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Abstract

A mixed difference scheme called hybrid scheme, which is initiated
in Reference 1 and is shown to be effective particularly for computa-
tion of transonic flow, is applied to calculate the transonic flow around
a circular airfoil. The result is compared with those obtained by the
MacCormack scheme and the hybrid one in Reference 1.

1. Introduction

In parallel with the appearance of super computers, the numerical experiment
has become one of the most important techniques solving problems of aerodynamics.
In comparison with general wind tunnel experiments, it possesses the advantages of
shorter testing time and less cost. Corresponding to the development of computers,
numerical methods also achieved rapid growth in the last decade. The finite diffe-
rence method is regarded as the most powerful and versatile among all the existing
methods. Besides its simplicity of algorithm, it can be transformed into parallel
operations more easily than the others.

The appearance of the MacCormack scheme is an important development for
the finite difference method. It is a two-step, second-order-accurate and non-
centered scheme and has been used most widely nowadays. Its advantages are well-
known, but it usually causes spurious oscillations in numerical solutions ahead of
shock and is subjected to an excessively rigorous stability restriction. Warming
and Beam [17] introduced a new scheme called the upwind scheme, which can reduce
the spurious oscillations and has twice as wide stability bounds as the M-scheme:;
but it can only be used in the region where the characteristic speeds have the
same sign. Based on the above-mentioned development, they suggested to use a
combination of the M and U-schemes, called the hybrid scheme, for the computa-
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tion of a transonic flow: The M-scheme is used where the flow is subsonic while
the U-scheme is used where the flow is supersonic.

In Reference 1, a series of theoretical problems related to the H-scheme are
stated in detail. We followed their analysis of a transonic flow around a circular
airfoil with the 10% thickness-to-chord ratio and the freestream Mach number of
0.83, almost identically using their techniques. The obtained results favorably
restate some of the conclusions in Reference 1. Naturally the accuracy must be
improved in the future calculation.

2. The Difference Scheme in One-Dimensional System

For the numerical solution of a hyperbolic system in a conservation form

oU oF(U) _
T TR o
where U= (41, #s, -, %), the M-scheme is written as
Akl __ T 4t n
UP=U; - F1, @
n—H____}:_ # CESAN At ZES|
Uyi= 2 (U4 UT) ——J0— AF7, ®

where U? denotes the finite-difference approximation of U(ndt, idx), while the
forward and backward difference operators are defined by

AdF=F,—F;, VF=F,—F,_, )

The operators (2) and (3) are called predictor and corrector, respectively. The
M-scheme is a two-step explicit scheme with second-order accuracy in both time
and space.

There is not a stringent verification for the stability of nonlinear equations
up to now. One always linearizes them locally, then uses classical methods for
linearized equations. Thus, if 2, ({=1, 2, ---, m) are the local eigenvalues of the
Jacobian matrix 9F/oU (all of them are real since the system (1) is hyperbolic),
using the standard von Neumann method, the amplification factor G,(k) for the
M-scheme is

G,(k)=1—v3(1—cos kdx)—i-y,sin kdx, )
and
G, (B)P=1—v2(1—v)?(1—cos kdx)?, 6

Hence, the necessary and sufficient condition for stability of the M-scheme results
in

=12, e/ dx <], @
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At/ dx<Min{l/|M|, 1/[%2), -+, 1/]2al}. ®

It should be noted that |G,(k)| can not attenuate when the corresponding local
eigenvalue 2; is equal to zero. In order to increase the dissipation, a simple way
is to append to the right-hand side of the M-scheme (3) the fourth-order dissipative
term

— 95U = -2 (Q1—Qr
8 5 U: 8 (Qt 1-—1); (9)
where
Qn:Un+2_‘3Un+1+3Uh_Uk—1 (h:i, i"’l). (10)

The parameter w is a positive number limited by the condition that all the |G, (k)|
are not to exceed 1:

G, (k) =1—v2(1—cos kdx) —i-y,sin kdx— o (1—cos k4x)?/2, an
and therefore,
|G, (B)P=[1—v2(1—cos kdx) —w (1—cos kdx)?/2*+visin*kdx,  (12)
The |G,(k)|? becomes maximum or minimum when sin k4x=0, i e,
G (B)P=1 when k4x=0,
|G, (R)P=(1—2v] —2w)? when k4x=r,

If (1—-2v2—2w)2<1, then obviously 1 is the maximum, (1—2v?—2w)? is the mini-
mum and the scheme is still stable. Therefore,

0<w<l—? (=1, 2, -, m), (13)
or
0<w<Min{l—v%, 1=}, -, 1—32}, 14

The U-scheme possesses the predictor (2) identical to the M-scheme, while
the corrector is constructed as follows:

wr1_ L orre Ty AL i
U, “7<U5+Ui ) VT VF

It is an explicit two-step scheme having second-order accuracy in both time and
space as well. The amplification factor of the U-scheme is

G,(R)=1—y[y+ 1—y) (1A —cos kdx) J(1—cos k4x)
—geysin BAx [ 1+ (1—») (1—cos kdx)], (16)

4t

A, (15)

and accordingly,

IG,(R))P=1—y,(1—v)?(2—v,) (1—cos kdx)?, an
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Hence, the stability condition for the U-scheme is
0y, =04t/ 4x2, (18)

From the left-hand side of the inequality (18), it is demanded that all the eigen-
values must be of the same sign; in other words, they are all positive here (if
they are all negative, the U-scheme can be altered by replacing p by 4, and p2 by

42 in Egs. (2) and (15)). From the right-hand side of the inequality (18), it is
clear that the U-scheme has twice the stability bound of the M-scheme.

The U-scheme is not used when an eigenvalue is equal to zero; therefore the
fourth-order dissipative term is not necessary.

The problems in transforming between the M and U-schemes arise when they
are mixedly used to calculate the same flow field. The M-U and U-M transition
operators have to suffice the conservation laws. Thus, the M-U transition operator
consists of only the predictor (2) with no corrector; the one-step process. In
fact, it is the first-order upwind scheme that is first-order accurate. Its stability
bound is contained in that of the U-scheme. The U-M transition operator is

At
24x

Un+1 Un At ( :z;—ll Fﬁ—rl i

2 #
o PeFs, 19)

which is first-order accurate as well and can be proved unstable. It is difficult to
analyze the stability even for smooth solutions of a scalar conservation law when
an unstable scheme such as Eq. (19) is used at only one point. Numerical experi-
ments show that the stability is not overturned when placing the U-M transition
point at appropriate location.

Summarizing the above four difference approximations, they can be rewritten
in the following:

U?“ (Un+UnT1> Ee Fq (5i+5i-1)F?-1+€i—1F?—2]
At Fn+1 1 Fn+1. 1 Froi
“‘W[”’ i (et e, 1) (I—e)Fiii]

— 4 LA—e)@i— (1=, Q1] (20)
where U#*1, Q% and Q%_, are determined by Egs, (2) and (10), and
(0, 0) M-scheme,
(0, 1) M-U transition operator,
(Ei-h 51:) = (21)
(1, 1)  U-scheme,

(1, 0) U-M transition operator.
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3. Time Splitting Technique for Two-Dimensional System

Consider a two-dimensional system in the conservation form

oU | oF oG _
o =+ % + 3y =0, (22)
to which the following time splitting technique can be applied:
Uii=L(4t) Ly (4) UL ;. (@3)

This means that the solution of Eq. (22) is obtained as a result of multiplying the
two operators sequentially; Ly(4t) solving the equation

oU | oG

a—t+ W:O, (24}
and Lx(4¢) solving the equation

oU |, oF

o + = I =0, (25)

However, the solution (23) is only first-order accurate. Second-order accuracy can
be retained at every other time step by reversing the sequence of operators;

Urt=L, (40 L (AL (4t) L, (4t) U ;. (26)
Therefore, second-order accuracy can be maintained at every time step by defining
Upt=Ly(4t/2) L (48) Ly (4t/2) UL ;. 27)

This conclusion still holds when x and y are interchanged.

Using the time splitting technique not only simplifies the calculation of every
step but also has less strict stability criteria. It is analogical with the conclusion
for the following simple example. The stability criterion of the equation

o
0%

e @=0) @)
is

st (29)

whereas that of the equation

o oL . oL
5 Tl + 9y =0 (u>0, v=>0) 30)
is
At At
uﬁ+vw<1_ 31)
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Obviously, the condition (31) is more strict than (29).
The stability conditions for Eq. (27) are

LD i {1/ L 1/ s 1/ il
and

%<Min{l/i11[’ 1/[2g), =+, 1/12aft (M-scheme)
or

%<Min{2/?\1, 2%, -, 2/2,}  (U-scheme)

where 2, and y, are the eigenvalues of 9F /U and 9G/oU, respectively.

4. Calculation of Example

73

(32)

(33)

(34

Applying the foregoing theory, we calculated the steady inviscid flow field
around a circular airfoil with the thickness-to-chord ratio §/L=0.1. The free-
stream is uniform and parallel with the chord of the airfoil (Fig. 1). The free-
stream Mach number is high enough to produce an embedded supersonic region

over a portion of airfoil surface.

¥

Py X
S S N

8/L=0.1.
The gasdynamic equations are
oU n oF | oG _
ot ox | oy =0,
Y pu po
u® 1? uy
v=| " F=|? RE AT ,
P ouv v+ p
e ! (e D)u (e+p)v

p:=(rwi)[e~u%ﬁ(uz+4ﬁ)J (y=1.40).

Fig. 1. Transonic flow around a circular air-
foil with thickness-to-chord ratio

(35)

(36)

(37
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The variables p, %, v, p and ¢ in Eq. (36) Y
are the dimensionless density p/p., X-
direction velocity component /4., Y-
direction velocity component ¥/f.., pres-
sure p/P.fZ and total energy per unit
volume &/p.i?, respectively. The vari-
ables 7, x and y in Eq. (35) are the
dimensionless time Fu./L, coordinates x/L

and y/L, respectively. X
The grid generation is shown in Fig. ©
2. Calculated points are the central loca- Fig. 2. Mesh points and cell system.

tions of meshes, along with the points on

airfoil surface and symmetric axis [2]. Re-

garding the meshes over the circular airfoil surface, the M-scheme Ly»(4t) (Y-
direction) is

UrP=Ut. (38)
Usyi=g (U o+ U —— AL aHTeT, 39)
H, ;=25 (cos 6,-G,, ;— sin 6+ F 40

0 IT T (COS@i' o5 8N 0L, 5), ( )

where tan @; is the average inclination of the i-th circular arc and ds; is its
length.  Since the eigenvalues of 9(cos0-G—sin 0-F)/0U are (cosO-v-sind-u),
(cos O+v-sin 0+u), (cos 0+v-sinf-u)+c and (cos J-v-sinG+u)—c (c=local sonic
velocity), they have mixed signs when |v] is rather small, rendering us to use the
M-scheme. In connection with X-direction, the eigenvalues of 8F/oU are u, u,
u+c and u—c, having mixed signs in nearly subsonic regions (#<(¢) and all positive
in nearly supersonic regions (#>>c). It is possible to use the H-scheme Lyx(4t),
that is,

UTP=Us, ,—-2LFFY, (41)

Uﬂ,ﬂ/z““(Uf it U:Tl?/‘z _"é—;'[ethd i (€i+ ei—l)F{ﬂ-L it e, ;j

e [ e T (et e DFTT+ (1—e) FET
“%[(1“51) Qz"fj“ (l_ei—l)Qin—l»i]’ (42)
©, 0) W<,
©, 1) WiT>CTTE and upii<os,
. ) = 4
<€1_1’ el) 1 1 When CESY n+1/2 1z+1/2 n+1/2 d 7 X 7 N < 3>
(7 > uz,J >C:.J H t11>czljan ul+1,]>ct+l,ﬂ

1, 0) u?.ﬂhl/2>c’:+}/2 and #},,, ;< ¢/, ;.
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It should be noted that the U-M transition point must be placed at the last super-
sonic point ahead of shock. It implies that the variables at that point should be
determined not only by the upstream supersonic points but also by the adjacent
downstream subsonic point. If the shock conditions can not be satisfied there,
then it is possible to move the shock wave forward or backward.

Replacing the eigenvalues g, and 2, of Egs. (32), (33) and (34) by the practical
eigenvalues of this example, the stability conditions are

L (48/2) . { (4dx/4s;) (dx/4s))
Laer (41/2) 4y <Min |cos 0;v— sin f;°%|” |cos @,+v—sinfcu—c|’
(4x/4s,) ]{_ﬁ . { (4x/4s;) }
|cos §;+v— sin §;° 2+ ¢| =Min |cos f;+v— sin G;°u|+c )’ 4
L, (4) : M-scheme in regions u<(c
At . (1 1 1 } 1
Ax <M1ﬂ {—ZZ’ !M“Cl, u-t+c subw 20*, <45)
U-scheme in regions #_>c¢
At . (2 2 2 . { 2 }
_—( ——— e e — ——
dx m{u’ u—c ' u-tc }m Min u+c¢ Voup (46)
where ¢, is the critical sonic velocity, then,
. 24y (dx/4s,) 4x 24x }
< 24y (A0 25)  2E
g \Mm{ lcos ;v — sin Gese|-+¢7 205" (U+C)aup |- ‘0

In general, the Mach number of transonic flow is not high, and accordingly the
first and third terms are greater than the second on the right-hand side of the
condition (47) if 4y=4x; thus, we have

At<————ZACi _ (48)

For the purpose of comparison, we calculated the same problem using the

M-scheme throughout the flow field. Then the stability condition is changed to

Jt<"Min {_—-—m(u j’j) } (49)

Since the eigenvalue #—c¢ becomes equal to zero in the vicinity of sonic points,
the fourth-order dissipative term is necessary for Lgx(4f). The o value is deter-
mined by the condition (14) in regions u<lc,

o<w<Min{1~[u_§§_f, 1~[(z¢~—6)—%}2, 1—-[<a+c>7%i—]z}

:1~[(u+c)~j—i—]z’ (50)

The boundary conditions in the upstream and upper farfield are freestream
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ones. The values of p, pu and pv in the downstream boundary are found by the
vanishing second-order differentials while ¢ is determined from Eq. (37) by assigning
p=0. The symmetry conditions are used along the axis of symmetry.

To calculate airfoil surface points, Egs. (38) and (39) are replaced by one-side
scheme; it is similar to the upwind scheme replacing p by 4 and p2 by —42 in Eqgs.
(2) and (15), although it does not essentially mean “upwind”. Thus, Lor(4?) on
airfoil surface is explicitly given by

UTTP=U,—4- 4k, B1)
Uttty (Ut 4 UTTTD) = AT o, (52)

which is second-order accurate in both time and space as well. Lzx(4f) on airfoil
surface is identical to Egs. (41), (42) and (43). After U’’! were obtained from
Eq. (27), we modified the direction of velocity to be tangent to surface as follows:

=/ () + (vi)2+cos 0, (83)
n+1 ,\/ (un—i-l) "1 (,0714—1)2. Sln 0 (54)

The initial flow field as a starting condition is given artificially. The flow
variables at the three special points are assumed as follows: The leading edge
and trailing edge are stagnation points of freestream, while the highest point of
airfoil surface has a dimensionless velocity value equal to 146/ which is heuristi-
cally assigned from the fact that the relative velocity of the highest point of a
circle (6/L=1) is 2 in imcompressible potential flows. Besides, the downstream is
assumed freestream as well, whereas the pressure is distributed linearly along
symmetric axis and parabolically over the airfoil surface, and the flow variables
are distributed linearly in ¥-direction.

5. Calculated Results

We calculated three typical cases using 60x40 meshes with 20 gridpoints on
the airfoil surface. The accuracy was maintained to the extent that the relative
error for every flow variable could not exceed 0.00l. Each of these cases con-
verged in the vicinity of 550 time steps. It required about 120~150 seconds CPU
time on FACOM M-382.

Fig. 3 shows the pressure distribution for the freestream Mach number 0.83.
They were calculated using either the H-scheme or the M-scheme throughout the
flow field. As shown in Fig. 3, the both results using the H-scheme and the
M-scheme agreed with each other very well in most of the region ahead of shock.
For the M-scheme, however, a spurious pressure oscillation appeared in the up-
stream points adjacent to shock. It did not appear for the H-scheme, which is one
of the advantages of the H-scheme.

Fig. 4 compares the results of this analysis with the ones in Reference 1 for
a freestream Mach number 0.83. As indicated in Fig. 4, the main difference is
that the location of shock wave in this analysis is slightly behind the one in
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Fig. 3. Pressure distribution on a circular
airfoil when Me=0.83 and thickness-

to-chord ratio=0. 10.
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Fig. 4. The present pressure distribution

compared with Reference 1.
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Fig. 5. The equi-Mach-number lines for 3.=0.83.
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Reference 1.

Fig. 5 shows the equi-Mach-number lines in the flow field calculated by the
H-scheme for M.=0.83.

We also calculated the case which utilized the H-scheme but did not take
account of the geometric thickness of airfoil (all meshes are rectangular). The
results show that the effect of thickness is negligibly small, as shown in the
following table:

x 0.025 0.225 0.425 0.625 0.775 0.875 0.975
C, (0=0) 0.419 —0.215 —0.503 —0.734 —0.900 0.002 0.396
C, (6=0) 0.438 —0.207 —0.498 —0.734 —0.399 —0.011 0.397
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