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Abstract

An effective finite-difference scheme for solving full compressible
Navier-Stokes equations was initiated by Beam and Warming!’. The
purpose of this paper is to develop that technique and apply it to the
calculations of several typical subsonic and transonic, inviscid and viscous
steady flows for NACA 0012 airfoil.

Part of the analysis briefly contains the derivation process of all
used formulas and the empirical treatments. Inviscid and viscous flows
are analyzed separately, along with associated grid formation techniques
and boundary conditions.
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1. Introduction

The Navier-Stokes equations, describing the flow of continuous fluid, were
initiated more than one hundred years ago. However, it started being solved in a
general sense only a few years ago. During last one century, generations of
scientists made efforts in attempting to solve the equations. Prior to the
appearance of a computer, they handled analytical solutions for a few typical
problems using a series of approximations. Even in such problems, the mathematical
knowledge used in the solution process has been very complicated. Hence, it has
become well known that fluid mechanics is one of the hardest problems in physics.
One had to depend mainly on experiments for practical applications.

The emergence of a computer provided the possibility of numerically solving
the N-S equations. Due to the restrictions in computing speed and memory of early
computers, one still had to give some approximate assumptions, and accordingly, the
development of the CFD (Computational Fluid Dynamics) needed subsequent two
stages; solving the potential and Euler equations. And then it entered the third
stage, i.e., solving the N-S equations. In several advanced countries, the CFD has
entered the fourth stage — investigating the cause and motion of vortices which
are essentially unsteady problems and, of course, require a larger computer. But
most countries are still making efforts to solve the N-S equations.

Because of the limitations in both computers and computational mathematics,
the methods of solving the N-S equations had stayed on “solving boundary layer
equations along with external inviscid ones” for a long time. To sclve the N-S
equations by treating the outflow (where convection is important) and the boundary
layer (where the effects of viscosity balance with those of convections) simul-
taneously became possible only when super-computers appeared and finite-difference
methods achieved rapid development during last decade. With respect to the theory
of difference algorithms, the four developments stated below are important:

a) Unconditionally stable scheme!~®). Since rather small spatial steps must be
adopted in the boundary layer, the computation time needed to have a convergent
steady solution is found out to be about 3-6 times the one required for the dis-
turbance to propagate from the body to the far boundary and to return back; this
too lengthy calculation must be avoided by utilizing an unconditionally stable scheme.

b) Spatially factored4~8). The process advancing the solution forward is factored
into the product of operators, each of which has only one spatial direction.

¢) Delta-form™. Linearize all of the conservative flux vectors with respect to
time. Then, 4Ur=Un*1 ~U" become common unknown numbers.

d) Three-level scheme®’. Implicitly center-differencing all viscous terms in-
cluding cross derivatives will compose a set of difference equations containing 9
points which, however, are difficult to solve. Using the three-level scheme, cross
derivative terms may be explicitly replaced by the values of previous time. Thus,
the difference equations contain only 5 points (3 points in each direction); easy to
solve.

The Beam-Warming scheme is equipped with the above four characteristics and
as a result has been successfully applied to solving the full N-S equations, which
had been a dream of numerous scientists in the field of fluid mechanics. The
method is still popular in application to real CFD problems, although more modern
and complicated modifications have been proposed.
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In the present analysis, our calculations are limited to a simple contour — NACA
0012 airfoil, and to several typical subsonic and transonic as well as inviscid and
viscous (lower Reynolds number) steady flows. The purpose of the research is to
develop in more concrete forms the techniques stated in References 1 and 2. It is
discovered that, for actual applications, there are many problems which need to be

improved in the future.

2. Governing Equations

The two-dimensional compressible Navier-Stokes equations in Cartesian coordi-
nates can be written in the conservation-law form

oU | F(U) n oGWU) _ 1 [BVI(U, U,)
ot 2x oy Re ox
aVZ(U7 U) 1 an(Uy Ua:) aWz(U, U)
R T T [ e
where
4 ¢ U m
ou m puUt+p (m*/e)+p
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oY n puv mn/p
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ViU, U= Vo(U, U)=
MU, HUy
pov,+ A+2p)uiu,+ T, ), pvt,+ruw, |,
0 0
MUy KUy
Wl(Uy Uz): WZ(Ua U:v'):
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p=G=D(e—gonw®)  (r=1.40), wi=u v, ®

T €]
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(r="Le-
The variables p, u, v, p, ¢ and T are the dimensionless density p/f., x-direction
velocity component #/w., y-direction velocity component ¥/w.., pressure 5/(P.w2),
total energy per unit volume &/(P.w2) and temperature T/(w2/C,), respectively.
The independent variables £, z and y are the dimensionless time 7/ (L/w.), coordi-
nates x/L and y/L, respectively. L is a reference length; usually the chord length
of an airfoil is chosen as L. Finally, ¢ is the dimensionless viscosity coefficient
2/ o

Using such a non-dimensional system, we easily obtain the freestream conditions:
=1, #o=COSa, V.,=Ssin®, p.=1/GM2), .=p./(r—1)+1/2 and T.=p./ 1),
where « is the angle of attack.

We adopt the Keyes semi-empirical formula® for the evaluation of %, which
can be applied to a wider temperature range while having a somewhat complex form

- aorfs/z o
P T rax100 <b‘ ?‘) ®)

where the constants for air are set to
a,=1.488x1075, a=122.1, a,=5 (T =79~1845K),

In the present calculation, T., is assumed 288 K.
The dimensionless heat conductivity is shown as g=7x/Pr (Prandtl number
Pr=0.75), and 2 is taken as —(2/3)#, the Stokes hypothesis.

3. Transformed Governing Equations

In order to change an irregular-shaped physical domain into a rectangular one,
we have to introduce an appropriate transformation of independent variables. We
are interested in those transformations independent of time because we only aim
at the steady solution to the fundamental equations. In general, a transformation
is expressed as

¢=¢(x, ¥), n=1(x, ), t=1, 6)
The transformation Jacobian J is defined as
]:any_éynx:}»/(xeyﬂ—xﬂye>. (7)

By solving the transformation identity
o =l 4]
Ne M= Ve Y 0 14’

we obtain
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Ex:]ym Sy:—]x’n sz_]ye, Wy:]xe. (8>

Under such a transformation, the strong conservation-law form of the governing
equations is still maintained®, as shown in the following:

oU , 0D , 0E _ 92U | 9D 0D oF o0E

F Tox oy or T oe ey e Sty
e S r BB
_ %zT] +][ a(ynDagx,,E) n a(~ye§n+er) ]zo'
Define U=J-1U, p=y.D—%,E and E=—y.D+x.E, and we have
S

Rewriting Eq. (1), we obtain the governing equations in the new coordinates as

U LR oG (U)

ot 0¢ 1 o
_ Rle [avl(gfg, U | avz(gfg U) an(a[»j’ U . aWz(aU, U, ] ©
U 7
where
U=JU,
F=y,F—x,G,

Gz—yeF—%xeG,

ViU, U)+V,WU, U)=]y,V.(U, U)—yV.(U, U,)
—%,V,(U, U)+%V,(U, U)J,

WL, U)+W,(U, U)=JLy,W.(U, U)—y.W.(U, U,)
—x,W,(U, U)+xW,(U, U],

ViU, U)+V,(U, U)=y,[V.(U, U)+V,(U, U]
—x,LW,(U, U)+W,(U, U,)7,

ViU, U =],V (U, U)—x,5,V,(U, U
—%,9,W(U, U)+x,2W,(U, U)J,

VU, U)=JL—5.9,V.(U, U)+x.9,V,(U, U,
+x,9. W, (U, U)—x.2,W,(U, U)7J,

(10)
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WU, U)+W,(U, U)=—y[V,(U, U)+V,(U, U)]
+x LW (U, U)+W,(U, U],

WU, U)=JL—y3.V.(U, U)+x,9.V,(U, U,
+x.y, W (U, U)—x.2,W,(U, U7,

W, (U, U)=JTy2V (U, U)—x.9.V,U, U,)
—x.3. Wi (U, U)+x2W,(U, U],

In general, the body contour is transformed into a part of 75(x, y)=0 if the
transformation is of C-type. The remaining part is a specified cut in the flow
field. Noting that there are relations between the velocities with respect to the
two coordinate systems

dé/dr il . =X . , %
Laa)=01=7 10 0T G100 3050

the impermeable condition over the body surface is embodied by §=0.

Now we are going to derive a complementary relation, which will be used for
the calculation of body surface points, i.e., the momentum equation in the direction
normal to the body contour. It results in a simplified form by using #=0.

Consider a vector N= O, —y¢, x., 0), where the effective part (—y., x.) shows
the normal direction of 7(x, y)=const, and make a scalar product with Eq. (9).
The left-hand side of a new momentum equation consists of the three terms:

@ —y. aU(;Pu) +x, a(fé‘;pv) _ 5)[]"1{)("—85&:u+x52))] :8(];919);

to use as a boundary condition of a steady flow, it is always set equal to 0.

2 - - B N
M —. oLy, (pu +‘§>E %, (p2t) ] +x. ol v, (puv) agn(pvz Fp)]

=Y

o(J tpuni+y,p) (g 0 v —2,0)
j 0¢ ¢ 0

—1 @~
=710 2L D 4 Fp0(—yt+ 50.) — By 55 B

“(yeyen“%‘xsxen)p.
— 2y ; — : 2]
© —y, L=y (ou —iaf)Hxa(puv)] x, 0L ye@uv)a—i—?xe(pv F0)]

o0(J tpud—y:p) ,, 9(J 'ovd+x.p)
& a'f] & 877

=—y
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s
=]‘1ﬁ—a~(—]§77‘—’?’l+]‘19@<"yeun+xem) + (¥ +x.2)p,

+(y€y€7)+x€x$7)>p.

Substituting the impermeable condition =0, we obtain

'_<yeyn+xexn>ﬁe+ (y€2+x52)pﬂ

T oh(— oL [0V | oW, + W)
o=yttt 5 0) + N | 2 e a

In the case of an inviscid flow, the second term of the right-hand side vanishes,
whereas the first term vanishes for a viscous flow due to #=0.

4. Difference Scheme

A single-step scheme for temporally advancing the solution of Eq. (9) was
introduced by Beam and Warming®’, i.e.,

R O‘AT n_| a An 5 An—l
AU =5 54T Ta A wr
, 1 -
To[@ = a)m e ] (13)

where Ur=U(ndr) and 4U»=0Ur"1 ~{J» The parameters ¢ and § may have various

combinations, resulting in explicit or implicit, first-order- or second-order-accurate

schemes. The schemes are implicit if >0 and are three-level ones when §>0.
The accuracy of the algorithm (13) can be checked using simple manipulations

as
(1+3>( AT+; "”;A"w)

dr T (140) 35] _ aa[{ _8 ag -0,

Ae? —21—(1+8) a;ijzn _@82U"+3 00" <1+8 0>8U

or? 2 or? 2 or?

With respect to the stability of the algorithm (13), Reference 1 listed only the
conclusions for second-order-accurate algorithm (#=0-+1/2): a) Applying it to a
model linear scalar convection equation, it is unconditionally stable for §>0.

b) Applying to a typical linear scalar diffusion equation, it is unconditionally stable
for §>0.385. In the numerical examples shown later, we choose a combination §=1
and §=1/2. Obviously, it ensures second-order accuracy and is unconditionally
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stable which enables us to gradually increase the time increment
Substituting Eq. (9) into Eq. (13), we obtain

a_ 04T T3 (., AV 44V, a< AW+ AW, \»
sl =f S - ar+ S ) e T )]

P

R ]

Re
. 5 0 - 1+0[<0~%——5>A72+473}.

According to the Taylor series expansion

(14)

AF"

| !

oF .
:2) = AP AT -0 (4e?
<8U>AU 10 (4r2) = A 4T 40(422),

An aG n ~2\ — Pn “rn 2
e <aa> A0 4-0(4z2) =B AU +0(422),

AT = <a@1(/]) 40" +( ggl ) A0 +0(472) 1o

3

— Pr AU QAT 0 (4e?) = (ﬁ~é)e>nmn+_a%.@nwn) 10(4e2),
aWZ n aWZ
AL L 40,7 +0( 4

o ) a0 (S o ) 40,0 (4e2)

AT+ §R AT 0 (402) = (R — S)”AU”+-(5M‘U“) 0(4r2),

where the notations U, and U, denote j-1U, and J-1U, and, in addition, we note
Eq. (10) to obtain

A=0F _ 0(y,F—x,G)

aU - ]-—1aU :]<y7)A—xﬂB),
2 S aé — a("‘yeF'!_-%eG) _ — .
B = Yo, - T U =J(~y.A+x.B), (16)
A OV , 0V (U, U ov,(U, U) oW (U, U,)
Q= 30, ~]2[ *———"aU r)yn*"'—-—‘“—“aUe Xy Y A

€

+

xf%%’?gi)"]:ﬂw@m — 2,9, (SV) = %,,(QW) + 5,2 (S,

& _OW, _ ol 2 0Vi(U, U, ov,(U, U, ow.(U, U,)
S=%0, =7 v U, P, T V0T,
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a2 Dl Und | 1oy, Q1) = 2.5 (SV) 2.9, (QW) + 5 2(SW)],

The matrices A4, B, QV, SV, QW and SW are derived in Appendix A. The matrices
P—@Q. and R—S, will be explained at the end of this section.
It is ingenious to let

AV »=d4V,» 1 4-0(47%)  and AW =AW, 14+0(4c?), 7

Accordingly, the cross derivative viscous terms, which need four corner points and
cause difficulty in implicitly solving difference equations, are conveniently replaced
explicitly by the values of previous time without altering the accuracy of the
scheme. Such treatment is very important for the full Navier-Stokes equations to
be solved. Although we must handle a larger memory size by having one more
level variables compared with the two-level scheme, this is rather trivial in com-

parison with the entire memory in use.
Substituting Eqgs. (15), (16) and (17) into Eq. (14), we have

{I+ li¥iks [i(ﬁ_p_é)sy 1 02 QﬂJ+ Qdffa<34@>n

150 | o2 Re ) T Re 5 175 Loy Re
. 1 az an TN — el o S ﬁﬁf 1 0 7 n-1 0 37 n—
e oS H"U =sign b5 |4V ) (AW H]
e [0 p DAV 0 a WYL 0 o
+1+a[as< N 7 )“Lay;( G e ) |+ 1154V
_!‘0[(0_—;—“(‘)\)AT2+ A’C3il, (18)

where signd=1 or 0, according to >0 or 6=0. In addition, the notation of the
form

(a2l

=

signifies in reality
i A— p_QE )n Tn
0& [(A Re au }’

throughout this paper. We then spatially factorize the left-hand side of Eq. (18)
as follows:

{I * 1041-’3 [‘éas‘(‘zl“ ﬁz_ef) ) % aa; Q]}

frpz [_aan_@, RS ) a@; s |}t =ras of 18).  a9)

As the spatial factorization causes only the error of O(4r3), the temporal accuracy
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of Eq. (18) is not altered.
Before closing this section, it may be useful to present the derivation and
explanation of P—@, and R—S,. From Egs. (15) and (10), we have

9] aV — F2 2 aVl(U7 UE) e aVZ(Uy U&')
P= —r —= [yn Y A X e S
— X,y oW (U, U) 2aWz(U U)J
7 olU oU
=]y, 2(PVE) —%,y,(RVE) —%,y,(PWE) +x,2(RWE) ],
5 OW, _ [, . 0V(U, Uy ov,(U, U,)
k=—pF =Ty S ey
oW (U, U,) oW, (U, U,) ]
U

—X:Ye aU "‘Il_xez

=Ly PV — 5. (RV)) —%.y.(PWn) +52(BWy) ],

where the matrices PVE and PV7 are the matrix PVX in Appendix A, where the
differential subscript x should be changed to & or 7. Similarly, RV¢ and RV7y are
RVY, PWE and PWn are PWX, and RWE and RWn are RWY. Then, we obtain

P—Q. =7y, L(PVE) —(QV) J—%,9, [ (RVE) —(SV) ]
—%,9,L(PWE) —(Q@W) 1+, L(EWE) — (SW) .},
R—§,=T{y L(PV)—(@QV),]—%.3.L(BV)—(SV),] (20)
— %3 .L(PWn) — (QW),J+x LIRWH) — (SW), ]}

Analogously the matrices (PV&) —(QV), and (PV7)—(QV), correspond to (PVX)
—(QV), in Appendix A. (RVE&)—(SV), and (RV7%) —(SVy, to (RVY)—(SV),,
(PWE)— QW) and (PW7n)—(@W), to (PWX)—(QW),, and (RW&) —(SW), and
(RWn) —(SW)y to (RWY)-—(SW)y

Thus we can easily find P—Q.=dpu,-+ju, and R—8,=%usr+§,, where

o_dp_ dG/i) 1 di T.
©dT 4(T-T./T.) peo AT T

SFELME L

Applying the Keyes formula (5), we obtain

e

d(logz) 3 1  1+a-a,-logl0-exp(—a,-log10/T)/T* 22)
aT 27T T+a-exp(—ay-log 10/7T) :

In subsonic or transonic regions, there are not strong shock waves, vielding the

temperature gradient rather small. Therefore, P—@Q, and R— $, may be neglected.
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5. Addition of Dissipative Terms

The practical process of numerically solving a system, consisting of difference
equations and boundary conditions, is always accompanied by the propagation of
errors which satisfy the same difference equations and the boundary conditions
imposing “exactly equal to zero”. If the propagation of errors can be controlled
within a certain limit, the numerical solution of that system can still be regarded
as an approximation of the exact solution; this is called “stable”. One of the
methods analyzing the stability of difference equations is the von Neumann method.
Assume that g7(k)e’i#4% is a Fourier component corresponding to the wave number
k at the point (n4f, idx), while at the next time step the component becomes
g (k)e'i*4=  Then, the amplification factor G(k) is defined as follows:

Gk =g (k) /& (k) =|G(k)|e”

Here the criterion |G(k)|<1 or |G(k)|>1 is used to judge whether the error is
attenuated or amplified. ¢>>0 or ¢<(0 corresponds to whether the phase is ahead or
behind, a phenomenon called dispersion. Although large dispersion is not desirable
a far more important condition is |G(k)|<1. The existence of only a few wave
numbers & which yield |G (k)|=1 may be permitted. Because of dispersion, the error
may practice damping at the next time step even if it has not caused attenuation
at the present time step. Note, however, that the existence of these wave numbers
always slows down the process of convergence. In general, therefore, one artificially
adds high-order dissipative terms to accelerate the attenuation. A simple method
is to append to the right-hand side of algorithm (13) the fourth-order dissipative term

QI 47+ (7, 4,)21] T, (23)

where 7 and 4 are the conventional notations of backward and forward differences,
rendering V74U, j=Ujpr, 1—2U4, j+U;sn, 5, (Ted)2U,, 5= Usia, i—4U 41, 36U, j—
AU; 1, j+U;_3, ;, etc.. Note that the dissipative term has been multiplied by a
Jacobian determinant and divided by the same one outside, to maintain a freestream
solution; therefore, the dissipative term is not conservationally differenced.

Assuming that 4z is sufficiently small, let us examine the stability of algorithm
(13) after adding the dissipative term (23) to one-dimensional equation :

Aur= dur—t— Q2 ,4,)u",

)
1+0

G_1= ) (1-%)—;@(8”“—46”““‘—!—6——46—”“4—8‘““),

G@l—D:LT%§40~&)ﬁQG¢KL—aEkAxV,

J A
1+0 T+5 -

G has two real roots 1 and §/(1+9) if 0=0. When increasing @ from zero, the
following situations appear in turn: a) Two same real roots [§/(14+d)7172. b) A

GZ—[L+ —490—«msk4xyjc+
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pair of complex conjugate roots with their moduli [4/(1 +8)]1/2. ¢) Two same real
roots —[d/(1+8)Jt72. d) Two real roots —1 and —38/(1+6). ) The modulus of
one of the two roots will exceed 1, if continuously increasing Q. Thus, the stability
condition is written as

Sz

0=.49(1—cos kdx)*<169<2(1+— ),

_%_

which can be rewritten as

o 1425

Steger?’ suggested to implicitly add a second-order dissipative term on the
left-hand side of algorithm (13), which tends to zero when the solution converges
to a steady one. However, the stability bound (24) is widened twice, as shown
below. Accordingly, we can use larger dissipative terms to accelerate the converging
process. We slightly modify the above verification:

AZ&R_’QVEAJ:(A%“): 1—?—8 Aundl—‘g(VxAJ)zun’
r 0 G—1 .
(G—D)[1+22(1—cos kdx) |=——+ —42(1—cos kdx)?,
1+0 G
Gz_l:l_t. 1 o  49(1—cos k4dx)? ]
" 1429(1—cos kdx) 1+ 1+29(1—cos kdx)

, 1 5
T s hdE) T4 (25)

Thus, the stability condition is

0< 49(1—cos kdx)? 2[1+ 1 ) ],

1-+-22(1—cos kdx) 1+22(1—cos kdx) 1+90
1 a
L9 (1— 2 (1— 4 Ol {14+
09 (1 —cos kdx)?— (1—cos kdx) <2 <2 <1 153 ),

which reduces to

1420

00— 2 26
It is difficult to construct a fourth-order dissipative term at points adjacent to

the boundary surfaces. In such cases, we replace —Q2/ ' (Fo4,)2U" (0 is & or )

by +0QJ*(7.4,)U" (note the sign). Then, Eq. (25) becomes

. 1 0  22(1—cos kdx)
G [IJF 1+29(1—cos kdx) 140 1+2%(1—cos kdx) ]

‘ 1 )

"1 20(0 —cos kdx) 1+

0,
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the stability condition of which is the inequality

292(1—cos kdx) ) 1 )
0< 14+22(1—cos kdx) 2[1+ 1+29(1—cos kdx) 1+6 }

This condition is automatically satisfied for all positive £; in other words, such a
scheme is unconditionally stable.

Finally, it may be convenient if we explicitly write down the computational
formulas, which is derived by adding the dissipative terms to Eq. (18) :

=37 .__04’[_,_1__ 0 7 n-1 0 17 n-
RHS=signs 15 R0 [%_(AVZ )_;_,_57_7_(4{/{/1 1)}

S (—F+———V1"‘LV2>”+%(——G+M_W1+WZ)“]

1+6 Log Re R
T O A0 QL (P 474 (7,4 1T T, @)
04 [0 (7 P-Q P19t AT e } _—
{” 5 e (A7) R 5@ | -2 4, aU*=RHS,
28)
At [0 (p RS\ 1 8 & 4 } N,
{]+ 1—{“3 [a’/] (B Re ) Re 87}25‘} ‘"'J 1}7”47,] AU -«AU ’
(29)
Uri=Un+ J AT, (30)

Because the solution procedures are gone through separately in & and 7 direc-
tions, the stability condition (26) obtained for one-dimensional equations is still
effective. In general, it is adequate to place the coefficient 0 right at the center
of both stability bounds, thereby establishing that the dissipation is effective and
yvet safe.

6. Method of Solving Block-Tridiagonal Equations

Egs. (28) and (29) give two sets of equations of block-tridiagonal form. The
method of solution is similar of that for scalar tridiagonal equations, which
essentially is a kind of elimination method.

Consider a set of equations

b: ¢ m di
az bz e uz dz
a b « w | de (D)

am bm__ Um _dm N
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By using elimination procedure in turn, it is converted into

1 e Tlw | [d ]
1 ¢ uz d»
1 ¢ w || d (32)
L 1__ L um | _d;n |
where
ci=c;+(b,~a,c;)7, di=d,—a,d; )(b,—a,c;_)™" (=1, 2, -, m),
(33)

a,=0 and c¢,=0 are obvious from Eq. (31). It is essential to find that Eq. (32)
directly provides #,=d',. Then we can explicitly solve the other u#, from u, :

u=d,—c ., (=m-1, m—2, -, 1), (34)

When centered differences are used, Egs. (28) and (29) result in the form
identical to Eq. (31), where the notations «,, b, and ¢, are 4x4 matrices and u,
and 4, are 4x 1 matrices; thus they are called block-tridiagonal equations. Naturally,
the results (33) and (34) can also be applied. Note that (b, —a,¢’;_1)" ! in Ea. (33)
is the inversion of the matrix. From the viewpoint of saving the computing time
of matrix inversion, it is adequate to program an inversion subroutine by ourselves.
Assume P=(p;, ;) and @=P-1=(g,, ;). Hence,

1Y)
@, ={—P,. (35)
where |P| denotes the determinant of a matrix P and P, ; denotes a cofactor
determinant of P; for example, we have

b D1z Dua
ps, 2=| Das Doz Doy (36)

which gives

[Pl= 33 b1, 5(—=D)Py, . 37

7. Grid Generation

A common difficulty which annoys finite difference practitioners is the
irregularity of a physical domain. It not only makes the grid points adjacent to
boundaries irregular and leads to frequent use of interpolation and extrapolation in
constructing difference equations at those points, but also severely drops the
accuracy of boundary conditions. Accordingly, such a mathematical transformation
is desirable, that transforms the irregular physical domain to a rectangular com-
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putational one, where, naturally, the boundaries are transformed into straight lines
parallel with the coordinate axes.

The advantages of using such a body-conforming transformation are®: a) A
grid system of identical interval can be adopted in a rectangular computational
domain. Consequently, the accuracy of difference at points adjacent to boundaries
can be identical with that of other interior points. b) The boundary conditions
can be accurately imposed. c¢) To improve accuracy, curvilinear grids may be
clustered in the domain where the flow variables have large gradients. d) Equal
treatment of the points adjacent to boundaries will be helpful to effectively use a
vector-processing computer.

The transformations that one frequently uses, briefly speaking, basically consist
of the following three types:

F(O, t):[:g'& + .5}’ };(1, t>=!"(3._5t + 2:!
e ~ _
-;?—"‘“\}‘ “ s, 0)2[525 .75 cos (rrs}:[
N Eg\\\\‘ + .75 sin (xs)
"fm%ﬁ@&‘ -2 0.0< s <.33
'..’y‘-\i*\\“\\‘\ > VS
7 N —6.5+13.55, .33<s< .66
F{ e 2.5, L66<s<C1
s D= f_2+65’ 0.0<s<.33]"
Figure 1 0.0, .33<Cs<.66
The curvilinear’ co-ordinate system generated by the following i\ 4 — 65, . 66§ s<C 1

porametrizgtio:

a) Algebraic construction. Fig. 1 is an example!®. Its characteristics is
simplicity in general; The method may be written into a formula only including
elementary functions and therefore may have negligible computing time. Moreover,
it is easy to cluster in specific domains and as a result it is usually adopted as a
basis of adaptive grids. One of its faults is non-orthogonality, which causes large
error. Another is non-analyticity. There are lines (or surfaces) within a domain
where the first-order differential is discontinuous if boundaries include such points
(or lines). Mathematically speaking, the transformation is not exact.

b) Conformal mapping!?), This is an older technique. It is orthogonal and
analytical within the domain. But it is rather difficult to find such a mapping for
a general two-dimensional domain and is almost impossible for that of three-
dimension. Therefore, those who prefer using this technique are still few although
it has some developments recently.

¢) Grid generation using elliptic-type differential equationsl?~14). A recent
idea is to find a numerical solution of a system of partial differential equations
and regard it as a transformation, the concrete form of which is not required to
know. 1If the corresponding points on the entire closed boundary of a domain are
specified, then utilizing the theory of partial differential eauations, the first-kind
boundary-value problem is correct only for elliptic-type equations, e.g., the Laplace
or Poisson equations. For such transformations, one of the properties is monotony.
The extremum principle of elliptic equations, i.e., that extremum of solutions can
not occur within the domain, assures the monotony of solutions along either coordi-
nate direction & or » from one boundary to another. In other words, such a trans
formation gives strictly a one-to-one mapping between physical and transformed
domains. Another property is analyticity. The boundary slope discontinuities do
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not propagate into the domain. Due to the above-mentioned advantages, the trans-

formations of this type are widely used recently. However, due to non-orthogo-

nality, the high skewness between a coordinate line and a boundary will drop the

accuracy of boundary conditions. There are several attempts to improve it.
Consider a transformation

e=¢&(x, ¥), 1=n(%, ¥),
which satisfies the Poisson equations
Vie=P, Vip=@Q. (38)

The grid system on the computational plane (&, ») will be rectangular, so that we
are interested in the inverse transformation x==x(&, 7), y=y(& 7n) where the
equations they must satisfy are derived in the following. The relations of first-
order differentials between two transformations are

0x G
waesr_r}“ﬂ/}x”’ls
—gg—:xaéy+x,;7)y::0,
(39
0 vt
”B?_yegr,‘ryv’?x"(}s
f )
—ai‘)’“:yzéy”{“yn“’]y:l,

which provide
éx:.[yﬂy éy:_]xviy nr:—_]y:“y ny:]xf
(f:‘éa:ny”éyra::(xeyn—xnys>~1>. <48>

Differentiating the former two relations of Ea. (39), we obtain

0%x - -

St =%, () Xl t 2.8+ %, S0+ %0, (0, 2+ 2,7,,=0, (41)
azx . o 9 A A e - | . 2 4 N — 4
'——63}2 _xee(gy) ‘{“xev"?yw’rxeg:w i xnegyf/]y‘rxnn(’%J Txnf!'yy"—o. ( 2)

Adding them up and using Egs. (38) and (40), we obtain the differential equation
with regard to x,

Ozxes"zlgxen_’f’rxnﬂ:”j’2<sz”;\”an):(P. (43)
Likewise, by differentiating the latter two relations of Eq. (39), we obtain

Olye€“2£ysn+7ynn:—]-Z(Pys+Qyn>:¢’: (44}

where
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a:xn2+yn2; B:xexn+yeyn; T:xsz+yez. (45}

In the solution process, «, B, 7, ¢ and ¢ are evaluated as known numbers on
n-level, whereas x.., £.4, 44y, etc. are centrally differenced using #--1-level unknown
quantities; as a typical example, the difference form of Eq. (43) is

(141 41 1 (
Co 33850 4+ Copn, 32800+ Con, 5135550+ C 51202+ Coy 50128550
41 1 D 1
+Cq, 270 i Cisgy 112850 4+ Cy, 1R AC, s x0a= 0y 4, (46)

where

Cor==2 ity +cdy )

Ci+1: J':Ci—ly J':U%;j?,
%

Cn i+l Cu jvlz—@%?,

“Ciu, J'+1:Ci~19 Jr1T _Civ—la j_lr—:CHl, j—lzﬁﬂ?g;

In solving Eq. (46), the ADI (Alternating Direction Implicit) method is a convenient
procedure and particularly effective for a vector-processing computer. We found
that SOR (Successive Over Relaxation) method is also fast in convergence on a
scalar-processing computer FACOM M-382. Assume

— 1
T4 J'_Ciy ix J+Cl+17 sz*l 1+Cv.+1> J+1x1+1 J+1+C17 J+1xx i+ l+cz 1y J—rlxznl >J~.—1
1 1
+C’L iy ]x(11+1) +Cz 1y - 1x(n+ / 1+Cu j— lx()H ) TCH-l; J— 1xw1 -1 Py is (48)

where the rule of determining superscript # or n-+1 is to use the new value if it
has been calculated or to use the old one otherwise. The iteration formula of the
SOR method is

=l — o (49)
ci; J
It can be verified theoretically for a Laplace equation that the convergence condition
of Eq. (49) is to set the relaxation factor @ between 1 and 2.

The method of solving Eq. (44) is similar and therefore the procedure is
simultaneously practiced.

The correspondence relation between the physical and computational domains in
the present analysis is shown in Fig. 2. A solution of Laplace equations (P=@Q=0)
is obtained in Fig. 3. The calculation of viscous flows requires a grid system
clustered in the vicinity of the airfoil, whereas the solution of the Laplace equations
does not possess such characteristics. To obtain good clustering, one must add the
sources P and €. Following Thompson’'s suggestion, we assume

P= 0 Q__ zam\ e e~ Cm M-~ 77,,,1 (50)

0=
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Fig. 2. Correspondence between physical Fig. 3. A solution of Laplace equations
and computational domains. (P=Q=0).
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Fig. 4. A solution of Poisson equations Fig. 5. A solution of Poisson equations
(P =0, @ containing one source). (P=0, @ containing five sources).

and then solve the Poisson equations. Fig.

4 illustrates the solution obtained when RIS0,40) Rlaz,34) g
applying only one source (M=1, 7n,=0, N i
i.e., a body source). It is shown that the \
clustering is obvious. Fig. 5 illustrates a
result of 5 sources. It is so crowded in
the vicinity of the airfoil that we can not
distinguish the grids by eyes. Accompany-
ing the clustering, unfortunately, the ske-
wness between the cut ab (de) and the
lines of constant & becomes more serious.
As a result, a difficulty occurs when we
treat the boundary points on the cut with
interpolation or extrapolation. Thus, we
needed to find a transformation which is
orthogonal on the cut. We finally achieved NACA 0012 83431

success for this simple airfoil contour  Fig. 6. The grid system utilized for the
NACA 0012, which is shown in Fig. 6 and present inviscid calculations.
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explained in detail in the following.

Specifying the boundary points. On the airfoil surface, 51 points are distributed
uniformly with an identical arc length 4s;. On the wake cut, 16 points (other than
the trailing edge point) are distributed exponentially from x=1 to x=5 with the
minimum interval 4s;. On the downstream boundary ef, 31 points are distributed
exponentially from y=0 to y=4 with the minimum interval 0.01 (for inviscid flow).
The distribution of points on the far boundary starts from assuming a point Z which
corresponds to the trailing edge point (Fig. 7). Then, 51 points are distributed
uniformly on the boundary arc between Z and its symmetric point Z’ with an
identical arc interval 4s,. From Z to the corner point (5, 4), 16 points (except Z)
are distributed exponentially with the minimum interval 4s,.

Paraboles. All the lines of constant & crossing the cut boundary are parabolas of
the following form:

X—%,=ay? (51)

where x. is the x-coordinate of a point on the cut and the coefficient ¢ is deter-
mined by the coordinates of a far boundary point corresponding to that cut point.
The location of point Z mentioned above is selected to let the last parabola, i.e.,
the one adjacent to the downstream boundary, be nearly a straight line.

Grid system in rear domain. One numerically integrates the arc length of every
parabola and then chops it in proportion to the distribution of the points on the
downstream boundary. The result is shown in Fig. 7.
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Fig. 7. Rear domain is the utilized com- Fig. 8. The fore area indicates the solution
putational grid system, while the of Laplace equations.
fore domain is the initial value
in solving Laplace equations. -

Solving Laplace equations. The foremost parabola corresponding to the first cut
point is regarded as the rear boundary of the fore domain where we solve the
Laplace equations (43) and (44) with P=@Q=0. The fore domain of Fig. 7 shows
an initial attempt using linear interpolation between the airfoil surface and the far
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boundary. Fig. 8 shows the result of solving the Laplace equations.
Grid system in fore domain. Numerically integrate the arc length of every line
of constant £ Then save all the lines of constant & while discard all the lines of
constant 7. Redistribute the points along every line of constant £ in proportion to
the distribution of the points on the downstream boundary. The final result is
shown in Fig. 6. The practical domain to calculate inviscid flows is slightly smaller,
as indicated by the thick lines in Fig. 6, in order to obtain more accurate metric
derivatives using centered differences.
The coordinates of a corner point on the
new downstream boundary are about (4.2, AN
3.4). ““‘“ \
Such a transformation contains a dis- &@‘&“‘\\ \\
continuity in the vicinity of the trailing ‘stg\\\ﬁ\\\
edge, causing inaccuracy from mathematical M‘t}“:\\?\““‘ n i
point of view. However, the effect is not ’0“‘3‘3“““‘“‘\‘“
conspicuous when the trailing edge angle =

. B g 5 Vv

is rather small. In addition, the smoothness , = =
ver the f d sy tri s i t ‘“"'ﬁiﬁf’ =
over the forward symmetric axis is not o csssses PP =
satisfied. We find, from Fig. 9, that it is > ‘.3:;3#’&."%.‘:’5 ——

N A S SSSLTALTT 7777 EEnE
better to chop the arc length in the vicinity Wiﬁ"”’

; ; or i SOSSES5T 7
o e e e o Wit ST
» . Atthough IS ]

both these faults have not caused failure "%”m
in later calculations, the technique of nume- 'I’ I ,
rical grid generation still needs further
progress, particularly for more complex
boundaries in future.

Fig. 9. Detailed grid near the airfoil.

8. Inviscid Flow

To develop a new computational technique, one always starts from simple and

typical tests. We decided first to calculate an inviscid flow in order to obtain both
fundamental computational experience and better initial values to calculate a viscous
flow. In fact, the procedure of calculating a viscous flow is nearly identical with
that of an inviscid one except that we need more complex formulas and different
boundary conditions, #=0 and »=0, on an airfoil surface. It is also found that
utilizing the inviscid flow solution as an initial value, the approach to the steady
solution is faster. However, the calculation has to be extended up to 3-6 times the
round-trip time for the disturbance to propagate over the domain; the computing
time is not reduced substantially.
Tnitial valuwes and boundary conditions. A calculation starts from uniform
freestream variables throughout the flow field. The boundary conditions on the far
boundaries are freestream ones. The values p, # and v on the downstream boundaries
are evaluated by linear extrapolation. If three neighboring points along a curve of
constant 7 on the physical domain are denmoted by the subscripts (i—1, /), (i, j)
and (i+1, j) and the distances are denoted as
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A=~ =% 1, )2+ ey 71— Vo1, 1)
Al+:’\/ (xi-f-laf_‘xi; j)z"g—(yi-&lfjﬁyi, ]')2’ <52)

then the condition that p varies linearly in this interval is expressed as

Oiy g =0i-1r5 o Lix1y ;=P ;
Al 41

+

or
Al_p;41, i l_+41))p,, iAo, s, i=0, (53)

Utilizing the two known p values to determine p;,;,; (or p;_y,;), according to the
above relation, is called linear extrapolation. # and v are handled identically. Then
¢ will be determined from Eq. (3) by assigning p=p.. The flowfield values along
the wake cut are found by merely averaging the variables of upper and lower
points, i.e.,

= U+ U /2, (54)

where i’ is the subscript corresponding to the reflection of ¢ with respect to the
cut.

On the airfoil surface points, ¢ and #(&, 0) are obtained by linear extrapolation
along the lines of constant & as mentioned above. The impermeable condition is
represented as 9(£, 0)=0. Then #(x, y) and v(x, y) are found by using Eq. (11).
It is noteworthy that since the #=d&/dr is a physical quantity on (&, 7) plane, it
should naturally be extrapolated on that plane. Due to the uniformity of 47, the
extrapolation provides

Ui, 1:2[717 Z_Uiy 3, (55}

We implicitly solve the normal momentum equation (12) to determine p. p, #, u.
and v, appearing on the right-hand side of Eq. (12) are evaluated on n+1 level.
The equation is a tridiagonal system and the first wake cut point corresponds to
the boundary points on both sides of bd interval on (&, ) plane, as shown in Fig. 2.
This means that the rear stagnation point is assumed at somewhere between the
trailing edge and the first wake cut point. Thus, there are two values (upper and
lower) at the trailing edge, although they are close together. Finally, we obtain e
using Eq. (3).

From the theory of mathematics, the number of boundary conditions is deter-
mined by how many characteristic directions are pointing to the interior of a
computed domain. In a supersonic flow, for example, it is four in front, three on
an airfoil surface and none on downstream boundaries, etc.. However, such a basic
idea is not enough for numerical calculation. We have to complement several
relations to a sufficient extent. Those relations must be compatible with the
original equations and boundary conditions. The complementary freestream conditions
on the far and downstream boundaries are correct if the computational domain is
large enough. The linear extrapolation is a first-order approximation obtained when
analytically expanding from the interior to the boundary of domain. It is also
correct if the spatial interval is small enough.
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The 407 of the boundary points are required to construct the difference
equations (28) and (29) at points adjacent to boundaries. Beam and Warmingl’
derived the relations between a boundary point and two neighboring interior ones
using linear extrapolation, differentiating algebraic relations and differencing
differential equations. It is such a complicated procedure that we followed Steger’s
way where all 40" are regarded as zero. Of course, they are not truly valid unless
we get to convergence to the steady solution. But a computational experiment
shows that it does not prevent the process from convergence. We tested replacing
407 explicitly by 4071 Tt turned out that the process was also convergent but
did not have clearcut advantages.

Coefficient Q of added dissipative terms. The algorithm (13) in an inviscid flow
after adding dissipative terms may be written into the following form:

(M+9M,) 4U"=4v (sum of convection terms) M, 401 —2M,U*,
(56)

where M, are operators. Both 407 and 407! tend to zero when the solution
converges to a steady one. Thus Eq. (56) gives a balance between sum of convection
terms and added smoothing terms. On general interior points,

MU=0(4dx*+4y%). (57)

In particular, we will analyze the condition about Q on the points adjacent to the
airfoil, on which the smoothing terms drop to second-order differences

M, U»=0(4x2+ 4y?) (58)

Each of the convection terms is an O(1) quantity in an inviscid flow, so that an
approximate steady solution should satisfy a condition that the sum of the con-
vection terms is O(dx+4y) or higher. This means that adding second-order
smoothing terms is permitted, ie., 2 may be O(l). We used the central value
between the stability bounds (26), i.e.,

(39)

Time step. We start the calculation with smaller time steps, fearing that in-
appropriate initial values may incur troubles, and then gradually magnify it. The
calculation ceases when the elapsed time exceeds 3 times the round-trip time for a
disturbance to propagate, where the propagation velocity of a disturbance is regarded
as approximately 1 for the calculation of a transonic flow.

The time step is decided by choosing the Courant number N,. It is changed as
shown in the following table:

Number of iteration 0 50 100 150 350 550 750 950
Courant number N, 1/8 1/4 1/2 1 2 4 8 16 .
The Courant number is defined as follows:

« dr 4 de |

N.=Max {195 i, (60)
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A

where N and £ are the eigenvalues of the matrices 4 and B, respectively. The
values 4& and 47 may be arbitrary numbers (but not zero). We can find that they
will be eliminated in Egs. (27)-(30). For simplicity, we assume 4&é=4np=1.

The eigenvalues A(4) and 2(f) are derived in Apendix B:

Ponas (AD)|=Max{J[ |y, u—x0|+ /2, Fy,2a},
lVimer(B)|=Max{J[|—y.u+x0|+/ % 2+y.2a]} (61)

The time interval 47 corresponding to Courant number 1

A%:Mz‘n{ 42 47 }

oz (D] imaa(B))]

is calculated at every 50 steps, because its variance is very small. Then the com-
putational time step is set to

(62)

dr=N 47, (63)

Restrictions and errors. 1f we start from inappropriate initial wvalues, the
calculated variables often show strange behaviors, and the calculation can not be
continued. To avoid this situation, it is necessary to impose artificial limits on
physical quantities during unsteady modes; for example, the Mach number should
not exceed M,,p throughout the entire flowfield (we assume M,,p=2 because we
are only interested in a transonic flow). In practice, the variables must be bounded
between the stagnation and AM,,, conditions, i.e.,

po>p>iosupy

=
60>e>esupy
(64)
O<w<wsum
0<ow<p4x,

where subscripts 0 and # denote the stagnation (M =0) and critical (M=1) con-
ditions, respectively.
The error at each point is evaluated by

EZ:Z{'{ 46" |4Cou)”| + |4(ov)"] + |42m| } (65)

Po— Osup O W O €y~ Coyp

Our program occasionally outputs the quantity log;o(s) (¢=root mean square error)
to check whether the process is truly converging or not. If ¢ has exceeded O0.05,
the calculation is set to automatically stop and output the subscripts ¢ and j of all
the points where e;,; has exceeded &, helping us to analyze the cause.
Calculated results. We calculated four typical cases. Each case required to advance
about 1000 steps corresponding to the 3 round-trip time, before converging to the
steady solution:

a) M.=0.63 and a=0°. The solution shows an entirely subsonic flow. Fig. 10
shows the pressure distribution over the airfoil surface. We find that the pressures
over the upper and lower surfaces are identical, indicating that the computational
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errors are negligibly small. :
b) M.=0.63 and a=2°. Fig. 11 shows the pressure distribution. The lowest
pressure of upper surface comes close to the critical one and yet the flow is
subcritical. Fig. 12 shows the pressure distribution on the wake cut. We find that
the pressure is flat and recovers fast to the freestream value, confirming that the
selected rear boundary (3.2 chords behind the trailing edge) has been far enough.
¢) M..=0.75 and a=0°. Fig. 13 shows the pressure distribution. The supersonic
regions appear whereas there are no shock waves. The flow is supercritical. Fig.
14 indicates the converging process of the surface pressure. At each time step, the
pressure distribution is regular although it has not arrived at convergence as yet.
d) M.=0.75 and «=2°. Fig. 15 shows the pressure distribution calculated
using two different schemes, the three-level (6=1, d=1/2) and the two-level (4=1,
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0=0) ones, respectively. A shock wave appears in the upper flowfield and therefore
the flow is transonic. Both results agree sufficiently well except that the location
of the shock wave calculated using the two-level scheme is slightly behind the one
using the three-level scheme. Obviously,
both have not generated spurious oscilla-
tions which usually appear ahead of a shock
when we do not locally introduce the
treatment of the upwind scheme. Fig. 16
shows the equi-Mach-number lines in the
flow field.

Fig. 16. The equi-Mach-number lines for M.=0.75
and a=2°.
(M: 0.50, 0.60, 0.65, 0.70, 0.75, 0.78, 0.81,
0.85, 0.90, 0.95, 1.00, 1.05, 1.10)

9. Viscous Flow

As mentioned previously, the procedure of calculating a viscous flow is nearly

identical with that of an inviscid one. We introduce only the difference in the
following.
Reclustering. To ensure a sufficient number of points within the boundary layer,
reclustering of grids is necessary. This is equivalent to redistributing grid points
along the lines of constant £. An approximate formula on the laminar boundary
layer thickness of a flat plate



Numerical Analysis of Transonic Flow around a Two-Dimensional Airfoil 163

5;:4. 91(%&)"1”%, (66)

is borrowed to evaluate the thickness of the conceivable boundary layer at the
trailing edge (x=1), giving

5y=29L
v/ Re"
First, we distribute 10 points with a uniform interval §,/10 over the downstream
boundary from y=0 and then exponentially distribute additional 35 points starting
from the minimum interval 6,/10 over the remainder. Second on each line of
constant &, redistribute total 45 points in proportion to the distribution on the
downstream boundary.
Initial values and boundary conditions. Initial values are formed by interpolating,
with regard to the 35 points outside the conceivable boundary layer, using the
inviscid solution and, with regard to the boundary layer, artificially constructing
the other 10 points as follows:

(67)

U, j:_‘(”]’l;(_)l—>uia 11 (j:ly 27 Ty 10)7
?).“ j:”<]1—0—1>‘vi9 11y <68)
Dy 5= Dy 11,
then p;,; and e;,; are determined from Eq. (3) and the Bernoulli formula
LT p g (69)

On the airfoil surface, the non-slip conditions #=0 and v=0 replace the
extrapolation condition of # and the adiabatic condition

oT _
on ’

or
—-(yey,,+x5x,;)Te+(y52+x52>T,7~——0 (70}

replaces the extrapolation condition of p. Ea. (70) is implicitly solved simultaneously
with Eq. (12). p and ¢ are determined by Egs. (4) and (3). We also did a test
calculation not by using Eq. (70) but by extrapolating p. Both results agreed well.
Coefficient Q. Eq. (56) is changed into the following form in a viscous flow:

(M,+2M,) 4U"= 47 (convection terms + viscosity terms)
M, AU — QM U™, (7D

Specifically we examine the situation on the points adjacent to the airfoil. The
convection terms are first-order small quantities. Since we are seeking a steady
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solution of the N-S equations, we should make the parentheses in the right-hand
side of Eq. (71) be meaningful, ie, be second-order small quantities or higher.
Considering Eq. (58), we should postulate with regard to the third term in the
right-hand side

O=q-dr, (72)

where w=0(1). We let o be the value satisfying Eq. (59) when 4= (47)nas.
Calculated vesults. We calculated six cases. Each one required to advance about
2000 steps corresponding to 5 round-trip time for a disturbance to propagate
throughout the domain.

a) M,=0.63, a=0° and Re=104. Fig. 17 describes the velocity distribution
in the vicinity of the airfoil. Flow separation occurs in the neighborhood of the
trailing edge and extends into the wake, where a separated area is formed. Fig. 18
shows the pressure distribution over the airfoil surface. Two different cases are
compared using the three-level and two-level schemes. The latter one is hased on
the thin layer assumption which neglects all viscous terms in &-direction as well as
cross derivative ones, while the right-hand side of Eq. (12) is set to zero, i.e., 9p/
on=0. Difference between these two results is obvious on the fore part of the
airfoil; because Reynolds number is too small, the thin layer assumption is not
appropriate. Due to the existence of separated area, the pressure remains nearly
constant in the neighborhood of the trailing edge. It is different from the corres-
ponding inviscid flow, where the pressure continues to rise and approach the value
at the rear stagnation point.

P i 7
O Y
-1.2F
L-C,x
NACA 0012
FREESTREAM MACH NUMBER: 0.63 -.8F
. ANGLE OF ATTACK: 0 QEGREES o
vvlo
REYNOLDS NUMBER: 1(D+4 ®a velo
-4 Yo volo
099088%%@@@6
Fig. 17. & 889999999
ok @ o o4
S
NACA 0012 o
.4_@ FREESTREAM MACH NUMBER: 0.63
ANGLE OF ATTACK: O DEGREES
REYNGLDS NUMBER: 10+4
Fig. 18 .8k ¥ VISCOUS FLBY THREE-LEVEL SCHEME
: @ VISCOUS FLOW TWG-LEVEL SCHEME
. © INVISCID FLOV THREE-LEVEL SCHEME
. N . . y s
[5 2 4 6 .8 1.0

/L

After converging to a steady state, we tried to add the terms P-@, and R-S,
and continued to calculate additional 400 steps. However, the deviation could not
be recognized. This proved that the terms P-, and R-S, can be safely neglected
in the calculation of a transonic flow.

b) M.=0.63, a=2° and Re=10¢. Fig. 19 shows the pressure distribution. The
symbol ¥ represents the upper surface and A the lower one. It seems strange that
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the pressure over the lower surface is lower than that of the upper one, i.e., the
lift is negative; maybe caused by the separation. We have not found any experimental
results for comparison. Figs. 20, 21 and 22 describe the velocity distribution,
indicating that the result is mathematically regular and, particularly from Fig. 22,
the highest velocity of the lower half-plane is truly higher than that of the upper
one. The existence of separated area is, in a sense, equivalent to the change of
body shape. For such a new shape, i.e., the airfoil plus separated area, the effective
angle of attack has heen changed in comparison with the inviscid flow. All of the
following examples have the same tendencies, which are not accidental.

¢) M.=0.75 a=2° and Re=10% The pressure distribution in Fig. 23 is similar
to Fig. 19, showing negative lift as well. The shock wave seen in the upper inviscid
flowfield disappears due to the effect of viscosity. We have changed the parameters
in the following three fashions, trying to obtain a transonic flow. The results are
illustrated as follows:

d) M.=0.75, a=2° and Re=10%. We can find in Fig. 24 that several vortices
appear in the vicinity of the trailing edge, letting the calculation be incapable of
converging to a steady state. The velocity distribution in the vortices is shown in
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detail in Fig. 25. The result clearly indicates that it is not enough to consider only
laminar flows for a high Reynolds number. The turbulence model is our next goal
in the near future.

e) M..=0.85 a=2° and Re=104. Fig. 26 shows that a transonic flow field has not
been formed yet. A separated area expands in both forward and backward directions
(see Fig. 27) and, as a result, the present computational domain appears to be
insufficient. Thus, the pressure recovery on the downstream boundary is a forced
rather than natural condition (see Fig. 28). To obtain a more accurate solution, the
computational domain must be widened up to about 6 times the chord length according
to existing experiences.

f) M.=0.75, a=4° and Re=104. The pressure distribution shown in Fig. 29 is
close to that in Fig. 23. In other words, the variation of « is insensitive to the
pressure. From Fig. 30, we can find that the separated area expands farther in the
backward direction and a new separation starts to occur below the trailing edge as
well.

It may be noteworthy that the last two cases were started not from the
inviscid solution but from a uniform flow outside the boundary layer as their initial
conditions. Therefore, in general, the initial conditions do not need to be the
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inviscid solution, in order to provide a fast and stable convergence to the steady
solution. The initial conditions can be arbitrary well-behaved functions.

10. Conclusions

Numerical experiments show that an implicit, spatially factored, timewise
second-order-accurate and delta-form algorithm initiated by Reference 1 is effective
in solving full compressible Navier-Stokes equations. The computing cost is not
very high if one vectorizes the program well enough, in other words, about 3.2x
105 second VPU time and 4.7x10~5 second SPU time per mesh point per iterative
step on a HITAC S810 super-computer. For practical applications, it is necessary
to study more flexible grid generation techniques and turbulence models.
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Appendix A

For the algorithm of the “delta” formulation, we will utilize the first-order
derivatives of the flux vectors F, G, V4, V,, W, and W, in Eq. (1). The Jacobian

matrices 4 and B are

__oFU) _
A_"—B"U—“
— e Tl @epu L —G-De -1
— Uy v u 0
— T G-Date o)) o ITh @uben) | —(-Due ru |,
__0GW) _
B=—%r"=
0 0 1 0
—uv v u 0
- 3”2'7 vl lue - (3—7)v -1
—-—~7§”+<r~1>v(u2+02> —(G-Duv lpe-—_____Tgl Gur+u?) v
Before deriving other matrices, it is useful to note the following 6 sets of
relations:

D uaz-ﬁ%"_z%[(pu)a—paujz-];(%z’g—%pa), where ¢ is a coordinate direction that

may be x, y, £ or . Thus, we have

U - Mo 2%0 P Uut+pue 2u _
5 = 02 + 03 Po= z 0z + 0z Do =
dthe _ _ Po =(L) Qo _ %  Qto _ 1
om o2 ple’  Ppe o’ o0me

2) Similarly, we have

el
LT I—Y 9vs 1
00c e’ dne P’

o(uue) _ ., 0% ,, 0%c _
3) or “7 0 + oe

-+

e

U —
7=

—<%>c’
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(;L:;U) =ug g_;% +u %Z% :ua-};’g'u(%)d :(l)o'.

4) Likewise, we have

9(vve) =_<"vi) CACILD) :(_a> )
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oe e on
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0
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Then, we form the following four useful matrices by combining the above 8
matrices:
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Appendix B

Both 7 and j are the matrices of the form kA-+k,;B. The eigenvalues are
the roots of the equation Z({)=|{-I— (k1 A+k:B)|=0. Note the matrices 4 and B

in Appendix A and denote ¢=*kiu+kyv, ¢= 751 (#2+wv2). Thus, we have
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and

o

the characteristic equation is written as

_rf,_1 __Th
—Lrp=Le—goiton] G—Dp  7=1

(@=sonic velocity),

{—y¢ — Iy —kz 0
0 {—y¢ 0 — =1k
Z(OH=
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. a o
C—o 0 — =1k,
=(—-¢)] 0 C—¢ —(G-Dk,
0 0 Ly
—k,  —k, 0
+@==Lrc-y 0 —G-Dh
0 {—¢ —(G—Dk,

=== C=)?(ki+kDa’=(C—0)’ L)’ = (Ri+EkI)a*]=0,

the four eigenvalues of which are kyu+/k,0, kiutkev, kiutk,v+E 24,22 and
k1%+k27}-\/k12+k22 a.
Substituting various values into k; and k,, we obtain the following table:

matrix k1 ko eigenvalues
A 1 0 w, #, u+a, u—a
B 0 1 v, v, v+a, v—a
~ J(yau—xqv), J(yqu—2xy0), ][(yw;u"xﬁv)+vx,72+yvza],
A A7 —Jaxy —
JL(ynte—xqv) — V224 yp2 @]
5 Iy 7 J(=yeutx:v), J(—yutx0), JI(—yutzev)+x,2+y.2a],
—J Ve X
Jl(=yeutz:0)—/x 21y 2a]
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