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Abstract

On the previous report “Theory of Secondary Flow in Cascades”D),
some matters to be supplemented, improved or revised are explained,
together with the further results which were obtained since then.

The reason why the theory of secondary flow in cascades has not
yet fully succeeded in explaining the three-dimensional character of
cascade flows, the fact that we should notice the vortex metamorphosis
and the trailing shed vortex being matters which have no direct connec-
tion each other, and the wake of cascade blade is the key to solve the
relation between the axisymmetric flow and the actual three-dimensional
flow in turbo-machinery, are stated in this report.
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i. Prologue

On the previous report ‘ Theory of Secondary Flow in Cascades”!’, some matters
to be supplemented, improved or revised will be explained in this report, together
with the further results which were obtained since then.

One of the reason why the theory of secondary flow in cascades has not yet
fully succeeded in explaining the three-dimensional character of cascade flows, is of
course in the assumption of inviscid perfect fluid disregarding viscosity. But there
exists another important point to be noticed, that this theory is a first approxima-
tion theory and there are often carelessnesses in the treatment of small quantities
of first order. It is logically well understood that the secondary flow theory has
the destiny that the secondary flow is the difference between a large quantity and
another large quantity and therefore we need the greatest prudence in the treatment
of small quantities, but unfortunately almost all reports published in the past had
defects in this point. Especially in spite of the variation of blade circulation and
the trailing shed vortex ensued on it being the most important part of the secondary
flow, the consideration on the variation of blade circulation (small quantity of first
order) was missing in these reports, therefore the stories became ambiguous and
we got shady impressions.

2. On the Definition of Secondary Flows

The secondary flow is ordinarily understood being the difference between the
ideal flow and the actual flow which is the consequence of existence of boundary
layers, but this type of expression of definition has defects that the answer differs
according as the definition of ideal flow differs, and besides there may be problems
because it is the difference between a large quantity and another large quantity as
mentioned above.

The more intelligible way to define the secondary flow is that which uses the
idea of vortex. Replacing the inflow boundary layer of cascade with the vortex,
we consider the latter to be a quantity of O(e) [Order . To get the secondary
flow we examine how this vortex is carried by the flow to transform (metamorphose)
into new vortices, and what sort of vortices will newly be shed from blades, and
all these vortices are expressed by quantities of O(e). The flow carrying the
vortex to metamorphose is a quantity of O(1), therefore even if there exists an
error of O(e) on the carrying flow the effect on metamorphosed vortices will be
of O(e?) which may be negligible. This is the reason why we use the potential
flow etc. as a carrier of vortices. The consideration of flow from the standpoint
of vortex is a good way, as mentioned above, to treat quantities of small order
without any confusion.

W. R. Hawthorne?) made a definition that the streamwise component of the
vortex is the secondary vortex, and the flow induced by this vortex component is
the secondary flow. This is a very clear and good definition. Therefore we must
recognize that there may be cases in which the carrier flow itself containes secondary
vortices or secondary flows in it.

The definition differs from an author to another in some cases, for an example
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the definition published by L. H. Smith3> caused discussions between him and the
Cambridge group the chief of which is Hawthorne.#5> Because the definition by
Smith contains obscure points the author thinks it is better to employ the definition
by Hawthorne. (see Appendix A-1) (The normal component to the flow of passage
vortex is included in the secondary vortex family in this report. This is the vortex
corresponding to the boundary layer. See the next chapter.)

3. On the Vortex System of Secondary Flow in Cascades

The vortex system in cascade is illustrated in Fig. 1. A;B, and AjA, are
called passage vortex and trailing filament vortex respectively. Secondary vortices
contained in the downstream of cascade are not only these two but the trailing
shed vortex, which corresponds to the variation of blade circulation if it varies
along the blade span, is in the blade wake together with the trailing filament
vortex. The author understands that these names of vortices were introduced by
Hawthorne.

Fig. 1. Vortex system of cascade.

Because the passage vortex and the trailing filament vortex are criated by the
metamorphosis of vortex A;B; in the upstream the author named them “metamo-
rphic vortex”. (In the previous report!’ he used a name ‘quasi vortex” because
these vortices are not the entire of secondary vortices. But “metamorphic vortex”
is regarded to express the entity more correctly.)

The relation between the strength of trailing vortex (sum of trailing filament
vortex and trailing shed vortex) I (strength of vortex contained in unit span) and
the spanwise velocity at blade trailing edge 4w, is?
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I'=24w, @

(see Fig. 2)
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Fig. 2. The flow containing vortex passing through the blade.

Summing up the vortices in downstream of cascade, we have Table 1. The
secondary vortices which have deep relations to the secondary flow are vortices
parallel to the flow and asterisk marks * are attached in the table. Only vortex
having a component normal to the flow is passage vortex and represents the
boundary layer in exit flow.

normal component
to the flow

passage
( metamorphic vortex
vortex parallel component*
to the flow
secondary
vortex famil trailing filament* parallel to
ex
amxy vortex the flow
trailing
vortex

" trailing shed*
. shed vortex <{ g <:parallel to

vortex the flow J
y

Table 1. Secondary vortex family.

Expressing both components of the passage vortex (vorticity) by w,p. (normal
component) and w,p, (streamwise component) we havel?
COS 7y ¥y
Wope= W (el 2 2 =y, 2
e Ycos 71 7y K @
This can be obtained merely from inlet and exit flow conditions. Where w,. is the
vortex component normal to flow and w,,=w,y, as explained in the above. In-
tegrating equation (2) we can consider the boundary layer growth in cascade. [7.
4.5 (p. 225) in the previous report®)]
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wsps has relations to the passage configuration, but if there is no streamwise
vorticity (secondary vorticity) in upstream we often use the following equation

wz;;s:’:w'zwlr(h*“?’z) 3

There is a tendency of the theory to estimate the value of wj,p, too small by this
equation as explained later in Appendix I, and this tendency is supposed to depend
on the deceleration rate or stagger angle of cascades. Suitable empirical coefficient
may be needed to this equation.

Let us consider the passage vortex and the trailing filament vortex which are
constituents of the metamorphic vortex, the secondary flow induced by each of them
has a value corresponding to the configuration of blade passage respectively, but if
we put these two together and consider the entire induced flow or mean value
[this means that we consider the trailing (filament) vortex which exists in a limited
region to be distributed as vorticity] we have a value which is the function of only
inlet and outlet flow conditions (for example, inlet and outlet flow angles) regardless
of cascade conditions or blade profiles etc..

Furthermore, if we calculate the blade circulation, we find that the secondary
flow induced by metamorphic vortex produces no blade circulation change. We
must be aware that if there exists any actual blade circulation change, this has 1:1
correspondence to the trailing shed vortex and has no relation to the metamorphic
vortex.

The upshot is that the blade circulation is not decided by the secondary flow
considerations which deal with the vortex metamorphosis, but we must consider,
for example, a matter such as Kutta’s condition in non-uniform stream which
determines the blade circulation.

4. On the Axisymmetric Flow Theory

The reason why the axisymmetric flow becomes a problem of discussion is that
there is an idea in which the difference between the actual flow in a turbo-machinery
with finite blade spacing and the axisymmetric flow is the secondary flow. In other
words we shall be able to get the actual turbo-machinery flow if we add the
secondary flow in the blade passage of finite spacing to the axisymmetric flow.

The first advocate of this idea was L. H. Smith®), but the practical technique
written in his report was not clear. Hawthorne4’ and the author!’ pointed out that
there might be misunderstandings in his report. Smith’s opinions were that the
discrepancy between Hawthorne’s theory and Smith’s is only the difference of
definition of secondary flow, and the author’s idea has an error in the definition
of axisymmetric flow. Author’s interpretation is explained in Appendix I, and
there still remain questions on Smith’s practical technique represented by the
equation [97] in Appendix 1.

The authr wishes the reader not to judge that theories proposed by Cambridge
group headed by Hawthorne are perfect. There are questions on the treatment of
trailing shed vortex being imperfect. (The strength of trailing shed vortex is
decided by the Kutta's condition in a non-uniform flow, and not by the consideration
of metamorphic vortex.)

We may understand from descriptions explained in 2. that the axisymmetric
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flow is useful as an approximate flow (base flow). And what is important in this
instance is that we must be aware the vortex being contained in the axisymmetric
flow ie. base flow itself, and its component parallel to the flow must be regarded
as the secondary vortex. The upshot is that the secondary vortex in axisymmetric
flow is indispensable to get secondary flows in actual turbo-machinery of finite
blade spacing.

There was no one who got the trailing shed vortex in axisymmetric flow for
long time. Reports published, in which many authors expressed that they got it,
were doubtful. In fine, if we regard the axisymmetric flow being the case with
infinitesimal spacing of the finite spacing cascade, and try to get the limiting value
of vortex system of secondary flows, we always find the trailing vortex to be
disappeared by this approach. Furthermore the axisymmetric theory itself has
substantially no way to get it. (See chapter 4. in the previous report.?’)

The circumstances how the trailing shed vortex was obtained in axisymmetric
flow by the author was explained in the previous report®’. If the exit flow angle
7. satisfies the relation tanyse=K/#, (K : constant), that is the exit flow being of
free vortex type, there is no streamwise vortex in the exit flow (including trailing
shed vortex) whatever vortices are contained in the inflow. This is an important
result obtained from the author’s study. (This result is on the case of axisymmetric
flow, but of course can be applied to the linear cascade of infinitesimal spacing.)
In fine we can regard that there exists the vortex rectification process in the
cascade of large aspect ratio.

5. On the Secondary Flow in Linear Cascades

Vortices in the flow of linear cascade can be regarded as a special case of that
of turbomachine cascade. But we must pay attention to the expectation that we
can calculate the trailing shed vortex under the idea mentioned below.

The author explained in the previous report!’ that if we consider a T refftz
plane normal to the flow at the exit of linear cascade shown in Fig. 3, the secon-
dary vortex is the one normal to this plane and the secondary flow is regarded to

Vi

Fig. 3. Trefftz plane.



124 S. Otsuka

be calculated as the two-dimensional flow in this plane induced by this vortex.
(Hawthorne’s proposal?>) The two-dimensional flow velocities induced at boundaries
AB and CD correspond to dwr, in equation (1), and therefore we can get the sum
of trailing filament and trailing shed vortices.

The author also explained in the previous reportl’ that concerning the form of
boundary ABDC (same on CDFE, ...... etc.) induced velocities in y-direction at
trailing vortex planes CD, EF etc. are 0, and therefore these planes may be kept
flat. At the same time we can say from the fact mentioned above that these
boundaries (viz. wakes) will be kept at the same positions regardless of the secondary
vortices existing or not. (Non-existence of secondary vortex means two-dimensional
cascade flow.)

We must be aware that a large assumption is included in the base of these
results. The fact, that we consider the flow in a rectangle under the condition
that there is no induced velocity in y-direction at AB, CD ...... etc.,, means that
the Kutta’s condition in the flow containing secondary flows is completed by the
non-existance of flow in y-direction. But it is not clear that if this way of think-
ing is good. It is supposed that if the blade is very thin or its trailing edge has
cusped form this idea may be correct. Then assuming the idea being correct, we
arrive at an attractive result that because sides AB, CD ...... are not deformed
by the secondary flow as mentioned above the direction of wake of cascade must
point out the direction of wake or the direction of exit flow of two-dimensional
cascade (because there is no secondary flow or flow in y-direction in the two-di-
mensional cascade). We can say eventually that the exit flow direction of two-
dimensional cascade can be obtained easily and directly from the direction of wake
of non-two-dimensional cascade without complicated experiments such as boundary
layer suctions in the hope to actualize the two-dimensional cascade flow.

The experiment” to verify the idea mentioned above is explained in the
Appendix I.

Fig. 5 is the example of results of exit flow measurements. (Symbols are
illustrated in Fig. 4.) If we assume the position of wake being that of the maximum
loss (indicated in the figure by dotted line «..... ), we can say that the non-defor-
mation of wake is realized near the center of span. Although the dotted line in-
dicating maximum loss position is bent
at the vicinity of side walls because inlet
side wall boundary layers are forced to

turn into the blade wake by the secondary y!
flow, if we select the line indicating ¢, / I
=0.1 (where ¢, is total pressure loss z
coefficient®’) (pointed out by 1 in the
figure) to point out the wake position we { T
find the wake being almost non-deformed. Ly a
Vi
I | L
(4} a; A v
C:C/ e

\

Fig. 4. Symbols
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Fig. 5. Loss coefficient distribution in exit flow.
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6. Epilogue
with the Forecast of the Relation between Axisymmetric Flow
and Secondary Flow

Let us now consider a case in which preserving the similarity of sectional
geometry of linear cascade, the blade spacing is brought to the infinitesimal. This
corresponds to the axisymmetric flow of free vortex type turbo-machine and there-
fore there exists no secondary vortex in the exit flow in accordance with the result
mentioned in Chapter 4. The infinitesimal spacing means the aspect ratio being
infinite and the flow in cascade is same as that in two-dimensional cascade.

In other words, as mentioned above, provided the direction of wake of cascade
having secondary flow in it coincides with that of two-dimensional cascade, we can
say that the former coincides with the exit flow direction of the cascade of in-
finitesimal blade spacing. Or if we extend our idea to the turbo-machinery the
former coincides with the axisymmetric exit flow direction of the turbo-machinery.

Let us add a few comments that, assuming the axisymmetric flow is known, if
we employ the cascade blade arrangement (of finite spacing) which has the same
two-dimensional exit flow direction as the axisymmetric exit flow one, what kind
of flow will be developed? Probably the direction of wake of that cascade (of finite
spacing) will be same as the direction of axisymmetric flow. There may exist
secondary flows induced by secondary vortices between these wakes. The circums-
tances are illustrated in Fig. 6 (a), (b), and (c).

(a) is a sketch showing the exit flow of turbo-machine cascade. AE, BF, CG,
------ in the figure indicate trailing edges of blades. Planes AETP, BFUQ, etc. are
ones of blade wakes. PQUT is one section of the flow between two adjoining wakes,
and secondary vortices (passage vortices) are included in it.

(b) is the case in which the blade segment is same as that of case (a) but its
size is reduced to infinitesimally small keeping the solidity constant. This corres-
ponds to the actuator disk model. All small blades have wakes and the form of
these wakes is expected to be same as wakes of case (a).

(c) is the axisymmetric cascade which has the same blade axial length as case
(a) but its spacing and blade thickness are infinitesimal. We make the exit flow
direction of this axisymmetric cascade being same as the two-dimensional exit flow
direction of the blade segment of case (a). The form of each wake in this case is
expected being same as that of case (a).

The difference between (b) and (c) is the difference of axial dimensions, and
when the radial displacement of stream line is large, (¢) is supposed being better
model than (b).

The idea mentioned above is passably a forecast and we need a verification for
it. But, provided this idea comes true, the wake direction of turbo-machine cascade
can be calculated by the axisymmetric theory, and what we should do in the next
place is the correction on induced velocities by passage vortices. Because this
induced velocity has no character to deform the wake, the calculation is expected
to be simple.

Fig. 7 is the reproduction of the induced velocity at the center of span of
linear cascade printed in the previous report?’ at Fig. 7-12, and this suggests us
that if the aspect ratio of blade passage (let’s consider a section perpendicular to
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passage
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(b) actuator disk model
B R c axisymmetric cascade
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A Q 0 < D
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Fig. 6. Similarity of wakes.

(c) axisymmetric model
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the flow) is larger than 4 this induced velocity is rather small, and therefore we
can expect to get pretty good estimations only from the solution of axisymmetric
theory without any correction on secondary flows.

—0.4

—0.3 /

A.'I/Uy'zrz( CL)

wd

—0.2

Fig. 7. Mean induced velocity at the center of span.
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Appendices
A-1 On Smith's Definition

From Smith’s report?®) his definition on the secondary vorticity is the difference
between the actual vorticity and the axisymmetric vorticity as expressed by the
following equation

<

-
=Cp2 = [9]

(p. 1069 in the ASME paper 1955. p, is removed for the sake of simplicity.)
Where ¢, : secondary vorticity
¢, vorticity obtained by the blade-to-blade solution which is the best
approximation of the actual flow
¢ : vorticity of the axisymmetric flow
subscript 2 : after a blade row
1f we express afresh this by Hawthorne’s expressions, we have

A

[secondary vorticity |'*=[actual passage vorticity |’
—[axisymmetric vorticity ] AT

The expression (b) or ¢, comes from what he is saying in his report.

‘If we think that the axisymmetric blade row is the one having the infinitesimally
small blade spacing but its configuration is similar to the actual one, we recognize
that [axisymmetric vorticityJ¢? is consisted of [axisymmetric passage vorticityJ¢-1
and [axisymmetric trailing (filament and shed) vorticity]¢¢~2’. Then equation [A7]
becomes
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[ ](a):[ ](b)_[ ](c—l)m[ ](0—2) [B]

But [actual passage vorticity]¢®) is equal to [axisymmetric passage vorticity]¢c-1)
because of the similarity of configuration in the sense of first approximation.
(Passage vorticity is the function only of turning angle provided ¢,; is same.
Where ¢, ; is the vorticity component perpendicular to the flow before a blade
row.) Therefore we have

[secondary vorticity]®=
—[axisymmetric tailing vorticity]*~% [C]

This is queer!?

The followings are the author’s opinions: In the treatment of secondary flow
problems, the largest problem is the trailing vortex, especially the trailing shed
vortex. Of course the latter has close relation to the problem of blade circulation
and the Kutta’s condition to decide the circulation. From this reason the approach
made by Smith (p. 1067 ASME paper 1955) was very good and reliable, and also
his expressions “actual vane circulation” and mere “vane circulation”. The difference
of these two is most important, and is always the point of question of almost all
reports published. In Hawthorne's or Horlock’s reports care was not paid on this
point and the author feels doubt to them. We must be aware of that the in-
discrimination of the both will result in the disappearance of the trailing shed
vortex.

From the idea mentioned above, the author thinks, the comparison of any two
theories (for example Smith’s with Hawthorne’s et al.)#»5%8> should be done on
cases which contain the trailing shed vortices in them, otherwise they have less
meanings because the most important point is neglected.

The author’s comment on Smith’s definition in the previous reportl’
(p. 195) must be revised as mentioned above, in which there was a mis-
understanding on the axisymmetric flow.

A-T1 A Method of Consolidating The Exit Flow Angle of Cascade?

1. Apparatus and Procedure

High speed cascade wind tunnel which belongs to the author’s laboratory was
used. The detailed exposition is found in the Reference 6), and the sketch is
shown in Fig. A-1. Symbols are illustrated in Fig. 4. The blade profile used was
RAF-6. Inflow velocity was about 70m/s.

In the report of Reference 6) the exit flow was measured by the yaw-meter,
and in the present experiment the direction of wake is measured under completely
same cascade conditions as the former. Cascade conditions and inlet boundary
layer displacement thicknesses are shown in Table A-1. (Blade span is 50 mm,
chord lengths are 24, 36, 48 and 60 mm.) A sample of inlet boundary layer is shown
in Fig. A-2. ‘
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- Re o*/B Re 5%/ B
a/C| AR | 19-5| « } at 1 I8} (%) ” a/C [ AR | qg-5 @ at T (%)
1.04 | 0.83 | 2.7 0° Q° 0°| 6.0 1.04 | 1.39 1.5 0° 0° 0° | 58
5 5 6.8 5 5 5.9
10 10 6.3 10 10 6.1
15 15 6.7 15 15 5.9
30° 0 30 5.9 30° 0 30 5.8
5 35 5.5 5 35 5.1
10 40 5.2 10 40 5.4
15 45 5.1 15 45 5.3
50° 0 50 50 50° 0 50 5.1
5 55 5.0 5 55 4.7
10 60 4.6 10 60 4.0
15 65 4.2 15 65 4.1
60° 0 60 4.4 60° 0 60 4.2
5 65 4.1 5 65 3.8
10 70 40 10 70 3.8
1.04 | 21 0° 0° 0°| 53 208 | 1.0 0° 0° 0°| 53
5 5 5.3 5 5 5.1
10 10 5.3 10 10 52
15 15 5.2 15 15 5.1
30° 0 30 4.9 30° 0 30 5.2
5 35 5.3 5 35 5.0
10 40 4.3 10 40 4.9
15 45 4.1 15 45 4.7
50° 0 50 3.9 50° 0 50 49
5 55 3.9 5 55 4.6
10 60 3.9 10 60 4.3
i5 63 4.0 15 | 65 4.2
60°| o | 60 | 37 60°| o | 60 | 42
5 | 65 | 35 5 | 65 | 37
10 70 3.7 10 70 3.7
0.83] 083} 2.8 0°1| 10°| 10°| 6.2 || 083 1.39| 16 0°| 10°| 10°| 6.3
60° 5 65 3.8 60° 5 65 3.7
10 70 3.8 10 70 3.7
1.04] 22 '0°i 10° 10°} 6.2 208 11 0°| 10°| 10°| 53
60° 5 65 40 60° 5 65 4.2
10 70 4.3 10 70 5.9
125 | 0.83 | 27 60° 5% ] 65°| 4.1 1251 1.39| 16 60° 5% | 65°| 4.5
10 70 4.0 10 70 3.8
104 | 21 50| 659 | 40 208 | 11 5°| 65°| 3.9
10 70 3.6 10 70 3.5
167 | 1.04 | 21 | 60° 5°| 65° | 42
1.39 1.6 3.8
2.08 11 4.1
Table A-1 Experimental conditions.
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Fig. A-1 High speed cascade tunnel.

Exit flow was measured by the total pressure tube composed in the arrow-head
vawmeter used in the previous experiment®, and it was fixed in the mean direction
of flow at a certain z-position, traversed in y-direction to find a minimum total
pressure position which was regarded as being the position of wake. The z-positions,
of measurements are 1, 20, 50 and 80 mm from the blade trailing edge.

There may be a question wheather the wake center position can be indicated by
the minimum total pressure position or not, but from the standpoint of convenience
in measurement this was regarded as a practical way to find the wake center
position. Therefore the author decided to define this position being the wake
position and try to do further treatment, and to regard that if this gives us good
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1.0 ——o©
Vi
View
0.5 ;
2B/C = AR = 189
a/C = 10
a = 50°
a = 10°
0 l Fig. A-2 Inlet flow velocity. (one example)
0 05  wfB 10

conclusions the process will be proved being good.

Because the boundary layer of blade upper surface is generally thicker than
that of lower, the minimum total pressure point is supposed being slightly in upper
surface side of the wake center. But considering what we want to get is the wake
direction and not the wake position itself, the error produced by the scheme

mentioned above will be hoped to be small.

2. Results and Considerations

The direction of wake (which is expressed by the turning angle ¢,) as the
result of experiment at a/C=1.04 is shown in Fig. A-3. Comparing this result
with the turning angle ¢ measured by yaw-meter and shown in Fig. A-4 which is

30

a/c |2B/C =AR
€u 50/60 = 0.83 | ——F—
A 50/48= 1,04 | —-—O—-—
.04 .
50/36 = .39 | we-mlmrmm
20 50/24=2.08 | ~==-0-----
G‘=0° (1=30° / f
# a=50 /
2 . o
10 aed 7 ) a-eo/
2 ,’ ’d ]
4 i,g’ g
0 g
Q 10 20 30 40 50 60 ” ?Og

Fig. A-3 Turning angle based on wake.
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30

a/C|2B/C = AR
50/60= 083 |——
" 50/48= 1.04 |——0—~—

50/36= 1.39 | ——t—-—
20 50/24= 208 |-~ e

o 10 20° 30° 40 50° 60° v 70

Fig. A~4 Turning angle measured by yaw-meter.

taken from the previous report®’, we can find that the variation of e, with respect
to aspect ratio AR is apparently smaller than that of ¢. The expectation that the
value of e, is almost constant regardless of AR seems to be supported in the range
of attack angle a;=5~10°. Bnt there exist rather large discrepancies of curves at
larger and smaller ;. The reason of this circumstance is not clear. But consulting
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Fig. A-5 Loss coefficient.
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{;—-curves shown in Fig. A-5, they suggest us that discrepancies between ¢, and ¢
are larger at large ¢, and very small at small ¢,. Because we require small ¢, for
the design work of turbo-machinery, the result mentioned above is very advantageous
for us since the value of ¢, can be obtained from only one experiment of any AR.

Fig. A-6 is the result at different a/C and shows us e, is more coherent than
¢ illustrated in Fig. A-7. (If the curve of e, is horizontal straight line, the ex-
pectation is perfect.)
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Fig. A-6 Turning angle based on wake. Fig. A-7 Turning angle measured by

yvaw-meter.

As stated above we may get a definite turning angle of cascade regardless of
aspect ratio by the method measuring the direction of wake excepting cases of
large loss coefficients. This means we need not care the aspect ratio of cascade
and gives us the simplicity on accumulation of data on cascade performances.

Because this wake direction is expected by the theory to indicate that of two-
dimensional cascade, to get the wake direction means to get the exit flow angle of
two-dimensional cascade. Furthermore when we want to consider the secondary
flow in cascade this can be treated as the secondary flow in rectangular region
surrounded by these wakes and side walls. This means that the difference of
angles between the wake direction and exit flow direction measured by yaw-meter
should show the effect of secondary flow in rectangular region.

In Fig. A-8 values of &, and e are indicated by [] and O respectively. These
were selected on cases shown in Fig. A-3and Fig. A-6 in which ¢, is small so as &,
is almost constant. Although experimental points are linked almost as they are in
Fig. A-6 and A-7, but ¢,'s are shown by horizontal lines (thick solid lines) in Fig.
A-8. &’s can be also shown in the same manner but by straight lines falling toward
the right (thick broken lines). The discrepancy between the line and symbol [] or
O is supposed to be the experimental error. Because the magnitude of this error
is comparable to the magnitude of deviation angle (e, —e) produced by the secon-
dary flow, discussions by the direct comparison of values of [] and O are un-
reasonable. Therefore the comparison between the solid line and the broken line
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may be a good way to consider the difference of turning (or exit flow) angles
produced by the secondary flow.

Fine solid lines in Fig. A-8 indicate values of ¢ which are expected by the
secondary flow theory (secondary flow in the rectangular region,) (calculated by
the method explained in the previous reportl? in which the passage vorticity w;p;s
was assumed constant in the region 0<x<8. The detailed method is explained in
Reference 7)). Because of not so much examples, we must not jump to a conclusion,
but the author regards that the coincidence of experimental and theoretical values
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Fig. A-8 Turning angles. (comparison with theory)
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is good at the case a=0°. At a=30° the experimental value of (e, —¢) is about
twice of the theoretical one, about three times at a=50° and four~five times, at
a=60°. The discrepancy is supposed to be attributed to the boundary layer growth*
which is not included in the theory. (¥*At a=0° the flow is an accelerating one and
there may be almost no boundary layer growth. At large « the boundary layer
growth is dominant.) In this connection, equation (3) was used for the theoretical
calculation of secondary vorticity, and results mentioned above suggest us that by
using a suitable coefficient multiplied to this equation we shall be able to get much
better agreement between theoretical and experimental values.

It may be another good suggestion that the fine thread, attached to the blade
trailing edge will give more convenient way to find the direction of wake than the
troublesome measurement for the minimum total pressure position.

3. Conclusions

As a means to approach the exit flow direction of two-dimensional cascade, a
method in which the direction of wake of cascade is observed was tested. The
result proved that the direction of wake has a definite value regardless of the
aspect ratio of cascade as far as the loss coefficient is low, and furthermore there
exists a reasonable relation from the standpoint of secondary flow between the
above direction and the mean exit flow direction measured by an ordinary yaw
meter method. Therefore, we can assert that the description of the wake direction
as a characteristic of cascade is a good way to consolidate the characteristics of
cascade.



