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Abstract

Rotating machines with nonlinear spring characteristics and the
unsymmetry of shaft stiffness or rotor inertia have been often used in
industries. Since vibrations due to the coexistence of nonlinearity and
unsymmetry are complicated in theoretical treatments, there have been
few studies on these vibrations.

This paper mainly deals with the nonlinear forced oscillations at
the major critical and other subcritical speeds in a rotating shaft sys-
tem having both nonlinearity and unsymmetry. Such systems have
unique vibratory characteristics different from those of a symmetrical
system with nonlinearity. For example, at the major critical speed
various types of resonance curves are obtained depending on the angular
position of rotor unbalance. The unstable vibrations of subharmonic
and summed-and-differential harmonic oscillations appear although only
stable oscillations occur in the symmetrical system. And, stable and
unstable vibrations of super-summed-and-differential harmonic oscilla-
tions occur only in the system with both nonlinearity and unsymmetry.

In addition, we investigated the sub-combination tones in a symme-
trical system with nonlinearity and the unstable vibrations of an unsy-
mmetrical shaft with linear spring characteristics at the secondary
critical speed.
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General Introduction

With the recent rapid developments of industries, the machinery equipped in
various plants has kept growing larger and increasing its speed and efficiency.
Especially rotating machines, such as turbines, pumps, blowers, generators, motors
and compressors which are used in thermoelectric and atomic power plants, large
industrial complexes and large transportation facilities often operate at very high
speed, far in excess of the first critical speed. Nowadays, in order to realize the
high generating power and high-speed running of these rotating machines, the shaft
length is increased but its diameter is not enlarged because the diameter is res-
tricted by stresses due to centrifugal force. This makes an elastic shaft still
more flexible and vibrations in high-speed operation become a serious problem.
Therefore high-performance above the critical speed is required in rotating ma-
chines which are regarded as the heart of each industrial plant.

The first problem in the design of these machines is the determination of the
natural frequencies. For a long time, Stodola’s method?’, Rayleigh’s method?> and
an experimental formula of Dunkerlay?’ have been used for the approximate calcu-
lation of the whirling natural frequencies of an elastic shaft. Holzer’s method and
Lewis’s method? 3> have been used for determination of the tortional natural
frequencies. Nowadays, since the calculation method for critical speeds and balanc-
ing technics have made rapid progress thanks to the advance and propagation of
electronic computers, it becomes possible for rotating machines to operate with
small amplitude at the high speed above the major critical speed. But, the follow-
ing problems remain for vibration proofing. For example, the shaft of a turbo-
generator has slots where the winding is set up, and then the unsymmetry of
flexural stiffness is generated. Similarly, the two-pole motor and propellar shaft
of an aircraft have the unsymmetry of moment of inertia. As the results of these
unsymmetries, the shaft stiffness and the moment of inertia vary with double the
shaft speed. Then these systems belong to a parametrically excited system. The
study of parametric resonance in a linear system has been carried out on the
unstable vibration at the major critical speed~"’, and on the dynamical unstable
region at the sub-critical speed? 22. In addition, there exist studies on the secon-
dary critical speed of the unsymmetrical shaft supported horizontally4~7) 10~13),
z0~23)  In the neighborhood of this critical speed, the shaft whirls with double
the shaft speed. Most papers on the rotating shaft system having such unsymme-
tries are confined to studies in linear systems. In general, rotating machines often
have such unsymmetries with various degrees. As the rotating speed of machinery
increases recently, the necessity of solving various troubles caused by the unsym-
metries tends to increase.

The literatures on nonlinear oscillations are confined to rectilinear systems.
The research of nonlinear oscillations originated in the work on acoustics by Lord
Rayleigh, and the problem of three bodies in celestical mechanics by Poincare at
the end of the 19th century. In 1918, Duffing reported on the equation known as
“Duffing’s Equation” which expressed the forced oscillation in a mechanical system
with nonlinear restoring forces. After Van der Pol, a physicist in the Netherlands,
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reported a paper on the theory of a triode’s oscillation in 1926, many researchers
had interest in the nonlinear problems. Thereafter, the theory of nonlinear oscil-
lations was advanced remarkably, especially in the Soviet Union. Untill now, a
large number of papers on this problem have been reported in many countries, and
most of these papers are summerized in the book of Nayfeh24). But there are
few studies on rotating shaft systems with nonlinear spring characteristics. The
rotating shaft system has dynamical characteristics different from those of a
rectilinear vibratory system. For example, because of the existence of gyro mo-
ments, the shaft performs forward and backward precessional movements and the
natural frequencies have positive and negative values whose magnitudes vary with
the rotating speed of the shaft. The nonlinearities in rotating shaft systems are
produced by the characteristics of oil film in journal bearings, the angular clearance
in rolling bearings, the hysteresis and the spring characteristics of rubbers for
vibration proofing, the construction of bearing pedestals, the fitting condition
between a rotor and a shaft, and the structure of a foundation. In rotating ma-
chines, plain and rolling bearings are generally used. The former are often used
in a large high-speed rotating machine. There exist many studies on oil whip
caused by oil films in journal bearings25, 26>, Subharmonic oscillations of order
1/227 and 1/328) which are caused by the nonlinearity of oil film have also been
reported in practical machines. For reasons of economy, maintenance and care,
rolling bearings are often used in the general rotating machines. In rotating
machines where ball bearings are used, there appear oscillations due to the irre-
gularity of ball diameters or the passing of balls2°~31 and nonlinear oscillations,
such as subharmonic oscillations32~36> and summed-and differential harmonic osci-
llations33~37. Nonlinear characteristics are caused by the angular clearance of a
bearing. Recently, a new consideration for nonlinear spring characteristics in a
rotating shaft system was reported38: 39, and then the physical meanings of non-
linear oscillations become clear. In the rectilinear vibratory system, there are
some reports on other kinds of nonlinear oscillations — that is, super-harmonic
oscillations49 41>, super-subharmonic oscillations4?’, super-summed-and-differential
harmonic oscillations43» 44>, combination tones5~47), sub-combination tones48~50)
and internal resonances51~55) which occur when there is a proportional relation
among the natural frequencies in the multidegree-of-freedom system.

In previous studies on the vibrations of a rotating shaft system, nonlinear
spring characteristics and unsymmetries of a rotor and a shaft have been treated
independently. But, as for the nonlinear oscillations in a rotating shaft system
with both nonlinearity and unsymmetry, only the subharmonic oscillation of an
unsymmetrical shaft56) was recently reported. We have developed studies on an
unsymmetrical shaft system and an unsymmetrical rotor system where unsymmetry
and nonlinearity coexist, and have clarified the characteristics of various oscilla-
tions occuring in such systems57~60). Furthermore, we also experimentally and
theoretically solved new vibratory phenomena in the system with either nonlinearity
or unsymmetry®1, 62,

This paper is composed of seven chapters. Chapter 1 is related to the experi-
mental apparatus and the equations of motion of the rotating shaft system.

Chapter 2 deals with nonlinear forced oscillation at the major critical speed5?).
In this chapter, we have clarified that the unstable vibration appearing in a linear
system with an unsymmetrical rotor vanishes in a nonlinear system and the sta-
tionary resonance curves of hard or soft spring type are obtained. It is also
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clarified that jump phenomena appear once or twice during the deceleration process
of the shaft speed and which type of phenomenon appears depends on the angular
position of a rotor unbalance.

In Chapters 3, 4 and 5, we discuss other kinds of nonlinear forced oscillations
in the system where a disc is mounted on an unsymmetrical shaft (called an un-
symmetrical shaft system) and the system where an unsymmetrical rotor is
mounted on a round shaft (called an unsymmetrical rotor system). In Chapter 3,
we analyze the summed-and-differential harmonic oscillation’® in the unsymme-
trical shaft system with nonlinear spring characteristics, and find that owing to
the coexistence of nonlinearity and unsymmetry an unstable vibration appears in a
certain type of summed-and-differential harmonic oscillation. In this type of
oscillation, four typical kinds of resonance curves were obtained by changing the
assembly condition. Also, it is clarified that no unstable vibration appears in the
other types of summed-and-differential harmonic oscillations. The characteristics
of summed-and-differential harmonic oscillations are qualitatively the same as
those of corresponding subharmonic oscillations56). These analytical results were
verified by experiments. Chapter 4 deals with the subharmonic and the summed-
and-differential harmonic oscillations in an unsymmerical rotor system with non-
linear spring characteristics®9). Such a characteristic as unstable vibrations appears
due to the coexistence of the nonlinearity and the unsymmetry of a rotor is
qualitatively the same as that in the unsymmetrical shaft system?5¢, 582,

In Chapter 5, we discuss the super-summed-and-differential harmonic oscilla-
tions in the unsymmetrical shaft system and the unsymmetrical rotor systemS%.
Comparing with the symmetrical system where a disc is mounted on a round shaft,
we clarify the points that the unsymmetry of a shaft or a rotor makes the
oscillation apt to occur, and that an unstable vibration sometimes appears.

In Chapter 6, we show that sub-combination tonesé!’ appear with the fre-
quency of 3/2 times the precessional speed of the steel ball owing to the irregula-
rity of balls in the bearing. Also we present the theoretical and the experimental
results relevant to the cause of appearance, mechanism, and the vibratory characte-
ristics of this type of oscillation.

In Chapter 7, we treat the linear phenomenon of the secondary critical speed®?’
in the system where an unsymmetrical shaft is vertically supported by single-row
deep groove ball bearings. It is clarified that the cause of this unstable vibration
is the coexistence of the shaft unsymmetry and the non-uniform elastic support.
In experiments, we observed the unstable vibration of double the frequency of the
shaft speed which appeared in a comparatively wide region near the secondary
critical speed. Furthermore, we have clarified theoretically and experimentally
that this kind of unstable vibration does not appear at all in an unsymmetrical
rotor system, and then that this vibration is a peculiar phenomenon to an unsym-
metrical shaft system.

1. Experimental Apparatus and Equations of Motion

1. 1. Introduction

Practical machines often have the unsymmetry of a shaft stiffness due to a
key way and a slot installed on a shaft, or the unsymmetry of a moment of inertia
of a rotor such as a bipolar generator or a propeller. As simple models of the
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above systems, we manufactured the vertical rotating shaft systems, such as an
unsymmetrical shaft system where a disc was mounted on an unsymmetrical shaft
and an unsymmetrical rotor system where an unsymmetrical rotor was mounted on
an elastic shaft with circular cross section.

The experimental apparatus is a four-degree-of-freedom system where the
deflection 7 and the inclination & of a rotor couple each other. When these two
quantities do not couple, the inclination oscillation is independent of the deflection
oscillation. As given in the following chapters, the qualitative characteristics of
the coupled four-degree-of-freedom system are the same as those of this two-
degree-of -freedom system expressing the inclination oscillation. In this chapter, we
give outlines of the experimental apparatus and the method of experiments. In
addition, we present the equations of motion of 7 and @ in the four-degree-of-
freedom system and those of # in the two-degree-of-freedom system used in
Chapters 2~5. The nonlinear terms in those equations are represented by the
rectangular coordinates and the polar coordinates, respectively38:39.  Also, we
give the frequency equation for each system.

1. 2. Experimental apparatus and method of experiments

Figures 1.1 and 1.2 show the experimental apparatuses of an unsymmetrical
rotor system where an unsymmetrical rotor was mounted on a round shaft and an
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unsymmetrical shaft system where a disc was mounted on an unsymmetrical shaft,
respectively. The system in Fig. 1.1 was used in Chapters 2, 4, 5 and 7, and the
system in Fig. 1.2 was used in Chapters 3, 5 and 7. In addition to these systems,
a symmetrical system where a disc was mounted on a round shaft was used in
Chapter 6. In Figs. 1.1 and 1.2, the shaft is 700mm in length, and the rotor is
mounted at the position of @: #=1: 4. The boundary condition is a simple support
at the upper shaft end where a self-aligning double-row ball bearing (#1200) is
used. The dimensions of a rotor, a shaft and a single-row deep groove ball bearing
at the lower end are different in each chapter. Tables 1.1 and 1.2 show the
dimensions of the rotors R;~R,, the shafts S;~S5 and the lower bearings which
were used in each chapter. In Table 1.1, the mass of a rotor is denoted by m, the
moments of inertia of an unsymmetrical rotor about the x’- and y'-axes shown

Table 1. 1. Dimensions of rotors.

Unsyfﬁ?mal m (kg) | Ip(kg-m?)  Ii(kg-m?) | I;(kg-m?) | Relating chapters
Ry 9. 746 0.2342 0. 1558 0.0799 2
R 8.791 ‘ 0. 2039 0. 1593 0.0479 4, 5, 7
Disc m (kg) | D(mm) | h (mm) | Ip(kg-m?)| I(kg-m?) | Relating chapters
R 7.87 481.3 5.55 0.2279 0.1140 3, 5 6,7
Ry 6. 655 364.8 8.24 0.1131 0. 0566 3

Table 1. 2. Dimensions of shafts and bearings at the lower end.

Round shaft d (mm) [ (mm) Bearing No. Relating chapters
Sy 12 700 #6204 2, 6
S5 12 00 | 26200 | 4, 5, 7
Unsyrsnhrzigrxcal d (mm) I (mm) H (mm) | Bearing No.| Relating chapters
S3 12 700 8 #6200 3
Sy 16 700 11.5 #6200 5
Ss 16 700 11 76200 7

in Fig. 1.1 by I, and I, (I,>>I,) respectively, the polar moment of inertia of a
rotor by I, the diameter of a disc by D, the thickness by &, and the diametral
moment of inertia of a disc by 7. In Table 1.2, the diameter of a round shaft is
denoted by d, and the thickness of an unsymmetrical shaft, which was made by
cutting both sides of a round shaft of the diameter d, by H (see Fig. 1.2). In
Chapters 2~5, the shaft had nonlinear spring characteristics owing to the angular
clearance in the lower bearing, and various types of nonlinearities appeared depend-
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ing on the degree of discrepancy between the center lines of the upper and the
lower bearings. :

The shaft was driven in the direction of an arrow (see Figs. 1.1 and 1.2)
through a V-pulley and a spring coupling by a 5 > DC motor. The rotating speed
of a shaft varied from 0 to 6000rpm.

In experiments, the shaft deflections were measured optically in % and y-
directions by recording the movement of a rotor edge as shown in Fig. 1.1. A
light source S, with a band-shaped filament was set under the rotor and a real
image was produced at the rotor edge (the point A). This image was partly
obscured by the rotor before passing through the lens L,, then it was reflected
away by the mirror M and focused again on the film F. The deflection in the
y-direction was also measured at the point B in the same way. The rotating
marks were recorded on the film F at each revolution of the shaft by a piece of
paper P mounted at the rotor edge. The rotating speed of the shaft could be
directly read by a digital counter, or it could be found by counting the rotating
marks and the time marks with the interval of 0,01 seconds recorded on the film
F.

1. 3. Equations of motion

In order to present the equations of motion which express the movement of a
shaft in the systems shown in Figs. 1.1 and 1.2, we show the coordinate systems
of experimental apparatuses in Figs. 1.3 (an unsymmetrical rotor system) and 1.4
(an unsymmetrical shaft system), respectively. The system where a rotor is
mounted on a light elastic shaft generally has six degrees of freedom. But, if
the deflection and the inclination of the rotor is small, this system can be approx-
imately treated as a four-degree-of-freedom system. This is because the deflection
in the longitudinal direction of the shaft is negligible and the angle of rotation is
determined approximately by the rotating speed of the motor.

In Fig. 1.3, O-xyz represents the stationary rectangular coordinate system,
M-XY Z the rectangular coordinate system which has its origin at the geometrical
center M of the system O-xyz, and M-X,Y,Z, the rotating rectangular coordinate
system whose axes coincide with the principle axes of the moments of inertia of

e]¢A

Fig. 1. 3. Coordinate system (an Fig. 1. 4. Coordinate system (an
unsymmetrical rotor unsymmetrical shaft
system). system).
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the rotor. When the shaft is at rest, the point M coincides with the original
point O. Though M moves in the longitudinal direction of the shaft as the shaft
deflects, M is considered to move in the xy-plane because of the small shaft
deflection. The distance between the gravitational center G and the geometrical
center M of the rotor represents the eccentricity e (i. e., the static unbalance),
and the deviation angle between the direction of the polar moment of inertia of
the rotor (Z,-axis) and the tangential direction of the shaft is denoted by = (i. e,
the dynamic unbalance). We suppose that the unbalances ¢ and ¢ exist at the
angular positions @, and a, measured from the MY ,-axis in the direction of the
shaft rotation. Let the rotating speed of the shaft be o, the mass of the rotor
be m, the polar moment of inertia of the unsymmetrical rotor I, the other
principal moments of inertia 7y and I, (I;>>I,), the mean and the difference of
these diametral moments of inertia I=(I;+1,)/2 and 4I=(I,—1I,)/2, the spring
constants of the shaft «, y and §, and the damping coefficients ¢y1, €12, €21 (=¢C12)
and ¢;,. We denote the coordinates of the geometrical center M by x and v, the
projectional angles of inclination of the shaft ¢ to the xz- and yz- planes by @,
and 6, and the nonlinear restoring forces in x, ¥, 6, and 6, by N, N,, Ny, and
Ny, respectively. The time when the principal axis MY, passes the XMZ plane
is taken as f=0.

Here, for simplicity, we difine the following dimensionless quantities by using
the quality e,=mg/a:

¥=%/es, ¥ =y/e, 0:=0./(€cr/m/I), 05=0,/Cev/m/I),

ipy=1,/I, 4;=A1/1, V=t ajm, o'=wv/mja, v'=r/(@VI/m),
o'=md/(al), cu=cCyn//ma, Co=Cn="Cu/\al, cu=Cx/(Iajm),; (1.1)
¢ =efe,, v=7/(eqr/m/I), N.=N./(ae)), Ny=N,/(ae,),
Ny.=N,./(@es/T/m), Noy=N o,/ (@teon/I/m)

Then, we obtain the following equations of motion!® for the unsymmetrical rotor
system having four degrees of freedom provided we omit the primes from the
symbols :

K411 X+ C1a0,+5+70,+N,=ew?cos (vt +a,)
P4 €119+ Crab,+y+70,+N,=ew?sin (vt +a,)

6‘x+3‘pw6‘y+0219&+0226z+7x+36x""di%‘<0'3€05 2wt+éy sin 2wl)

(1.2)
+N,,=7w2{(i,—1)cos(wt+a,) — d,cos(wt—a.)}

b, — iyt czly+czzéy+ry+aordi%(ex sin 20 —f,cos 20)

+Nyy=1w{(i,—1) sin(wt+a,)—4;sin(wt —a.)}

We select the quantity ro=e,v/ m/] and exchange some of Eq. (1.1) for the
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following dimensionless quantities :
V=1y/5]T, w'=wy/TJ5, ¢'=0¢//5T, v'=7/r, W
Ng.=N,y,/(07y), be:Ney/(é\'To) )

Then, from Eq. (1.2), we get the equations of motion for the inclination oscillation
in the two-degree-of-freedom system as follows:

0o +ipwl,+ ca’xwx—di?ﬁ;(@;cos 20t 40, sin 20t) +N,,
=7w?{(1—1,) cos(wt-+a;)+4; cos(wt—a;)}
1.4
by —ipwl,+ Céy-}—@y—di%(éx sin 20t~ §,cos 2wt) +N,,

=tw?{(1—1,) sin(wt+a,) + 4, sin (0t —a,)}

where we denote the damping coefficient by ¢, and transform a. to «; (=a.-+7)
in order to make the amplitude of excitation positive because we consider the
cylindrical rotor such as i,<71 in Eq. (1.4).

Next, we consider the unsymmetrical shaft system. As the coordinates of this
system shown in Fig. 1.4 is nearly the same as that in Fig. 1.3, we state only the
different points. The system M-X,Y,Z; is the rotating rectangular coordinate
system which composes of the principal axes of the second moments of area of
the unsymmetrical shaft. We denote the polar and the diametral moments of
inertia by I, and I, the spring constants in the direction of the MX,-axis of the
unsymmetrical shaft by a-+4ea, y+4y and 6+ 48, and those in the direction of the
MY y-axis by a—da, y—4y and 6—45. Here, we designate the second moments of
area about the MX,- and MY ,-axes as I,” and I,’ (I,’<<I,"), respectively. If the
shape of the cross section of the unsymmetrical shaft is uniform all over the
shaft, the following relation holds!6):

da _ 4y 46 _ I/—1I)

a 7 8 I

(1.5

For simplicity, using Eq. (1.1) and the symbols 41;=4da/a, 4,,=7" (d7/7), and
d4,=0"(46/0), we obtain the dimensionless equations of motion for the unsymme-
trical shaft system having four degrees of freedom as follows!6):

X+ €%+ Crp0,+X+70,— 41, (% cos 2wt +y sin 2wt)

— 41,(0,c08 2wt + 0, sin 2wt) + N, = ew?cos (wt+a,)
Y4y +C150,+y-+70,— 41, (% sin 20 — y cos 2wt)

— 415 (0,sin 2wt —,c08 20t) +N,=¢ew? sin (wt-+a,)

(1.6)
ot ip00y+ €1 X+ €330, -+ 7% +00,— 41, (% cos 2wt -+ y sin 2wt)

—435(0,c08 2wt 10, 8in 2wt) -+ N y,= (i,— 1D rw?cos (wt+a,)
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fy—lp@0y-+Co1V+Cosl,+7y+00,—41,(% sin 2wt —y cos 2wl)
— A5 (0, sin 20t —0,c08 2wt) +N4,= (i,— 1) rw?sin(wt +a,)

where the primes of the dimensionless quantities are omitted. Putting 7=0 and
ci9=Cy:1=0 in Eq. (1.6), we get the equations of motion for the inclination
oscillation in the two-degree-of-freedom system as follows:

O+ iywly+€0,-+6,—4,(0,008 20t +0, sin 20t) + N,

=(1—iyrwicos(wt+a,)
1.7

Gy —ipwl,+cO,-+0,—4.,(0,8n2 wt —0,c08 2wi) + Ny,
=(1—i)rw?sin(wi+a,)

where the dimensionless quantities in Eq. (1.3), ¢(=cs;) and 4, (=4,,) are used.
We transform a. to a; (=a,+7).

Supposing that the nonlinear terms in the above equations of motion compose
of the second power terms of coordinates (the unsymmetrical nonlinear terms)
and the third power terms (the symmetrical nonlinear terms), we obtain the

dimensionless potential energy V in the two-degree-of-freedom system as follows
38,39) -

3 4
V=Vo+ 3 0005+ > 350103 (1.8)
Wity i

where V, is the potential energy due to linear restoring forces, and &;; (+j=3)
and B;; (i+j=4) are the coefficients of the unsymmetrical and the symmetrical
nonlinear terms, respectively. Partially differentiating Eq. (1.8) with respect to
8, and 0,, we get the nonlinear terms N,, and N,, as follows:

Nogo=(Be5002+2¢510,0,+e150%) + (4Po03 +3P3:0%0,28220,05 + £1505)
Ngy= (65102 +2e1,0,0,43e030%) + (83102 +2852026, -+ 3B1:0.05 +450405)

(1.9

where the first terms in the right side represent the unsymmetrical nonlinear
terms, and the second terms does the symmetrical ones. Equation (1.9) is repre-
sented by the stationary rectangular coordinates (6., 6,). In the rotating shaft
system, however, if Eq. (1.9) is expressed with the polar coordinates (8, ¢)
transformed by 6,=6cosg and #,=40sine, the dynamical meanings of the spring
characteristics become clear3®, 39>, Thus, adopting this polar coordinate expression,
Eq. (1.8) is represented as follows:

V=V,+(ePcos ¢+ ePsin ¢-+ePcos 3¢+ P sin 3¢)6°
4+ (O 3B cos 20+ BP sin 29+ P cos do -+ PP sin 4g) 6
=Vo+{ePcos(p—¢.) +e@cos 3(p—¢:)}0°
+{BO+pPcos 2(p—¢,) +FPcos 4(p—¢,)}0* (1. 10)
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where the notations in Eq. (1.10) are follows:
= VT, <O= TP, f0= v FTET
BO= VPITPT, ¢y =tan(eP/e®), o= (1/3)tan™(¢?/s?), b (1.11)
P=(1/2)tan*(BP/BP), ¢.= (1/4) tan* (B /L)

The magnitudes of the terms in Eq. (1.10) change periodically during one cycle of
¢ (from Q to 2r). The numbers of times of these changes are represented by
figures in the parentheses in the coefficients in Eq. (1.10). Hereafter, the non-
linear component which changes # times while ¢ changes from 0 to 2z is designated
by the symbol N(#). As for the nonlinear terms up to the third power terms of
coordinates, N(1) and N(3) are the unsymmetrical nonlinear components, and N (0),
N(2) and N(4) the symmetrical nonlinear ones. Between the coefficients expressed
by polar coordinates and those by rectangular coordinates, the following relation-
ships holdss, 39

(1)* (3830‘1" 612) /4 8(1)_' (€Z1+ 3503) /4 €(3>~ (530—‘ 512) /4,
eP= (em— ) /4, 08(0): (31840“1" ez 35%) /8, 5(3): (@40“500 /2, (L. 23)
BP= (Ba+Pu) /4, BP= (Bu—Pat o) /8, FL=(La—Pus)/8

Next, we obtain the dimensionless potential energy V in the four-degree-of-
freedom system as follows38):

V= Vo‘r 2 eiu¥ Y0105 + 2 Bisn®y70%0; (1.13)
(H—H—k—!—l 3) (1+J-‘~k+l 4)

where V, is related to the linear spring characteristics, and e;5,;, (G-+j+k-+1=3)
and B (1+j+k-+1=4) are the coefficients of the unsymmetrical and the symme-
trical nonlinear terms, respectively. The nonlinear terms N,, N,, Ny, and N,, ‘in
Egs. (1.2) and (1.6) are given by differentiating partially with respect to the
coordinates designated by subscrlpts Substituting the following transformation
into Eq. (1.13):

X=7 COS ¢,, V=7 8In ¢,, 0,=0 COS ¢,, 0,=0 sin ¢, (1.14)

we get the equation represented by the polar coordinates as follows88):

V=V,+ [[(eé&i Cos ¢, el sin @, )7° + {ef, cos ¢, + s sin ¢,

+ 5008 (20, — 9) + e sin (20, — ) }r20+ (e cos @,

+ el sin ¢, + e§2cos (290, —,) + e sin 2p, —¢,) }76*

+ (effe cos @, + e sin 9,)0° ]+ (el cos 3@, + e sin 3¢,)7?
+{ef cos (29, +¢,) + 8, sin (2, +¢,)} 7?0

+{eficos 20,4+ ¢,) + s sin (2, +¢,) }ro*
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+ (e cos 3@, + e sin 3909)63]}

+ [ LB+ (B c08 (9, —00) + B2 sin (pr— )} °0

+ {08+ P cos 2(p, —p4) + 052 sin 2(p, — @) }r*0°

+{B%. cos (@, —@,) + LD sin(py —¢,) }r° +520" ]

+[(BR. cos 2¢,+ B sin 2¢,) r* + (B cos (¢ +@4)

+ B2, sin (¢, + @) +Pi2cos (30, — o) + B2 sin (B¢, —¢4) }7°0

+ {82, cos 20, + P52, sin 2¢, -+ B2 cos 2¢, + P2 sin 2¢,}r?0°

+ {B. cos (@o + @) + B sin(@q + ;) +Li?2cos (3¢ — )

+ B2 sin(3p, — @, ) 17r0° + (BR.cos 20, + B3 sin 2¢4)0*

+[ (8. cos 4o, + By sin 4, )7

+ {B5P. cos (B, + o) 4 P57 sin (B, +¢4) 1770

+ {5 cos 2(p, -+ @) B sin 2(@,+ @) 172 0% + {Pi5. cos (3¢ + 1)
B8 sin (3¢, +0.)}70° + (Bcos dp,+ b sin 49 )0 ]]  (1.15)

where the numbers in the parentheses of the coefficients represent n of N(n).
For example, the value of ¢,—¢, is constant while ¢, and ¢, change from 0 to
2r. Therefore, the terms involving ¢, —¢, are the nonlinear components of N(0).
Similarly, the terms of 2¢, —¢,, 3¢, —¢,, 2¢,+¢, and 3¢, +¢, represent nonlinear
components of N(1), N(2), N(3) and N(4), respectively. The following relations
fold between the coefficients in Egs. (1.13) and (1.15)328>:

EBOc - (353000"}‘ 81200) /4
Eg)c = (52010+ €ozm> /2s

€2§c>: (52010+ €101~ 50210) /4,

«‘S%)E = (€1ozo+ 61002) /27
Ezzc = (81020 Eotir 5100.2)/4
84%)5 = (3€ooao+ 80012) /4,

Eéso)c - (83000“ 51200) /4,

5.%): = (Ezow— €101 €oa1o) /4,

Egg)c - (emzo““ o1 Emoz) /41

3(()2)0 = (sooao—” €0012>/4y

eos = (oo T €2100) /4,

et = (ot 2001) /2,

g2 = (eoz+ e110— €200) /4,
e = (cozT coz) /2,

5% = (eqr2 €101 — o) /4,
ey = Beost o) /4,

€§<3))s = (_ €o300 T €z1oo> /4¢

et = (—comt emot ezom) /4,
e = (—eqot e+ com) /4,

Eég)s - (” €003 80021) /4,
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55 = {3 (Biow~t Boso) + Pao} /8, 60 = {3 (Booso+ Boons) + Powza} /8,
B9 = (Baeo+ Bozme+ Broce+ Buzo) /4,
§%:{M&m+&m»+mmﬁﬁmaw&
57 = {3 (Bsonr— Bosso) + (Borio—Preor) } /8,
055 = (Bavzot Boaoe— Baoz— oo+ Puunr) /8,
2: = (Boz =+ Prazo— Boon — Prxez) /8,
18 = {3 (Biosot Boros) + (Borz+ o) } /8,
9 = {3 (Buoos— Bosso) + (Brozs— Porrz) } /8,
55e = (Buoor— Bown) /2, 5 = (BawotPuano) /4,
§2e = {3 (Booto— Pusor) — (Boror— Przso) } /8,
BE7s = {3 (Baoor + Pusso) + (Pevso+Pran) } /8,

@éézc) = (Bamo”“ {Qoam -+ @zm _ ﬂxzm) / 8, égzs) = ( - 46’3001 — 50310"!‘ fgzno'f“ 61201) / 8;

5e = (Baozo— Pozozt Bove— Bozzo) /4, Pis = (Brazo+ Pz /4,
B2 = (Baozo— Poone— Browe+ Bozzo) /4, Peb2= (Baon+ Poen) /4,

15 = {3 (Brozo— Borez) — (Born— Bronz) } /8,

7 = {3 (Borso+ Prons) + (Baoma+ fone) } /8,

B;ﬁgzc) - (461030 - Boma + 180121 _ 481012) / 8: 1§2s) ( 480130 - Bloos -+ 131021 + Bonz) / 8

82 = (Booso— Bowne) / 2, B2 = (Boos+ Booss) /4,

ioe = (Biooo+ Bosoo— Bzzmo) /8, i0s = (B —Bu) /8,

i = (Baoot Bosor — Brin—Br10) /8, BEPs = (Baos — Posro+ Prnso— Prewn) /8,
Bze = (Baum+ Poane— Brooe— Pz — Bran) /8,

s = (BaontBuazn— Buoe— o) /8,

Bg?a = (ﬂloso + ﬂ0103 - 100121 - .lez> /8; gé)s - (60130 - 51003 + {7)1021 - |80112) /87

Si)c = (ﬂoom‘?‘ 180004 - ﬂoozz) / 8, 5?3 = (Booal - Boms) / 8

We denote the natural frequency of the system by p, and put 2w—p=>.

(1.16)

The

frequency equations of Eqgs. (1.4) and (1.7) of the two-degree-of-freedom systems

are given as follows:
For the unsymmetrical votor system;
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G(D)G(p) — (4:pD)?*= (1-+iywd—p?) (L-+iwp—p*) — (4:09)*=0 (1.17)

For the unsymmetrical shaft system

GG —4i=A+iwp—p?) (1+iwp—p*) —47=0 (1.18)

where
G(p)=1+i,wp—p% G(P)=1+i,wp—p?) (1.19)

Equations (1.17) and (1.18) are quadratic equations of p, and have four real roots
at most against a certain value of w. Among these roots, the natural frequencies
corresponding to those of the symmetrical system where 4,=0 and 4,=0 (that is,
the system where a disc is mounted on a round shaft) are denoted by py C0)
and p (<0). The other two roots which appear due to the unsymmetry of a
rotor or a shaft are denoted by 7y (=2w—ps) and 7, (=2w—Ps).

On the other hand, the frequency equations of Egs. (1.2) and (1.6) of the
four-degree-of-freedom system are given as follows!®:
For the unsymmetrical rvotor system;

1—p? 0 7 0
0 1—p? 0 7
0.(0)= , =0 (1. 20)
7 0 G —4;pp
0 7 —4;0p G

For the unsymmetrical shaft system ;

1—p2 — 444 T — 4y,
— 44 1'52 — 4y, 4
0.(p) = | =0 (1. 21)
7 — 4y, G’ — 4y
— 4y, T — 4y, G
where
G'=8+iywp—p?, G=0-+iwp—Db (1. 22)

Equations (1.20) and (1.21) are the 8th-degree polynomials of p, and have eight
real roots at most. We donote the natural frequencies corresponding to those of
a symmetrical system where 4;=0 and 4;;=4;,=4,,=0 by p; (i=1~4, p1>p>>0
>ps>py), and other four roots by p; (=2w—p; i=1~4)
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2. Nonlinear Forced Oscillations of a Rotating Shafs Carrying
an Unsymmetrical Rotor at the Major Critical Speeds?

2. 1. Introduction

There are many reports# 5,12, 14~18, 63) concerning unstable vibrations in unst-
able regions at the major critical speeds of unsymmetrical rotor systems and
unsymmetrical shaft systems with linear spring characteristics.

In this chapter, it is clarified both experimentally and theoretically that
particular vibration phenomena appear in harmonic oscillations (that is, forced
oscillations which have the same frequency as the angular velocity of the shaft) in
the neighborhood of the major critical speed when the restoring force of a vertical
shaft carrying an unsymmetrical rotor has nonlinear spring characteristics.

2. 2. Theoretical analysis of the harmonic oscillation at the major
critical speed

Experiments were performed in a four-degree-of-freedom system where the
deflection 7 and the inclination 6 of the rotor are coupled with each other. If we
suppose the case in which such coupling does not exist, the inclination oscillation
and the deflection oscillation can be treated independently. Because, as explained
later, this two-degree-of-freedom system for inclination oscillation has the same
vibration characteristics as those of a four-degree-of-freedom system of the
present experimental apparatus, we treat a two-degree-of-freedom system in the-
oretical analysis for simplicity.

Introducing the small parameter e,
we suppose that r, ¢, 4;, N,, and N,,
in Eq. (1.4) have the magnitudes of the
same order as e (we express this order
by O(¢)). Therefore, we obtain the
equations of motion with the accuracy
of O(¢) without involving the term d4;r
=0(e?) in Eq. (1.4).

From the frequency equation (1.
17), we get the p—w diagram as shown
in Fig. 2.1. This diagram has been
calculated for i,=0.7 and 4,=0.015. In
a rotating shaft system with linear
spring characteristics, unstable vibra-
tions with the frequency w appear in the
region between w.; (=1/v1—i,+4, )
and ., (=1/+v 1—ip,—4; ) which are
derived by putting p=w in Eq. (1.17).

In the following, we investigate the
vibratory characteristics of a harmonic

Natural frequency p

oscillation (that is, the oscillation with Angular velocity w
the frequency w) in this speed range in Fig. 2. 1. The p-o diagram of the two-
the case where nonlinear spring chara- degree-of-freedom system.

cteristics exist. We put the solution
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with the frequency @ at the major critical speed in the following form.

0,=P cos (wi-+f) +e{aicos (wt+ ) +b, sin(wt+p)) o
0,=P sin(wt-+p) +e{a;sin(wi+p) +bcos (wi-+6)} '

This solution is considered with the accuracy of O(e). The amplitudes P, @i, aj,
by, by and the phase angle 8 are quantities of O(e®) which vary slowly with time.
Because the nonlinear terms N,,, N,, in the x- and y-directions in Eq. (1.4) are
different as shown in Eq. (1.9), the whirling orbit of the shaft shifts slightly
from a circle. The second terms in the right sides of Eq. (2.1) represent the
degree of this discrepancy. Substituting Eq. (2.1) into the equations of motion and
using the principle of harmonic balance concerning cos(wi?+p) and sin(wt-+p) with
the accuracy of O(e), we obtain the following equations after some calculations
Here, for convenience sake, the variables » and v (#=Pcosf, v=Psinp) are used.

@—iy)wi=—cou— (G+4VP2+ 4,0*)v-+F sin a, }
(2.2)
@2—iy) wio=(G+A4PVP?—4,w®)u—cwv—F cos
where
F=rw?(l—i,), G=G(uw)=1+iw?—uw?
2.3
B0= (3Bso+B223P0s) /8

As mentioned above, (0 is the coefficient of an isotropic symmetrical nonlinear
term3®). Namely, it is known from Eq. (2.2) that only the nonlinear term which
is uniform directionally has influence on this kind of oscillation. Expressing the
stationary solutions of Eq. (2.2) by putting #=u,, v=0,, Pi=ui-+v} we get the
following equations which give the stationary solution P=P, (=+/ut+vp?) and
B=PB, (=tan 1 (vo/uy)):
(B — (40%)2+ (c0)*} P — (' + (40%)+ (cw) *} F?
“‘“ZAinFZ (k Ccos ZCUZ-'FCCU sin Zdi) =0 (2 4)

(k—4,0%) sin a;—cw cos &;

tan f,= (B+4,0w?)cos a,+cw sin «,

where k=G+48®P2%.  Considering small deviations from the stationary solutions
and substituting #=u,-+& and v=v,+7 into Eq. (2.2), we obtain the differential
equations for & and 7. From the characteristic equation of this equation, we get
the following condition for a stable stationary solution:

B2 — (4,07) 2+ (cw)?+ 88O P2 (k-+ 4,w2cos 28,) >0 (2.5)

Differentiating the first equation of Eq. (2.4) partially with respect to P, and
putting 2w/9P =0, we obtain

Py {k? — (4,074 (c0)?} (B2 — (4iw®)*+ (cw)?
+8BOP% (k+ d;w?cos 28,)} =0 (2.6)
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The relation Py{k%— (4;w2)2+ (cw)?} =0 holds in general, and we get
k*— (4;w?)?+ (cw)?+8BF“P2 (k+ d,w?cos 284) =0 2.7

Therefore, from Eqgs. (2.5) and (2.7), we know that the point where the tangent
line becomes vertical is consistent with a boundary between a stable and an unstable
resonance curves.

Examples of resonace curves calculated by Eq. (2.4) are shown in Figs. 2.2 (a)
and 2.3 (a). These examples have been calculated for a positive value of B¢ and
the resonance curves belong to a hard spring type. The ordinate represents the
amplitude P,, and the abscissa represents the angular velocity o of the shaft.

180

s =7 i B
Stable 2
——— Unstable “ ; B
20 =07 Py g of e
‘t B =0.015 . o P e Stavle //’ :
=0. 4 ——— Unstobl .
E Em=g gé /2 ////// g e 2 /
3 ' -7 .
a T =0,03 A 0 T
< o =457 e vid 2 Bor
1k L~ // ip 20,7
/ 4; =0,015 P Bss
of ¢ =001 o ____ |
A “o0 - B%=0.02 | B
= p, T =003 :
: o =135 N
: 1 ! A ! ! L L . !
0 I I 2.0 17 1.8 1.9 2,0
Angular velocity w Angular velocity w
(a) Resonance curves. (b) A phase angle diagram.
Fig. 2. 2. A case of jumping to (Poz, Bo32).
180
2
Stable e | ——Stoble ~=3
== Unstable = |~~~ tnstoble Py
R 290 F
" 4; =0,015 5
| € =0.01 2
E £%=0.02 £
2 T =0.03 1
= @ =135 0 -~ Bar
1 .
W =0.7
83 =0,015
cm=0.01 B
-0 - AV=0.02 o S .. -
T =0.03 = |
ap =45° EA\ Bor
.0 1 1 I
1.7 1.8 1.9 2.0 17 1.8 1.9 . 2.0
Angular velocity @ Angular velocity w
(a) Resonance curves. (b) A phase angle diagram.

Fig. 2. 3. A case of jumping to (Po1, Bo1).

The full and the broken lines represent the stable and the unstable solutions,
respectively. The resonance curves have at most five values of amplitude for a
given value of w, and the stable solutions are named Py, Py, Pos while the
unstable solutions are named Pys, Poy in order of magnitude. When the angular
velocity o decreases from the higher speed side, the amplitude changes along the
stable curve Pys and jumps from the point 0 to the other point 1 or 2 on the
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stable resonance curves P,; and Py, at the speed marked by A in the figure. By
integrating Eq. (2.2) numerically and investigating the transient solution in jump
phenomena, we find the point to which it jumps. Figures 2.2 (a) and 2.3 (a) are
examples of the jump phenomena to the points 2 and 1, respectively, and the jumps
are indicated by arrows. Figures 2.2 (b) and 2.3 (b) are phase angle diagrams
corresponding to Figs. 2.2 (a) and 2.3 (a), respectively, and Bg1, Bos, ... are phase
angles corresponding to the amplitudes Py, Pys, .... When the amplitude changes,
the phase angle 8, also jumps as indicated by arrows.

We shall investigate which type of jump phenomena between Figs. 2.2 and 2.3
occurs depending on the angular position «; of dynamic unbalance z. The result is
shown in Fig. 2.4 where the magnitude and the angular position of dynamic un-
balance are expressed by a polar coordinate system (z, ;). It jumps to the point
2 as in Fig. 2.2(a) in the shaded region and jumps to the point 3 as in Fig. 2.3(a)
in the other region. The angles /AOA’ and /BOB’ in the figure are zero when
¢=0, and they increase as the damping coefficient ¢ increases.

’
B
Stable
——— linstable
f | ZP fg'éls \“(
E ¢ oK
= T =0.03
1@ B 0.08 R
%gngm ~
@\B:::-G‘Ol
ip=0.7 Ai=0.015 B0
o L L L ]
. . .7 i .
C =0.01 (3(0)'—‘ 0,02 re ' e Angulor »:lelgu)cSty 7}
Fig. 2. 4. A relation between the type of Fig. 2. 5. An effect of the coefficient of
jump and magnitude 7 and phase nonlinear terms A0,
angle «; of the dynamic unbalan-
ce.

Figure 2.5 shows an effect of the coefficient 8¢ of nonlinear term. The
resonance curves become a hard spring type when $(9 is positive, they become a
soft spring type when B(0) is negative; and they become a type of a linear system
and an unstable region appears when $(®=016>, When (520, at least one stable
solution exists and the unstable region disappears because the resonance curves
bend toward higher speed side or lower speed side
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2. 3. Theoretical analysis in a four-degree-of-freedom system

In this chapter, we shall analyze the same four-degree-of-freedom system
where the deflection 7 and the inclination @ of the rotor are coupled like the
experimental apparatus. From the results of this analysis, it follows that the
constitution of equations in this system is the same as the corresponding equations
in the two-degree-of-freedom system and consequently the vibratory characteristics
are the same qualitatively in these two systems.

When 4; and = have the magnitudes of O(e) in Eq. (1.2), we get the dimen-
sionless equations of motion omitting the product terms of 4; and r with the
accuracy of O(e). The solutions of these equations of motion in the neighborhood
of the major critical speed can be expressed with the accuracy of O(e¢) as follows:

X=u,C08 wi—v;sin wt+e(d,cos wt-+e,sin wt)

y=1u,8in wt+v;c08 wt+e(d; sin wi-+e;cos wt)
2.8)

0,=1u%,C08 wl—v,sin wi+e(d,cos wi-+e,sin wt)
0y=1u;sin wl-+v,c08 wl-+e(d;sin wi-+e;cos wt)

The amplitudes uq, %y, v, Vs, d1, di, d,, d3, €1, €, €5, and e; are quantities of
O(e% varying slowly with time. By substituting Eq. (2.8) into the equations of
motion, we get the equations corresponding to Eq. (2.2). And from these equa-
tions, we obtain the following relations with the accuracy of O(e?%):

Uy _ Uy _ Uy Vg _ 1—w? 7 — 2.9
= = - = L ~=Fk 2.9
U, Uy Uy, Uiy T O+1,w2—aw

where %, and v,, represent stationary solutions. With » of Eq. (2.9), the equa-
tions corresponding to Eq. (2.2) are

Wity = — "Wty — (f+ PO R+ 4, 02) v, + F' sin
(2.10)
wty=(f+R:—4; 0¥ty — ¢’ w0, —F' cos &,
where
A=2G"—7k(2—1,), ¢'={G' (c11+xC12)—7(CortrCy3)}/A,
F'= i/ (Go) 75 (5 — ) — 267 (lp— D ez (et~ ) /4,
f={1—w?)G =1} /A, G=0+iw’—w? Ri=uliv?
r(2.11)

tana; ={G'e sin ¢,—yc({,—1) sina,}/{G'ecosa,—yr (i,— 1) cos &},
8= (G'BP—1PP)/A,  BO=APY+ 3B+ 2309 + 2300 0L,
B =P -+ 2632 + 26355 + 36 . +4£2 6, Ai=4,(1—-w®)/A

The coefficients {9, Y., etc., and the coefficient f¢® in Eqgs. (2.10) and (2.11)
are coefficients of isotropic symmetrical nonlinear terms3?). They are the same
kind of coefficients as $¢% in Egs. (2.2)~(2.4).
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By comparing Eq. (2.10) for a four-degree-of-freedom system with Eq. (2.2)
for a two-degree-of-freedom system, we know that they are the same in construc-
tion and have the same dynamical characteristics of their coefficients. Therefore,
it is clear that Eq. (2.10) gives qualitatively the same results as those of inclination
oscillation in a two-degree-of-freedom system mentioned above.

2. 4. Experimental results

The experimental apparatus is shown in Fig. 1.1. An unsymmetrical rotor R,
in Table 1.1 was mounted on a vertical elastic shaft with circular cross section
S, in Table 1.2.

When the experimental apparatus was assembled carefully to attain good align-
ment of the center lines of the upper and the lower bearing pedestals and the
bearing center line was situated at the middle of the angular clearance of the
lower bearing, the restoring force of the shaft had strong symmetrical nonlinear
spring characteristics?®). After balancing the rotor sufficiently, we performed
many experiments for various magnitudes and directions of the static unbalance by
changing the small correction weight.

Typical examples of experimental results on resonance curves and phase angle
curves are shown in Figs. 2.6 (a), 2.6 (b), 2.7 (a) and 2.7 (b). Due to the strong

Amplitude mm

180
s . W
-0~ x-direction g B
~g- Y-direction @
g %
1.0 - 2
g
&
o ““‘_—M&&W@—
05 - Mf(ﬁ& B
b Bes od
~90 }- Ief
0 L L L 1 L 1 |

i
800 500 1000 1100 1260 1300 800 900 1000 1100 1200 1300
Angulor velocity @ rom kngulor veloclty @ rom

(a) Resonance curves. (b) Phase angle curves.
Fig. 2. 6. A case of jumping to (Poz, Bo2).
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Fig. 2. 7. A case of jumping to (Po1, fo1)-.

symmetrical nonlinear spring characteristics, the resonance curves had hard spring
types3®), In Fig. 2.6(a), when the shaft was decelerated from the higher speed
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side, the oscillation jumped to the curve Py, at w=1111 rpm, passed along the
curve Py, and jumped again to the curve Py; at w=920 rpm as shown by arrows.
This figure has qualitatively the same characteristics as Fig. 2.2 (a). Figure
2.7 (a) shows the case where it jumped not to the curve Py, (shown by the
symbols (D and () but to the curve Py at w=1029 rpm. Although the ampli-
tudes Py and Py, are almost the same in magnitude as shown in Fig. 2.7 (a), the
values of phase angles By; and B,, are distinctly different from each other as
shown in Fig. 2.7(b). Therefore, we can make a clear distinction between the
Py; curve and the Py, curve in recorded waves and can easily determine that the
oscillation jumped to Py; in this case. The curve Py, in Fig. 2.7 (2) was obtained
by forcing a jump to it with impulse. Figure 2.7(a) is qualitatively the same as
Fig. 2.3 (a). The curves P,y in Figs. 2.6 (a) and 2.7 (a) were measured up to the
amplitude about 1.5mm for safty, and no jump phenomenon was observed in acce-
leration.

The relation between the type of jump and the magnitude and phase angle of
unbalance of the rotor is shown in Fig. 2.8. As the discrepancy between the direc-
tion of the unbalance and the direction of the shaft deflection became large when

0.2
® e
£ 8 o o
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jump and the magnitude and phase @ e © F' gl 9950
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the amplitude and the phase angle o . ° og
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in Fig. 2. 4 The symbols @ and 0 °'[ © °© e ®
mean the cases of jumping to (Pyo,
Bo2) and (Po1, fo1), respectively.) -02 1 ! L
-02  -01 0 01 0-2
Ycosg mm

the shaft rotating speed approached the resonance point, we measured the amplitude
7 and the phase angle B at =800 rpm where the rotating speed was at some
distance from the resonance point and the discrepancy is almost negligible. The
symbols @ and O in the figure correspond to the resonance curves of the types
in Figs. 2.6 (a) and 2.7 (a), respectively. These experimental results agree with
the theoretical results shown in Fig. 2.4. In the above-mentioned examples, (7, 5]
=(0.176mm, 155.5°) in Fig. 2.6(a) and (¥, §)=(0.156mm, 19.5°) in Fig. 2.7(a).

We also experimented on the case of linear spring characteristics by changing
the lower bearing to a self-aligning double-row ball bearing (#1204). The width
of the unstable region was about 110 rpm.

2. 5. Conclusions

The theoretical and the experimental conclusions about the harmonic oscilla-
tions at the major critical speed in an unsymmetrical rotor system with symme-
trical nonlinear spring characteristics are summarized as follows:

(1) The unstable region appearing in a linear system disappears in a nonlinear
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system and stationary resonance curves of a hard or soft spring type are obtained.

(2) The resonance curves can be devided into three regions concernig speed,
that is, the regions where one, three, and five stationary amplitudes exist, and
jump phenomena occur at the rotating speeds of their boundaries.

(3) Among various kinds of nonlinear spring characteristics, only the isotropic
nonlinear component has influence on this oscillation.

(4) The four-degree-of-freedom system where the deflection and the inclina-
tion of the shaft couple with each other and the two-degree-of-freedom system of
inclination oscillation which does not couple with deflection oscillation have quali-
tatively the same vibratory characteristics.

(5) In the experiments with the above-mentioned unsymmetrical rotor, no
jump phenomena appeared in acceleration processes.

(6) When the shaft was decelerated from the higher speed side, two types of
resonance curves where one or two jumps appeared were obtained.

(7) It depends on the angular position of the rotor unbalance which type of
these two kinds of vibration phenomena appears. The boundaries of these regions
concerning angular position coincide approximately with the main axes of inertia
of the rotor.

3. Summed-and-Differential Harmonic Oscillations of
an Unsymmetrical Shafts®

3. 1. Introduction

Almost all the studies of nonlinear oscillations in rotating shaft systems have
been concerned with elastic shafts with circular cross section (i. e., round shafts).
When an elastic shaft with a disc is supported by single-row deep groove ball
bearings, the restoring force of the shaft has a nonlinear spring characteristic
owing to angular clearances??> of the ball bearings. As for the nonlinear forced
vibrations in such systems, we have reported on a series of experimental3? 3436
37> and theoretical studies?3, 35, 38),  We designate natural frequencies of this
system by p;, p;, and p,. In these papers, we concluded that there were similar
characteristics between subharmonic oscillations of order 1/2 and summed-and-
differential harmonic oscillations of the type [p;p;], and between subharmonic
oscillations of order 1/3 and summed-and-differential harmonic oscillations of the
types [2p;£p;] or [pspipsl.

Few researches have been reported on the nonlinear oscillation of an unsymme-
trical shaft with directional nonuniformity of stiffness. Previously, we reported
on a complex phenomenon of subharmonic oscillations of unsymmetrical shafts5®.
In that paper, we made it clear that a nonlinear component, which had no effects
on the subharmonic oscillation of order 1/2 of the mode of forward precession in
a round shaft system, had great influence on it through the unsymmetry of shaft
stiffness.

In this chapter, summed-and-differential harmonic oscillations of an unsymme-
trical shaft with nonlinear spring characteristics are treated theoretically and ex-
perimentally, and we shall clarify that they have similar characteristics to subhar-
monic oscillations previously reported56). Especially, in the case of the summed-
and-differential harmonic oscillations of the type [p;—pil1 (p:>0, p;<0), the
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nonlinear component, which has no effects on the same types of oscillations in a
round shaft system, has influence through the unsymmetry of shaft stiffness.
Consequently, depending on the intensity of nonlinear characteristic and the degree
of unbalance, the following types of resonance curves appear in experiments: a
stable resonance curve of hard spring type, a stable one of soft spring type, an
unstable region, and a case in which no summed-and-differential harmonic oscilla-
tions occur.

Experiments are performed in a four-degree-of-freedom system where the
deflection and the inclination of a shaft couple with each other. In a theoretical
analysis, a two-degree-of-freedom system is mainly treated for the sake of sim-
plicity. As mentioned later, results of theoretical analysis in a four-degree-of-
freedom system are qualitatively the same as those in the two-degree-of-freedom
system.

3. 2. Theoretical analysis of the summed-and-differential harmonic
oscillation of the type [pr—ps]

The experimental apparatus is a four-degree-of-freedom system where the
deflection # and the inclination ¢ of a shaft at the position of a rotor couple with
each other. After somewhat complex calculation of such a system, we can show
that the amplitude ratio of an inclination oscillation to a deflection oscillation is
constant with the accuracy of the zeroeth order of the small quantity e (labelled
0(e%)), and that the equations for resonance curves are qualitatively the same as
those in the two-degree-of-freedom system as mentioned later.

Therefore, in this section, we analyze the inclination oscillation in a system
where 7 and ¢ do not couple as a simple case of the whirling motion. Experimental
results concerning the deflection oscillation of a four-degree-of-freedom system
are explained by the analytical results of such a two-degree-of-freedom system.

In the theoretical analysis of the harmonic oscillation at the major critical
speed in Chapter 2, we supposed the unsymmetry of moment of inertia of a rotor
4; to have the magnitude of O(e). In Chapters 4 and 5, however, we shall suppose
4; and the unsymmetry of the shaft stiffness 4, to have the magnitude of O
in the cases of nonlinear forced oscillations which occur at the speed far in excess
of the major critical speed. Therefore, in the dimensionless equations of motion
(1.7), the quantities 4, ¢,, 6, and ¢ are O(¢%), and ¢, N,, and N,y are O(e).

The summed-and-differential harmonic oscillation of the type [#;—p,] means
such an oscillation in which two vibrations with the frequencies w; (>0) and o,
(<0) may occur in the neighborhcod of the angular velocity where the relation
Pr—ps=w holds, and in this case the relation

Wr—w,=w, wr=p; w,=p, 3.1

are satisfied. Since the unsymmetry 4; has the magnitude of O(e?), the equations
of motion (1.7) cannot be solved by adopting the transformation to normal coordi-
nates®®. Accordingly, we will obtain an approximate solution of Eq. (1.7) by
using a refined harmonic balance method.

Because of the unsymmetry 4, and the difference of nonlinear characteristics
in 6, and ¢, directions, the approximate solution must be assumed in the following
forms with the accuracy of O(¢). We put 20—wr=w; and 2w—w,=o, in the
following equations :



Vibrations of a Rotating Shaft with Nonlinear 155

02 Rfcos

0 =R, %08 (i 07) + R (st +0,) + R, G (@, =37) + Ry g (@t —03)

Sin

a b a
P8 (t ) + e[ 1 B2 (it 07+t S (st 10.) g G (wat+0)

] ot )+ G G @0+ SR @00+ @t =20
+§g§g§<abt—ab>Tﬁfg‘f;{(zwwf>t+6f}Tifﬁg‘;{(zwww—af}

o el (CEEPRIEA R bt (CEENIELN

I @oat -, 4 S (20T 1—0)

IO Qo+ B0+t S @)t —0) | 3.2)

In the above equation, however, we pick up only oscillation components required
in a later calculation. It is assmed that amplitudes Ry, Ry, By, Ry, P, a5, by, a},
b, ay, by, @}, by, @y, by, @5 b, @, by, @3, b4, dyy er, Ay €5, doy €5y iy €5 fro R
i hs for B, f3. ko and the phase angles dy, 65, and B are quantities of 0%,
and are slowly varying functions of time ¢. Using the method of harmonic balance,
we analyze these equations in the same way as in the previous report®6).

Substituting Eq. (3.2) into Eq. (1.7) and comparing the terms having the same
frequencies with the accuracy of O(e%), we obtain the amplitude ratios Rs/Ry and
R,/R,;, and the solution of a harmonic oscillation as follows:

R_f . Gf _ As Eb — Gb = A‘ (3.3}

Rf As N Gf ’ Rb As Eb

_ _ (A—i)tw?cosa, —p g (I—iy)tw?sina,
P =P cos = ?G—Ax , P=Psinfi= 1’G+As (3.4)

where we use the following symbols: Gs=G(wy), Go=G(wy), Gr=G(ws), Gv=
G(wy), and G=G(w). Evidently, from Eq. (3.3) the relation

Gf—G_f:Gbéb:AE (3. 5)

holds with the accuracy of O(e?).

Next, comparing the terms having the same frequencies with the accuracy of
O(e), the amplitudes Ry, Ry, R, and E,, and the phase angles d; and §, can be
determined. Using Egs. (3.3) and (3.5), we obtain the following equations36:

AR = —0,R,— B0 (9,R% 2§, R + 2k P?) R -+ 61, (f2 cos 2
B9 sin 20)R,R? — 2% (a,c08 ¢+ a,sin §) PR,

AR ;= R;+6m,(fPcos 2¢+ Y sin 2¢) R;R} 42 (a,co8 ¢
—a,sin ) PR,
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AR,y =—0,R, — 49 (9,R} +29,R%+ 2k, P?) R, +6m, (fPcos 24 ) (3.6)
—B%sin 20) R} R, —2e® (b,cos ¢+b,sin ¢) PR,
A,Ry=c,R,—6m,(f?cos 20+B% sin 2¢) RZR, —2¢™® (b.cos ¢
—b,sin ¢) PR,

In the above equations, we introduce the notations as follows:

Af: (ipw "“wa>éf"" (ipa’ —25f)Gf,

Ay=(l,0—20,)Gy— (l,0—2w,) Gy,

a.=(G;+G,+4,)cos B, a,= (G;+G,—4,) sin §,
b,=(G;+G,+4G,/G,) cos B, b= (G;+G,—4,G,/G;) sin 8,
c;=¢(w;G;—w,G,), cr=c¢(w,G,—,G,),
9,=(G3+Gi+44%) /G, 9,=(G;+Gi+44%)/G,,
§;={(G,+G)) (G,+G,)+24%}/G,, 3.7
9,={(G;+G)) (G,+G,) +24%}/G,,

k;=G;+ G+ 4,cos 28, k,=G,+G,+ 4,cos 28,
my=—4,(G;+G,) /G, my=—4,(G;+G,)/G,,

B9 =3P cos 20, B =6 sin 20,,

BO= /B B, 2¢;=tan™* (B9 /6P),
9=6,—0, 0,=G,G,— 42, 0,=G,Cy— 4

Among the coefficients of nonlinear terms, ¢, ¢, and (2 appear in Eq. (3.6).
When 4,—0 in this equation (simultaneously G;—0O(¢) and G,—0(s)), we obtain
the corresponding equation®#> for a round shaft system provided we ignore the
quantities smaller than that of O(e). The presence of 8¢, which has no effects
on a round shaft system, causes complicated oscillation phenomena in the unsymme-
trical shaft system This feature is similar to the case of the subharmonic oscilla-
tion®8> reported previously.

Putting Ry=Rys,, Ry=Ry,, 05=0r9, 8,=05, and Rr=Ro=67r=6,=0 in Eq.
(3.6), we obtain four equations to evaluate the stationary solutions. With these
four equations and the relation w;—w,=w, we can determine five quantities, that
is, Ryo, Ruo, ¢0 (=0r90—08s0), @y, and w,. Eliminating unknown quantities R,
¢, @y, and @, by using those five equations, we have a double quartic equation
about Ry,. We shall examine the stability of the stationary solutions which are
not zero by the following procedure. We consider small deviations from the
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stationary solutions and represent them by &y, &, 7, and 7, (9=797r—"7s). We
substitute Ry=Rso+E&s, Ro=Rpo+&s, 65=0r0-+7y and 8 =00+ into Eq. (3.6),
and ignore the terms smaller than the magnitude of O(e?). By assuming the
solutions in the following forms: &y=As*est, &, =A,%est, and n=A%est (As* Ap*,
and A*, however, are arbitrary constants), we can obtain a characteristic equation.
Consequently, the stability can be determined by adopting the Routh-Hurwitz cri-
teria to that equation. Also, the stability criteria of stationary solutions with
zero amplitude must be performed by changing variables into uy, vs, %s, and v,
with the transfomation #,=Rycosds, vy=Rjssin ds, s =Rscos dy, and vy=2R;sin 0p.
The equations which represent the resonance curves and the stability of these
solutions are omitted because of their complexity. Only the results of computation
are shown in Figs. 3.1~3.4.

Resonance curves change their shapes depending on the values of parameters.
The influences of the coefficients of nonlinear terms g(®, ¢, and B® and the
dynamic unbalance = are shown in Figs. 3.1~3.4, respectively. In these diagrams,
the ordinates represent the stationary amplitude Ryso-+Ryo, and the abscissas re-
present the rotating speed of the shaft w. The solid line curves denote stable
solutions, and the broken line curves unstable ones. In order to avoid confusion,
we draw only the solutions Rys,-+R;,=0, and eliminate the solutions Ry, +Ryo=0.
The points at which resonance curves intersect with w-axis give the boundaries
between the stable parts and the unstable parts of zero amplitude solution. The
solutions of Ryo+R,o=0 are unstable between two such points and are stable
outside them56). At those points resonance curves intersect w-axis at righ angles.
The effects of parameters are similar to the case of the subharmonic oscillation
of 1/2 [+2p,] reported previously®®.
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The influence of the nonlinear component A¢® is shown by Fig. 3.1. The
resonance curve has the shape of a hard spring type when B¢ takes a positive
value, and that of a soft spring type when B¢® is negative. Especially, when the
absolute value of £(® is small, the resonance curve of R;q+R;,,0 is an unstable
solution at any angular velocity w. For example, when B¢ =0, no stable solutions
(including the solutions whose amplitudes are zero) exist between 1.96<w<2.07;
and an unstable region of w appears. Also in this case, since the solution Ry,+
Ry0=0 is stable at w<{1.96 and 2.07<w, no summed-and-differential harmonic
oscillation occurs.

The effects of nonlinear component e are shown in Fig. 3.2. Because @
is contained in Eq. (3.6) in the form of a product with the external force P, we
may conclude that ¢ has influence on resonance curves in the same way as P
(or 7). When ¢1=0.05 or 0.10, the stable region appears. But when ¢ has
such a small value as 0.025, no resonance curves cross w-axis, and the unstable
region vanishes. In this case, the solution Rry+R;,,=0 is stable at any w. In the
case of small ¢»), only the harmonic oscillations appear unless large disturbances
exist.

The effects of the nonlinear component 5(2> are shown in Fig. 3.3. The com-
ponent $¢® has no influence on this kind of oscillation in a round shaft system,
but it becomes a factor causing complicated phenomena in an unsymmetrical shaft
system. The resonance curve for f¢2=0 is the same as that of a round shaft
system. In Fig. 3.3, the larger B(2 becomes, the wider the spread of the curves
in the part of large amplitudes becomes. For example, the stable curve of a hard
spring type for B =0 tends to bend toward the left side as B(2> increases.
Finally it becomes an unstable curve which bends toward the left side, and an
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unstable region appears.

The effects of the dynamic unbalance v are shown in Fig. 3.4. Similar to the
case of (1), the unstable region vanishes for a small <.

There are qualitatively no big changes depending on the phase angle ¢,, or the
angular position of the unbalance a;.

3. 3. Other kinds of summed-and-differential harmonic oscillations

In a round shaft system, the summed-and-differential harmonic oscillations of
the types [p;—2p,] and [2p;—p,] occur in addition to the type [pr—p»]1%%. We
may expect the occurrence of these kinds of oscillations also in this unsymmetrical
shaft system. FEach resonance curve can be given by the same procedure as that
in Section 3.2. From the results of such analyses, it becomes clear that the
nonlinear components B¢ and S have influence on resonance curves in the type
[pr—2Ps7, and only B¢ does in the type [2ps—ps]). Therefore, we find that
these two oscillations are affected by the same nonlinear components as those in a
round shaft system3®: and that no other components have influence through the
unsymmetry 4,. From the computation of these resonance curves, we see that
those of the summed-and-differential harmonic oscillations of the types [pr—2ps]
and [2p;—ps] are qualitatively the same as that in the case of a round shaft
system.

3. 4. Theoretical analysis for the four-degree-of-freedom system

The experimental apparatus had four degrees of freedom, where the deflection
vibrations and the inclination ones couple with each other. In Section 3.2, we have
analyzed the problem for a two-degree-of-freedom system for simplicity. Now we
shall obtain, qualitatively, the same results for a four-degree-of-freedom system
by a similar procedure. The equations of motion are given by Eq. (1.6) in the
dimensionless form.

For example, we will present the results of calculation for the summed-and-
differential harmonic oscillation which occurs when the relation p;—p;=w holds
among the frequencies p; (>0), p; (<0) and w. We denote the amplitudes of
0(e9) of the deflection oscillation with the frequencies w; (=p;) and w; (=p;) by
R, and R;, those of O(e®) of the inclination oscillation by R; and R}, and the
respective phase angles by §; and 8;. We put &;—3;=¢;;. In addition, we denote
the amplitudes of O(e®) with the frequencies w; (=2w—w;) and @; (=20—w;)
occuring due to the shaft unsymmetry by R, R;, and R;, R}, respectively. We
denote the amplitudes of O(e%) of the deflection and the inclination of the har-
monic oscillations with the frequency o by P and @, and their phase angles by §:
and B,. Using these quantities, we suppose the approximate solution with the
accuracy of O(¢) in the same manner as Eq. (3.2). Substituting this solution into
Eq. (1.6) and using the principle of harmonic balance with the accuracy of O(e),
we obtain the following equations for the amplitudes of the deflection oscillation
R, and R; and the phase angle ¢;;, corresponding to Eq. (3.6) in Section 3. 2.

R0, =20,(w,) R+ {K; "R} + LR} + (fVF") } R,
4+ (B®cos 2¢,;—B® sin 24, ;) R,R} - { (¢ F);c08 ¢y

+ (eWF) sin ¢y} R;
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MR, = C;oR;+ (BPcos 24+ B2 sin 24,;) BRI — {(e®F)’; cos ¢,;
— (eWF);sin ¢;;} R,

. (3.8)

m;R;0,;=20,(w;) R;+ {KPR;+ LY R} + (BOF*) ;}R,;
(B2 cos 24y, — B’ sin 20,)) R2R, + { (cOF) ,c08 4y,
+ (eVF) sin ¢} R,

ijj:CjoRj—“ (B<§)/COS 29//“’"{‘3(02), sin 2¢,_f)R?R]

+{(e®PF)’;c08 ¢;;— (eVF) ; sin ¢;;} R,

where, with the accuracy of O(e), m,;, m; are constants; c¢;o, ¢jo are the constants
indicating the damping; @(w;), @(w;) are the quantities indicating the detuning;
K9, K9, L®, LY are the coefficients relating to N(0); B®, B?, B®' B® are the
coefficients relating to N(2); (BOF2),, (BOF2); are the quadratic equations of the
amplitude of a harmonic oscillation having the coefficients of the nonlinear compo-
nent N(0); and (eDF),;, (eVF);, (¢DF){, (eDF)}, are the linear expressions of
the amplitude of the harmonic oscillation having the coefficients of N(1). We omit
the complete forms of the expressions representing these notations. Equation
(3.8) gives the amplitudes of the deflection oscillations in the four-degree-of-
freedom system. Comparing with Eq. (3.6), we find that the shapes of resonance
curves for Egs. (3.6) and (3.8) are qualitatively the same because each equation
has the same form. Therefore the results of calculation for the inclination oscilla-
tion in the two-degree-of-freedom system represented by Eq. (3.6) can be compar-
ed qualitatively with the experimental results for the deflection oscillation which
will be mentioned in Section 3.5.

In the round shaft system having four degrees of freedom (the natural fre-
quencies; pi1>p,>0>ps>p,4), the oscillations of the types [pi-+ps]1, [—ps—Psl,
[2p:+0i] G=5), [—pe—2D] (k=D), [p1+p2—p:], and [p;—ps;—p,] may occur, in
addition to the oscillations of the types [p;—p.], [0:—20:], [2p;—Ps] correspond-
ing to those of the types [pr—ps], [Pr—200], [20r—ps ), respectively. The sub-
scripts in these notations take the values of 4, j=1, 2 and %, /=3, 4. The features
of these kinds of the oscillations in an unsymmetrical shaft system can be examined
by analyzing the equations for the four-degree-of-freedom system in the same way
as previously mentioned. Except for the oscillations which are related to three
natural frequencies, we can obtain qualitatively the same results as those for the
four-degree-of-freedom system by analyzing the two-degree-of-freedom system if
we cancel the restriction wy;=p;>0, and w,=p,<0, and assume p, and p, can
take both positive and negative values. For example, analyzing the oscillation of
the type [p1+p2] under the assumption of wy—p; >0 and w,—p, >0, we find that
the nonlinear component N(2) in addition to N(0) and N(1) is concerned with this
oscillation in an unsymmetrical shaft system, and that this oscillation has the same
features as those of the type [2p,] and [p;—p.].

3. 5. Experimental results

The experimental apparatus is shown in Fig. 1.2. In experiments, we used two
kinds of discs, i. e., R; (the larger disc) and R, (the smaller disc) in Table 1.1,
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and the unsymmetrical shaft Sy in Table 1.2. The summed-and-differential har-
monic oscillations were observed under various assemblies. The values of the
parameters of the system were varied by exchanging the disc and changing the
assembly of the apparatus and the size and location of the existing unbalance.

The nonlinear spring characteristics of the shaft were determined by the posi-
tion of the bearing center line to the angular clearance of the lower bearing. The
typical resonance curves measured are shown in the following.

The p—w diagram for the larger disc is shown in Fig. 3.5. This diagram was
drawn on the basis of the experimental data in the assembly shown in Fig. 3.6.
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Fig. 3. 5. The p-w diagram (the larger Fig. 3. 6. Resonance curves of the summed-
disc was used in the four-degree- and-differential harmonic oscilla-
of-freedom system). tion [p2—ps] (hard spring type).

The parts of the curves which could not be obtained in the experiments were
supplemented by the theoretically calculated values. The resonant angular velocities
in Fig. 3.8 etc. are not coincident completely with those in Fig. 3.5. These dis-
crepancies are due to the difference of assembly. We designate the natural fre-
quency p; (i=1~4) by solid lines and p;=2w—p; by broken lines. The values of
ps—ps and p,—py are also drawn in chain lines in the diagram. The points A,
and A, in this diagram give the resonance frequencies of the summed-and-diffe-
rential harmonic oscillations of the types [p,—ps] and [p,—p.], respectively.

The resonance curves for the summed-and-differential harmonic oscillation of
the type [p,—ps] are shown in Figs. 3.6~3.9. Figure 3.6 (the larger disc was
used) shows the resonance curve of a hard spring type. The arrow on this diagram
means a jump phenomenon. This responce curve corresponds to the case in which
B takes a positive value in Fig. 3.2
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Figure 3.7 (the smaller disc was used) is an example of the resonance curve
of a soft spring type. The resonance frequency is higher than that in Fig. 3.6.

Figure 3.8 (the larger disc was used) is the case in which an unstable vibra-
tion appeared. The discrepancy between the center lines of the upper and the

O® [Py-Ps3]
B , ©e@ Harmonics
E ol 1, ~@0- a-direction
; 13, =88~ y-direction
% —
=
a
£ L
<{
0.5
PeCye oo
T
0 | ] |

1900 2000
Angular velocity w rpm
Fig. 3. 7. Resonance curves of the sum-
med-and-differential harmonic
oscillation[ p2—p37] (soft spring
type).

lower pedestals in Fig. 3.8 is larger than
that in Fig. 3.6. Within the unstable
region at the angular velocities from 1721
rpm to 1757 rpm, two oscillations, with
the frequencies w, (=p;) and w; (=p3)
satisfying the relation w,—ws;=w, occur-
red simultaneously; and the amplitudes of
these oscillations increased with time.
The envelope of the recorded wave form
is approximated by the expression A,e™t
(A, : an arbitrary constant), and the len-
gth of the arrow in Fig. 3.8 represents
the value of m sec~!. The value m means
the rate at which the amplitudes increase.
Figure 3.8 corresponds to the theoretical
curve whose (¢ is small and the un-
balance = is comparatively large in Fig
3. 4.
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Fig. 3. 9. Resonance curves in the case
that the summed-and-differential
harmonic oscillation [pa—ps] did
not appear (when we made the
unbalance smaller on the same
assembly condition as that of Fig.
3. 8).
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Figure 3.9 is a resonance curve in the case where we made the unbalance
smaller in the same assembly as that of Fig. 3.8. In this case, only a harmonic
oscillation appeared, but neither stable nor unstable summed-and-differential har-
monic oscillations occurred. This diagram corresponds to the curve for ==0.05
in Fig. 3.4.

The summed-and-differential harmonic oscillations of the type [p,—ps] ap-
peared at the angular velocity indicated by the point A, in Fig. 3.5. We obtained
three same kinds of resonance curves corresponding to those of the type [pz—ps]
in Figs. 3.6, 3.7 and 3.9, respectively.

3. 6. Conclusions

The conclusions about the summed-and-differential harmonic oscillations in an
unsymmetrical shaft system may be summarized as follows:

() In an unsymmetrical shaft system, the characteristics of the summed -and-
differential harmonic oscillation of the type [ps—p» ] are similar to those of the
subharmonic oscillation of the type [2p,].

(2) For the summed-and-differential harmonic oscillation of the type [ pr—
£, the nonlinear component N(2), which has no effects on a round shaft system,
has great influence in addition to the components N(0) and N(1); and the oscilla-
tion phenomena which differ from those in a round shaft system appear.

(3) For the summed-and-differential harmonic oscillation [pr—ps], changing
the values of the parameters results in many types of resonance curves as
follows : the stable solution of a hard spring type, that of a soft spring type, the
unstable region, and the case in which no summed-and-differential harmonic oscilla-
tions occur.

(4) In the experiment with an unsymmetrical shaft supported by the single-
row deep groove ball bearings, depending on the dimensions of the system, the
assembly, and the size, location of the existing unbalance etc., we obtained four
typical kinds of resonance curves for the summed-and-differential harmonic oscilla-
tion of the type [p,—ps]. They were the following: a stable resonance curve of
a soft spring type, an unstable region where an unstable vibration occurred, and the
case in which only a harmonic oscillation appeared and the summed-and-differential
harmonic oscillation vanished. Thus, it is ascertained that the experimental results
are qualitatively consistent with the theoretical ones.

(5) As for the summed-and-differential harmonic oscillation [p;—p.], some
kinds of resonance curves for the oscillation [p,—ps] were obtained.

4. Subharmonic and Summed-and-Differential Harmonic Oscillations
of an Unsymmetrical Rotor’?®

4. 1. Introduction

When a shaft is supported vertically by single-row deep groove ball bearings,
the restoring force of the shaft has a nonlinear spring characteristic owing to
angular clearances of the ball bearings. In this chapter, we shall investigate sub-
harmonic oscillations and summed-and-differential harmonic oscillations in a non-
linear system where an unsymmetrical rotor is mounted on an -elastic shaft with
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circular cross section. In the case of the unsymmetrical shaft system carrying a
disc, we have already reported on the subharmonic oscillations56) and discussed the
summed-and-differential harmonic oscillations in Chapter 3. We shall confirm that
qualitatively the same phenomena as those in the unsymmetrical shaft system ap-
pear also in this unsymmetrical rotor system.

4. 2. Theoretical analyses of the subharmonic oscillation of order 1/2
and the summed-and-differential harmonic oscillation

The experimental apparatus is a four-degree-of-freedom system. The deflec-
tion 7 and the inclination @ of the shaft at the position where an unsymmetrical
rotor is mounted couple with each other. But in the theoretical analysis, we
consider only the inclination in the system where # and @ do not couple. The
same procedure as that in the unsymmetrical shaft system shown in Chapter 3 can
lead to the conclusion that the results for the four-degree-of-freedom system as
in this experimental apparatus are qualitatively similar to those for the two-
degree-of freedom system.

In this section, we shall find the approximate solutions of Eq. (1.4) for two
kinds of oscillations by means of the same method as that used in the theoretical
analyses for the unsymmetrical shaft system56,5%, We assume that 4, 6 », and 4;
are magnitudes of O(e?), and ¢, N,,, and N,, are maginitudes of O(e) in the
equations of motion (1.4) in the two-degree-of-freedom system.

4. 2. 1. The subharmonic oscillation of order 1/2 of the type [2p,]

When the frequency of the external force w becomes nearly equal to the natural
frequency of this system 2p,, this force performs a work on the system. Con-
sequently, the oscillation with the frequency wy=1/2-w(=p,) appears markedly,
and we can observe a subharmonic oscillation having the mode of forward preces-
sion. We designate this kind of oscillation by the symbol [2p,]. As the unsym-
metry 4; is the quantity of O(e?), this oscillation component of frequency 1/2-w
always yields a component of frequency 20—1/2-0=3/2-w in the same magnitudes
of amplitudes. Therefore, the approximate solution must be assumed in the follow-
ing forms with the accuracy of O(e)56),

0o po Cos(iwwré‘l) +T2C°S(§wt—~81>+f’ S (wt+)

0y sin\ 2 sin\ 2 sin
+€f<%w, " %w’ > 4.1
(g o 5o )

where the amplitudes R and R, and the phase angle §;, are the quantities of O(e?)
varying slowly with time. The functions e-f and e-f’ are the components of O(e)
which appear owing to the nonlinear terms in Eq. (1.9), and their concrete forms
are the same as those of the unsymmetrical shaft system5%. The amplitude P
and the phase angle S of the harmonic oscillation can be determined with the
accuracy of O(e%) as follows:

P:rwzx/(—ljp—tﬂcosagzﬁ-(}:i”:aésindiy , 1

G—4,w?
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_ (G—4,0®) (1—i,—4,) (4.2)
tan ﬂ'“ (G+Aiw2) (1"Zp+.4i) tan «; J

where G=G(0)=1+ipw?—w?l.

As the next step, substituting Eq. (4.1) into Eq. (1.4) and setting the terms
of the same frequencies to be zero separately with the accuracy of O(e), we obtain
the simultaneous equations for amplitude R and the phase angle §;.

AwRS,=[0+p®(gR>+kP?) -+ 44,2 (52 sin 45, +fPcos4d,) R?
+2e®P{G,cos (28, —p) +24,2¢c0s (20, +£)}]
AwR=[C+44,2(F? sin 46, — P cos3,) R* o
+2eDP{G, sin (26, —f) +24;2sin (20, +B)} 1R

where we put ¢éP=¢® (>0) and =0 by rotating the coordinate axes by some
angles. The notations in Eq. (4.3) are as follows:

A=1—i,)G,+ (i,—3)G,+2422,

EZCw(BG~_(—;1)/2, G(p>:1+illwp“.p2’

GI:G(%CU), ElzG(%w),

9=4(G}+4G,C,+G1) /G, k=8(G1-+ G+ 4,9 cos 28), S
6=/ B, 20, =tan™1 (89/8%),

0=G,G,— (4:,2)?, g:%wz

By putting §;=0 and p=0 in Eq. (4.3), the stationary solution R=R, can be
classified into two kinds of solutions, i. e., Ry>0 and R,=0. Especially, it is
noticeable that the nonlinear component N (2), which has no effects on the sub-
harmonic oscillation of order 1/2 in the symmetrical system, is contained in Eq.
(4.3). This component N(2) causes the theoretical resonance curves of the sub-
harmonic oscillation [2p,] in the unsymmetrical rotor system to be complicated.
We find that the right side of Eq. (4.3) coincides with the equation of the sub-
harmonic oscillation [2p,] in the unsymmetrical shaft system if we replace 4
(=406/6) with 4,2 (=4I/I.(3/4-0?2))56), ‘Therefore, this suggests that the shapes
of the theoretical resonance curves in the unsymmetrical rotor system are qualita-
tively the same as those in the unsymmetrical shaft system. Introducing the small
deviations from the stationary solutions, we can examine the stability of these
solutions by the same procedure as that in the unsymmetrical shaft system56>.
Figures 4.1~4.5 show the typical theoretical resonance curves obtained by
numerical computation. The stable and unstable solutions are drawn with solid
and broken lines, respectively. In order to avoid confusion, we do not draw the
solutions Ky=0. As for the stability of the solution R,=0, the points at which
the resonance curves for the solutions R,=0 intersect the w-axis give the boun-
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daries between the stable parts and the unstable ones, and the solutions are unstable
between such two intersecting points, and stable outside them.

If there are no
intersecting points, the solutions of Ry,=0 are stable at any value of o.

Figure 4.1 shows the influence of the unsymmetry 4;. By making the value of
4; larger, the stable resonance curve tends to bend toward the lower angular
velocity, and at last, all resonance curves of Ry=0 become unstable.

In this case,
all resonance curves containing the solution R,=0 are unstable between two points
at which the curves for R,=0 intersect the w-axis. Therefore, in this region (i.
e., unstable region) no stable stationary oscillations are obtained, but an unstable
vibration of frequency +1/2-w whose amplitude increases with time occurs.
is a marked phenomenon which is not observed in the symmetrical system.

This
5 T -
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Fig. 4. 1. Theoretical resonance curves of

The influence of the dynamic unbalance ¢ is shown in Fig. 4.2.
an example that all the solutions of R,=0 are unstable.

appears.

the subharmonic oscillation [2p5]
showing the

influence of the
unsymmetry 4;.

Angular velocity w

Fig. 4. 2. Theoretical resonance curves

showing the influence of the
dynamic unbalance

This is such

When the value of = is
larger, the curve for R,>0 intersects the w-axis, and then the unstable region

The value of r has no direct effect on the stability of the resonance
curve, but contributes to the difficulty of appearance of this vibration.

Figure 4.3 shows the influence of the nonlinear component N(0) (i. e., B(9).
The sign of the value of B¢ decides the type of the resonance curves; i. e., for
the positive B9 the curve is a hard spring type bending toward the higher angular

velocity, and for the negative B¢ a soft spring type bending toward the lower
angular velocity. Especially, when the absolute value of ¢ is comparatively small,
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the unstable region appears.

Figure 4.4 shows the influence of the nonlinear component N(2) (i. e., §¢2).
In this diagram where the curves for the comparatively large ¢ are shown, the
value of B¢® gives a marked effect on the spread of the curve in the part of large
amplitudes. Since Eq. (4.3) includes p¢% and 4; in the product form, Fig. 4.4 is

5
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5.1

Fig. 4. 4. Theoretical resonance curves
showing the influence of the
nonlinear component N (2)

(p2).

Fig. 4. 3. Theoretical resonance curves
showing the influence of the
nonlinear component N (0)

(8.

similar to Fig. 4.1 showing the influence of 4;. The fact that the unstable region
appears in the unsymmetrical shaft or rotor system is due to the influence of the
nonlinear component N(2). This component has no effects on the symmetrical
system, but has great influence through the unsymmetry of the shaft or the rotor.

Since Eq. (4.3) includes ¢ and 7 in the product form, the effect of & is
qualitatively the same as that of ¢ shown in Fig. 4.2. There are qualitatively no
big changes for various values of phase angle ¢, of 5 and the angular position
a; of .

4. 2. 2. The summed-and-differential harmonic oscillation of the type
Lhr—be]

When the natural frequency p,—p, is nearly equal to the angular velocity o
in the nonlinear multi-degree-of-freedom shaft system, two oscillations with fre-
quencies w; and w,, which are nearly equal to p, and p,, respectively, appear
simultaneously. In this case, the equations
Wy =Py, (4.5)

wy==Pry Wy Wy= W
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hold. We find that this kind of oscillation (which is designated by the symbol
[pr—ps]) occurs also in the unsymmetrical rotor system, and that its vibratory
characteristic is similar to that of the unsymmetrical shaft system58. We try to
perform the theoretical analysis by the same procedure as that for the unsymme-
trical shaft system. First, we suppose an approximate solution with the accuracy
of O(e) in the form of Eq. (3.2). It is assumed that the amplitudes Ry, R;, R,
R, and the phase angles ds, 0, are the quantities of O(e9) varying slowly with
time. Substituting this equation into Eq. (1.4), we set the sine and cosine terms
of the respective frequencies wy, @y, w, and @, to be zero separately with the
accuracy of O(e). After arranging these simultaneous equations, we obtain the
following equations:

AR S ;=—0,R,— AP (9,R%+2§,R? + 2k P2 R+ 6m, (P cos 20
— B9 sin 20) R,R2 — 2 (a,cos ¢+ a,sin §) PR,
A R;=c;R;+6m,(0Pcos 24+ P sin 2¢) R, R?
+2e®(a,cos ¢ —a,sin ¢) PR, (4.6)
AR0,=—0,R,— 4" (2§;R%+9,R? +2k,P*) R, +6m; (P cos 2¢
—BPsin2¢) RER, —2e® (b,cos ¢+b,sin ¢) PR,
AyR,=c,R,—6m,(fPcos 2¢-B? sin 24) R:R,

—2eW (b,cos ¢ —b,sin ¢) PR,
where we put eP=¢® (>0) and ¢®=0. The notations .
A;= (0 —20) G~ (fy0—20) G, —4432: (0 — w)),
Ay=(l,0—2wy)Gy— (I,0 —2w,) Gy —442 2, (0 — w,),

— ~ 0
acz(Gf +%Gb+ﬁiﬁf>003 B, a,= (Gf-i— J}Z G,,-—Ai.Qf> sin 8,

b, =<§,,+%Gf+digf g:>cos B, b= (“G,,+ ﬁ; G;—4,9;
cr=c(w,G;—~w,Gy), ¢,=¢(0,G,—0,Gy), G,=G(wy),
G,=G(w,), G;=G(wy), G,=GCG(wy),
9,=(Gi+Gi+4G,;Gy) /G;, 9,=(Gi+G:+4G,G,) /G,
9;={(G;+G) (G,+G,)+2412,2,} /G,

9,={(G;+Gy) (G,+G,) +2412,2,}/G,,
ky=G;+Gs+4,9:c08 28, k,=G,+G,+4,2,cos 28,
my=—4;(2,G,+2,G;) /G;, my=—4,(2,G,+2,G;)/G,,

g”) sin 3,

f

4.7
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0,=G;G;— (4:;25)2, 0,=G,G,— (4,2,)%, ¢=08;,—0,, J
A.Qf:a)faf, AQb:C()bZ‘.—)b,

are used in Eq. (4.6). The solution of

the harmonic oscillation is given by Eq. 3 ° ——Stable “\

(4.2). From Eq. (4.6), we find that the T |7~ ~Unstable

nonlinear components N(0), N(1), and & %jg:%

N(2) have effects on the summed-and-di- o4 € =0.005

fferential harmonic oscillation of the type 3 i?;zg‘_?m

[pr—ps]. Similarly to the subharmonic & B®=0.04

oscillation of order 1/2 [2p;] in Section E g’i;%

4.2.1, the component N (2), which has no 3 ~@ 22012

influence on the symmetrical system, is @ 4=0.15

related. In the same manner as that in Q@ 4=018

the unsymmetrical shaft system?®®), we 2

can get the stationary solutions Ry=Rjy,

and R,=R,,, and can examine the stabili- ¢/l‘/®\“ﬁ

ties of them. The influences of various i ! ,'I

parameters on the resonance curves ob- r /:/®\‘r‘,‘ !

tained by numerical computations are ! P

nearly the same as those in the subhar- ! ] |

monic oscillation of order 1/2 [2ps]. For 0 L L T I
2.1 2.2 2.3 24

example, the influence of the unsymmetry
4; is shown in Fig. 4.5. 1In this diagram,
the ordinate represents the sum of the Fig. 4. 5. Theoretical resonance curves of
stationary amplitudes of the two oscilla- the summed-and-differential har-
tions with frequencies w; and w,. When monic oscillation [ps—py] showing

4; is large, an unstable vibration appears. ;he influence of the unsymmetry
T

Angular velocity w

4. 3. Other kinds of subharmonic oscillation and summed-and-differential
harmonic oscillations

Up to the previous sections, we have shown that the vibratory characteristics
of the subharmonic oscillation of order 1/2 [2p,] and the summed-and-differential
harmonic oscillation [p;—p,] in the unsymmetrical rotor system are quite diffe-
rent from those in the symmetrical system. In addition to these oscillations, the
subharmonic oscillation of order 1/2 of the type [—2p,], the subharmonic oscilla-
tions of order 1/3 of the types [3p,] and [—3p,], and summed-and-differential
harmonic oscillations of the types [2p;—ps] and [pr—2p,] may occur in the
unsymmetrical rotor system with the nonlinear spring characteristics represented
by Eq. (1.9). But, the theoretical calculations for these oscillations lead to the
same results as those of the symmetrical system38). Their resonance curves are
not influenced greatly by the unsymmetry 4;, and the nonlinear components related
to each oscillation are the same as those in the symmetrical system, and the
vibratory characteristics are qualitatively the same.

4. 4. Experimental resulfs
Experiments were performed in the system where the unsymmetrical rotor R,
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in Table 1.1 was mounted on the round shaft S, in Table 1.2 (see Fig. 1.1).
resonance curves were measured under various assemblies.

T. Yamamoto, Y. Ishida and T. Ikeda

The
The values of para-

meters were varied by changing the assembly of the apparatus and size and location
of unbalance.
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A p—w diagram of the experimental apparatus with four degrees of freedom
is similar to that of an unsymmetrical rotor system®8. Natural frequencies p;
(i=1~4) and p; (=2w—p;) coexist due to the unsymmetry of the rotor.

The experimental results for the subharmonic oscillations of order 1/2 [2p,]
are shown in Figs. 4. 6~4.8. Figure 4.6 is a hard spring type, and the arrow
represents a jump phenomenon. Figure 4.7 is an example where an unstable
vibration appeared under the different assembly from that in Fig. 4.6. Figure 4.8
has the same assembling condition as Fig. 4.7, and shows the case of a small
unbalance. An unstable vibration does not appear and harmonic oscillations remain.
This corresponds to that of the theoretical resonance curve for a small ¢ in Fig.
4.2,

In the experiments for the summed-and-differential harmonic oscillation [p;—
$37, we obtained the same four kinds of resonance curves as those of the oscilla-
tion [p,—ps] in the unsymmetrical shaft system in Chapter 3 by changing the
assembly condition of the apparatus. We show only one type of the resonance
curve in Fig. 4.9 where the unstable vibration occurred.

As for the summed-and-differential harmonic oscillation of the type [pz—p:l;
the resonance frequency was so high that we could not experiment on it sufficien-
tly.

4. 5. Conclustons

(1) In an unsymmetrical rotor system with a nonlinear spring characteristic,
the nonlinear components N(0), N(1), and N(2) are concerned with the subhar-
monic oscillation of order 1/2 of the type [2p;] and the summed-and-differential
harmonic oscillation of the type [pr—ps ). Especially, the component, which has
no effct on a symmetrical system, plays an important part through the unsymmetry
4; in these oscillations. As the result, different phenomena from those in the
symmetrical system appear.

(2) The theoretical resonance curves of these two kinds of oscillations are
qualitatively the same. They can be classified into four typical groups as follows:
the stable resonance curve of a hard spring type, that of a soft spring type, the
resonance curve having an unstable region in which only the unstable solutions
exist, and the case in which these oscillations do not occur unless a large distur-
bance gets into the system.

(3) In experiments on the unsymmetrical rotor system having a single-row
deep groove ball bearing, we obtained the same resonance curves in form as those
calculated in the theoretical analyses. The types of these resonance curves were
changed depending on the degree of discrepancy between the center lines of the
upper and the lower bearings and the size and location of the existing unbalance.

(4) In experiments, we obtained three kinds of resonance curves for the
subharmonic oscillation of order 1/2 of the type [2p.], and four kinds of resonance
curves for the summed-and-differential harmonic oscillation of the type [ps—ps].

(5) The qualitative characteristics of the subharmonic oscillations and the
summed-and-differential harmonic oscillations in the unsymmetrical rotor system
are theoretically and experimentally the same as those in the unsymmetrical shaft
system.
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5. Super-Summed-and-Differential Harmonic Oscillations of
an Unsymmetrical Shaft and an Unsymmetrical Roters®

5. 1. Introduction

Nonlinear forced oscillations in a nonlinear multidegree-of-freedom vibratory
system contain subharmoni coscillations, summed-and-differential harmonic oscilla-
tions, and super-summed-and-differential harmonic oscillations. When a periodic
external force with frequency » acts on a nonlinear reciprocating vibratory system
with multiple degrees of freedom (whose natural frequencies are pq, ..., and p,),
if the relation

k&
Nw:""zmipi (szz 3: Yy m1:i17 iz: Ty 2_£..k§n>
=1
is satisfied, £ harmonic components with frequencies w; satisfying
w;== Py (Z:17 ) k); No= Zmzwz

can occur simultaneously. This kind of oscillation is called the super-summed-and-
differential harmonic oscillation. Super-summed-and-differential harmonic oscilla-
tions in a rectilinear vibratory system have been discussed previously.43,44 But
such oscillations in a rotating shaft system, which have different vibratory chara-
cteristics from those in a rectilinear vibratory system, have rarely been studied.

This chapter deals with super-summed-and-differential harmonic oscillations, in
(A) nonlinear system where a disc is mounted on an unsymmetrical shaft (i. e., an
unsymmetrical shaft system), and in (B) a nonlinear system carrying an unsymme-
trical rotor on a rotating shaft with a circular cross section (i. e., an unsymme-
trical rotor system). In this chapter we present theoretical and experimental
analyses of these systems. Also, we compare this oscillation with one which
occurs in a nonlinear system having a disc on a round shaft (i. e., a symmetrical
system). As a result, we can conclude that the unsymmetry of a shaft or a rotor
makes it easier for super-summed-and-differential harmonic oscillations to occur,
and that the unsymmetry contributes to an unstable vibration which does not
appear in a symmetrical system.

5. 2. Theoretical analyses of the super-summed-and-differential harmonic
oscillation of the type [(pr—ps) /2]

Experiments were performed in a four-degree-of-freedom system where the
deflection # and the inclination 6 of the rotor coupled. In this chapter, for sim-
plicity, we shall show only the theoretical analysis for the inclination oscillation in
a two-degree-of-freedom system where # and 6 do not couple. The same method
as that in Chapters 2 and 3 can lead to the conclusion that the results of theoretical
analyses for a four-degree-of-freedom system such as an experimental apparatus
are qualitatively the same as those of this two-degree-of-freedom system.

The equations of motion for the inclination oscillation are given by Eq. (1. 7)
in the unsymmetrical shaft system, and by Eq. (1. 4) in the unsymmetrical rotor



Vibrations of a Rotating Shaft with Nonlinear 173

system. The equations of motion in the symmetrical system are obtained if we
put 4,=0 in Eq. (1. 7) or 4,=0 in Eq. (1. 4). The vibratory characteristics of
the systems represented by Egs. (1. 4) and (1. 7) are similar. So in this chapter,
we mainly analyze Eq. (1. 7) for the unsymmetrical shaft system. In those equa-
tions, we suppose the quantities 6, 8y, 45, 4; and ¢ to be O(e?), and ¢, Ny, and
N,, to be O(e).

Figure 5. 1 shows a p-w diagram for
an unsymmetrical shaft system of two
degrees of freedom when i,=0.7 and 4;
=0.2. In the vicinity of the angular
velocity of the shaft where the relation
pr—ps=2w 1is satisfied, two oscillations
with frequencies wy (=p;>0) and w, (=
$5<0) may appear simultaneously. This
kind of nonlinear forced oscillation will
be called the super-summed-and-differen-
tial harmonic oscillation, and it is repre-
sented by the symbol [(pr—2s)/2] In
this oscillation, the following relation
holds :

Natural frequency p

Wi—wy=2w (B.1)

Angular velocity @
i !

Since the stiffness of the shaft is non- 20 30
uniform, and since 4; is the quantity of
0(e%), in addition to the appearance of
two oscillations of frequencies w; and
ws, there appear the oscillations of fre-
quencies @y =20 —w; and. Wy =20~y ,With Fig. 5. 1. The p-o diagram in the unsym-
the same order of magnitude of amplitude metrical shaft system (having
as the former oscillations. For example, two degrees of freedom).
substituting 0,=AcosQ? and 0,=Asin Q!

into the terms of 4, in Eq. (1. 7) pro-

duces the terms 4,4 cosQuw—)t and 4. AsinQCw—2)t. From Eq. (5. 1), the
relations w;=—os and ws=2w-+w, hold. The magnitudes of the nonlinear terms
in the first and the second equations in Eq. (1. 7) are different. Because of this,
we must assume that an approximate solution, with the accuracy of O(e), exists in
the following form:

b p cos<wft_ra) Acos( th_B Sln(wbt)+R cors;( ,—3,)

6, "~ Tsin " A'sin B'cos
PSS wt+B) ¢ 3 %52 (w ,z+a>+g,ff§§;(wft+a,>+g“§l’§( BE—0y)
3 S0 @t =0+ 4 Qo+ 0 )t 0,1+ Y S 2o+ w0
]f;a(;?;{(2w4—wb)t aﬁ}+2 S (2o +@,)t—8,) -] (5.2)

where, as for the terms with the magnitudes of O(e), only vibratory components
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required in the later calculation are written. We represented the amplitudes of
terms @sl—06y and w,t+6, as B; and R,, respectively in Chapter 3. The relations
A=R,cos 8, +Rrcos 8y, A/=R,cosd,—Ryscosdy, B=—R,sind,—Rssindy, and B'=
Ry sin 6, —Fysin 67 hold with the accuracy of O(e9). Substituting Eq. (5. 2) into Eq.
(1. 7) and setting the sine and the cosine terms of frequency  to be zero with
the accuracy of O(e?), we get a solution of the harmonic oscillation which is given
by Eq. (3. 4). We assume here that the amplitudes and the phase angles in Eq.
5. 2) (e. g, Ry, ay, 85) are slowly varying functions of the time, and that the
first and the second time derivatives of these quantities have the magnitudes of
0(e) and Of(e?), respectively. Next, setting the sine and the cosine terms of
frequencies wy; and w, to be zero with the accuracy of O(e), respectivery, we
obtain the following simultaneus equations:

AR5 ;= —0,;R,—48%G,(9,R:+29,R? 2k, P*)R,
—G,R,[38%{4,(3n,R3+n,R:-+n,P*)cos ¢
+n,Picos(¢—23)}+12nsR R, (FPcos 2¢— AP sin 2¢) ]

AR;=¢,R;—G,R,[33®{4,(n,R:+n,R?+n,P*?) sin ¢
L, P? sin (¢ —20)} -+ 1204 R R, (B9 sin 20+ fPcos 2¢)]

AR5, = —0,R,— 489G, (29, R +-9,R? -2k, P*)R,
—G,R,[38%{4,(nR+3n, R} +nsP*)cos ¢
+n,Picos(¢—20)}+12us KRR, (fPcos 2¢— P sin2 ¢) ]

A,R,=c,R,+G,R[38%{4,(n R2+n,R?+n,P?) sin ¢
+n,Psin(¢0—20)}+12n;R:R, (¥ sin 2¢+ P cos 2¢) ]

(5.3)

where the notations are given as follows:
Ar=(l,0—2w,)G;— (l,0+20,)G;, A= (i,0—20,)G,— (l,0 —2w,)G,,
ci=c(wG—w,Gy), ¢,=c(w,Gy—w,G,), G(P)=1+1i,wp—p?,
G=G(v)), G;=G(wp), Gy=G(w,), G,=G(w,),
9= (G3+G5+443) /G, 0:={(G,+G) (G, +G) +243}/ (GG,
9= (Gi+Gi+44%)/Gi, ky=(G;+G,+4,cos 28) /Gy,
k= (Gy+G,y+ 4,c08 20) /Gy, n,=(G;+G,+2G,) /Gt
n,=(G;+G,+2G,) / (GG, n:=2/G;, n,=1+G,/G,,
ns=G;/G;, 0,=G;G;— 4%, 0,=G,G,— 4%, d=238;—0,

(5. 4)
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Finally, the stationary solutions of R;, Ry, ¢, w; and w, are decided from Eqg.
(5. 1) and the equations setting the right sides of Eq. (5. 3) as zero. In the same
manner as in Chapter 3, we can simultaneously evaluate the stability of these
stationary solutions. We put the stationary solutions Ry=Ry, and Ky=1Ry,. Set-
ting the right sides of the second and the fourth equations in Eq. (5. 3) as zero,
we get the following equations:

Ri=«Rz «=—c,G,/(c,G;)=const. C>0) (5.5)

Since at the resonance point we have w;>0, ws<0, @;>0, @;>0, G;>0, G,<0,
Gr>0, G»<0 and w;>|w,|, we know that the value of » in Eq. (5. 5) is positive.
Therefore the amplitude R,, is relative to Ry,. Typical examples of the resonance
curves obtained by numerical computation are shown in Figs. 5. 2~5. 5. These
curves are computed on the conditions that: first, the coefficients of the nonlinear
terms B¥ and BY equal zero, since they are negligibly small in the practical
rotating shaft system32); and secondly, that we put f¢=0 and BP =B by rotating
the coordinate axes by some angle. In these diagrams, the ordinate represents the
stationary amplitude R;o-+R;o, and the abscissa does the angular velocity of the
shaft @. The stable and the unstable solutions are drawn in full and broken lines,
respectively. It is seen from Eq. (5. 3) that the stationary solutions R;y=0 and
Ry,=0, that is, R;o+R,,=0 exists. In order to avoid confusion, however, these
solutions of zero amplitudes are not shown in Figs. 5. 2~5. 5. As for the solution
Ryy+R;y0=0, when the solution Rysq--£;¢30 intersects the w-axis, an unstable
region appears between the intersecting points. For example, in the case of 4,=
0.2 in Fig. 5. 2(a), the interval A~B is unstable. The intersecting points A and

1.5 1.5
2 3
T — Stable @ 8520 4 — Stable
2 --- Unstable ) 25 =0.1 2 -=~ Unstable
o ip=0.7 @ 85=0.2 " ip=0.7
E T =0.4 ° T=0.8
= ¢ =0.02 = € =0.025
(e} = {0)
Sy0k  po=0.1 o, 0k BO= — 0.1
& Be=0.1 £ o B@=0.1
as= 450 N as: 600
0.5 0.5
® 85=0
@ As =O-1
@ 45=0.2
0 A 0 i
11 1.2 0.9 1.0
Angular velocity @ Angular velocity @
(a) In the case of a hard spring (b) In the case of a soft spring
type. type.

Fig. 5. 2. Theoretical resonance curves showing the influence of the unsymmetry As.
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B are the boundaries between the stable and the unstable regions. The solution
Ryo4+R;y0=0 is stable outside the interval A~B. When the solution Rjo+R;,>0
does not intersect the w-axis (e. g., in the case of 4,=0.1 in Fig. 5. 2(a)), the
solution Ryo+R;,,=0 is stable at any value of w.

Figures 5. 2(a) and 5. 2(b) show resonance curves for various values of 4.
The former is in the case of a hard spring type (8¢9>>0), and the latter of a soft
spring type (8¢©<{0). In the case where 4; equals 0 and 0.1, as in Fig. 5. 2(a),
the resonance curves do not intersect the abscissa and they are away from the
axis. Such cases mean that super-summed-and-differential harmonic oscillations
will not occur unless disturbance forces act on the rotating shaft system. In the
case of 4,=0.2, however, the resonance curve intersects the w-axis. As shown in
Fig. 5. 2(a), when the value of w reaches the point A from the lower side of o,
the oscillation of Ryo+R,o0 begins to appear. This is because the solution R,
+R;,=0 is unstable in the interval A~B. On the other hand, when the value of
@ reaches the point B from the higher range of w, a jump phenomenon in ampli-
tude occurs and an oscillation shown by the point C appears. Therefore we find
that in the symmetrical system where 4,=0, or in the case where 4, is small, this
kind of oscillation appears less readily than that in the case where 4, is large.

Figure 5. 3 shows the effect of the dynamic unbalance r. The larger the value
of = becomes, the more readily the oscillation appears.

The influence of the coefficient £¢® of the nonlinear component N(0) is shown
in Fig. 5. 4. The type of the resonance curve (that is, whether it is hard or soft)
depends on the sign of B, When B¢0=0, the solution Rs,-+R,,=0 is unstable
between the intersecting points A and A’ of the resonance curve (i. e., Ryo+Ryo%

1.5
2
e — Stable ® =041
d,i’ -==Unstable @71=0.2 1.5 -
i ® T=0.3 3 — Stable /
@ 1p=0.7 @ T=04 & --- Unstable /
bS] As=0.2 = ip=0.7 !
= o P=0. /
=4 € =0.02 2s=0.1 /
g1.0  B9=0.1 AN 7=0.8 /
I BO= (.1 _ 2 N €=0.025
ds=45° - S, B@=0.1 I
gt £no ds=60° /
- "
g ~
i
!
”-‘ ‘
05 I
05 - AN
! /
@ B9=-0.1 ! /
@ B9=-0.05 -
@ 89-0.005 ! i
®po-003 | P
0 I o U A':l !
11 1.2 09 1.0 1.

Angutar velocity @

Fig. 5. 3. Theoretical resonance curves

showing the influence of the
dynamic unbalance 7.

Angutar velocity @

Fig. 5. 4. Theoretical resonance curves

showing the influence of the
nonlinear component N (0)

(B0,
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0) and the w-axis, and furthermore no other stable solution exists in this region.
Consequently, an unstable vibration appears in the region AA’, after which the
amplitude increases with time. It is common for such an unstable region to appear
for small values of B

Figure 5. 5 shows the effects of the coefficient 2> of the nonlinear compo-
nent N(2). For large values of (), the oscillation appears readily.

In the unsymmetrical rotor system, the resonance curves for the supper-
summed-and-differential harmonic oscillation of the type [(pr—ps)/2] can be
obtained by the same method of analysis as that in the unsymmetrical shaft system.
As an example, Fig. 5. 6 shows the influence of the unsymmetry of the rotor 4.
When 4; is large, the resonance curve intersects the w-axis, and the oscillation
appears more readily than that in the symmetrical system for 4;=0. The effects
of the other parameters are qualitatively the same as those in the unsymmetrical
shaft system shown in Figs. 5. 2~5. 5.

1.5 1 1.5
a — Stable @ B2=0.05 T — Stable
2 --=Unstable @ 8@=0.1 2 === Unstable
= @ B2=0.15 &
W ip=0.7 o ip=0.7
8 4s=0.2 B T =0.4
= T =0.4 = € =0.02
40F c=0.02 S0k se-0u
<< 8= (.1 g@= 0.1
As=45° di=45°
® 4i=0
@ 2i=0.04
@ 4i=0.08
0.5+ 0.5
0
1.1 1.2 0 11 1.2
Angular velocity @ Angular velocity @
Fig. 5. 5. Theoretical resonance curves Fig. 5. 6. Theoretical resonance curves
showing the influence of the showing the influence of the
nonlinear component N (2) unsymmetry of the rotor 4;

(B2},

5. 3. Experimental results

In experiments, we used rotors and shafts shown in Tables 1. 1 and 1. 2. In
the unsymmetrical shaft system, the disc R; and the unsymmetrical shaft S; were
used. In the unsymmetrical rotor system, the unsymmetrical rotor R, and the
round shaft S, were used.

The nonlinear spring characteristics changed depending on the degree of the
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discrepancy between the center lines of the upper and the lower bearings. Accor-
dingly, the resonance curves of various types were obtained. The experimental
apparatus is a four-degree-of-freedom system with the natural frequencies p; and
bi (Pi=20—p;, i=1~4, p,<ps<0<py<p;). We obtained the p-o diagram for
the unsymmetrical shaft system which is the same type as Fig. 3. 5 in Chapter 3.
At two resonance points given by abscissas of the points where the curves p,—ps
and p,—p, intersect the straight line p=2w in the p—w diagram, super-summed-
and-differential harmonic oscillations of the type [(ps—p5)/2] as treated in Sec-
tion 5. 2 occurred.

Figures 5. 7 and 5. 8 were obtained from the unsymmetrical shaft system.

E O® Harmonics

1.0 € I . ] -~ x-direction
£ @ - ‘2‘(92‘94) ~&— y-direction
E L °0 [Fp-pa] | 5 1
@ L 0@ Harmonics a
5 =<DO=X-direction §} I.a.._t.,.t—éé &)
3 i B =B@~y-direction F000-0-00 -5 DX 0= T O~y 7. 00
£ - < L
< 05 i o i unstable region

0 L :

]
2050 2100 2150 2200

e e e\ s Dl Angular velocity w rpm

r Fig. 5. 8. The unstable region of the

L oscillation [(p2—24)/2] (in
0 I the unsymmetrical shaft sys-
2050 2100 2150 tem).

Angular velocity W rpm

Fig. 5. 7. Experimental resonance curve
of the super-summed-and-dif- C
ferential harmonic oscillation of oo [*12“(92'94)} -QO-2-direction
the type [(p2—214)/2] (in the TO® Harmonics —@@-Y-direction

unsymmetrical shaft system). g‘:.o -
[J] (—.
T
2
Figure 5. 7 shows the resonance curve for &
the oscillation of the type [(p,—p4)/2]. <
This occurred in the vicinity of the ro- B
tating speed where the relation p,—p.= 0.5 -

2w held. The arrows in this figure re- —
present the jump phenomena. Marks O W
and @ indicate the amplitudes of the
harmonic oscillation with the same fre-
quency as the rotating shaft speed, and !
marks (D and (@ those of the super-sum- ?600 1650 1700
med-and-differential harmonic oscillation. Angular velocity @ rpm

Th(,a curve is of the soft spring type, Fig. 5. 9. Experimental resonance curve of
which corresponds to the case of the the super-summed-and-differen-
negative $¢® in Fig. 5. 4. In Fig. 5. 8, an tial harmonic oscillation of the
unstable vibration of this type appeared type [(p2—21)/2] (in the un-
in the region w=2086~2134.5 rpm, as in- symmetrical rotor system).
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dicated by the arrows. This figure corresponds to the resonance curve for (0=
0.005 in Fig. 5. 4.

In the oscillation of the type [(p,—p3)/2], we obtained the same resonance
curve in shape as that of Fig. 5. 7.

Figure 5. 9 shows an experimental resonance curve of the soft spring type of
the oscillation [(p,—p,)/2] obtained in the unsymmetrical rotor system. This
curve is qualitatively the same as that in the unsymmetrical shaft system.

Throughout many experiments, no super-summed-and-differential harmonic os-
cillations were observed in the symmetrical system.

5. 4. Conclusions

(1) In the nonlinear rotating shaft systems (e. g., the unsymmetrical shaft
system, the unsymmetrical rotor system, and the symmetrical system), it was
verified theoretically and experimentally that super-summed-and-differential har-
‘monic oscillations of the type [(pr—py)/2] may occur.

(2) The larger the unsymmetry of the shaft or the rotor, the more readily
the oscillation will appear. In the symmetrical system, no super-summed-and-
differential harmonic oscillations were observed throughout many experiments.

(3) If we consider nonlinear terms up to the third power of coordinates, the
symmetrical nonlinear components N(0), N(2) and N(4) have influence on this
oscillation.

(4) The qualitative characteristics of this kind of oscillation are the same in
both the unsymmetrical shaft system and the unsymmetrical rotor system.

(5) 1In the experiments on the unsymmetrical shaft system and the unsymme-
trical rotor system, oscillations of the type [(p,—p2)/2] and [(po—p.)/2] appear-
ed.

(6) When the nonlinear component N(0) (i. e., the absolute value of f¢0) is
small, the unsymmetry of the shaft or the rotor causes an unstable vibration of
this type which does not appear in the symmetrical system.

6. Sub-Combination Tones of a Rotating Shaft due to
Ball Bearingstl

6. 1. Introduction

In the past, we have presented papers on various kinds of nonlinear forced
oscillations.?2~38, 650 Most of them have dealt with the whirling motion of a
rotating shaft, which had nonlinear spring characteristics due to the angular clea-
rance of a single-row deep groove ball bearing. It has also been reported that
combination tones and sub-combination tones appear when several periodic external
forces act on a rectilinear nonlinear system.45~50,66) Besides these nonlinear
forced oscillations, we reported that the difference in diameters of balls in a
bearing caused the shaft whirling motion with the same frequency as the pre-
cessional speed of the balls (the angular velocity of the balls rotating around the
center of the inner ring).2®

This chapter deals with the sub-combination tones of a rotating shaft resulting
from the difference in diameters of balls in a ball bearing. This oscillation can
appear when the shaft has a proper nonlinear spring characteristic depending on
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the assembly of the rotating shaft system. The whirling motion has a frequency
of 3/2 times the precessional speed of the steel ball. We will describe the theo-
retical and experimental results relevant to the cause of appearance, the mechanism,
and the vibratory characteristics of this type of oscillation.

6. 2. On the mechanism of occurrence of periodic external forces

Let the angular velocity of a rotating shaft be w, and the angular velocity of
the precessional motion of balls in a ball bearing be w,. Steel balls rotate around
the center of the bearing in the same direction as the shaft rotation at the
following angular velocity29,67):

R

:Ww:alw (a;: constant) (6.1)

wq

This equation is derived from the assumption that the steel balls move in rolling
contact with inner and outer rings, independent of the conditions of load, rotating
speed and lubrication. In Eq (6. 1), R is the outer radius of inner ring and 7 is
the radius of a steel ball. If a radial clearance exists even in the radius where
the largest ball is located, the external forces of the frequencies w; in Eq. (6. 1)
and 2w, occur by the following mechanism:

For the sake of simplicity, we treat the case in which there is a large steel
ball of the radius #-+e(e€r). The construction of the bearing is schematically
shown in Fig. 6. 1. The origin O of the
xy coordinate system is taken in the
center of the outer ring (bore diameter
2R,), and we denote the radial clearance
of the bearing by wu(=R;—2r—R). If
#>¢, a clearance exists for the large ball.
It usually happens in a vertical shaft sys-
tem that a small discrepancy between the
center lines of the upper and the lower
bearings exists or the shaft is not strictly
vertical. Therefore, the inner ring is not
free in the bearing clearance but is sli-
ghtly pressed in a certain direction in the
non-rotating state, e. g., in the negative
direction of the x-axis by the force F' as
shown in Fig. 6. 1. 1In Fig. 6. 1, let ¢
denote the angular position of the large
ball, and ¢, the angular pOSitiol} when the Fig. 6. 1. Construction of a single-row
large ball starts to touch the inner ring deep groove ball bearing.

(i. e., the direction of the radius OA).
From the calculation,

fo=cos 1 (2e/p—1) (6.2)
7/22>0,>0 for p>e>u/2
7 >0, >r/2 for p/2>e>0

(6.3)
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are obtained. The center of the inner

ring is denoted by the point Oy (%o, ¥o)- xz‘“ws‘ef?‘l) PR
When the large ball is located between
the radial OA’(—0,<60<8,), the inner
ring is pressed in the negative direction
of x-axis, and its center remains at the
point O'(—p, 0). If 6,<0<27—0,, the
center of the inner ring moves away from
the point O’ owing to the passage of the
large ball. Neglecting the elastic defor-
mation of the steel balls, we find that the
center of the inner ring Oy (x,, yo) fluc-
tuates along full lines shown in Fig. 6. 2
while the large ball makes one revolution
around the point O. During one rotation g
of the large ball, the center of the inner
ring begins to move away from the posi-
tion O’ (—pg, 0) when the large ball
reaches the point A (i. e, #=0,), and
moves along full lines as shown in Fig. 6.
2 ?'e.turnin,g f‘o the position O at the end, i. e., the center of an inner
position A’ (i g.t 0=2z—0,). Because ring (for 0o=60° and &/u=

the angular position ¢ is expressed as ¢ 0.75).

=wt+Cy (¢: time, C;: constant), the

center of the inner ring moves periodi-

cally with the period 27/w@;. Hence, the coordinates x, and y, can be expanded
into a Fourier series in the following form of the complex number :

v

’
7
’

Fig. 6. 2. Displacement of a lower shaft

x0+iy0:Aaei¢u+Alei(+m;t+¢‘;)+A1/ei(—w‘t+¢;’)
_{‘Azeiwzwltﬂ-(ﬁ,)+A2/ei(-2mit+¢s')+ (6 4)

where 4, Ay, ... are the amplitudes of various waves, and ¢,, ¢, ... are their
phase angles. The magnitudes of A, A7, 4,, and A; for various values of ¢ and
u are presented in Table 6. 1. As shown in Table 6. 1, the amplitudes of w; and
2w, have the same order of magnitude. Owing to the periodic displacement of

Table 6. 1. Coefficients of Fourier series.

Aq(w1) Ai(—wi) Az (Cwy) Az (—2w1)
e=p i 0 0 0
e=3/)n 0.61x 0 0.41z 0. 144
e=(/2n 0.32u 0 0.32u 0.1z
e=1/dn 0.11p 0 0.14p 0.05.
e=0 0 0 0 0

1 : radial clearance, r-+¢e: radius of a large ball (z>¢).
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the center of the inner ring (namely, the shaft end) represented by Eq. (6. 4), the
rotor undergoes the deflection e; (with components ¢;,, ¢;,) and the inclination
1 (with components 71,, 71,) as follows:

€1,=0,C0S Yo+ @1€08 (w1l +¢,)+a,co8 (2wl +@,) + -

€1,=a,8In 9+ @y sin(w t+¢@q) +a,sin (2wt +@y) + - 6.5

T1,=0,C08 @y +b,c08 (Wl +¢;) +byco8 2w t+@y) -
T1,=0¢8in @+ by sin(w i +¢1) +b, sin Qw l-+¢;) + -

Accordingly, if follows that periodic extermal forces act on the rotating shaft
system.29)

6. 3. Equations of motion and occurvence of sub-combination tones

In this chapter, we consider the inclination oscillation in a system where the
deflection and the inclination of the rotor do not couple. This two-degree-of-
freedom system is the simplest case of the whirling motion. The experimental
apparatus is a four-degree-of-freedom system in which the deflection and the in-
clination of the rotor couple with each other. Although we measure the amplitudes
of the deflection oscillation in experiments, we can prove that the vibratory be-
havior of the inclination oscillation in this two-degree-of-freedom system is quali-
tatively the same as that of the deflection oscillation in the four-degree-of-
freedom system.

The external forces due to the rotor unbalance are independent of sub-combi-
nation tones treated here. So we derive the equations of motion on the assumption
that the rotor has no unbalance. Then the differential equations of motion:

I@z‘f‘lpw@y‘}‘cﬁx'{"a(@x—'rlz) +N9x20
(6.6)

Iéy—“-[pwéx"l"céy"{_s(@y_fly)+N9y:0

are obtained. In order to eliminate the constant terms which yield from the
substitution of the terms bocos ¢, and bysin ¢, in Eq. (6. 5) into Eq. (6. 6), we
move the coordinates @, and @, in parallel with themselves. Also, we can make
¢;=0 by sifting the origin of time. Let the mass of the rotor be m, and the
spring constant for the deflection of the shaft be «. We introduce the gquantity
eo=mg/a and use the following dimensionless quantities besides those in Eq. (1.

D:

wi=ow:/Va/m,  ¢=c/INajm), 6.7

001=b1/(eov/m/I),  Ooz=bs/(eov/m/I),  P=¢z—¢ } ©
Adopting these quantities, we obtain the dimensionless equations:

o+ ipwly+Clyt 00,4 Nyy=00,1c08 wit+06,,c08 2wit+pB)

0y —1pw0,4-¢0,+060,-+Nyy=0051 8in wi? 06, sin(2w:?+pP) } o9

Here we omit the primes from the symbols. We neglect the component of —2w,
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in Eq. (6. 8) because it is small, as shown in Table 6. 1. The nonlinear terms
N,, and N,, are given by Eq. (1. 9).
We may suppose the approximate solutions of Eq. (6. 8) are as follows :

0,=Rcos(wt+0;) +Q:cos wil+&,co8 Cwt+p)

+efascos(wi-+0,)+bssin(wsgd+05)}

0,= R, sin(w,t-+0,) +Q; sin wf+@Q,sin (2wt +p) ©-9
+ela;sin(wd+0s) +brcos(wsad+0,)}
where the following notation is used for simplicity:
wr=03/2)w,=G3/2)d v (6.10)

In Bq. (6. 9), the parameter ¢ is small. Hereafter, it is assumed that the amplitude
R; and the phase angle 6, of the sub-combination tone of frequency (3/2)w, and
the amplitudes @; and @, of the harmonic oscillations due to the external forces
of frequencies w; and 2w, are quantities of O(e?). Substituting Eq. (6. 9) into
Eq. (6. 8), setting the coefficients of cos(w;t-+d;7) and sin(wsi+dy) to be zero,
and neglecting the terms smaller than that of O(¢), we obtain the following equa-
tions which decide the stationary solutions:

o— ARV {R3+2(Q1 +Q%)} =840 Q,cos (8—2d))
cw;=86°Q:Q, sin(f—20,)
where ¢ means the detuning given by the following expression:
0=—G(wy)=wi—i,ww;—0=0(¢c) (6.12)

The coefficient 8¢ in Eq. (6. 11) is given by Eq. (1. 16). From Eq. (6. 11), it
follows that only the isotropic nonlinear component N(0) has influence on this
oscillation. Since the accuracy of 0(e%) is sufficient for @ and @, in Eq. (6.
11), they are given by the following equations:5®>

Q1=00,1/G (w1), Q:=004:/G" (2w,) (6.13)

The term 85(Q;Q, in the right side of Eq. (6. 11) has the same effects as the
external force on this nonlinear forced oscillation. We call it “the apparent ex-
ternal force”.¢5)

It has been shown49> that when two periodic external forces of the different
frequencies 2; and £, simultaneously act on a vibratory system having the third
power nonlinear terms of coordinates, the sub-combination tone of frequency:

(6.11)

1
wi:”z"<‘91+‘92) (6.14)
can occur. The oscillation of frequency (3/2)w; treated in this chapter corres-
ponds to a particular case of Eq. (6. 14), in which £;=w; and 2,=2w,, that is,
2,:2,=1:2. Therefore, the frequency ratio K (=£,/2;) equals 2, and ;=
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(3/2)w,. We may say that this oscillation has a type of ultra-subharmonic oscilla-
tion when it is defined from the viewpoint of the resonance frequency. Tomas¢8)
treated the same kind of sub-combination tone in a nonlinear rectilinear vibratory
system having a single degree of freedom.

In order to obtain the solutions to Egq. (6. 8), we substitute Eq. (6. 9) into
Eq. (6. 8) and adopt the harmonic balance method for the frequencies w;, 2; and
;. Generally, in analyses of combination tones for various values of K=0,/2,
one ought to solve the simultaneous equations for Ry, @, @, and their phase
angles, instead of Eq. (6. 11). In the present special case, however, where ;=
Wy, 2,=2w, and wy=(3/2)w;, the critical speed of the oscillation (3/2)w; locates
approximately halfway between the two resonant points w;=p, and 2w;=2p, of the
harmonic oscillations. It is far away from the critical speeds of the harmonics
£y and Q,. Accordingly, we may use the simple equation (6. 13) for @; and @,
and we may decide R, and J7 by Eq. (6. 11).6®

From Eq. (6. 11), the resonance curve is given by the expression:

{o—4BO (R} +2Q%5+2Q3) 1+ (cws) * = (809Q:Q,)? (6.15)
Solving Eq. (6. 15) for Rs2, we have:

Ry==2(Q1+ Q1)+ v/ @FQ,@)° (cw)?}/ 4"  (6.16)

The experimental apparatus is a four-degree-of-freedom system where the
deflection and the inclination of a rotor couple with each other. Analyzing the
sub-combination tones for the equations of motion in a four-degree-of-freedom
system by means of the same procedure as that in a two-degree-of-freedom sys-
tem, we obtain the equations for the deflection oscillation in a four-degree-of-
freedom system corresponding to Eq. (6. 11)6D. From these two equations, it
follows that they are the same in construction and have the same dynamical
meanings of their coefficients, and that the vibratory characteristics of the deflec-
tion oscillation of the sub-combination tone in the four-degree-of-freedom system
are qualitatively the same as those of the inclination oscillation in the two-degree-
of-freedom system.

6. 4. Characteristics of the oscillation

Equations (6. 11), (6. 15), and (6. 16) have nearly the same constitution as
that for the subharmonic oscillation +(1/2)w of the forward precessional motion
type, due to the dynamic unbalance ¢ shown in the previous paper.38> Comparing
these two equations, we can see that these two kinds of oscillations have nearly
the same vibratory characteristics (e. g.,, the form of resonance curves) except
for the kinds of effective nonlinear components. The occurence of the oscillation
(3/2)w, requires only a symmetrical nonlinear components N (0), and the oscillation
+(1/2)w requires an unsymmetrical nonlinear component N (1) besides N(0).

We show the groups of the resonance curves for each value of the coefficient
of the nonlinear term B¢®, and the damping coefficient ¢ in Figs. 6. 3 and 6. 4,
respectively. In these figures, we put d=1 and @,=3/8. The chain line in Fig. 6.
4 represents the backbone curve. It can be seen that the resonance curves in each
figure have the same characteristics as those for the subharmonic oscillation of
order 1/2.65> From investigation of the stability of solutions in the same manner
as that in the previous report5’, it follows that the point on the resonance curve
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which has a vertical tangent gives the boundary between a stable region and an
unstable one. Stable and unstable stationary solutions are represented by full and
broken lines, respectively.
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Fig. 6. 3. Theoretical resonance curves Fig. 6. 4. Theoretical resonance curves
showing the influence of the showing the influence of the
nonlinear component N (0) damping coefficient c.
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From Eg. (6. 16), the following condition for the amplitude to be real is
obtained :

889Q1Q:|=cw; (==Chy) (6.17)

Therefore, in order that this sub-combination tone may occur against an inevitable
damping, the value of the apparent external force 88(9Q.Q, is required to satisfy
Eq. (6. 17). As shown in Fig. 6. 4, the peak of the resonance curve becomes lower
as the damping coefficient ¢ increases. For ¢ satisfying the equality of Eq. (6.
17), the curve is reduced to the point A. Such a critical damping coefficient c.
is given by the equation:

¢.=|80Q:1Q:|/ by (6.18)
For a damping larger than ¢,, the oscillation does not appear.

6. 5. Experimental results and their discussions

Experiments were performed by using the same apparatus as shown in Fig. 1.
1. The disc R; and the shaft S; were used as shown in Tables 1. 1 and 1. 2, res-
pectively.
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If the apparatus is assembled under the condition that the discrepancy between
the center lines of the upper and the lower bearings in the vertical shaft system
is very small, the shaft center line is located in the middle of the angular clearance
in the single-row deep groove ball bearing when the shaft is non-rotating. In this
case, the symmetrical nonlinearity is more apparent in the restoring force of the
shaft than the unsymmetrical nonlinearity.36) As a result, the subharmonic oscilla-
tion of order 1/3 and the summed-and-differential harmonic oscillations of the
types [2p;+p;] and [p;=+p;+p,] can occur, in addition to the subharmonic oscilla-
tion of order 1/2 and the summed-and-differential harmonic oscillations of the
types [p;+p;]. We have already reported on these oscillations.26> In the above
assembly, we could also observe the occurrence of the sub-combination tone (3/
2w;.

Figure 6. 5 shows the resonance curve
for this kind of oscillation, as obtained in
experiments. In this figure, the ordinate

represents the amplitudes R of (3/2)w; Egg O Sub-combination Tones

which are obtained by taking away the o | —® g-direction

small amplitudes of frequency » from the 3

wave forms. The resonant frequency of )

this oscillation, that is, the angular velo- < |

city of the shaft at which the relation L

B/2)w1=0p, (p1>02>0>ps>py  holds o ) . . ) )

among natural frequencies) is satisfied is 2100 fzopt © o

0=2120 rpm (see Fig. 6 6). The reso- i _ Angular velocity @ rpr
. . . . Fig. 6. 5. Experimental resonance curve

nance curve in Fig. 6. 5 is the same in of the sub-combination tone

shape as those in Fig. 6. 4. Since the [+ (3/2)w .

disturbance forces resulting in the oscill-
ation (3/2)w; are not large compared with
the forces due to the static unbalance e
and the dynamic one r, we found that the amplitudes in Fig. 6. 5 are not so large
as those of the subharmonic oscillation of order 1/3 owing to e and r.

The frequencies of the oscillation (3/2)w; are shown in Fig. 6. 6. By measur-
ing the orbital angular velocity of a steel ball in a single-row deep groove ball
bearing, we obtain the following values:

wl—':c(lw:(). 38760, 41:0. 387 (6. 19)

The values of (3/2)a; and w;=(3/2)a;w obtained in Fig. 6. 5 are plotted in the
upper and the lower diagrams of Fig. 6. 6, respectively. They are consistent with
the values of Eq. (6. 19), within the accuracy of measurement.

An example of the wave form of Fig. 6. 5 is shown in Fig. 6. 7. In this picture,
the white vertical lines represent the marks recorded at each revolution of the
shaft. We find that a small oscillation of frequency  is involved in this wave
form. Nearly the same shape of wave repeats itself at the time interval AA.

During the interval AA, the shaft makes 31 revolutions, and the number of peaks
of the wave form is 18. Therefore, the relation:

(3/2)ay=1{(3/2) w1} /w=18/31==0. 581 }
a;=0. 387

(6. 20)
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is obtained, and this value is consistent
with Eq. (6. 19).

As mentioned in preceeding sections,
the appearance of the sub-combination
tone (3/2)w; requires external forces of
frequencies w; and 20;. Figure 6. 8 pro-
ves experimentally that the diturbance
force of frequency 2w, exists in practice
within this system. When the oscillation L
(3/2)w, occurred, a peak in the harmonic
oscillation 2w, appeared in the vicintiy of .
®=1480 rpm, where 2w,=ps (P, : a natu- ?450 1500
ral frequency), as shown in Fig. 6. 8. On Angular velocity @ rpm
the other hand, we have already reported . .

. ) A X Fig. 6. 8. Experimental resonance curve
that a difference in diameters of balls in of the harmonic oscillation [+
a bearing results in the appearance of a 2017,
peak in the harmonic oscillation of fre-
quency wi, and that the existence of the
external force w; was ascertained experimentally.?®)

In the cases where the discrepancy between the center lines of the upper and
the lower bearing pedestals is not small in a vertical shaft system, and where a
static deflection of the shaft exists in a horizontal shaft system, the oscillation
(3/2)w, does not occur experimentally. This is explained by the following two
reasons: First, the restoring force of the shaft has strong unsymmetrical and
weak symmetrical nonlinearity. This is verified by the fact that the subharmonic
oscillation of order 1/2 and the summed-and-differential harmonic oscillations of
the types [p;+p;] appear, but the subharmonic oscillation of order 1/3 and the
summed-and-differential harmonic one of the types [2p;+p;] and [pidpjdps] do
not appear.32~34, 36,37 Accordingly, the coefficient 8¢, related to the symmetri-
cal nonlinear component N(0), takes a small value, and it follows that the magni-
tude of an apparent external force is not large enough to satisfy the condition of
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appearance, that is, Eq. (6. 17). The case in the four-degree-of-freedom system is
explained in the same way.

The above-mentioned result is also substantiated by the shape of resonance
curve for the harmonic oscillation in the neighborhood of the major critical speed
., and also by the shape of the subharmonic oscillation of order 1/2 of the type
of a forward precessional whirling motion which was obtained in experiments.
When the alignment of the center lines of both bearing pedestals is not good, the
resonance curves at the frequencies w. and w,;,, are minimally inclined toward
the high frequency range because of a small component N(0), (e. g., see Fig. 2 of
the previous report®7)), and thus the oscillation (3/2)w, does not appear. On the
other hand, Figs. 6 and 19 of the previous report38> show the resonance curves in
the vicinity of w, and those for the subharmonic oscillation of order 1/2, respec-
tively, in the case where the oscillation (3/2)w; occurs. Their curves of hard
spring type which are inclined considerably toward the right side show the ex-
istence of a large component N(0) to be necessary for the occurrence of (3/2)w;.

The second reason why bad alignment of the center lines of bearing pedestals
results in no appearance of the oscillation (3/2)w, is that the value of @, in Eq.
(6. 17) representing an apparent external force is small. When the discrepancy
between the center lines of both pedestals is comparatively large, not only the
force F' in Fig. 6. 1 but also the moment acts on the shaft even in a static state.
In this case, the inner ring of the bearing inclines to the end of the angular
clearance, and the steel balls are pressed by a large force against the inside wall
of the outer ring in a thrust direction. Therefore the radial clearance in the ball
bearing disappears, and in certain circumstances even an interference appears.
Such circumstances are different from those described in Section 6. 2. In this
case, the amplitudes a, and b, of the component 2w,, that is, the value of @,
becomes very small, and so the relation of Eq. (6. 17) does not hold.

The result mentioned above can also be ascertained from the following experi-
mental results. When the oscillation (3/2)w; did not appear, due to the discrepancy
between the center lines of both bearing pedestals, it was observed that the natural
frequency of the non-rotating shaft took a somewhat large value in a certain
direction. This was due to the facts that the radial clearance vanishes in this
direction and the stiffness of the shaft becomes large.39, 690 When there is such
non-uniformity of stiffness of the shaft, synchronous backward precession occurs.
69, 70> This oscillation appears with greater amplitude when the oscillation (3/2)w;
does not occur.37, 69> When, however, the oscillation (3/2)w; does occur, this peak
is very small, as shown in Fig. 6 of reference,3%) and thus the shaft hardly has the
non-uniformity of stiffness.

If the spring characteristics of a shaft contain nonlinear terms of the third
and fourth powers of coordinates, the ultra-subharmonic oscillation of frequency
(3/2)w; can occur due to only one external force of wi.42> But from the follow-
ing fact, we can conclude that the oscillation treated here is not one of that sort:
If the nonlinear term of the fourth power of coordinates is large enough to make
this ultra-subharmonic oscillation occur against the damping, not only does the
oscillation of (3/2)w, occur, but also the ultra-subharmonic oscillation of frequency
(3/2)w should occur with larger amplitudes than those of the former. This is
because there exist disturbance forces of w due to the unbalances of a rotor ¢ and
t in this system which are considerably larger than the external force of o,
caused by the difference in diameters of steel balls in a ball bearing. But we did
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not observe the oscillation of (3/2)e through many experiments.

6. 6. Conclusions

The results of the theoretical analyses and experiments may be summarized as
follows :

(1) In the system of the rotating shaft supported by a single-row deep groove
ball bearing, when the alignment of center lines of both bearing pedestals is good,
intensive symmetrical and weak unsymmetrical nonlinearities appear in the restor-
ing force of the shaft. Also in this case, if there is a difference in diameters of
steel balls in the ball bearing, two external forces of frequencies and 2w;
appear. Owing to these forces in addition to the above-mentioned nonlinearities
of stiffness, the sub-combination tone of frequency (3/2)w; of the type of a
forward precessional motion occurs.

(2) Similar to the subharmonic oscillations of order 1/3 and summed-and-
differential harmonic oscillations of the types [2p;+p;] and [p;=p;+p.], the
oscillation (3/2)w; appears only in the case where an intensive symmetrical non-
linearity of the shaft stiffness exists.

(3) Among the symmetrical nonlinear components, only the isotropic compo-
nent N(0) takes part in the oscillation (3/2)w;.

(4) The equations for the amplitude and the phase angle of the oscillation are
the same in constitution as those for the subharmonic oscillation of order 1/2 of a
forward precessional type. Thus the vibratory characteristics of both oscillations
are qualitatively the same.

(5) When the alignment of the center lines of both bearing pedestals is not
good, the oscillation (3/2)w, does not appear. This is because strong unsymmetri-
cal and weak symmetrical nonlinearities appear in the shaft stiffness, causing the
component N (0) to become small. Another reason is that the external force of
2w, due to the difference in diameters of steel balls becomes small.

(6) The oscillation of (3/2)w, is different from ultra-subharmonic oscilla-
tions.

7. Unstable Vibrations of an Unsymmetrical Shaft at the Secondary
Critical Speed due to Ball Bearings®?

7. 1. Introduction

The dynamic phenomena of unsymmetrical rotating shafts with unequal bending
stiffness have been studied mainly for unstable vibrations at the major critical
speed w, and for vibrations at the secondary critical speed. The latter is due to
the unsymmetry of the shaft and the gravity, and its mode is a stationary whirling
motion with frequency -2w (twice the frequency of the shaft rotating speed ),
where the positive sign - represents a forward precessional whirling motion. This
secondary critical speed has been studied by many researchers including Soderberg,
20) Smith,4) and Taylor.s> Kellenberger,”” and Bishop & Parkinson2® discussed
these phenomena on an unsymmetrical shaft with distributed mass.

This chapter deals with an unstable vibration with frequency -+2w which occurs
at the secondary critical speed owing to a single-row deep groove ball bearing in
an unsymmetrical shaft system. Some researchers indicated the possibility of
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unstable vibrations at the secondary critical speed in a system where an unsymme-
trical shaft was supported by flexible bearing pedestals with unsymmetrical stif-
fness. For example, Foote et al.®) and Tondl?1> have theoretically dealt with this
sort of system. They concluded that unstable regions appear at speeds of 1/2, 1/3,
1/4, ... times the major critical speed but their widths are narrow and easily
disappear due to a small damping. Moreover a few experiments have been made
by Hull'2> and Messal & Bonthron?2, but it is not clear whether unstable regions
exist or not.

In this chapter, both the theoretical and the experimental discussions are
carried out about the unstable vibration which appears owing to coexistance of the
unsymmetry of the shaft and the directional difference of the support condition®?2>
(that is, the unsymmetrical boundary condition for inclination at the shaft end).
This directional difference is due to the angular clearance of a single-row deep
groove ball bearing. In our experiments on an unsymmetrical shaft supported by
single-row deep groove ball bearings, even when rigid bearing pedestals were used,
we observed a wide unstable region in which the unstable vibration of the fre-
quency +2w occurred. In addition, it is concluded that this kind of unstable
vibration does not appear in the unsymmetrical shaft supported by self-aligning
double-row ball bearings, nor in the unsymmetrical rotor system which has similar
vibratory characteristics to those of the unsymmetrical shaft system in general.

7. 2. Restoring forces of the shaft and equations of motion

First, we derive expressions for the restoring forces and equations of motion
in the unsymmetrical rotating shaft system, when there exists a directional diffe-
rence in the support condition at the lower end of the shaft,

As shown in Fig. 7. 1, a rotor is mounted on a vertical unsymmetrical shaft
(its length is /=a--b) at the position of the ratio ¢ : . The boundary conditions
are a simple support at the upper end for simplicity, and an elastic support having
a directional difference at the lower end. The elastic support means that the
inclination angle #, of the shaft at the lower end is proportional to the bending
moment M, at the end, namely the relation

M,=Kpg, 7.1

holds. The proportional constant X is independent of the dimensions of a shaft
and its configulation, and it is a sort of a spring constant (whose unit is N.m/rad)
determined by only the condition of bearings. The case K=0 represents a simple
support, and K=oco a fixed support. In this chapter, we regard all kinds of boun-
dary conditions as an elastic support in a wide sense involving these particular
cases, and assume that K can take values from 0 to co. The shaft shows a linear
spring characteristic when it is supported elastically at both shaft ends. When the
boundary condition is not expressed by Eq. (7. 1), a nonlinear spring characteristic
appears in the shaft restoring force.

As shown in Fig. 7. 1, O-xyz is a stationary rectangular coordinate system
whose origin O coincides with the equilibrium position of the point S (the center
of the rotor), and whose z-axis is coincident with the bearing center line (that is,
the line connecting the centers of the upper and the lower bearings). Now, we
suppose that the strength of the elastic support has a directional differrence. If
we suppose that the strength is the greatest in the yz-plane, it is the smallest in
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the xz-plane. Putting the spring constants
in Eq. (7. 1) in the xz- and yz-planes as
K, and K, respectively, the relation H

K, <K, (7.2) z Kol

holds. We rewrite them as
K=(K,+K,) /2, 4K=(K,—K,)/2
(7.3)

where K represents the average spring
constant, and 4K the directional diffe-
rence of them.

The system O-x'y'z’ is a rotating
rectangular coordinate system where the
%'~ and y'-axes are taken in the directions
of the principal axes of moment of inertia
of area of the unsymmetrical shaft, and
where the z'-axis coincides with the di-
rection of the principal axis of polar
moment of inertia of area of the shaft.
We designate the moments of inertia of
area of the unsymmetrical shaft about the
x'- and y'-axes as [, and I, respectively

!

(where I,”>I," is assumed), and Young’s R 4‘) < %

modulas as E. We put LA,
EI,=B-+4B, EI'y=B—4B (7.4) Fig. 7. 1. Coordinate systems.

In Eq. (7. 4), B represents the average bending stiffness of the unsymmetrical
shaft, and 4B the magnitude of the shaft unsymmetry.

Let a deflection of the rotor be » (having components x, y), an inclination
angle be 6(6, 0,), and the restoring force and the moment which act from the
shaft to the rotor be —F(—F,, —F,) and —M(—M,, —M,). We put

r=x-+iy, r=x—1y, 0=0,-+10,,
§=0,—i0,, F=F,+iF, M=M,+iM,

(7.5)

where i=+/—1.

Since the motion of the rotor is an infinitesimal vibrations, we assume the
deflection # and the inclination @ to be small, and also the twist angle of the shaft
during running to be small. Neglecting the higher order terms of these small
quantities, the restoring forces in the case of the elastic support having the direc-
tional difference as above mentioned are represented in the following forms after
some calculation:73?
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o
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where » is the rotating speed of a shaft, and 7 denotes the time. The moment
when the x'-axis becomes parallel to the xz-plane is taken as #=0. If the un-
symmetry 4B/B5 is a small quantity, the magnitudes of the coefficients such as
day, and others in Eq. (7. 6) become smaller as #n(=1, 2, ...) increases.

Let the mass of a rotor be m, the polar moment of inertia be I,, the diametral
moment of inertia be 7, and the damping coefficients be ¢11, €12, €31 (=C15) and
€32. Using F and M in Eq. (7. 6), we then get the following equations of motion:

MF 4117+ C1,0+F =0
7.7)

Iﬁuijpwé+621fﬁ“czzé“FM:0

In the experimental apparatus mentioned later, there appear the nonlinear spring
chracteristics®2> in the restoring force in addition to the directional difference of
support condition at the shaft end due to the ball bearing. But, for simplicity, we
consider the linear system represented by Eq. (7. 7), because the nonlinearity has
no substantial influences in our discussion. Though forced oscillations [+w7] and
[+20]8% also appear due to the unbalance of a rotor and the variation of the
static deflection of a shaft, respectively, we neglect the external forces which
cause these oscillations. This is because they have no direct influence on the
unstable vibration treated here.

Using the symbol [p7, we express the forward and the backward precessional
whirling motions of the frequency p corresponding to the sign of p. On account
of the terms of the coefficients of day,, day;, pasa., pas; and so on in Eq. (7. 6),
the free vibration [p] produces the whirling motions of [2nw—p7], [—2nw-+p],
2no-+p], and [—2ne—p7] respectively.18, 74

7. 3. Unstable vibration at the secondary critical speed

We designate the natural frequency of the system by p. We shall obtain an
approximate solution of Eq. (7. 7) near the rotating speed satisfying p=-+2w.
The forms of the solution are put in the following:

r=Ae'?u®) g Algi2wtten (7.8)

Here, it is assumed that A4 (0), 4’, ¢, and ¢’ are slowly varying functions of
time, and the first and the second time derivatives of them have the magnitudes
of the small quantities O(e) and O(e?) respectively. Also, the damping coeffici-
ents in Eq. (7. 7) and the third and the fourth terms in the right sides of Eq. (7.
6) are assumed to have the magnitude of O(¢). Putting the coefficients of egi(2wt+9)
to zero after the substitution of Eq. (7. 8) into Eq. (7. 7), and neglecting the
terms of O(e?) and below, we obtain the following equations:
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dimoAp=H2w)A-+rA cos(p—¢') + {da, A cos 2¢
+ 4y A'cos (p+¢)} —2we:, A sin (9 —¢') (1)
(A1) wA'¢'cos (p—¢") =G (2w) A'cos (p—¢") +14
+ {4y, A cos 20+ 40,4 cos (p+¢") }
FUL-L)od s —¢) +2oend sin@—y) @ |
dmwA=yA sin(p—¢") +{da, A sin 20+ 4y A’ sin(¢+¢") }
—2w{c A+tec,Alcos(p—¢")} (i)
(4r-1,) wA'cos (0—¢") =G (2w) A’ sin (¢ —¢") + {4y, A sin 2¢
+ 48, A" sin(p+¢)} -+ (A =) w A'¢ sin(p—¢")
—20{¢1,A+ €A cos (9—¢) } (i)

Here,
HQw)=a—m2w)?, GLw)=0+102w) —I(2w)? (7.10)

Neglecting the small terms in Eq. (7. 9), we get the following relations satisfied
with the accuracy of O(e?):

A HQw) _ 7
A r cos (p—¢") G (2w)cos(¢—¢") (7.11)
sin(¢—¢') =0 S ¢'=¢,0r g'=9+7

Neglecting the small terms in Eq. (7. 7), we obtain the frequency equation as
follows :

F(0)=(@—mp®) @+ T,wp—15%) —1*=H ($)G(p) —1*=0
Hp)=a—mp,  G(p)=0+wp—1b°)

After putting 20=p in Eq. (7. 12), we designate the root of this equation by p,.
Using the symbols H(po)=H, and G(p,)=G,, we obtain the following relation
near the rotating speed p=-+2w with the accuracy of O(e%):

HQuw)=H(p)=H, GQRuw)=G(p)=CG, (7.13)

} (7.12)

If the amplitude A’ is assumed to take positive and negative values, we can adopt
only the relation ¢’=¢. Consequently, from Eq. (7. 11), it follows that

A'JA=—H/r=—71/G, (7. 14)

Thus, it is known that the ratio of the amplitudes of inclination and deflection is
constant with the accuracy of O(e9). Referring to Egs. (7. 13), (7. 14) and the
relation ¢'=¢, and after the calculations of (i) X G(2w)—(ii) Xy, and (i} X G2w)
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—({v) x7 in Eq. (7. 9), we obtain the equations with the accuracy of O(e) as
follows:

p=—0g—4 cos 20= ~/c(w—~?—°—>——d cos 2¢
2 (7.15)
A=—cA—4-Asin 2¢
here
D=dmG,+ AI—I,)H, o:—2f<2w>/<pop):x(w—fzi),
k=4{2mG,+ 21—~ I,)H} /D (>0), 7.16)

Ad=—2(Gyda,— 2y Ay, +H 40/ (p,D) (C0),
¢=2(Gyc11—2rc13+HCy) /D (>0)

In Eq. (7. 15), ¢ is the so-called detuning term, 4 the coefficient due to the coex-
istence of the shaft unsymmetry and the directional difference of bearing support,
and ¢ the damping cofficient. Also it is easily verified that o, 4, and ¢ are
positive constants.

Equation (7. 15) is able to be solved in nearly the same manner as that of the
previous paper,”5) and has the solutions as mentioned below.

The values of o satisfying the relation 42=¢2 are designated by w; and wj;
(wi<w3). From Eq. (7. 15), it follows that

wr=Dpo/2—d/k, wi=Dp/2+4/x (7.17)

(1) The case of 42>>¢2 (that is, w;<<w<w3): When o approaches the value
of po/2 and the relation 42>>02 holds, the solution is given as follows:

7-:e—at{Ale#tei(zwtﬁ'—&”)_}_Aze'#tei<2wt”¢)} (7. 18)

where A, and A4, are arbitrary constants and

p=+ A2 —g* (>0) (7.19)

If ¢ is larger than the damping coefficient ¢, the first term in the right side of
Eq. (7. 18) represents an unstable vibration of the frequency 2w whose amplitude
increases exponentially with time. The boundary frequencies w; and w, (>w;) of
the unstable region in which the unstable vibration occurs are given by the equation
¢—c=0 as follows:

w1=Do/2—/A2—C?/r,  wy;=Do/2+ /42— /K (7. 20)

The unstable region is w;<w<w,. When =0, that is, w=p,/2, ¢ takes the max-
imum value as follows:

Himax =4 (7.21)

The phase angle ¢ is determined by the following equations.
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cos 2¢0=—c/d=—r(w—p,/2)/4
sin2¢p=—u/d=—+/42—¢2 /4
From Eq. (7. 22), ¢=0 for w=wj, ¢o=—=z/4 for w=p,/2, and o=—=x/2 for w=w;.

(1) The case of 42<(¢? (that is, w<w; and w;<w): When o is slightly
different from the value py/2, and 42< 02, the solution is given as follows:

For w<wh,

7,____e-ct[Asei((2w+v)t+p}+1Asei{(2w—v>z~ﬂ}‘_‘|

(7.22)

(7.23)
For w>w5,
r=e [ A0l G0Vt L A g Go+YIE=R)]
Here, A and B are arbitrary constants, and v and 2 are as follows:
V== (>0)
(7. 24)

Ao+ 4d —+|e|—4
h= V0el+d ++/Te|—4 <l

Consequently, the amplitude of the whirl-

ing motion [2w-+v7] becomes predominant D= 1460 rpm ‘Ig

in the lower side (w<wji) and that of 4-95 rpm

[2w—y7] becomes predominant in the hi- | f=15rm ’Unstqb(e: »

gher side (w;<w). But, it is seen from 1500 regen w

Eq. (7. 23) that they diminish with time. e
Figure 7. 2 shows the frequencies of S i 12- A(—é’ pe)

the vibration near w=p,/2 and the unst- e i

able region. Broken lines represent the “ m

frequencies of decreasing vibrations with

smaller amplitudes. When o;<w<wj the 1400~ IV

vibration [+2w7] appears, and this vibra- /3]

tion becomes unstable when w;<<o<w,. : : S Do wlws i

700 ~wf 800

Angular velocity @ rpm

Fig. 7. 2. Frequencies near the secondary
critical speed and the unstable
region.

7. 4. On the value of the coefficient 4

We appraise the value of the coefficient 4, which is a main factor causing the
unstable vibration [ +2w], when the upper shaft end is simply supported and the
lower end is under an elastic support condition with a directional difference. The
spring constants X, and K, (K,<K,) may take values from 0 to co. We intro-
duce the small quantity { as a parameter available to appraise the magnitudes of
the quantities. For example, K,=0 represents a simple support, K,=oco a fixed
one, K,=0({) an elastic one close to the simple one, K,=0({% a medium-sized
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elastic one (namely, K, is neither large nor small), and K,=0({"1) an elastic one
close to the fixed one. Though even in the above examples of bearing supports
we can consider over twenty combinations depending on the magnitudes of X, and
K ,, the following relation always holds

da, Ay, 434:(——_3_> 1 (-—f‘—) (7. 25)
a 3
where ¢ is a distance from the lower shaft end to the rotor. Substituting Eq. (7.
25) into Eq. (7. 16), we get

i {2 v B,

Since the term in the braket { } in Eq. (7. 26) is a constant with the magnitude
of O({?), we may appraise the value of 4y, instead of the coefficient 4. Among
the above-mentioned combinations, we show the calculated values of 47, for several
cases which are expected to be realized practically in experiments. The values of
4y, are described only by the largest term with smaller terms neglected.

(a) In the case of the medium-sized elastic support in the y-direction and the
simple support or the elastic one close to it in the x-direction (that is, X,=0 or
0(0), and K,=0(L%):

_ 3aK3(4B)?
A =g 4By ak )’ (7.27 a)

(b) In the case of the medium-sized elastic supports both in the x- and y-
directions, and the directional difference 4K with the medium magnitude (that is,
K,=0((%), Ky=0((), and 4K=0({%):

_ 6a(K,—K) (2BK 4 K,) +aK.K}* pys
(4B+aK,)*(4B+akK,)?

Ay,

_ 12a4K{4BK+aK?*—a(4K)*}*(4B)? (7.27 b)
T (dB+aK+adK)*(4B+aK —adK)® '

(¢) In the case of the medium-sized elastic supports both in the x- and y-
directions, and the small 4K (that is, K,=0({%, K,=0({?), and 4K=0()):

_ 12aK?4K (4B)*
dr= U ik (7.27 ©)

If 4B/B=0({), we know that 4y, has the magnitude of O(£2) in (a) and (b), and
0(Z?) in (c). In the theoretical analysis in Section 7. 3, 4y, is supposed as the
magnitude of O(e) for any case (that is, 0({2)=0(e) for (a) and (b), and O(L3)
=0(e) for (c)).

For comparison, we show the expressions for 4 and 4y, in a system where an
unsymmetrical shaft is supported by a flexible bearing pedestal having a directional
difference (that is, a system having an unsymmetrical flexibility of the bearing
support for deflection) at the lower shaft end. In this system, it is assumed that
both of the shaft ends are simply supported. We denote the spring constants for
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deflection in the x- and y-directions of the lower bearing pedestal by k—4%k and
k4-4k respectively, and put K,=3B(a?+ab-+b2)/(abl)+k and 4K,=34B(a%+ab-+
b2)/(a%bl). 1In the case of small 4%/k, we get the following equations:

A4=2{(Gy/a+2r+aH,)/(p,D)} 4y,

@’Kj K3 ’ IK, I

When 4k=0(0), 474 in Eq. (7. 28) has the magnitude of O({3) and it is the same
order as that of 4y, in Eq. (7. 27c).

Incidentally, the coefficients 4a,, 4y, and 46,, factors causing the unstable
region at the major critical speed, have the magnitude of O({) proportional to the
unsymmetry of the shaft 4B/B in all cases in the system treated here where there
exists a directional difference of the bearing support at the shaft end.

Ay =

7. 5. Experimental results

The experimental apparatus is a vertical shaft system where the disc R; in
Table 1. 1 was mounted on the unsymmetrical shaft S; in Table 1. 2. When the
bearing center line deviates slightly from the center of the angular clearance in
the lower bearing, there appears the strongest elastic support in the direction of
this deviation, and the weakest one in the normal direction to that. Consequently,
the shaft end has a support condition having a directional difference for inclina-
tion.32)

7. 5. 1. Natural frequencies in the non-rotating state

In the experimental apparatus, the deflections were measured in two mutually
perpendicular directions. When the shaft was hammered in the state of w=0, two
free vibrations occurred predominantly, and beat phenomena were observed. These
vibrations correspond to the modes of vibrations with lowest frequencies in the
directions of the maximum and the minimum flexibilities, respectively. We desig-
nate these two frequencies by pg; and pgs (Po1>Pos). Measuring the frequencies
for various angular positions @ of the rotor when w=0, we know that the values
of po1 and po, change twice periodically during one revolution of the rotor (from
=0 to @=2z). When the direction of the rotating directional difference (due to
the shaft unsymmetry) coincides with that of the stationary directional difference
(due to the difference of the boundary condition at the shaft end), namely when
the x-direction coincides with the - or —a’-direction in Fig. 7. 1, po1—pos takes
a maximum value. When these directions are at right angles to each other (namely,
when the x-direction coincides with the y'- or —y'-direction), po1—pe, takes a
minimum value. The results of measurement can be expressed approximately by
Do1=Do1+4De18In260, Pos=Dpos+4possin(20+7) where po1=136L.5 rpm, 4dpyi=
36.5 rpm, Pos=1104 rpm, and 4py,=39 rpm. Here, o1 — pos means the difference
between the natural frequencies due to the unsymmetry of the shaft, and 4py; (or
4pys) does the magnitude of variation of the natural frequency due to the direc-
tional difference of the support condition at the shaft end. As the maximum
values of py:1 and py, are not so different from the natural frequencies of the
system where the unsymmetrical shaft having the bending stiffness of B+4B and
B—4B was simply supported at both of the shaft ends, we can consider that the
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direction of the weak elastic support (that is, the x-direction in Fig. 7. 1) is
approximately under the simple support condition. Therefore, the state of our
experimental apparatus corresponds to the case (a) in Section 7. 4.

7. 5. 2. Resonance phenomena near the resonance point p,=-+2w

In this experimental apparatus, in addition to the natural frequencies p; (=1~
4, p1>p,>0>p3>p,) corresponding to those in the symmetrical system (that is,
the system carrying a disc mounted on a round shaft), the frequencies p; (=2w—
i), —p; and others are brought about by the unsymmetry of the shaft, the un-
symmetrical support condition at the shaft end, or the coexistence of them.1674)
We measured the resonance curve in the region of the rotating speeds less than
0=2700 rpm in various assemblies of the experimental apparatus, and we observed
unstable vibrations near the major critical speed satisfying p,=-+w and near the
secondary critical speed satisfying p,= -+2w. In addition, on account of use of a
disc (Ip/I=2) as a rotor, no resonance points satisfying p1=+o and p;=+20
exist. Near the major critical speed satisfying p,= -+, an unstable region exists
in a broad range of w=1530~1790 rpm. This corresponds to the unstable region
which is generally observed in an unsymmetrical shaft system or in an unsymmetrical
rotor system. Near the secondary critical speed satisfying p,=-+2w, we obtained
the resonance curve shown in Fig. 7. 3. In Fig. 7. 3, the unstable region exists in
the range of w=705~750 rpm. It was already reported that the peak of the steady
oscillation [+2w7] appeared near the secondary critical speed owing to the gravity
in a horizontal unsymmetrical shaft system. From Fig. 7. 3, however, it is found
that the unstable region of the unstable vibration [+2w_] occurs when there exists
a directional difference of the support condition in the vertical unsymmetrical shaft
system. The steady vibration [ +2w] also appears in both sides of this unstable
region. This vibration is caused by an external force of frequency 2w which is due
to the fluctuation of the static deflection of the shaft. The static deflection changes
even in a vertical shaft system when the unsymmetrical shaft is supported elasti-
cally at the shaft end or when the shaft
curvature and the angular clearance of a
bearing coexist.64 o frael ¢

We can verify the existence of this
unstable region also by measuring the
natural frequencies of this system. The
experimental values of p, near the reso-
nance point are shown in Fig. 7. 4. If
there are no unstable regions, p, will take
the values of the curve shown in a broken
line in the figure. But the experimental
pg curve is the same in shape as the full
line in Fig. 7. 2 owing to the existence
of the unstable region. We could not ob- 0 ) L L |
serve the vibrations with smaller ampli- 600 702ngular Velocity%g om
tudes shown in broken lines in Fig. 7. 2.

-
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[ —e- Y-direction
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o

Fig. 7. 3. Experimental resonance curve

This unstable region occurs owing to near the secondary critical
the coexistence of the shaft unsymmetry speed satisfying pe=-+20 (in
and the directional difference of the bear- the case of presence of the

ing support. Therefore, when the bearing unstable region).
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Fig. 7. 4. Natural frequencies near the Fig. 7. 5. Experimental resonance curve
secondary critical speed (pz= near the secondary critical
+2w). speed satisfying ps=-+20 (in

the case of absence of the
unstable region).

center line shifts its position against the angular clearance of the bearing, the
magnitude of the directional difference of the support condition at the shaft end
varies, and thus the width of the unstable region changes. When the center lines
of the upper and the lower bearings are in good alignment and there is little
directional difference of the bearing support, 47, and others in Section 7. 4 become
zero approximately. Then, as shown in Fig. 7.5, the steady vibration [ +20]
appears with no unstable region. Furthermore, as the center lines of the upper
and the lower bearings are in good alignment in Fig. 7. 5, the resonance point is
lower than that in Fig. 7. 3 by about 35 rpm.

In the experiments where we used the same unsymmetrical shaft and the same
bearing pedestals as those in the above experiments but exchanged only the lower
bearing for a self-aligning double-row ball bearing, both the shaft ends were under
the simple support condition, and no unstable vibration of [+2w] occurred. There-
fore, we conclude that the unsymmetry of the flexible bearing pedestals represented
by Eq. (7. 28) in Section 7. 4 has no effect on the unstable vibration treated here.

7. 6. An unsymmetrical rvotor system

An unsymmetrical rotor system often shows the same vibratory characteristics
as those of an unsymmetrical shaft system, but no unstable vibration [ +2w] occurs
in the former system. The experimental apparatus is a vertical shaft system
where the unsymmetrical rotor R, in Table 1. 1 was mounted on the round shaft
S, in Table 1. 2. Though experiments were performed for various assemblies, the
resonance curves were all the same in shape as the curve of Fig. 7. 5, and no
unstable region appeared. The steady vibration [+2w] appeared as a result of
resonance to the external force caused by variation of the static deflection as
mentioned in the previous paper.64

In the unsymmetrical rotor system, the restoring force and moment working
on the rotor are not expressed by Eq. (7. 6), but the following equations:
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F=ar4r0-+ do, v+ 4y ,,0
B _ (7. 29
M=yr-+00-+dy,,7 -+ 48,,0

Therefore, Eq. (7. 29) does not involve any terms for the coefficients doy, dyg,
and 44, in Eq. (7. 6) which are the factors causing an unstable vibration near
b2=2w. Consequently, no unstable vibration [+2e7] can appear in the unsymme-
trical rotor system.

7. 7. Conclusions

On the vibration near the secondary critical speed in a rotating shaft system
where an unsymmetrical shaft is supported by a single-row deep groove ball bear -
ing, the results of the theoretical and the experimental analyses are summarized
as follows:

(1) Near the rotating speed satisfying p,=-2w, there exists an unstable
region where the unstable vibration of the frequency 2w appears.

(2) The cause of this unstable region is the coexistence of the rotating direc-
tional difference due to the shaft unsymmetry and the stationary directional diffe-
rence due to the angular clearance of the bearing.

(3) Change of the assembly of the experimental apparatus gives rise to
variations in the bearing support condition. Consequently, the width of the unstable
region varies, and sometimes the unstable region vanishes.

(4) In the system where the elastic shaft with the circular cross section
carrying an unsymmetrical rotor is supported by a single-row deep groove ball
bearing, no unstable vibration [+2w7 occurs.
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