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1. Introduction

Numerical codes to analyze an interplanetary spacecraft trajectory have been
made in many organizations including JPL, the code of which is composed of about
330 thousands lines. Recently our laboratory developed a program, aiming at its
application to a variety of spacecraft missions, referring to the report of National
Aerospace Laboratory.l> In order to check this program, it was applied to the
GALILEO MISSION6~8) and attempted to yield a fitting with existing NASA tra-
jectories.

2. Analytical method

In this analysis, the trajectory of a spacecraft is generated by the Cowell
method. This method integrates the equations of motion in a rectangular coodinate
system and obtains the axial components of the position and velocity vectors of
the spacecraft under the influence of perturbed accelerations. The equations of
motion are integrated by the Gauss-Jackson formulal’, where the initial values are
given by the 8 th-order Runge-Kutta method.l» )

The equations of motion are integrated in the following system given by Ref. 1:

(1) The system of time; modified Julian Date.

(2) Coodinate system; Earth 1950.0 mean equinox and equatorial system.

(i) Origin; the center of the mass of a celestial body under consideration
(Sun).
(i) Principal axis; the direction of Earth 1950. 0 mean equinox.
(iii) Fundamental plane; Earth 1950. 0 mean equator.

The other coodinate systems and their mutual transformations are used only

to give output, as shown in the following:
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(i) True equatorial coodinate system of date,
(ii) Earth-fixed coodinate system,
(iii) Moon-fixed coodinate system,
(iv) Coodinate system based on the equator of Sun,
(v) Coodinate system based on the planetary equator.
Since the data on the planetary equator and equinox are given only for Venus,
Earth, Mars, and Jupiter, the equatorial systems for the other planets can not be
excercised in a rigorous sense.

3. Eguation of motion

The equation of motion of an interplanetary spacecraft is given in the report
of NAL®D as

.. r
re=— Gmsﬁ““‘apc“:‘aaﬂ+asza+asJ'+ac1ra (1)
(4
where r. is the position vector of the spacecraft with origin at the mass center
of Sun, G the Gaussian gravity constant, and m, the mass of Sun.

Perturbed accelerations under consideration are:

(D) The acceleration caused by the planetary gravitational force;

aPG:Gmszgj ( m., )( r,a—r., ,Tnla )7 2

n=1\ g [rn~rcl3 Irn

where r, and m, are the position vector and the mass of a planet with origin at
Sun. In this analysis, the ephemeris of planets?’ is used to obtain r,(¢).

(ii) The acceleration caused by the effect of spacecraft speed on general
relativity ;

Gon =g (R De—1 | I 20D Gt I, )

where C is the speed of light, and ¢.=Gm,/|r.|? the Newton potential. This equa-
tion is based on the theory of Brans-Dicke where, in this analysis, the parameter
7=1 corresponding to the Einstein general relativity theory. :

@iil) The acceleration caused by solay radiation;

P, A, r,
@sr =i ) Tt T F () —E @

where A, and m,. are the cross sectional area and the mass of the spacecraft. 7,
and 7,4 are the specular and the diffusive reflectivity coefficients, and P, the solar
radiation pressure constant. F'(s) is the function of shadow; if the spacecraft is in
the shadow of a planet, we put F(s)=0, while F(s)=1 otherwise.

(iv) The acceleration caused by J, term of Sun;
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where [, is the J, term of the solar gravity potential and R, the equatorial radius
of Sun.

(v) Acceleration caused by control thrust,
(a) general control force is written as

ao,=F/[m@® —tih,), )

m(t+h,) =m(t) —mh,,

where F is the thrust vector, s the rate of propellant consumption, and /. the
time step of numerical integration.
(b) control thrust in the direction of tangent is expressed as

e =F/[m) m%mkc}
m(t+h)=m(t) —mh,,
F..=|F|cos o cos j,
F,,=|F|cos « sin f3, @
F..=|F|sin «,

cos =/ +y2 /IF], sina=2,/|F

cos =%,/ %2+ 92 , sinf=y,/v xF+y?,
F=(Fo Fop, Fo), 7= 30, 20).

4. Time step and estimation of errorx

The time step for the numerical integration must be small enough to provide
good accuracy, and simultaneously large enough to cover a long flight time. Then,
there arises a problem on how to determine an appropriate time step.

Performing the numerical integration of Eq. (1) under the same initial condi-
tions other than time step, the obtained position and velocity vectors r(f, &) and
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¥(t, ) can be described as functions of time ¢ and time step #. Then the errors
with respect to position and velocity, 4ir| and 47|, can be defined, by assuming
that r(¢, =1 min) and #(#, 2=1 min) are close to exact solutions, as

dr|=[r, Hl-|r¢, h=1min))s, ®)
AF|=[1F¢, B)|—|#@, h=1min)[]/r, ©

Table 1 shows daily errors 4{r| and 4|#| for a fixed =10 days, while % is varied
up to 2 days.

Table 1. The comparison between the actual errors d|r|, 47| and the estimated
errors O(Egrs), O(EGJ) for different time steps .
h 4ir| (AU 4ir] (AU. /DAY) | O(Eqs) (AU) O(E‘m) (A.U./DAY)
1 min — — 0.261x10-9 0. 864 x10-13
0.25 day 4 x10-8 7 x10-7 0.920 %< 10~7 1. 092 x10~7
0.5 day 8 x10-5 1 x10-3 0.183x10-86 0.432%x10-6
1.0 day 1 x10-4 0.5x10-3 0. 358 x10-6 0.170x10-5
2.0 day 1.1x10-4 2 x10-3 0.657 x10-6 0. 685x10~5

Stepwise roundoff errors generated by using m-th-order Gauss-Jackson formula
are evaluated as in Ref. 1:

Eoymr] 3} (H0niar™if, )%, 10
EGJ:\/ :Zﬂ (BCmirp™ 2, w2, (1)

where @m,1 and cnyy are the appropriate coefficients and F™+1f, . the (m+1)-th-
order difference in 7-th direction (i=x%, 3, 2). In order to compare estimated °
roundoff errors with actual errors, the daily roundoff errors for the same period
of time (¢=10 days), O(Ees) and O(Ees), are defined as follows:

. 10 days

OEs)= 3" Egy/1040re, (12)
. 10 days

O(Es)= 3 Eor/104s.. (13)

Table 1 shows the comparison between the actual errors 4|r|, 4|#| and the estimat-
ed roundoff errors O(Ees), O(Egs) for different time steps /4, showing whether
the main error source is the roundoff or not. According to Table 1, when 4=0. 25
day, 4|r| and 4|7| are sufficiently small where 4|r| and O(Es;) as well as 47| and
O(E@;) are of the same order. When %2=0.5 day, however, 4|r| and 47| _become
considerably large and, in addition, 4|r| and O(E¢s) as well as 47| and O(E¢s) are
of different order. From these result, the time step % is chosen to be 0.25 day.
And the criteria on how to determine subsequent % are chosen as
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O(E,)<5.0x1077, (14)
O(FE,)<5.0x1077, (1%5)

As a result, if O(Egs) or O(EGJ} exceeds 5.0 1077, the time step 4 is reduced to
a half of its previous value so that the roundoff error satisfies the criteria (14)
and (15).

5. Numerical resulfs

5. 1. Assumptions

Since concrete data on the GALILEO mission are not published, to our know-
ledge, anywhere including Refs. 6, 7 and 8, the following assumptions have to be
introduced to apply this analysis to the mission:

(i) The position of a spacecraft on the launch date is on the line connecting
Earth and Sun, while its altitude from the Earth surface is 2 million kilometers.

(ii) Launch energy C; is the sum of the spacecraft kinetic energy and the
potential energy measured from the Earth surface.

(iii) The characteristics of the Broken Plane Maneuver (BPM) is described
as follows:

Total mass; m,=2000kg,

Propellant mass; #,=200kg,

The rate of propellant consumption; r,=0. 04kg/sec,

Velocity increment; 4V =231m/sec,

Thrust; |F|=my\V,|=mdV /Z}Z(Tmo———) —0. 0877kg-km/sec?,

, Lo — Mg

BPM velocity increment inclination with velocity vector; 82 degrees,

BPM is performed 240 days after launch.

(iv) We presume that only the sunshade of the spacecraft GALILEO contri-
butes to the perturbed acceleration asn caused by solar radiation, where the spe-
cular and diffusive reflectivities 7, and 7, are considerably high to prevent radiative
heating. Thus we assume that the cross sectional area A., the specular reflectivity
coefficient 7, and the diffusive reflectivity coefficient 7, of the spacecraft are

A,=4m?
7s=7a=0.9,

5. 2. Numerical vesults

Figs. 1~3 show the trajectories the GALILEO spacecraft leaving Earth with
an ecliptic inclination 2.9 degrees on 1986/5/19, 21 and 23. 240 days after launch,
BPM is performed to provide the inclination equal to that of Jupiter at the instant
of arrival. After encounter with Jupiter, the trajectory of the spacecraft is chang-
ed by the acceleration caused by Jupiter, to an amount depending on the geometry
of encounter.

Figs. 4~6 show the trajectories of the spacecraft using a coodinate system
with origin at Jupiter. For the 1986/5/19 launch (Fig. 4), the trajectories of the
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C,=101.0
1986.5.19 1 1.0
€,=100.0
LAUNCH 3 : /(fc =100.5
[ N 3
T ' y
100 10 5.0 (3.U.)
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\\fz\\\
JUPITER
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5.0

Earth 1950.0 mean equinox
T(A.U.) and ecliptic system with
origin at Sun
Fig. 1. The trajectories of the GALILEO spacecraft leaving Earth with an ecliptic
inclination 2.9 degrees on 1986/5/19. Launch energy C3=100.0, 100.5 and
101.0 km2/sec?. BPM (4V =231 m/sec) is performed 240 days after launch.

1986.5.21
LAUNCH

JUPITER
ENCOUNTER

5.0+
T (a.U.)

.Earth 1950.0 mean equinox
-and ecliptic system with
origin at Sun
Fig. 2. The trajectories of the GALILEO spacecraft leaving Earth with an ecliptic
inclination 2.9 degrees on 1986/5/21. Launch energy C3=99.5, 100.0 and 100.5
km2/sec2. BPM (4V =231m/sec) is performed 240 days after launch.
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origin at Sun
Fig. 3. The trajectories of the GALILEO s"pacemcréfthlrééving'
Earth with an ecliptic inclination 2.9 degrees on
1986/5/23. Launch energy C3=99.5, 100.0 and 100.5
km2/sec?. BPM (4V =231 m/sec) is performed 240
days after launch.

spacecraft approach Jupiter, when the launch energy C, is increased. Thus it is
readily understood that in order to hit the spacecraft to Jupiter, the required
launch energy C; will be more than 101 km2/sec?. Fig. 5 shows the trajectories of
the 1986/5/21 launch. In the case of C,=100, the spacecraft approaches Jupiter
from the inside of the heliocentric trajectory of Jupiter and leaves to its outside,
while in the case of C;=100.5 the spacecraft approaches Jupiter from the outside
of the heliocentric trajectory and leaves to the inside. These results indicate that
in order to collide the spacecraft with Jupiter, the launch energy C, will be 100~
100.5. For the 1986/5/23 launch (Fig. 6), it is evident that the spacecraft hits
Jupiter when C;=100 km?2/sec?.

If we look at an aspect of gravity-assisted maneuver or swingby, heliocentric
energy change due to planetary encounter is given by

AU=v0,P-(O—D), (16)

where v, and v, are the planet velocity and the spacecraft approach velocity, while
P, O, and I are the unit vectors in the directions of the plant velocity, the
spacecraft outgoing and incoming asymptotes, respectively, as shown in Fig. 7.

It is convenient to write the Eq (16) in the form

AU = E*f, (17
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Fig. 4 The Jovicentric orbits of the GALILEO spacecraft leaving
Earth with an ecliptic inclination 2.9 degrees on 1986/5/19.
Launch energy C3=100.0, 100.5 and 101.0 km?/sec?. BPM
(4V =231 m/sec) is performed 240 days after launch.
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LAUNCH DATE
1986.5.21

Y
1.3 (%10 7km)

Earth 1950.0 mean equinox X
and ecliptic system 5.0
with origin at Jupiter

z (x10 "km)
Fig. 5. The Jovicentric orbits of the GALILEO spacecraft leaving
Earth with an ecliptic inclination 2.9 degrees on 1986/5/21.

Launch energy C3=99.5 100.0 and 100.5 km?2/sec2. BPM
- (4V =231 m/sec) is performed 240 days after launch.
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Earth 1950.0 mean equinox
and ecliptic system
1008 with origin at Jupiter

(x107km)
x
Fig. 6. The Jovicentric orbits of the GALILEO spacecraft leaving
} Earth with an ecliptic inclination 2.9 degrees on 1986/5/23.
Launch energy C3=99.5, 100.0 and 100.5 km?2/sec2. BPM
(4V =231 m/sec) is performed 240 days after launch.



Computational Code of Interplanetary Trajectory of a Spacecraft 115

//
// OUTGOING
|

INCOMING

DT
ASYMPTOTE ASYMPTOTE

2

S
1
a‘vc; ,S: 'vq n< .-.<
> = > |
&

SPHERE OF INFLUENCE

Fig. 7. Geometry of encounter.

where E¥=20,v, represents the maximum energy increase for the given planet and
spacecraft velocities, and f=P-(0O—I)/2 is an energy index determining the magni-
tude and sign of the energy change achieved in the encounter.

Heliocentric energy U of a spacecraft is given by

1 Gm
U=Zp?— "2 18
2 7, ’ ( )
where v is the velocity of the spacecraft, G the Gaussian gravity constant, m; the
mass of Sun, and 7 the distance between the spacecraft and Sun. Using Eq. (16),
the heliocentric energy change 4U is calculated by

AU=Upus—Upre, (19)

where Up,e and Up,., are the pre- and posi-encounter heliocentric energies.

Table 2 shows the relations between f, Upre, Uposr, 4U and the date of
encounter for different launch dates and different launch energies. From the result
that all Up,s; are less than zero, these trajectories are all elliptic and the spacecraft
can not escape from the solar system. According to Table 2, Eq. (17) accurately
holds between 4U and f. Using Eq. (16), the spacecraft approach velocity v, can
be estimated as about 6 km/sec. Pre-encounter heliocentric energy Up,. varies
with the launch energy Cs, but these values are 140~150 km2/sec?. From the fact
that Jupiter velocity v,=13.6 km/sec and v,=6 km/sec, the maximum energy
increase E*=162 km?/sec?. Therefore, it is readily seen that if a small but
appropriate Jupiter orbit insertion maneuver and a subsequent navigation orbit
trim maneuver are performed, Uy, becomes positive, and the spacecraft will
escape from the solar system.
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Table 2. The relations between f, Upre, Upost, 4U and the date of encounter
for different launch dates and different launch energies.

LAUNCH Cs P U post Upre 4U ARRIVAL
DATE (km2/sec?) (km2/sec?) | (km?/sec2?) | (km2/sec2) | DATE

1986. 5.19 100. 0 0.23 —108. 2 —146.5 38.3 1988. 6.18
1986. 5.19 100.5 0.38 —78.5 —144.1 65.6 1988. 6. 2
1986. 5.19 101.0 0.48 —59. 4 —142.0 82.6 1988. 9.12
1986. 5.21 99.5 0.16 —122.6 —148.4 25.8 1988. 9.12
1986. 5.21 100.0 0.60 —-53.1 —146.5 93.4 1988. 8.11
1986. 5.21 100.5 0.32 —95.7 —144.1 48.4 1988. 7.18
1986. 5.23 99.5 0.13 —124.7 —148. 4 23.7 1988.11. 2
1986. 5.23 100.0 — - —146.3 — 1988. 9.25
1986. 5.23 100.5 0.04 —137.9 —144.1 6.2 1988. 9. 7
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