢.,., for cake lying between the medium and a distance x is
defined by

—i z o 1 /L —{)
—— xgosa’x~——-—-—x/L [ ed(% (5.2)
Substituting the differentiation of Eq. (5.2) into Eq. (5.1), one gets
L
q—aq= —-‘—f—z—-@;-%(e— eavi—E) (5.3)

where

e i)/ (1) e

The overall material balance in filtration is written as

(m—1)s » (5.5)

L= cav (L—mS)

where m is the ratio of wet to dry cake mass and m=1+p¢,,/{0s(1—2av)}.
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Differentiating Eq. (5.5) with respect to time, one gets

dL _ (m—L)p [ €av S L dm )\
Ao~ e, (1—ms) |47 U(m—«l 1" ms  do )} (5.6)

Combination of Egs. (5.3) and (5.6) vields the expression for variation ¢:

izl_m (Eggav-x'—E)(%‘Z‘_l) S__{;_{}__L____v_( Eav 1 S .dm>}
8 ey (1 —mS) LU g \m—1 " 1-ms do

b7

For constant pressure filtration under the condition of negligible medium resis-
tance, ¢ is a function of x/L alone,'? and Eq. (5.7) reduces to Eq. (2.24) by
placing dm/d§=0 and E=0.

Rigorous solutions for constant rate and variable pressure-variable rate filtra-
tion operations should be analyzed on the basis of Eq. (5.7). However, using Eq.
(5.7) may present great difficulties because of its complexity. On the assumption
that the rate of increase of filtration pressure is not so large, both dm/df and E
become zero in the neighborhood of a specified filtration time. The calculations
can be executed by using Eq. (2.24), instead of Eq. (5.7). Therefore, one can
follow mathematical procedures which are similar to the case of constant pressure
filtration when predicting various filtration characteristics for an arbitrary pres-
sure drop (p—pm) across the cake during a filtration operation.

5. 3. Constant rate filtration

From an overall viewpoint, a material balance can be written as

N
Wo=—q eV (5.8)
Substituting v=¢;4 into Eq. (5.8) and combining the result with Eq. (2. 29) gives
the p vs. 4 relation at the constant rate filtration:

1—ms

:W<P’Pm> (5~ 9)

On the assumption that the filtration characteristics will have approximately the
same values for the same pressure drop
across the cake in both cnnstant pressure FILTER

and constant rate operation, the p vs. 0 FILTRATE PRESSURE G
relation at the constant rate filtration Lons
f

can be calculated from Eq. (5.9).

The apparatus used in constant rate
filtration is based upon a modification of
a bomb filter commonly used with several

STRAIN
METER

devices for filtration at exactly constant ,

rate. Figure 5. 1 shows the schematic L[ LATHE

picture of the experimental apparatus. It  pig 5 1. Schematic diagram of experi-
consists mainly of a bomb filter equipped mental apparatus for constant

with a stuffing box, a long piston and a rate filtration.
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device for driving the piston at constant velocity. Filtration pressure is applied
to the slurry in the bomb through the piston which is forced at a constant speed
into the filter by the tool post of a machine lathe, and the filtration is carried
out exactly at a constant rate. The filtration pressure at any time & can be
measured by a force transducer, with accompanying strain gauges.

In Figs. 5. 2 and 5. 3, v and p vs. 6 data obtained from constant rate f11trat10n
experiments are illustrated. In the same figure, the predicted results calculated
from Eq. (5.9) are also plotted. Figure 5. 2 shows experimental results for a
small rate of increase of filtration pressure and Fig. 5. 3 shows that for rapid
increase of filtration pressure. It is apparent from Fig. 5. 2 that the calculations
are fairly consistent with the experimental results, whereas Fig. 5. 3 shows poor
agreement between calculations and experiments. The discrepancy is probably
attributable to the fact that it is unreasonable to put dm/df=0 and E=0 in Eq.
(5.7) and that ultimate values of porosity are not attained instantaneously because
of rapid increase of filtration pressure.
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Fig. 5. 2. Constant rate filtration result Fig. 5. 3. Constant rate filtration result
for small rate of increase of for rapid increase of filtration
filtration pressure. pressure.

5. 4. Variable pressure-variable rate filtration
Combining Eq. (2.29) with Eq. (5.8), one gets
Aoy PS
D= pp=— P, (5. 10)

1—ms

For variable pressure-variable rate filtration, provided that the relation of (p— pn)
vs. v is given, the relation of ¢; vs. v can be obtained from Eq. (5.10), and vice
versa. Once the relation of 1/¢;=d6/dv vs. v has been determined, the time @ can
be obtained from the following integral :

ede ;1
0—50——%—- vwgo—quv (5.11)

Figure 5. 4 represents the discharge characteristics of the pump used for the
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variable pressure-variable rate filtration
experiment. Provided the values of ay.
and m for various values (p—pm) are
given, the relationship of p vs. ¢; for
various values of v can be obtained using
Eq. (5.10). In the same figure, the the-
oretical curve of p vs. ¢, with v as a
parameter, is superimposed. The points
of intersection of p vs. ¢; curve with the
discharge characteristic curve of the pump
give the relation between ¢, and ». The
relation of 1/g, vs. v thus determined is
illustrated in Fig. 5. 5. Figure 5. 6 re-
presents the relation of v vs. @ obtained
by graphical integration of 1/g; vs. v in
Fig. 5. 5.
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Fig. 5. 4. p vs. g1 of variable pressure-
variable rate filtration and of
pump characteristics.

O KOREAN KAOLIN—
FILTER CEL MIX.(4:1}

s=0.2

A KOREAN KAOLIN
5=0.2

——— PREDICTED

o s ! ( { ! L 1 i {

(o} 200 400 600 © 800 1000
. g sl

Fig. 5. 6. Relation between filtrate volume

and filtration time.

6. Non Uni-Dimensional Filtration

6. 1. Introduction

The previous filtration equations have generally assumed constant filtration
area, which is only maintained where there is a retaining wall that forces uni-
dimensional cake deposition. Filtration, as practiced in industry, however, is not
always a simple, uni-dimensional phenomenon. If a cake is deposited either inter-
nally or externally on a cylindrical element, any substantial change in cake thickness
will vary the filtration area. In a leaf filter, the area grows as the cake extends
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beyond the medium.

The industrially important area of non uni-dimensional filtration has been
virtually untouched. While some work has been done to account for non uni-
dimensional cake, only an ideal case in three-dimensional filtration on a circular
leaf has been studied by Brenner.¢6,47> Applying Brenner's work, the present
authors have developed a term, “effective filtration area factor iy’

Starting from the basic differential equations for flow through porous media,
non uni-dimensional filtration theories are developed in terms of the effective
filtration area factor jy. In this chapter, theoretical and experimental methods are
presented for obtaining values of jy for two-dimensional filtration on cylindrical
(tubular) surfaces and three-dimensional filtration on spherical surfaces.22~24

6. 2. Relations between hydraulic and compressive pressure

In order to derive the relation between local values of p; and p, in non uni-
dimensional cake, a two-dimensional cake on a cylindrical filter surface will be
considered.2%) As a first basic postulate, it is assumed that the particles in the
cake are in point contact and communicate
the compressive pressure kyp,, where k,
is a coefficient of earth pressure4® in
a direction along a plane perpendicular
to the direction of p;, and that the liquid
completely bathes each particle and com-
municates the liquid pressure pz uniformly
in a direction along a plane perpendicular
to the direction of flow. Under this
assumption, the net force on the total
mass within the differential volume ele-
ment AA’B'B (Fig. 6.1) may be described
in detail. The hydraulic pressure p; and
the solid compressive pressure p, being
effective over the entire cross sections .
of the differential element of cake, the  Fig. 6. 1. Differential volume element of
force F acting on the side of the diffe- cylindrical filter cake.
rential area AB is given by

F= {( 1 af’ﬂdr)+k( 1 af’sar)}hkdr 6.1)

CAKE SURFACE

2 0 0

where 7 is the radius and % the height of the differential volume element. The
resultant force f in the direction of flow is given by

f=—2F cos {=—2F cos(%*—%s—):_zﬁ‘ Sin(—%s“>

=—Fdg

{(pL l'aap’*dvf>+k<ps 1 aapuzr)lhdrdqs 6.2)

where the positive direction of force is taken in accordance with the direction of
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flow, and¢ and ¢ are the angles as denoted in Fig. 6.1. The forces exerted on
the two cylindrical surfaces, AA’ and BB/, are

Fo=—(py+p)hrds 6.3

and

Froe=—(Foe 2]

= et p)hrdo (2L Do)y (p,sp)hdrdy (6.4)
Wor 07

respectively. The forces acting on the planes, AA’ and BB, being equal and in

opposite direction, cancel one another. The net force on the total mass within the

differential element is now given by

Net force=f+F,.+F,, 4 (6.5)

This force equals the product of the mass within the differential element and the
acceleration. The differential mass includes the mass of both liquid and solids.
Under the assumption of negligible acceleration of solids and liquid,+®’ Eq. (6.5)
can be written as

fHF,+F, =0 (6.6)
or
0pr 0D | 1 bs
——“a?’“‘f_ a/}, T (1 kO) ¥ —O (6. 7)

Integration of Eq. (6.7) and use of the boundary conditions pr=p (applied filtra-
tion pressure) and p,=0 at the cake surface r=7, gives

To .
bt pe=p | L) b gy ©.8)
T

If the solid particles in the cake are very fine (smaller than about 5um) and the
cohesive force between the particles is negligible, the coefficient &, of cake com-
pressive pressure equals nearly one,48) and, consequently, Eq. (6.8) yields Eq. (3.4).
According to the same arguments as mentioned above, Eq. (3.4) may be derived
for various non uni-dimensional cakes.

It should be noted that the compressive pressure p, is defined as the pressure
of the compressive force divided by the total sectional area. Colling5% has derived
Eq. (3. 4) in view of all forces acting on the solids in a uni-dimensional cake, and
has mentioned that Tiller4®> did not include a viscous drag term due to fluid
motion and by a fortuitous circumstance his final result was the same as that
derived by him.59 However, it should be emphasized that the analysis attempted
by Tiller and authors is based upon the net force on the total mass of a diffe-
rential volume, and not only on the solids as attempted by Collins.
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6. 3. Fundamental equations for non uni-dimensional filtration

Using vector notation, a basic non uni-dimensional flow equation through com-
pressible porous media can be written asl4, 2%

u="9 T or sU=g— le—re =g—er (6.9)

where u is the local value of the relative velocity of liquid to solids, ¢ the local
apparent velocity of liquid and # the local apparent velocity of solids. Actually,
u, q, v, ¢ and ¢ are functions of position and time. Since ez is the apparent relative
velocity of liquid to solids, the above equation can be rewritten as

1
eUu=qg—er=—————— ——orad 6.10
For an incompressible cake, v equals zero and Eq. (6.10) becomes?$>
g=——— 1 orad p,= —Fgrad p, (6.11)
pa(l—e)p; “
where k is the permeability coefficient, represented by
h=— 1 —const. (6.12)
a(l—e)p,

All problems in fluid flow require that the continuity equation be satisfied.
The equation for a non uni-dimensional flow through compressible media can be
generally represented as

9 %";3 +div(eg) =0 (6.13)

The liquid being incompressible, Eg. (6. 13) becomes!?; 14

e
00

+div g=0 (6.14)

In accordance with the same procedure as mentioned above, the continuity equation
of solids may be represented in the following form!4%

Oe

——ge—tdiv r=0 (6. 15)

Substitution of Eq. (6.15) into Eq. (6.14) gives
div(g+r)=0 (6.16)
For an incompressible cake, Eq. (6. 16) becomes
div g=0 (6.17)

Substitution of Eq. (6.11) into Eq. (6.17) leads to
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div(*{f—grad pz) = ——ff—div (grad p;)=0

or
F2p=0 (6. 18)

where P2 is the so-called Laplacian operator.

In order to obtain the solution for a non uni-dimensional problem in a specified
coordinate system, the pressure variation is calculated from Eq. (6.18), and the
flow variation determined by Eq. (6.11). It should be added that the cake profile
coincides with the equi-pressure surface and the flow pattern of filtrate follows
potential flow pathlines.

6. 4. Two-dimensional filtration on cylindrical geometries

In order to obtain useful equations for practical design without making the
analysis unduly complex, it is assumed
that the filter cakes are incompressible z
and that the filter media offer no resis- b
tance to the flow of filtrate through
them. The problem of determining the
cake deposition on a cylindrical element
as a function of time is best discussed in
a system of the cylindrical coordinates
(r, ¢, 2), as shown in Fig. 6.2. The equi-
presssure surface within the cake being
identical with the cylindrical surface of
a constant radius 7, that is pr,=p; (», 8),
one obtains

FILTER MEDIUM

CAKE

N
h={0cm

A

N
e

¥ S M

N
S

2p 1, 0 ( 0b, )_
Pop =t (r Lu)—0  (6.19)
Integrating the above equation and sub-
stituting both the boundary conditions
(pr=p; at the medium surface r=r;, and
pr=p, at the cake surface »=r,) and the
initial condition (r=r,=7; at 6=0), one
gets

~,
~

~

‘_
A
TITHE

-
SN
/4
Ny

L‘y

,
/

<7

pr=Dot (Po— p) 113((:0/;;0)) (6. 20) Fig. 6. 2. ;il::e:l? cylindrical fi;ter

Differentiating the above equation par-
tially with respect to » and substituting the derivative into Eq. (6.11) leads to

k1 p
S TG ©-20

where p is the filtration pressure and p=p,—p;= const.
Of primary interest is the velocity of filtrate at the filter medium r=7,.
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This is easily found by setting »=7; in Eq. (6.21).

(_‘&Fq;rwr:&.*}_._*j__
do ooy In(re/7y)

-1 . )
T a@=e)p, wridn (ro/1) (6.22)

The volume V. of the filter cake is given by

V.=v,A=rh(r,’—7r?) (6.23)

where h is the length of the cylindrical element and A the filter-medium area
(A=2zr;h). The total mass of dry cake per unit filter-medium area w, (woe=W,
/A) is given by

zt’o—t%ps(lm o) «%{(%>z ~—1} 0. (1—¢) (6. 24)

Substituting Eq. (6.24) in Eq. (6.22), one obtains

(%)“’”:%K%)zwl} ln(rlo/ri) ) udiwo

20 r) b
EEB TR SR O VR (6-25)

Equation (6.25) represents the flow rate of filtrate for the two-dimensional
filtration on a cylindrical element at a constant pressure and the subscript (dv/
d@)y, .y is employed.

6. 6. Effective fillration area factor

The conventional uni-dimensional form of Ruth’s equation of filtration with a
negligible septum resistance is written as

dv\ _ b - b
(G5) = rTay (6.26)

This equation requires modification if the area growth is appreciable. Com-
parison with Eq. (6.25) shows that Eg. (6.25) is a modified form of Ruth’s
equation for filtration on a cylindrical element. In order to obtain a useful
mathematical tool for non uni-dimensional filtration, it appears advantageous to
modify Eq. (6.26) as

dv\ ? _ P _ b
( a0 )‘“ T W A (6.27)
av Ae :‘av A Ae avy ]1\-

where the subscript N is employed to emphasize that the equation can be used for
general problems of both uni-dimensional and non uni-dimensional filtrations, and
A, denotes the effective filtration area defined by Eq. (6.27), and jy is the
effective filtration area factor defined by



Theoretical and Experimental Studies in Cake Filtration 77

AT (dv/de). T (deJdv),
iv=-5=| (dv/dﬁ)l}wu"[' (“dé/_dvm)_v}wa (6.28)

It is apparent that the values of jx can be well determined analytically and ex-
perimentally by Eq. (6.28) at an equal value of w, or v..

In accordance with the definition of jy, the effective area factor for the two-
dimensional filtration on a cylindrical surface can be represented as

. 1 ro\2 1 _ 2. /7;)
”’”‘72“{(77) 1} n(ry/r)  In{1+2(v./7)} (6.29)

The effective area factor being known, the flow rate (dv/d®)y,., at any specified
value of w, can be calculated from Eq. (6.27) and the time-volume relation may
be easily obtained.

Starting from the basic Egs. (6.11) and (6.18), one can obtain the filtration
area factor jy for any specified coordinate system in accord with the same ma-
thematical procedure mentioned before. In the cases of some typical non uni-
dimensional filtration problems, the results are now summarized.

(i) Uni-dimensional filtration:

ji=1 (6. 30)

(i) Two-dimensional filtration on cylindrical element (Fig. 6.2):

3

(6. 31)

v
) “‘4:2“;,2.“ e
.]I[, cy:

111(1";2%), — 5 T =7y

13

(iii) Three-dimensional filtration on spherical leaf (Fig. 6.3):

ﬂ = } (6.32)

— 5 T =T

fa,sp:i{<1i3 e >+<1i3—%«>%+<1:&3

v 4
3 7, 7,

CAKE
-
]
/ &
- 2
s 4 PN, $)
// e FILTER MEDIUM
oot A [~
AT AN
g L 2 e ~,
4 ',!, k= < N \\

p 2
Fig. 6. 3. Cake on spherical filter Fig. 6. 4. Theoretical values of jy.cy and
element. JH.sp-
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In Fig. 6.4, the analytical values of jy are illustrated.

6. 6. Experimental equipment and results
For studying the problems of non uni-dimensional filtration, cylindrical ele-

ments of radius 7;=1.25, 2.50, 3.75 and 5.00 (Fig. 6.2) are used.

The schematic

picture of the experimental apparatus is shown in Fig. 6.5.
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Hg-MANOMETER { |

REGULATING VALVE

S/

FILTRATE RESERVOIR

/

e BURETTE
Z

FILTRATE

VACUUM .1 TEST FILTER
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VACUUM — /—%&}\J&?RY
PUMP LHRA
— — ..L— STIRRER
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Fig. 6. 5. Schematic diagram of experimental apparatus.
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Fig. 6. 6. Relation between (d0/dv)y,cy
and v, for filtration on cylindrical
element.

Fig. 6. 7. Relation between (1/7;+d6/dv),cy
and v./r; for filtration on cylindrical
element.
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Figure 6.6 shows experimental data 10
of (d0/dv)x,.y vs. v,, together with uni- FILTER-CEL ! i
dimensional filtration data. It is apparent P=82kPa
that [(1/7;) (d0/dv)Tn,e, vs. v./7; repre- el — 7]
sents a unique relation as may be seen PREDICTED
from Fig. 6.7 or Eq. (6.22). o 20 (T
The experimental values of jy can o rel.250m
be well determined from experimental -—;"1.5— __::3:%%)
values of (dv/d6); and (dv/d@)y on the o v =500
basis of Eq. (6.28). The experimental !
jx-values thus obtained compare favorably 1o :
with the theoretical jy-values illustrated \i
in Fig. 6.8. 05 L L | | !

[o] 05 1.0 1.5 20 25 30
ve/t; -1 )
Fig. 6. 8. Relation between jyj,.y and
ve/Ti.

7. Filtration of Non-Newtonian Fluids

7. 1. Introduction

Filtration of non-Newtonian fluid-solid mixtures is a subject of great im-
portance in many diversified fields as the petrochemical and food processing in-
dustries. In non-Newtonian filtration, the filtrate is a non-Newtonian fluid. If
the filtrate shows the behavior of a pseudo-plastic fluid, an empirical functional
relation known as the so-called power-law can be used to represent its fluid
behavior. This relation may be written as

P K | (7.1)

where ¢ is the shear stress, K the fluid consistency index, y the shear rate and N
the flow behavior index. The latter is a measure of the degree of non-Newtonian
behavior of the fluid, and the greater the departure from unity the more the fluid
behavior deviates from Newtonian behavior (that is, the fluid is more non-New-
tonian). Equation (7.1) can be rearranged into the form

1

T

f@=r=(7%)" 7.2)

Kozicki et al,51, 52> and Shirato et al.26~30,53,54) developed non-Newtonian filtra-
tion theories for power-law fluid-solid mixtures.

7. 2. Overall filter cake characteristics of non-Newtonian filtration

The generalized Rabinowitch Mooney equation (Eq. (7.3) below) serves as the
basis for the flow of time-independent non-Newtonian fluids through geometries
of arbitrary cross section and, as such, represents the basis for non-Newtonian
filtration analysis. This equation is given by
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v () de (7.3)

20, L, A7

. a r Jo
where U, is the average flow rate, 7 the hydraulic radius, ¢« and b are geometric
constants depending on the cross-sectional shapes of the ducts and r, the shear
stress at the wall. When Eq. (7.3) is applied to flow through granular beds, U,
must be the real flow rate along with the actual sinuous path through the bed, and
can be related to the apparent velocity U and the bed tortuosity T by:

U=TU 7.4

The tortuosity is the ratio of length of the actual flow path to the length of the
bed, and the value T'=+/7 is recommended by Carman.1® Substituting Egs. (7. 1)
and (7.4) into Eq. (7.3) and integrating yields

1

o) o
where
Ky=2(a+b) (7.6)
E=b/a 7.7

Kozicki et al.55 pointed out that &, the aspect factor, is 3.0 for the usual granular
bed, the same as for circular conduits. The impermeability K, is related to
Kozeny’s constant % by the equation:

E=T2K, (7.8)

For filtrate flow in filter cakes, U in Eq. (7.5) represents the relative velocity
of liquid with respect to migrating solids, and is related to the apparent liquid
velocity # relative to solids by

U=u/e (7.9)

The force balance between the shear stress r, on the solids and the hydraulic
pressure loss dp; through a differential cake thickness dv gives

_ T, dp[,
T e (7.10)
where
. €
TH’"" So (1 - 8) (7- 11)

When representing an arbitrary position in a fiiter cake during filtration, a vari-
able w, the volume of solids per unit cross-sectional area measured from the cake
bottom, can be used instead of the conventional fixed-coordinate distance x. In
compressible cake filtration, the actual position in the cake corresponding to any
value of w changes with time # due to solids migration.’®> The volume do is
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related to dx by
do=(1—¢)dx (7.12)

It should be noted that the solutions are the same, starting either from the fixed-
coordinate, or from the moving-coordinate.

Substituting Egs. (7.8) ~ (7.12) into Eq. (7.5), the basic flow equation for
filtration of a power-law fluid-solid mixtures can be expressed in the form

v 1 ap,_ 1 ap,
o e Kyp dw (7.13)
where
[ 14+eN Te? }1 )
= A+6HN H RS, 1 “ .19

7 is the local specific filtration resistance for power-law fluids and a is the local
specific filtration resistance for Newtonian filtration defined by Eq. (3.9).

Since p,=0 at the cake surface where w=w,, and p,=p—p, at the cake bottom
where w=0, Eq. (7.13) can be integrated over the cake thickness to obtain (after
some rearrangement) :

v (AN p—pu b
ul ““( dﬁ) N K(Osravwo K(@sravw0+Rm> (7‘ 15)

where #; is the u-value at the cake bottom, which is identical with conventional
filtration velocity, w, the solids volume of the eantire cake per unit area and 7.,
the average specific filtration resistance for power-law non-Newtonian fluids de-
fined by

Tav =JgenT & (7.16)

where
To={ () a(-) 7.17)
re=0-p)/f "-an. (7.18)

where yx is an approximation of average specific filtration resistance, which is
virtually the same as presented by Kozicki et al,51 and Jg., is a correction factor
by which rx should be multiplied.

In order to obtain #/u; in Eq. (7.17), assume a differential cake slice dw
bounded by the o- and (w+dw)- planes within a filter cake. In the subsequent
derivation, it is essential to recognize that the movement of the w- or (w-+dw)-
planes is identical with that of solid particles located in the w- or (w+dw)-
positions, respectively, and the filtrate velocity across the w-plane is the relative
liquid velocity with respect to solids, #. Denoting the local void ratio by e, one
can write a material balance over dw on unit area basis to obtain
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ou __ Oe
<u+——a~w—dw>cl0—ud6~—~a—6——d0dw
from which, the continuity equation is obtained:
ou/dw=0e/00 (7.19)

To solve Eqg. (7.19) analytically under constant pressure conditions, it is neces-
sary to assume that the local void ratio ¢ is a function of w/w, alone,!?® and
consequently, the average void ratio of entire cake e,, is constant.

Under the above assumption, integration of Eq. (7.19) leads to

u 1 (e—eno)(m—=1) . o (7. 20)

U, Cav (1—'ms) Wy

where ¢..., is the average void ratio over the range from 0 to » as defined by

[ w/wo
Coro EJ_S e(w, 0)do=—02 f e<w/wo)d(ﬂ_> (7.21)
wJo w/wo 0 Wy
The average void ratio over the entire cake, e,, can be defined in the same
manner, i. e.,

00 = j S;”"ew, 0)dw:Sze(w/wo)d<r—;§;—> (7.22)

0

The values of Jg.. are shown in Fig. 7.1. In non-Newtonian filtration, the
slurry concentration has relatively little
effect, even for concentrated slurries of
compressible materials, which is in con-
trast to Newtonian filtration.

It is assumed that compression-per-
meability cell data on the water suspen-
sion may serve as the basic tool for the

1.0 p=s

analysis of non-Newtonian filtration. In 0.9 n
Fig. 7.2, the average specific resistance
based upon Eq. (7.16) and compression-
permeability data is shown as a function §
of N, (p—pm) and s. The average specific 0.8 — :P=196kPo W
resistances are strongly dependent on the ——==1p=392 \
flow behavior index N and are only weakly
dependent on (p—pn) and s. — ;' 5 l
From an overall viewpoint, a material UKURI-GAIROME CLAY —

balance can be written as 07 HYFLO SUPER-CEL MIX.(2:3)

0] (o] 0.2 0.3

s [-]

S 2

Wy ps(l——ms)v (7.23)
Combining Eq. (7.15) with Eq. (7.23) in
accordance with concept of the fictitious filtrate volume v, corresponding to
medium resistance, yields

Fig. 7. 1. Effect of s and N on Jgen.
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Fig. 7. 2. Effect of N, (p—pm) and Fig. 7. 3. Variation of d6/dv and
s on 7ay. (d6/dv)~ with v.

In Fig. 7.3, d6/dv is plotted against filtrate volume v for constant pressure
filtration. Hyflo Super-Cel, a typical diatomaceous filter aid, is used as the solid
material. The liquid is an aqueous solution of sodium polyacrylate. The d&/dv
vs. v data exhibit a behavior which is concave upwards. In the same figure, (d6/
dv)¥ is plotted against v for the same run. In this case, (d@/dv)¥ vs. v shows a
linear relationship in accordance with the theory indicated by Eq. (7.24) since 7.
and m are constant for constant pressure filtration.

It is possible to integrate Eq. (7.24) for constant pressure filtration to obtain

@+0v,) V=K (0+0,) (7. 25)

where Ky is the non-Newtonian filtration coefficient under constant pressure, and
is defined by

. 1/ N
K, = “Z‘VN {P%ps;ﬂ@ } (7. 26)

and the fictitious filtration time 6@, corresponding to the medium resistance is
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defined by 12)"0—2
) T T
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7. 3. Internal flow mechanism in non-Newtonian filter cake

Integrating Eq. (7.13) over the range from 0 to » and also 0 to w, (the entire
cake), respectively, and combining the results yields

wivel WY/
Dr—bm _q__ b _ I, <72§> i) (7.28)
P ) )
or
S 5 7.9

SP pmidps S1<i>Nd(‘EU_>
0 7 o\ 2, Wo

The local specific resistance 7 depends on p, alone as is obvious from its
definition; whereas u/u#,; depends on the solid compressive pressure distribution as
indicated by Eq. (7.20). Equations (7.28) or (7.29) provide a relationship between
the solid compressive pressure p; and the fractional solid volume w/w, through
the cake under a given (p—p,) condition.

With the aid of both Eq. (7.20) and compression-permeability tests, Eq. (7.28)
or (7.29) serves as the theory for predicting internal cake conditions under given
applied pressure, slurry concentration and viscous characteristics of filtrate.

In order to verify the validity of Egs. (7.28) and (7.29), it should be noted
that the experimental p,-distributions have been conventionally determined as a
function of the fractional distance x/L, rather than w/w,. For converting w/w,
into x/L, one can use the equation:

X/Lsgj””" (1+e)d<—c%);> / S: (1+e)d<—w“i;> (7. 30)

Figure 7.5 shows p,-distributions in the cake calculated from Eq. (7.28) for
various N values. As the value of N decreases, the solid compressive pressure in
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the cake becomes larger. Consequently, the cake formed by non-Newtonian filtra-
tion of pseudo-plastic fluids is denser in cake structure than is the cake by usual
Newtonian filtration. In Fig. 7. 6, the plot of the fractional hydraulic pressure

1.0 1.0
! HYFLO SUPER-CEL HYFLO SUPER-CEL | |
s=0.] $=0.104
o8k P-Pp=294kPa 0.8 |L2"Pm =294 kPa -
] I - I |
. 0
= o6l - E
. £06— -
3 :
<
a 04 N=0.2 u £04 - —
< 0.6 1
= 1.0 s
02 - 0.2~ I ; [
10.35WT% SODIUM POLYACRYLATE AQ.
N=0.,342
0 l J | [ 0 K=2.1Pa-s"
0 02 04 06 08 10 0O 02 04 06 08 10
Fig. 7. 5. ps-distributions in cake. Fig. 7. 6. Hydraulic pressure distribution
in cake.

drop vs. the fractional distance through
the cake is shown for non-Newtonian
filtration. The solid line in the figure
represents the hydraulic pressure distri- -
bution calculated by Eq. (7.28). As ¢ is -
a function of p, as obtained from a L N=1.O (NEWTONIAN)

0.85 T I 1 1

consolidometer or from compression-per- 0.80~ wN=0.26 |
g tad . M

meability cell measurements, Egs. (7.28) v B R
or (7.29) may be used to relate x/L to

e. In Fig. 7. 7, porosity is plotted against PPy =196kPa |
fractional distance through the cake. De- o $=0.1 N
Creasing the Va[ue. Of N feS.ultS. in. a MITSUKURI-GAIROME CLAY_W
remarkable change in porosity distribution 0.75 SUPER-CEL MIX.(2:3) -
and results in a cake that is much more 5 0[2 014 0[6 Ois ‘
compact than Newtonian cake. ) /L = ’ 0

All the equations of non-Newtonian
filtration reduce to the conventional filtra-
tion equations for Newtonian fluids by
putting the flow behavior index N as unity and the fluid consistency index K as
the Newtonian viscosity x.  Therefore, non-Newtonian filtration equations can be
viewed as generalized filtration equations which can be applied both to Newtonian
and non-Newtonian filtrations. For example, the filtration rate equation (Eq. (7.
24)) for non-Newtonian fluids reduces to Ruth’s filtration relation (Eq. (1.1)) by
using Eq. (7.16) provided the values of N and K equal unity and g, respectively.
Also, (d6/dv)Y vs. v shows a linear relationship for non-Newtonian filtration, and
df/dv vs. v is a linear relationship for Newtonian filtration.

Fig. 7. 7. Porosity distributions in cake.
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7. 4. Filter cake deliquoring by permeation of non-Newtonian fluids

It may be seen from Figs. 7. 5 and 7. 7 that filter cakes formed from non-
Newtonian filtration of pseudo-plastic fluids are much more consolidated than those
from the usual Newtonian filtration, and that denser cakes are formed with decrea-
sing value of the power-law flow behavior index N. Making use of this fact,
dewatering of filter cakes can be performed by non-Newtonian permeation through
cakes.29 Constant pressure filtration experiments were conducted at pressures of
98, 196 and 294kPa. After filter cake formation was completed in the filter, non-
Newtonian fluids were permeated through the filter cakes, and the percent average
moisture content W of the permeated cakes was measured. The average moisture
content of normal filter cakes and water-permeated cakes was also measured.

Table 7. 1. Average moisture content W of cakes under various conditions.

Filtration or Newtonian After water After Constant
permeation . . non-Newtonian pressure
pressure filter cake permeation permeation expression

[kPa] [-] [-] -] -1

98 78.7 76.0 59.0 59.3

196 73.8 74.9 56. 2 54,2

294 75.4 72.7 53.8 50.7

Slurry: Waterworks sludge (s=0.08)
Non-Newtonian fluid: 0.2 wt 45 sodium polyacrylate aq.
(N =0.29~0.295, K=3.91~4.0 Pa-s?)

The values of average moisture content W of filter cakes formed under various
conditions are summarized in Table 7. 1. The average moisture content of non-
Newtonian permeated cakes is nearly equal to the final average moisture content
of the consolidated cakes obtained by constant pressure expression. It has been
demonstrated that liquid removal can be remarkably enhanced by permeation of
non-Newtonian fluids through filter cakes. In the case of water permeation, there
is little compaction of cakes. The experimental values of the average moisture
content of non-Newtonian permeated cakes are much smaller than those of New-
tonian filter cakes. In compressible cake, the absolute flow rate relative to solids
in an infinitesimal layer of cake at the surface is much smaller than that at the
exit. As the apparent viscosity of non-Newtonian fluids at the cake surface in-
creases significantly in comparison with the viscosity of Newtonian fluid at the
exit in the case of the permeation of highly viscous preudo-plastic non-Newtonian
fluids through the cake, the filter cake is pressed by non-Newtonian fluid and the
liquid is squeezed from the cake. Consequently, a remarkable dehydration of the
filter cake occurs. It is supposed that a pronounced effect on dewatering occurs
as the flow behavior index N decreases and the apparent viscosity increases.

8. Conclusions

The obtained results are summarized as follows:
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1) Several important notes on the overall filter cake characteristics are pre-
sented.

2) The internal flow mechanism in a filter cake is examined in view of the
movement of solids in cake. Taking variable flow rates of liquid and solids into
account, the modern filtration theory is developed.

3) The compression-permeability test method, which is worthwhile for the
analysis of internal flow mechanisms through filter cakes, is developed. Limitations
of the compression-permeability cell are also discussed.

4) Porosity variations in constant pressure filtration cakes are measured by
an electrical method. The experimental results show the propriety of the funda-
mental postulates of filtration theory.

5) Methods of solving constant rate and variable pressure-variable rate filtra-
tion problems are presented on the basis of modern cake filtration theory.

6) The non uni-dimentional filtration problems are solved in view of the
effective filtration area factor jy. Theoretical and experimental methods are pre-
sented for obtaining values of jy for two-dimensional filtration on cylindrical
surfaces and three-dimensional filtration on spherical surfaces.

7) The generalized filtration theory which can be applicable to both Newtonian
and non-Newtonian fluids is developed on the basis of the power-law model of the
flow of non-Newtonian fluids. The theory is applied to the problem of the filter
cake dewatering.

Nomenclature
A =filter medium area [m?]
Ag =plate area of disk-type electrode [m?]
e =effective filtration area [m?2]

A
a —geometric constant depending on cross-sectional shape of flow path [—]
b —geometric constant depending on cross-sectional shape of flow path [—]
C =cohesive force per unit area [Pa]

C. =empirical constant in Eq. 3.7) [—]

D =diameter of cell cylinder [m]

E =term defined by Eq. 5.4) [—]

E

¢

’ =empirical constant in Eq. (3.17) [Pa"]
=local void ratio [—]

24 =empirical constant in Eq. 3.7) [—]
¢,, =average void ratio of entire cake [—]
C... =average void ratio over the range from 0 to o [—]
2; =void ratio in infinitesimal surface layer of cake [ —]
F =formation factor defined by Eq. 4. 1) [—]; force [N]
F,  =apparent value of formation factor [—]
Fy =accumulated drag on the particles [N]
f =coefficient of internal friction [—7; force [N]
fs =correction factor defined by Eq. (4. 11) [—]
h =length of cylindrical filter element [m]
7 =correction factor defined by Tiller and Shirato!3> [—]

Jeon =correction factor defined by Eq. (7.17) [—]
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Js =correction factor for the conventional Ruth’s value a, [—]

I =effective filtration area factor defined by Eq. (6.28) [—]

J1,.y =effective filtration area factor for two-dimensional filtration on cylindrical
surface [ —7]

Jmsp =effective filtration area factor for three-dimensional filtration on spherical
surface [—]

K =Ruth coefficient of constant pressure filtration [m?2/s]; fluid consistency
index [Pa-s¥]

K, =geometric constant defined by Eq. (7.6) [

K,45; =Ruth coefficient of constant pressure filtration at 293K [m2/s]

K, =non-Newtonian filtration coefficient of constant pressure filtration
[m(1+M/¥ /g7

k =Kozeny's constant [ —7]; permeability coefficient [mZ]

ko =coefficient of earth pressure at rest [—]

L =cake thickness [m]

m =mass ratio of wet to dry cake [—]

m;  =value of m in infinitesimal surface layer of cake [—]

N =flow behavior index [~

n =compressibility coefficient in Eq. (3.8) [ —]

b =applied filtration pressure [Pa]

Do =hydraulic pressure at cake surface [Pa]

PL =local hydraulic pressure [Pa]

Pr =transmitted pressure at z=2 [Pa]

Dn =horizontal compressive pressure [Pa]

Pi =low pressure below which « and ¢ are considered constant [Pa]; hydraulic
pressure at filter medium [Pa]

Pm =pressure loss across the filter medium [Pa]

Ds =local cake compressive pressure [Pa]

Do =vertical compressive pressure [Pa]

Por  =cake compressive pressure at z=z, [Pa]

q =velocity vector of filtrate [m/s]

q =local apparent velocity of filtrate [m/s]

qo =apparent velocity of filtrate approaching to cake surface [m/s]

q1 =filtration velocity [m/s]; permeation rate [m/s]

q; =value of ¢ in infinitesimal surface layer of cake [m/s]

R =electric resistance of cake [Q7; viscous drag per unit volume of solids
[N/m3]

R, =electric resistance of filtrate [Q7]

R, =apparent electric resistance of cake [Q7]

R;  =true local value of electric resistance in cake [Q7]

R,  =filter medium resistance [m=%]

r =local apparent solid-migration velocity vector [m/s]

7 =Jocal apparent migration rate of solid [m/s]; radius [m]

7o =apparent migration rate of solid approaching to cake surface [m/s]; radius
of cake surface [m]

Yy =hydraulic radius [m]]

73 =value of # in infinitesimal surface layer of cake [m/s]; radius of filter

medium [m]
So =effective specific surface of cake solids [m~1]
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S =mass fraction of solid in slurry [~
T =tortuosity [ —]
U =relative velocity of filtrate to solids along with the direction of filter cake
depth [m/s]
U.  =velocity in actual sinuous flow path [m/s]
u =relative velocity vector of filtrate to solids [m/s]
u =apparent liquid velocity relative to solids [m/s]
Uy =y-value at cake bottom, i. e, filtration velocity [m/s]
V. =cake volume [m?®]
v =filtrate volume per unit area [m?3/m?2]
U, =cake volume per unit medium area [m?3/m?2]
Vm =fictitious filtrate volume per unit area, equivalent to medium resistance
[m?/m?]
W =percent mass of liquid in cake [
W, =mass of dry solids in cake [kg]
w =mass of cake solids per unit area in distance x from the medium [kg/m?]
wo =mass of cake solids per unit area [kg/m?27]
X =distance from the medium [m]
Xp =distance of electrode from the medium [m]
y =horizontal coordinate shown in Fig. 4. 12 [m]]
Yo =half distance between electrodes [m]
Z =thickness of the compressed cake [m]
F4 =distance from the cake surface in compression-permeability cell
[m7]; coordinate [m]
Zg =g-value at the position of electrode [m]

Greek symbols

a =local specific filtration resistance [m/kg]

ap =average specific filtration resistance defined by Ruth [m/kg]

a,, =average specific filtration resistance [m/kg]

a; =constant value of @ when p,<p; [m/kg]

a,p =—empirical constant in Eq. (3.8) [m!*n.s27/kgl*n]

B —=empirical constant in Eq. (4.2) [~

B =empirical constant in Eq. (3.8) [m/kg]

7 =local specific filtration resistance for power-law fluids defined by Eq. (7. 14)
[m2~¥/kg]

Tr =Kozicki’'s average specific filtration resistance defined by Eq. (7. 18)
[m?-¥/kg]

7.w  =average specific filtration resistance for power-law fluids defined by Eq.

(7.16) [m2-%/kg’]

7 —shear rate [s71]

B =local porosity [—]

co —empirical constant in Eq. (3.6) [Pa*]

ey =porosity at the interface of medium and cake [—7]

c.,  =average porosity [—]

t.v.y =average porosity for the portion of cake between medium and distance x
-]

&; —=constant value of porosity when p,<<p; [ —7; porosity in infinitesimal

surface layer of cake [—]
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4 =angle [rad]

i =filtration time [s]

Om ={fictitious filtration time corresponding to the medium resistance [s]

2 =exponent defined by Eq. (3.6) [—]

g =exponent defined by Eq. (3.17) [~

u =viscosity of filtrate [Pa-s]

fts93 =viscosity of filtrate at 293K [Pa-.s]

& =geometric constant defined by Eq. (7.7) [—]]

o =density of filtrate [kg/m37]

0 =true density of solids [kg/m3]

g =empirical constant in Eq. (4.5) [m~1.Q-1]

T =shear stress [Pa]

Ty =shear stress at the wall [Pa]

1) =coordinate [rad]

@ =volume of cake solids per unit area up to an arbitrary position in cake
[m3/m?]

@y =volume of cake solids per unit area [m?3/m?]
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