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Abstract

In a rotating asymmetrical shaft having a keyway or a rectangular
cross section, or in a rotating shaft with an asymmetrical rotor such
as a two-pole generator or two-blade propeller, there occur two types
of unstable vibrations. When bearing pedestals supporting a directional
inequality in stiffness, each unstable region splits up into several re-
gions. The position, width and number of the unstable regions and a
dynamic behavior of the shaft are analytically obtained by approxima-
tion both for a rotating asymmetrical shaft and an asymmetrical rotor.
The analytical results show a good coincidence with those obtained by
an analog computer.

In order to understand the mechanism for the occurrence of these
two types of unstable vibrations, the authors clarify the conditions
under which the time average of a torque applied to the shaft end is
positive, so that the whirling amplitudes of the shaft increase and
unstable vibrations occur. Vibratory solutions in the unstable region
obtained by an analog computer are found to satisfy this instability

condition.
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General Introduction

With advance of machinery, high performance has been demanded for rotating
machines, that is, electric motor, steam turbine, gas turbine, and turbo-compressor.
In order to improve the performance, the rotating machinery must be operated at
high rotational speed, and thus vibrations with even a small amplitude must be
removed. In order to prevent vibrations, the cause of these vibrations must be
clarified for the various vibrations which occur in a high speed region beyond the
first critical speed.

There have been a large number of studies about the vibration of rotating
shaft system since A. Stodola!’, S. Timoshenko?), and J. P. Den Hartog® investi-
gated the vibration of a rotating shaft at the major critical speed.

A rotating shaft which passes through the major critical speed4~19, and the
balancing?, 2,11 of a flexible shaft system at the major critical speed were studied.
T. Yamamotol2) reported a series of theoretical and experimental works upon
various critical speeds but the major critical one with regard to a rotating shaft,
both ends of which are supported by ball bearings. A synchronous backward pre-
cessionl2~1%  caused by directionally unequal flexibility of pedestals, secondary
critical speed?®~19 caused in a horizontal shaft with asymmetrical stiffness, and
vibration of shaft system with variable rotating speed2°~23 were studied. More-
over, upon a rotating asymmetrical shaft and an asymmetrical rotor, the study of
forced vibration was related to the change of response curve with the angular
position of rotor unbalancel®, 24~28) the vibration of a shaft passing through the
major critical speed??, 39 and the balancing of shaft system.

A directional inequality in stiffness of an asymmetrical shaft and different
diametral moments of inertia of an asymmetrical rotor-are examples of a rotating
inequality system turning at the angular velocity of shaft w. When the equations
of motion of shaft system with rotating inequality are expressed by a stationary
rectangular coordinate, the coefficient of those contains the periodic function such
as sin 2wt and cos 2wt. Therefore, unstable vibrations of the so-called “parametric
excitation33, 34 take place in this shaft system.

In a rotor mounted on the middle of an asymmetrical shaft, the unstable
vibration takes place near the major critical speed?,6,10,15~19,35~39)  When the
bearing pedestals supporting an asymmetrical shaft have different stiffness in x-
and y-directions, coexistence of stational inequality in stiffness and rotating one
makes each unstable region split into several parts, and the analysis of this shaft
system is very complicated. Concerning the position, width and number of these
unstable regions, although a lot of research have been reporteds,19,40~54) each
paper of those has given a different result.

In shaft system carrying an asymmetrical rotor, L. Y. Banaf and F. M.
Dimentberg®5, P. J. Brosens and S. H. Crandalls®, and T. Yamamoto and H.Otas?
have reported that the unstable vibration appears near the major critical speed.
Furthermore, S. Aibas8,8®, and T. Yamamoto and H. Ota’® have shown that
unstable vibrations also take place near the rotating speed where the sum of two
natural frequencies p, and p, is always equal to the twice rotating speed of shaft,
that is, p;+p;j=2w (i=j). When a shaft carrying an asymmetrical rotor is sup-
ported by flexible pedestals with directionally different stiffnesses56,61~62) each
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unstable region splits up into several ones in the same way as an asymmetrical
shaft.

In an asymmetrical shaft carrying an asymmetrical rotor, a few papers?$, 26,
48,64~66) indicated that the width of unstable region changes with the orientation
angle { between the inequality of shaft stiffness and that of rotor moment of
inertia.

In this paper, the authors deal with the influence of unequal pedestal stiffness
on the unstable regions of an asymmetrical shaft and an asymmetrical rotor, and
the necessary condition for which unstable vibration occurs in the shaft system
with rotating asymmetry.

Chapter 1 deals with lateral vibrations of an asymmetrical shaft supported by
flexible pedestals with a directional inequality in stiffness. The approximate ana-
lyses regarding unstable regions are carried out by classifying three cases in which
directional inequality of pedestal stiffness ¢ is much less than, much greater than,
or nearly equal to asymmetry of shaft stiffness 4, and the analytical results
assuming that e~4 can expand to other two cases that €4 or e»4 is assumed.
The width and number of unstable regions, and dynamical characteristics of the
shaft system are solely determined by only one parameter i which consists of
mass ratio of pedestal to rotor ¢ and stiffness ratio of pedestal to shaft «. Ana-
lytical results derived by the assumption that e~4 were found to agree well with
those obtained by an analog computer.

Chapter 2 analyses the conical mode of vibrations of a rotor in the same shaft
system as Chapter 1. When coefficient of gyroscopic term ip is small, a similar
approximate analysis to Chapter 1 asumming that e==4 can be adopted by consider-
ing ip, ¢ and 4 to be small quantities of the same order, and it is shown how the
unstable regions are changed by the gyroscopic effect. When i, is larger than ¢ and
4, same approximate analyses can be carried out by distinguishing whether the
terms smaller than ¢2 are negligible or not. The approximation for the case that
ip is relatively large is compared with the solutions obtained by an analog com-
puter, and they are found to show a good coincidence.

Chapter 3 clarifies the mechanism through which unstable vibrations occur in
an asymmetrical shaft supported by flexible pedestals with unequal stiffness. Unsta-
ble vibrations occur just as input energy into the shaft system tends to increase
the whirling amplitude of a rotor. The conditions which cause two types of
unstable vibrations are obtained analytically, and unstable solutions obtained by an
analog computer are found to satisfy these conditions for instability. Moreover, if
the higher order of small quantities ¢ and 4 is taken into consideration, a number
of very narrow unstable regions can-occur.

Chapter 4 makes clear unstable vibrations of a shaft with an asymmetrical
rotor, both ends of which are supported by flexible pedestals with directional
inequality in stiffness. On conical vibrations of an asymmetrical rotor, the posi-
tion, width and number of unstable regions are approximately obtained by the
similar analysis to Chapter 2. These approximations coincide well with the solu-
tions obtained by an analog computer. Moreover, the mechanism for occurrence of
these unstable vibrations is explained, and the conditions necessary for instability
are obtained. The solutions obtained by an analog computer are found just to
satisfy these conditions.

Chapter 5 describes the condition under which unstable vibrations occur in a
rotating asymmetrical shaft with an asymmetrical rotor. This condition necessary
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for instability depends on the orientation angle { between inequality of shaft stiff-
ness and that of rotor moment of inertia, and so the width of unstable region
changes with the angle ¢. It is ascertained that the solutions of unstable vibration
obtained by an analog computer satisfy the condition necessary for instability.
Chapter 6 obtains the increase in rate of total energy of the shaft system and
the torque applied to shaft end in a rotating asymmetrical shaft with an asymme-
trical rotor. This increase in rate of total energy and the shaft end torque change
with the angular positions of static unbalance and dynamic one. On the parallel
and conical motions of a rotor mounted on an asymmetrical shaft, the shaft end
torque can be directly obtained from the equilibrium of forces and moments acting
upon the shaft system. Furthermore, it is shown in an asymmetrical shaft and an
asymmetrical rotor that the shaft end torque changes in the similar way to the
response curve which also depends on the angular positions of rotor unbalances.

1. Influence of Unegual Pedestal Stiffness on the Unstable Regions of
a Rotating Asymmetrical Shaft (Parallel Motion of a Rotor)™®

1. 1. Introduction

In a rotating asymmetrical shaft2s, 26> which has a keyway or a rectangular
cross section as well as in a shaft with an asymmetrical rotor55~61) there occur
two types of unstable vibrations. If the bearing pedestals supporting the shaft -end
have different stiffnesses in x- and y-directioms, each unstable region splits up
into several others. In respect to the position, width and number of these unstable
regions, many analytical results have been reported 15,19,40~54, In most papers,
either a massless asymmetrical shaft with a rotorl$,19,49,43,46,48 or an asym-
metrical shaft with a uniformly distributed mass*2, 44, 49~52,54) js considered, and
the mass of bearing pedestals is disregarded. In a shaft system in practical use,
the mass of flexible bearing pedestals cannot be neglected. A few studies4!, 45, 47,
53 have been reported in which the mass of bearing pedestals is taken into -con-
sideration, but the number and position of unstable regions differ in them.

This chapter deals with a simple vibratory system consisting of an asymmetri-
cal shaft with a rotor mounted at its midpoint, both ends of the shaft are supported
by the same flexible bearing pedestal possessing a directional inequality in stiffness
and a concentrated mass. The analysis of this problem is carried out by an approx-
imation method59, 61,63)  which was found to be very useful for the unstable
vibrations of an asymmetrical rotor having a similar dynamic property to an
asymmetrical shaft. When the analyses regarding unstable regions are carried out
by classifying three cases in which a directional inequality of bearing pedestal
stiffness ¢ is much less than, much greater than, or nearly equal to asymmetry of
shaft stiffness 4, the analytical results assuming that e==4 can include the other
two cases that e<4 and e>»4. Consequently, the position, width and number of
unstable regions, and a dynamic behavior of shaft motion are solely determined by
nothing but a parameter A=0~1 which consists of o=ratio of bearing mass to
rotor mass and x=ratio of mean bearing stiffness to mean shaft stiffness. The
analytical results by approximation in which ¢ and 4 are assumed to be a small
quantity of the same order show a good coincidence with those obtained by an
analog computer.
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1. 2. Equations of Motion and Frequency Equation

1. 2. 1. Equations of motion

Upper and lower flexible bearing
pedestals B, A shown in Fig. 1. 1 are
exactly alike. Therefore, the two equi-
valent concentrated masses of bearing
pedestal are equal, i. e, mg=m,, and
also ko Fdko=Fk,F4k,. At the mount-
ing point of rotor S, the asymmetrical
shaft possesses directionally different
stiffnesses k—d4k and k+4k in x'- and
y'-directions, respectively. Mass of the
rotor, and polar moment of inertia are
defined as m,, I,. Let us [consider a
rotating rectangular coordinate system
O-x'y’ turning at an angular velocity o. Fig. 1. 1 Asymmetrical shaft and asymmet-
This system just coincides with a sta- rically flexible pedestals (mq=s, ka
tionary rectangular coordinate system =ks, dko=4k,) for parallel motion of
O-xy at the moment £=0. The rotor rotor (¥a=%p, ya=3s).
center S and the centers of the upper
and lower bearings B, A4 may be assumed to move only in planes containing the
equilibrium points O, O, and O,, respectively, and perpendicular to the z-axis,
because the rotor is mounted at the middle of a shaft, and rotor inclination and
lateral displacement are not interconnected. In this chapter the bearing pedestals
A and B are assumed to move symmetrically to the xy- plane, that is, ’

xa:xby ya:yb ’ (1 1)

When equation (1.1) is used, the kinetic energy of translation T and the potential
energy V of this system are expressed as

2T =my (%2 + ) +2m (X5 +5) +1,0° (1.2)
V=(k—dk)(x'—x.)2+(k+4k) (¥ —y.)?
+2{(ky—Adk) i+ (Ro+4dR)YE} 1.3)

Since relative displacements of the rotor center S to lower bearing pedestal A4,
%' —x, and y'—y;, as shown Fig. 1. 1, are represented by

x —x. cos wt  sin wil[x—Xx,
= : 1.4
Yy —y, —sin wt cos willy—Y,
Substitution of equations (1.2) ~ (1.4) into the Lagrange’s equation yields the
equations of motion for stationary coordinates x, 3y, %, and y,:
Mok +k(x—x,) =4k {(x—x,)cos2wl+(y—1y,) sin2wt}

Mo Ry — ) = Ak {(% —%,) Sin 2wt — (9 —y,) cos2wit}
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2moXo—h(x—2,)+2(k,—dk) %= — 4k {(x —x,) cos 2wt -+ (y —,) sin 2wt}
2meYo—k(y—.) +2(ko+4dky)y,=— 4k {(x—2x,) sin 2wt — (y —»,) cos 2wt}
(1.5)
For simplicity’s sake, the following dimensionless quantities (1.6) are introduced:
2my/my=0, 2k, k=k, dk/k=4, dk.,/k.=¢,
N k/m, =t', D/ k/m, =0, o/v k/m, =0

Hereafter, the primes on the dimensionless quantities (1.6) are omitted and the
dots over dimensionless quantities mean the differential coefficient with respect to
t’. Using an imaginary unit /i and complex variables

(1.6)

B=X1Y, B=X—1Y, 2,=%¢+1Ve Za=%Xe—1V, a.7

and then adding the first equation of equation (1.5) to the second equation multi-
plied by i, and adding the third equation to the fourth equation multiplied by i,
the equations of motion are rewritten as follows:

Z42—2,=4e?(z—2,)
3 o (1.8)
02+ (A+r)2,—2=rez,— de¥ (2 —2,)

1. 2. 2. Frequency equation

Both amplitudes 4 and A, of free vibrations z=Ae!?t and z,=A.e??* whirling
at an angular velocity p are assumed to be the zero order of small quantities e
and 4. Because of the existence of rotating asymmetry 4, the whirling motion
with a frequency p=2w—p is caused by an external force of the right hand side
of equation (1.8) =+de?i®t (F—Z,)=+4(A—A)etP* and the excited amplitudes B
and B, are of the same order of 4. Similarly, an external force xeZ,=reAe Pt
on the right hand side of the second equation of equation (1.8) yields the whirling
of bearing pedestal z,, consisting not only of Aget?t but also of a.e~*?t with a fre-
quency —p and amplitude of ¢ order. Furthermore, the vibrations with a frequency
—p=p—20 are induced by the coexistence of ¢ and the vibration with frequency
b and the amplitudes b and &, are of ¢4 order. Next, the coexistence of 4 and
the vibration with frequency —p gives the vibrations with a frequency 2w-p and
the amplitudes C and C, are of ¢4 order. Successively, there occur many vibra-
tionsé1), the amplitudes of which are of a higher order of small quantities ¢ and 4.
Table 1. 1 shows the frequencies of vibrations, the amplitudes of which are larger
than of ¢ and 44 order. In this table the vibrations in the right column, and in
the lower row are induced by 4 and e, respectively.

If amplitudes up to the second order of small quantities ¢ and 4 are counted,
solutions of free vibration of equation (1.8) have the following five frequencies
p, —b, b, —p and 20+p:

z:AeiPt+ae-ipt+Beiﬁt_]_be—iﬁt_;r_cei(sz?)t
(1.9)
za=Aae“"+a.,e“"‘—l—Bae””—i-bae"‘“-i—Cae“z“’“’”
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Table 1. 1 List of whirling frequencies, amplitudes with
which are larger than of ¢4 and 44 order.

Order of
¢ and 4 4 41 42 43 4t

el b p=2w—p

el —p —20 | 4y—p
20+ p

3 —2w—p ~ 6w—p

\\ p—6w

g3 —4w —p 8w—p
6w-+p
p—8w
et —6w—p

8w-+p N

where amplitudes A4, a, B, b, C, Aq, aa, Ba, be and C, are all complex numbers.
Further, for example, B means a conjugate complex number of B. When equation
(1.9) is substituted into equation (1.8), the 10th square determinant which consists
of the coefficients of the complex amplitudes 4, Aq, @, o, B, Ba, b, bs, C and C,
is obtained as

Hp) -1 0 0 —4 4 0 0 0 0
1 G 0 —ke 4 —4 0 0 0 0
0 O0H(—p) -1 0 0 0 0 —4 4
0 —ke —1G(—p) 0 0O 0 0 4  —4
| A4 4 0 0 HG -1 0 0 0 0
F="y _4 0 0 -1 GG 0 —x 0 o 0
0O 0 0 0 0 0H(—p —1 0 0
0 0 0 0 0 —re —1 G(—$) 0 0
0 0 —4 4 0 0 0 0 HQuw+p) —1
0 0 4 —4 0 0 0 0 -1 GQutpd

Expansion of this determinant gives the following frequency equation:

F=fQRu+p)0B)O(H)—4{f 2w +D)Yh(DIN(H) +9Qw+p)D(H)h(— D)}
+ 449 Qo+ D) (B {9(0)9(—D) —£*e*} =0 1.10)
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where

Hp)=1-p% G)=1+c—0p?, [f(O)=HD)G(p)—1,
g(2)=HD)+G(p)—2, 0D)=f(D)f(—0D)—r*<*H(P)H(—D), (1.1D)
h(9)=f(—20)9(0) —£*<*H(— D)

The frequency equation of a circular shaft (4=0) supported by equally flexible
bearing pedestals (e=0) is f(p)=0, and the frequency equation of a circular shaft
(4=0) supported in unequal stiffnesses (e=0) is @(»)=0 in equation (1.11).

1. 3. Occurrence of Unstable Vibrations, and Position, Width and
Number of Unstable Regions

1. 3. 1. When directional inequality of pedestal stiffness is smaller
than asymmetry of shaft stiffnessé?

Neglecting the &2 order terms in equation (1.10), a frequency equation is
derived as follows:

F=f(—p){f0)f(p)—4*9(0)9(D)} {f(— D) f (2w + D)
—229(—P) 920+ )} =0 (1.12)

The terms f(—p) in equation (1.12) has no relation to the occurrence of unstable
vibrations, because this term does not contain 4. The relations

Fi=f(0)f () —49(0)9(H) =0 1.13)

and Fi(—P)=f(—P)fQLuw+P)—42g(—Pg(2w-+p)=0 have symmetrical roots with
respect to the abscissa (p=0), and so the equation (1.13) is only considered. By
defining four real roots derived by f(p)=0 in equation (1.13) as p,, o (i=1, 2, 3,
4) and using equation (1.11), we obtain p;,, as follows:

bos={o+r+1£ (o+r+1)2—4dor}/20 (1.149)

where the upper and lower signs correspond to i=1, 4 and {=2, 3, respectively.
The following relation holds regarding p;, o :

p4> 0<—1<p37 0<0<p21 0<1<p1; 0

The roots of fi(p)=0 are p=p; o, i. €, p=2w—p;, o=Ps, 5. For example, the
roots py,o derived from f(p)=0 and the roots p;,, from f(p)=0 are shown by
solid and dotted lines in Fig. 1.2, respectively. Both roots of g(p)=«— (1+0)p2=
0 defined by equation (1.11) are

b=+ x/(1A+0) (=1, 2) (1.1%)

and pg;=2w— pg;, roots of g(p)=0 are also shown by the fine lines in Fig. 1.2.
A real root p, derived from -equation (1.13) in the unhatched parts on the p, o
plane of Fig. 1.2, may exist in the limited area in which the sign of the function
TP g(p)g(p) is positive. Generally speaking, if ¢ is small, unstable regions
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are restricted to the neighbourhood of A A A A A A
four intersecting points C;, C,, D; and sp _Filho  FPofn o

A 2

\I N
D, shown by indication O where curves \\\’ \\\/ o=1
of f(p)=0 and curves of f(p)=0 cross L % #=
each others9%’. Let the abscissas of the

A %\ e

four intersecting points C,, C,, D; and RESSS ~
D, in Fig. 1.2 be w;j,¢:

[\

- Ro

Wiy 0= (Bi o+ Dy 0) /2= W1y 0 & B,

RP A
because the relation p;, o=5;, o =20—Dj, o 1 CZI sz A =
holds at the intersecting points (w=w;j, o). q. I AN - — fIP=0 N
in Fig. 1.2 for o=1 and r=1, @, o= o \ :&2’3’5%;@;

.618, (1)12,0:(021,0:1. 118, and Wog, o= \ NI L)
0.618. The coordinates near the intersect- R As NN \\ Pio

<

ing points on the p—w diagram are set NN
-1
as

w=w;j, 0+ D=py o+ (1.16) P&Q\'\ \ NN \ B

and the frequency equation (1.12) is ex- ] , 1
panded into Taylor's series at this point. 0 “ezo  lgme o 2 3
By adopting up to the second power of W

small quantities £, 7; and 4, the frequency Fig- 1.2 p—o diagram and four intersect-
equation is expanded into Taylor’s series ing points Ci, Cz, D1, D2(o=1, k=1,
61, that is, e=0).

Fo=={(8f/00) iny+ (8f/00) S} [(F/00) ni+ (3f/9w) 6} —47(99),=0  (1.17)

where simpler symbols f, #, g and § are used instead of symbols f(p), f(H), 9(H)
and g($). Lower subscripts { and j in equation (1.17) indicate the values at the
intersecting points (@;j, 0, D5, 0) and (@i, o, Dj»o) in Fig. 1.2, respectively. The
following relations hold with respect to f and g defined by equation (1.11):

@0f/8w),=0, (3f/00);=—(3f/2b) ;s (2f/0w)=2(3/3D),,
(9):=(9);

A quadratic equation for 7; which is obtained by substituting equation (1.18) into
equation (1.17) has a solution as

(1.18)

18 E—12(9),(9),/(0f/00):(0f/9D) ; (1.19)

Unstable regions are restricted to the neighbourhood of the four intersecting points
Ci, Cs, D, and D, in Fig. 1.2 where the second term in the square root of equa-
tion (1.19) is negative, that is, the relation

(9):(9);(0f/00):(0f/3p) ;>0 (1.20)

holds. The unstable region is —|&q|<E<|Ey| within which there exists imaginary
solution 7;, and |&,| is obtained as follows:
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Sol=4V (9):(9) 5/ (0f/90):(3f/0D) ; = Mmax =24 (1.2D)

In the unstable region, the whirling frequency » in epuation (1.16) takes imaginary
number :

p:pi70+77i:w+(pi’()—_pho)/z:i:iﬁz (122>

The negative damping coefficient m is obtained from equation (1.19):

M= M/ T— (EJE)7 (1.23)

Near the intersecting points' C; (ij=11) and C, (ij=22), there occurs a
statically unstable vibration?25, 26,57 with the whirling speed , the amplitude of
which increases with time in the form e™. Near the intersecting points D; (ij=
12) and D, (ij=21), there occur simultaneously two unstable vibrations with fre-
quencies P,, Py=w=+(P1, 0—P2,0)/2, in other words, dynamically unstable vibra-
tions?5, 26,59 occur, the amplitude of which increases exponentially as e™. In Fig.
1.4, dotted lines indicate the width of unstable region 2|£,]| calculated from equation
(1.21). The symbol e'=+"¢je; in Fig. 1.4 is to be defined by equation (1.29).
At the intersecting points C; and C,, ¢’ and 4’/¢’ are determined by four para-
meters o, &, ¢ and 4:

N re{l4(1 -%—/%—o)/«/ (o+x-+1)2—4dox}

C 2V 2ot a1y (04K 1)%—dox )

(1. 24)

4’ 4 20(1+0—x)
— e — 1 ~‘~ g -—\w 2
¢ 2xe | Ite—od/(6+x4+1)2—dox
where the upper and lower signs, +, correspond to the intersecting points C; (i=
j=1) and C, (i=j=2), respectively. At the intersecting points D; and D, (i#j),

e'=xe/2 or v/ (0+x+1)2—4dox

} (1. 25)
A /e'=4/2¢

1. 3. 2. When directional inequality of pedestal stiffness is larger
than asymmetry of shaft stiffnesss®

When >4, we must discuss the unstable vibrations near the intersections of
O(p)=0 and @(H)=0, that is, the frequency equations tor e0 and 4=0, on the
p—w diagram. When the terms including 420($) and 4¢ in equation (1.10) are
neglected, the frequency equation (1.10) becomes F=fQ2w-+p)F,=0, and so unsta-
ble vibrations may be discussed by the following equation :

Fo=0(0)0(p) —4*h(p)1($)=0 (1.26)

Equation (1.26) is nothing but the frequency equation obtained by substitution of
the solution of tree vibration (1.9) excepting the fifth term in the right hand
side. The same analytical method as Section 1.3.1 may be also applied to this
section. Eight real roots p;, (i=1~8) of equation @(p)=0 show the following
relation :
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p80<p47 0<p70<_1<p60<.p3) 0<p50<0<p40<p2’ 0<p80

<1<p20<p17 0<p10

The roots p;o are obtained by using @(p)=(f+rxeH) (f—reH)=0 in equation
(1.11) :

b Dh={o+re+1ltret/ (o+r+1+tce)i— dor(lde) }/20
P2 Dio={0+r+1dre—/ (64Fr+1+re)?—doc(l+e) }/20

The roots p;, of @(p)=0 and the A
roots pjo=2w—pj, of D(H)=0 are indi- RuReoRoRsoRoRioRoPioRzao Bo

){ (1.27)

SO

10

cated by solid and dotted lines, respec- ) 5\\\/7,\ o=|
tively, as in Fig. 1.3 for =1, «=1 and > L S R k= [
e=0.4. The roots pu;o of h(p)=0 and €=04 R,
the roots ppjo=2w—prjo of h(p)=0 are Ve g\n
also indicated by fine lines in Fig. 1.3. ®
In this case, ploz—ﬂ30:1.709, j)20:4 - \
Pro=1.531, pso=—Pee=0.692, pso=—7s0 4 ”\\ Rao
=0.506, Prio=—DPreo=L1626, DPrso= §°
— Daso=0.763, and Przo=—Pase=0.522. A D e

o : N ®(p)=0
Unstable vibrations occur near the sixteen | \\ _____ ()=0
points as shown by O indications in Fig. ; \\ — HPRPY=0
1.3 where roots p;, of @(p)=0 cross VAN NN\R,
roots pijo=2w—pj, of @($)=0. The ab- J___A Reo
scissas w;; of these intersecting points %;
are represented as - x\

/8

wiy=Dut+Di0)/2=wjy ﬁ\ \\ \ g:’o
Near the intersecting point C, of Fig. _» ! ! Ro
1.2, statically unstable vibrations occur 0 ! w 2 3
at the two rotating speeds w=w;; and

i . . Fig. 1. 3 p—w diagram (o=1, x=1,
w54, and a dynamically unstable vibration e=0,4).

at a rotating speed w=w;;=w,,. Near

the intersecting point C,, statically un-

stable vibrations occur at two rotating speeds w=w3; and w,,, and dynamically
one at a rotating speed w=w34=w,3. Near the intersecting points D; and D,, on
the other hand, dynamically unstable vibrations occur at four rotating speed o=
Wy, @33, Wiy ADd Wyy.

When symbols w;j, pio, D=0(p), @:(D(ﬁ), h=h(p) and fz:h(ﬁ) are adopted
instead of symbols ®;j,0, Pive, f fr ¢ and & in equations (1.16) ~ (1.22), the values
£, and m near the rotating speed w,; are calculated by equations (1.21) and (1.23),
respectively.

1. 3. 3. When both inequality of pedestal stiffuness and asymmetry
of shaft stiffuness are small quantities of same order
Expansion of frequency equation (1.10) is made into Taylor's series by using
equation (1.16) near any one intersecting point among four points Cy, C,, D; and
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D, in Fig. 1.2. By adopting up to the fourth power of small quantities &, 7; ¢
and 4, equation (1.10) yields

P55 ) ()t e (2 o]
ool e () am

op
When following new symbols

1

ezzxe(H/——g%)i, e'=+"¢cie; , %=E;, n=1,—% (1.29)

are adopted, and relations (1.18) are used, equation (1.28) is reduced to a biquad-
ratic equation for 7:

Nty +aym+a,=0 (1. 30)

Coefficients and discriminant of the foregoing equation are given as follows:
Qg=—282 4442 — (A+4-1/2)e"?

a;=2(0=1/41)"¢
(1.31)
Qo= — {442 (A1/2) 2} E2 4 ¢ ‘

21D =4(a;+12a,)%— (2a} —T72a,a,+-27a%)?

where the symbol 4’ is already defined by equation (1.21).

As seen from equations (1.30) and (1.31), the root 7/¢’ of equation (1.30) is
determined by three parameters 4'/¢’, £/¢' and 1. The unstable regions where the
root 7/¢’ is not real but complex are given by only one parameter 4 on the plane
(§/¢', 4'/¢") as Fig. 1.4. Since the relations {j=11 and i{j=22 hold at the inter-
secting points C; and C, in Fig. 1.2, the parameter 1=¢}/¢; is equal to one.

D<o D>0 ;
75 a0 K //////%/
//// / 03///

fsy ////; 207 7
: i ,////// /////;// Dq/)/,,é

NG v s g
i
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/f/////

% 7
0
- //;4/ <0 1;4//(,
7 i’

[eY]

<

e
v

i

4 -3 -2 -t 0 t 2 3 a

() @
Fig. 1. 4 Unstable regions for ex~4 (2=0.1, 0.5, 0.8, 1).

The parameter A for ij=12, 21 at the point D; is expressed by

2(o, k) = (0—w)?+(0+m)+(k—0) (otr+1)>—dow _ 1 (1. 32)
2+/ o A(x, 0)

which only includes ¢ and «. When ¢ and r are interchanged, A(x, o) takes a

reciprocal of (o, k). The particular case that o=« gives 1=1.

The relation between roots and coefficients of the biquadratic equation (1.30)
is given as follows®7):

(i) Granted that D>0, a,<0 and a}—4a,>0, equation (1.30) has four real roots.

(ii) Granted that D<0, equation (1.30) has two real roots, and the other two
roots are a pair of conjugate complex numbers.

(iii) Granted that D>0 and that ¢,>0 or @%—4a,<0, equation (l. 30) has four
complex roots.

Thus, unstable regions expressed on the plane (£/¢’, 4'/¢') satisfy either case
(ii) or case (iii). Unstable regions are symmetrically shown with respect to the
ordinate £=0, and unstable regions show no change even for the reciprocal para-
meter 1/2, because £ and 2 are included in the form of £2, (1+1/2) and (A—1/2)2
in the stability criterion that D=0, a¢,=0 and a}—4a,=0.

At first let us consider the dynamically unstable regions near the intersecting
point D, (D,). The unstable regions on the plane (£/¢', 4'/¢') in Fig. 1.4 have no
dependence either upon Dy or D,, because the parameter 2=c¢i/¢; referring to the
intersecting point D, is nothing but a reciprocal of 2=e;/¢; referring to another
intersecting point D,. The unstable regions which satisfy requirements (ii) and
(iii) are shown in Figs. 1.4(a) ~ (d) for given parameters 4=0.1, 0.5, 0.8 and 1.
The hatched part in Fig. 1.4 corresponds to the unstable region which satisfies
requirement (ii), that is, D<{0. If we let Re[7] be a real part of complex roots
7, and also let Im[p]=+m (m>0) be an imaginary part of 7, two vibrations with
frequencies p=py0+E-+Re[7], (i=1, 2) occur simultaneously in the hatched part,
and the amplitude of unstable vibration increases exponentially with the form of e™.

Even outside the hatched part (D>0), either the inside of a closed curve (a3—
4a,<0) or the upside of the concaved curve (@, >0) satisfies the instability require-
ment (iii) shown by the crosshatched part in Fig. 1.4. The roots 7 become two
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pairs of conjugate complex numbers in the crosshatched part. Letting Im[9]=<+
My, +my (my, my>0), there occur simultaneously two unstable vibrations with in-
creasing amplitude of the form e™ ¢, and also two other vibrations with increasing
amplitude of the form em*,

Regarding unstable regions near two intersecting points C; and C,, the relation
A=1 is derived due to the relation i=j. The discriminant in equation (1.31) is
changed by using the relation «,=0:

D=16a,(a2 —4a,)* (1.33)

Thus, the closed curve in Fig. 1.4(d) represents an equal root of the relations
—4ay=0 and D=0. By putting «,=0, equation (1.30) becomes a compound
quadratic equation; solving for 72, we find that

1=tV (—a,++vai—4a, )/2

gives the dynamically unstable vibrations59> which have two frequencies w--Re[7]
within a closed curve (a}—4a,<0) [cf. Fig. 1.9(a)]. When ai—44,>0 outside of
a closed curve and simultaneously —lyt+/ qgi—4a, <O, the root 7 is purely imagi-
nary and the statically unstable vibrations occur57. In the crosshatched part
besides a closed curve (a,>0 and ¢,>0) in Fig. 1.4 (d), both relations —a,-+
v ai—4a, <0 and —a,— /¢~ 4a, <0 hold simultaneously, and so equation (1.34)
has two pairs of purely imaginary roots, 9= 4im,, +im,. There occur two vibra-
tions of statical instability which whirl with the same angular velocity of shaft «
and increase their amplitudes with time in the form e™! and e™t [cf. Fig. 1. 9(b)7.
When the ratio 4’/¢’=0~2 is given,

the number of unstable regions is indi-
cated upon the plane (1, 4’/¢’) as shown 20
in Fig. 1.5 where symbols 1, 2, 3 and 4
indicate the number of unstable regions.
The number of unstable regions changes 15- ©)
from four to one with a combination of
4'/¢" and 2. Two curves 4'/¢'=(1/2)
X+ (A+1/0)+2 which decrease with 4 Lol
in Fig. 1.5 represent the height 4’/¢’ ©)
of two intersections of the closed curve ®

—4a,=0 and the ordinate £=0 in 0.5
Fig. 1.4. When 1=0.5, and 4'/¢'=0. 18, ®
0.42, 0.8 and 1.5, n;/¢', m/e'—§/¢’ dia- @
grams are shown in Figs. 1.6 (a) ~ (d). N S SO S S T A S
The values of 7;=f-+Re[n] and m= Y 05 1.0
Im[ 7] obtained from the root of equa-
tion (1.30) are plotted against £ in the
upper and the lower figures in Fig. 1.6,
respectively. Near the intersecting point
Cy for A=1 and 4'/¢’=0.327 and 1.309, p, m—w diagrams are indicated by solid
lines in Figs. 1.9 (a) and (b).

Fig. 1. 5 Number of unstable regions
for 4'/¢’=0~2 and 2=0~1.
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r=05
K/€=0.18
] 1

9

e &
(@

©
Fig. 1. 6 nym—¢ diagram near points D1, Ds.

1. 3. 4. Special case in which mass of beaving pedestal is negligible
In a special case in which the mass of the bearing pedestal is not consider-

edts, 19, 40, 43,46, 483 letting ¢—0 in equation (1.14) gives py,¢=o00 and p,,=
An unstable vibration is able to occur only near the intersecting point

Ve/(1+k)-
C,, where convergent values of ¢ and 4’ for o—0:
;€ K 4" xd
=/ ATo'" & 2 (1. 35

~an be used, and unstable region coincides with Fig. 1.4 (d) for iA=L

1. 4. Comparison with Results Obtained by Analog Computer
The real and imaginary parts of equations of motion (1.8) become
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X=—x+x,+4{(x—x,)cos2wt+ (¥y—y,) sin2wt}

J=—9y+y.+4{(x—2x,) sin2wl— (y —y,) cos 2wt} 1. 36)
(1.
Xo=[x—%,—x(1—e)x,—d{(x—x,)cos2wt+ (y—y,) sin2wt}]/0

Vo=[y—=Vo—r(1+e)y,—4{(x—x,) sin2wt— (y—y,)cos 2wt} /o

@'ﬁ
Fig. 1. 7 Simulation circuit for analog
snpwtl MU computer

. ! Rec3 cos2wt_| Rec 1: cos 2w#, Rec 2: x, Rec 3: y,
1
‘% iB Rec! Rec 4: x4, Rec 5: ya

N i —~(2)A Potentiometers @: 2w, @: 4,
@/A?}@, Recd ®: ipw, @:1/0,
> @—1> Recs | [ ®: «(1—e),
Be A . i
% @ ’mﬂj’ :“@}V@’B ®: x(1+¢)

COs 2wt

Pl e e e e =2

@ T m © @)
Fig. 1. 8 Examples of vibratory waves in unstable regions
(a), (b), (¢) for cross point C1 and o=1, «=1, 4=0.1, e=0.4, 4'/¢'=0.327
(d) for cross points Di,D2 and o=1.5, #=0.825 4=0.4, €=0.2, 4'/¢'=1
(a) w=1.52, m=0.030, (b) w=1.62, m=0.029, w+Re[n]=1.705, 1.535,
(¢) w=1.72, m=0, 026, (d) ©=0.96, m=0.053, P1=1.336, P,=0.584.
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Solid lines in Fig. 1.7 show the simulation circuit for an analog computer ALS-
200X which satisfies equation (1.36). Vibratory waves cos 2wt, %, J, %o and y, are
given by recorders 1, 2, 3, 4 and 5, respectively. The added circuit shown by
dotted lines has gyroscopic coefficient i, and it satisfies the real and imaginary
parts of equation (2.8) for a conical motion dealed with Chapter 2. In this case,
recorders 2, 3, 4 and 5 describe vibratory waves 8, 8y, 04, and 0oy.

In order to show statically and dynamically unstable vibrations, three types of
vibratory waves near the intersecting point C; are indicated by an analog computer
in Figs. 1.8 (a), (b) and (c). Figures 1.8 (a) and (c) show statically unstable vib-
rations5?), the circular frequency of which coincides with @. Dynamically unstable
vibrations5% are shown in Fig. 1.8 (b), where two frequencies P,, P,=w-+Re[7],
and the relation P;+P,=2w always holds. Dynamically unstable vibrations occur
in the neighbourhood of the intersecting point D; as shown in Fig. 1.8(d).

p, m—w diagram in Fig. 1.6 is compared with the solutions obtained by an
analog computer [cf. Fig. 1.7] which satisfies equation (1.8). Figures 1.9 (a) and
(b) show the frequency p and the negative damping coefficient m for ¢=1 and
«=1 near the intersecting point C; (w=w;q, 0=1.618). The case in which ¢=0.4
and 4=0.1 (4'/¢'=0.327) is shown in Fig. 1.9 (a), wherein statically unstable vib-
rations occur at the right side and the left side, and dynamically unstable ones are
in the center, and with three unstable regions. The case of ¢=0.2 and 4=0.2
(4'/¢'=1.309) is shown in Fig. 1.9 (b) wherein statically unstable two vibrations
overlap in the middle of the unstable region. The circles in Fig. 1.9 are solutions

19 1.9 7
o=1 4A=01 o= A-02 (.
k=1 €=04 k=1 €=02 //

18 | . , 8 | " )I/\

(A=1) (47€=0327) (A=1)  (A%'-1.309) / Pro
17 - N
Q.
° UNSTABLE ° UNSTABLE
s STABLE *STABLE
|
14 ™ ’
015
. o » ANALOG COMPUTER
0.10 1~ — APPROXIMATE SOLUTION -
005 - 005~ ' %\
04 i5 : 6 7 i8 © L A *
R . A . ER 14 15 1 .
> 6&/ 1.7 18

@ (b)

Fig. 1. 9 p,m—ow diagram near point Ci.
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obtained by an analog computer. Blank and solid circles indicate unstable solution
and stable solution, respectively. The results obtained by an analog computer agree
well with the solid line curves derived by numerical solution of approximate equa-
tion (1.30).

3 3
{ C }UNSTASLE STABLE A ] € 1 Ce ;‘UNSTABLE STABLE | pa) | €
o=1 | o . 0030275 02 g=1 o e . 02 looz70i01
K =1 . Lv o o o22~0488] o4 K= o o 2 losao030s o1
- smaric s orwamic A= o s loos2-034; oos
(A=n ° °wstagLiry ° ° wsrasiry (A=1)

0.0 0 STATIC o 5 o OYNAMIC
INSTABILITY INSTABILITY

Ay
o o
o 5

0
&

(a) Near cross point C;

e
(b) Near cross point Cg

0., D:
=15

£ =0.825
(A=05)

lunstase i STABLE

ya)

3

B

.

0.1

0.036~0.25

@

B

0R4~024

01

i o

|
I

B

008~ 032

oz

ar€’

(c) Near cross points D1, D3y
Fig. 1. 10 Approximate solutions for unstable regions and solutions derived
by analog computer.

In Fig. 1.10, unstable regions on the plane (§/¢’, 4'/¢’) are compared with
solutions by analog computer. Figures 1.10 (a) and (b) show unstable regions at
the intersecting points C; and C,, respectively, and the vibrations x, y, x, and y,
for 0=1, k=1 determine whether the solutions are stable or not. The indications
O @ © mean statically unstable vibrations57, while € (D © mean dynamically
unstable vibrationss®. Figure 1.10 (¢) shows dynamically unstable regions for o=
1.5, k=0.825 (1=0.5) regarding the intersecting point D; (D,). When both values
¢ and 4 are smaller than 0.3, the numerical results by approximate equation (1.30)
in Section I.3.3 show good agreement with the analog computer solution.

1. 5. Conclusions
Conclusions obtained in this chapter may be summarized as follows :
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(1) When the bearing pedestals supporting a rotating asymmetrical shaft have
different stiffnesses, one unstable region near w=w;j, o= (D1, o+ P o) /2 splits up
into four parts, depending upon the ratio 4/e.

(2) When the analyses regarding unstable regions are carried out by classify-
ing three cases in which &4, e>4 and e~4, the approximate solutions assuming
that e=4 can include the other two cases that e<4 and > 4.

(3) When both ¢ and 4 are assumed to be small quantities of the same order,
the approximate solution for unstable regions is derived and it also includes the
special case in which & 4.

(4) When a parameter A=0~1 consisting of ¢ and « is given, the width,
number of cross sections of unstable regions and behavior of shaft motion are
fully determined.

(5) The numerical solution of approximate equation coincides well with analog
computer solution when both ¢ and 4 are assumed to be small of the same order.

(6) The unstable regions for a special case in which mass of bearing pedestal
is neglected are the same as with the unstable regions for A=1 by using convergent
values ¢’ and 4’ for o—0.

2. Influence of Unequal Pedestal Stiffness on the Unstable Regions
of a Rotating Asymmetrical Shaft (Conical Motion of a Rotor
with Gyroscopic Effect)’D

2. 1. Introduction

In this chapter, conical motions of a rotor with gyroscopic effect are treated.
When gyroscopic coefficient ip is small, a similar approximate analysis to Section
1. 8. 3 assuming that e==4 can be done by considering ip, & and 4 to be small
quantities of the same order, and it is shown how the unstable regions are changed
by the gyroscopic effect. When i, is larger than ¢ and 4, the same approximate
analyses can be carried out by distinguishing whether or not the terms smaller
than 2 are negligible. The approximation regarding unstable regions for the case
in which ¢, is relatively large is compared with the solutions obtained by an analog
computer, and they are found to show a good coincidence.

2. 2. Equations of Motion and Frequency Equation

2. 2. 1. Equations of motion

A rotating shaft system shown in Fig. 2. 1 is discussed. Pedestals A and B are
exactly alike, that is, mo=my, and ko Fdk,=k,F4k,, in which the negative sign
corresponds to %,- and x,-directions, and the positive one to y,- and y,-directions.
Mass of rotor, polar moment of inertia, and diametral moment of inertia are
defined as my, I, and I, respectively. The rotor center S mounted at the midpoint
of the asymmetrical shaft coincides with the origin O in the equilibrium state.
We consider a stationary rectangular coordinate system O-xy, the z-axis of which
coincides with a bearing center line AOB in equilibrium. A rectangular coordinate
system O-x'y’ turning at an angular velocity « just coincides with O-xy at the
moment f=0. When the principal axis of inertia SZ is projected to x'z- or y'z-
plane, each unit deflection angle yields the restoring moment of shaft §—44 or
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0+04. This chapter deals with only the z
conical motion which is not interconnect- g
ed with the parallel motion in this vib-
ratory system. The rotor center S always
coincides with the origin O, and the lower  Xb
and upper pedestals 4 and B move sym- kp+AQkp
metrically to the origin O, that is, B(x p
b

Xa=—%p Ya=—1s 2.1

The inclination angle #, of the bearing
center line has the components 6., and

64y in x- and y-directions: wt‘
X 8-408

Ooz= (xb—xa.)/l:'—2xa/l
(2.2)
Oar= (Vo= Ya) /1= = 23:/1 A(Xa, Yq)

Let the inclination angle ¢ of the principal  Xa-

axis SZ have the components 6, and 4, ka-Aka Oa
in x- and y-directions, ¢; and 6. be the katdka
components of ¢ and @, in &’-direction, Yo

and 6; and ¢;, the ones in y’-direction,
respectively. The kinetic energy 7T and rically flexible pedestals (mq=mo,
the potential energy V of this system are ka=Fko, dke=4dky) for conical motion
expressed5? by using equations (2.1) and of rotor (%a=—%p, ya=—s).

(2.2) :

Fig. 2.1 Asymmetrical shaft and asymmet-

2T =1 {w*+w(020,—0,0.)} +I(4:+65) +2mq(&:+ %)
2V =(0—40)(0i—0:.)"+ (0-+43)(0;—0.,)" (2.3)
+2{<kandka>x5 _1‘ (ka“i“ Aka,)yﬁ}

The following relationship exists between the stationary coordinate and the rotating

one:
0:i—0:z cos wl  sin wi[0,— 0o
= (2. 4)
05—02, —sin wf  cos wi ]l 0,— 0,
Substitution of equations (2.2) ~ (2.4) into Lagrange’s equation yields four equa-
tions of motion regarding 8., 6,, 6., and G,y :

I, 41,060,400, —0us) = 46 { (05— az) COS 20t + (0, — 0,) sin 2wt}
16y~ 100,400y~ 0ay) = 46 {(0,—0uz) Sin 2wt — (,— 0a,) cOs 2t}
malzéax“—za(ﬁz’—eax) + (ka_dka) lzﬁ,w

2.5)
=—240{(0,— 04,) cos 2wl -+ (0,— 04,) sin 2wt}
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malzéay_'28(0y_’0ay) _}— (ka“;‘dka,)lzﬁay
= —248{(0,—04,) sin 20t — (0, — 04,) cOS 201}

Now, complex variables
0,=0,+10,, 0,=0,—i05, 00=00s"10ay, 0Oa:=00z—00a, (2.6)

are introduced, and ¢ in equation (1.6) and the following dimensionless quantities
are used for simplicity’s sake:

mol2 /20 =0, k?/20=r, 43/6=4, t/ /T =t

- ) 2.7
P/NSJI=0', w/ ]I =w', L/I=1, }
Hereafter, the primes on the dimensionless gquantities (2.7) are omitted, and the
dots over dimensionless quantities mean the differential coefficient with respect to
#. By using equation (1.6) and (2.7), the equations of motion (2. 5) are rewritten
as

gz'_ iipwéz+ 0;'—' 6@3: AGZiwt(ag'—‘ ga;)
) B L (2.8)
g@az =+ (1 +K> 6&2"" 6z: Ksaaz"' Aezzwt (6z—'0az)

If the gyroscopic term —iipwl, is excluded from the first equation in equation
(2.8), and @, and 6,, are replaced by complex numbers z and z,, respectively,
equation (2.8) coincides with equations of motion (1.8) regarding the parallel
motion of a rotor mounted on an asymmetrical shaft.

2. 2. 2. Frequency equation

In amplitudes up to the second order of small quantities ¢ and 4 are considered
with respect to conical motions of a rotor, solutions of free vibration satisfying
equation (2.8) are expressed in the following forms:

§,=— Ae'?t+ge - Beibt 1 pe-ibt | Cei2w+p)t
‘ . . e i (2.9)
aaz:Aaeth+aae~lPt+Ba 1ﬁt+bae—tpt+caet(2w+p)t

where amplitudes A, @, B, b, C, A4, @a, Ba, bo and C, are complex numbers.
When equation (2.9) is substituted into the equations of motion (2.8), the 10.th-
order determinant which consists of the coefficient of complex amplitudes is ob-
tained as
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Hi(p) —1 0 0 —4 4 0 0 0 0

-1 G(p) 0 —KE 4 —4 0 0 0 0

0 0 Hi(—p) -1 0 0 0 —4 4

0 —xe -1 G(—p) O 0 0 0 4 —4
a4 A4 0 0 Hi(p) -1 0 0 0 0 0

4 —4 0 0 -1 G 0 —Ke 0 0

0 0 0 0 0 0 Hi(—pH -1 0 0

0 0 0 0 0 —ke =1 G(—5H 0 0

0 0 —4 4 0 0 0 0 H1(2w+p) -1

0 0 4 —4 0 0 0 0 -1 G Q2w+ p)
(2.10)
where G(p) has been defined by equation (1.11), and

H(p)=1+i,wp—p* (2.11)

The following frequency equation is obtained by expanding the determinant (2.10) :
F=fQu+0)0,(0)0:(p) — 42{f; Qu+p) I (£) h: (H)
+9:1Qo+0) 0 (H)h (=)} + 49, Qo+ D) hi (H) {9, (0)9:(— D) —#?e2} =0
(2.12)

where
D) =H(D)G)—-1, 9.(0)=H,(p)+G(p)-2,
hi (D) =f1(=0)9:(d) —*e*H (— D), (2.13)
0,(2) =f1(0) f1(— D) —«*e*H (D) H,(— D)

2. 3. Occurrence of Uustable Vibrations, and Position, Width and
Number of Unstable Regions

2. 3. 1. When gyroscopic effect is small

In the vibratory system shown in Fig. 2. 1, the unstable vibration is caused by
shaft asymmetry 425,260, When both pedestal inequality ¢ and gyroscopic coeffi-
cient ip are smaller than 4, and all terms including 7, and ¢? in equations (2. 12)
and (2.13) are neglected, frequency equation (2.12) coincides with equation (1. 12)
given in Chapter 1, and so equation (1.13) is also considered as a frequency equa-
tion. In this case, unstable vibrations only occur near four intersecting points C,
Cg, Dy and D, in Fig. 1. 2.

In order to investigate how unstable regions come under the gyroscopic effect,
an analysis is carried out by assuming that i, is of the same order as ¢ and 4.
Because unstable regions are considered to have the extent of the same order as
e, 4 and ip in the neighbourhood of intersecting points C,, C,, D; and D, in Fig.
1. 2, the coordinates near the intersecting point are set as equation (1.16). Fre-
quency equation (2.12) is expanded into Taylor’s series. If the small quantities £,
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7:, ip, € and 4 are adopted up to the fourth power, equation (2.12) becomes

F=[{(@f/0p) i+ (0f/0w) £} —r*e* (H )} —i% (wpG) * TL{(3f/00) m:
+(@f/0w) £} — e (H) 2 —i3 (wpG) ¥ ] — 42 (99),{(Bf/0D) i+ (Bf /0w) &
—i,(wpG) }{@F/00) .+ 0F0w) e —iy(whG)} =0 (2.14)

where simpler symbols G, G, H and H are used instead of symbols G(p), G(p),
H(p) and H(p), respectively. The following relations regarding G and H

(6),=(G),, (H),=(H), (2.15)

hold, and new symbols defined by

pe=ia(00G/- L) n= i/ = il (2.16)

are adopted. By using equations (1.18), (1.21), (1.29), (2.15) and (2.16), and
noting that the sings of x; and p; are both negative, equation (2.14) is reduced
to a biquadratic equation for 7:

Nt +ayn?+an+a,=0 (2.17)

The discriminant D in equation (2.17) is given by equation (1.31) and the coeffi-
cients are given as follows:

2
@y= =28 47— (Mt L e \

@ =2{ 0 1?) — (54 Ly b2 44— L) a7

ro(2.18)
00:54_ {441,2+(7‘%“#2”2"&”%_%‘%22“)%8,2}52""4<//JV+——/5~)A,2‘3,§

2
+ {(h+p2?) (%r+“/§§‘)5'4”“4/ﬁ24,28’2}

At the intersecting points C; (ij=11) and C, (ij=22) in Fig. 1. 2, the relations
J=1 and v=1 hold from equations (1.29) and (2. 16), and # is expressed by

iyo N (o+e+1)?—dor + (c—r+1)
ek A/ (0+&+1) —4or £ (k—0+1)

= (2.19)

where the upper and lower signs correspond to ij=11 and /j=22, respectively. In
the special case in which the pedestal mass is negligible (¢—0), the convergent
value of the lower sign in equation (2.19) may be used, i. ., p=ip(l-+x)/c.

At the intersecting points D, and D, (i=j) in Fig. 1. 2,

p=ly/ 205+ (o k1) o/ (2eK) (2. 20)
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At the intersecting point D, (ij=12), 2 is given by equation (1.32), and also v is
expressed by

_ [V (otrtrD2—dox—(k—0o+1)
. /«/(a+x+1)2—4m¢+(x—a+1> (2.21)

The parameters 2 and v at the intersecting point D, (ij=21) coincide with reci-
procals of each parameter at point D,. Parameter p only expresses the gyroscopic
effect, because ¢ includes i, as seen from equations (2.19) and (2.20), and other
parameters 2 and v do not include 7,.

As seen from equation (2.18), the root n/¢’ of equation (2.17) is determined
by five values 4/¢’, £/¢’, 2, ¢ and v. Thus the unstable regions in which the root
n/e’ of equation (2.17) is not real but complex can be indicated on the plane (&/¢/,
4'/¢'y for three other parameters 2, # and v. Unstable regions satisfy either case
(i) or (iii) among three requirements (i), (ii) and (iii) in Section 1. 3. 3, and
the bound of the unstable region expressed on the plane (&/¢’, 4'/¢’) are given by
three curves D=0, a,=0 and a?—4a¢,=0. In Figs. 2. 2 and 2. 3, the unstable
region belonging to the case (ii) is hatched, and the unstable one belonging to the
case (iii) is crosshatched.

At first, let us consider the unstable regions near two intersecting points C,
and C,. Since the relations ij=11 and /j=22 hold in this case, the parameters A=1
and v=1 hold, and then ;=0 always holds from equation (2.18). That is, equation
(2.17) is expressed by a compound quadratic equation, and the root 7 and the dis-
criminant D are the same form as equations (1.33) and (1.34). Unstable regions
near the intersecting points C; and C, are shown in Figs. 2. 2 (a) and (b) for ¢=
0.5 and 1.5. Let Re[#] be a real part of the complex root 7, and also let Im[7]
=4m (m>0) be an imaginary part of 7, there simultaneously occur two vibrations
with frequencies p=w+Re[7] within a closed curve (a?—4a,<0) of Fig. 2. 2; in

Fig. 2. 2 Unstable regions for small 7p near cross points C; and Cg.

other words, the dynamically unstable vibration5%) occur, the amplitude of which
increases exponentially with the form e™f. In the crosshatched part and outside
of a closed curve (ai—4a,>0, @,>0), the relations D=16a,(ai—4a,)2>0 and a,>
0 hold, and so0 7==%+(—a,++ 42— 4a, /2 has two pairs of purely imaginary
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roots p=4imy, =im,. There occur two vibrations of static instability5” which
whirl with the same angular velocity of shaft , and increase their amplitudes
with time in the form e™? and e™:¢. In the hatched part (a,<0) of Fig. 2. 2, the
relation 72=—a,— v/ q3—4a, <0 always holds regardless of the sign of a,, and
then a statically unstable vibration occurs. When g increases from p=0.5 [Fig. 2.
2 (a)] to p=1.5 [Fig. 2. 2 (b)7, separation of unstable regions into three parts by
the effect of pedestal inequality ¢ becomes larger, and the higher unstable region
becomes much wider than the lower one.

Next, the unstable vibrations near the intersecting points D, and D, are con-
sidered. All vibrations near the intersecting points D; and D, are dynamically
unstable, because equation (2.17) has no purely imaginary roots 7. When g in-
creases but other parameters 2=0.5 and v=1.4 remain fixed, the unstable regions
are indicated as shown in Figs. 2. 3 (a) (#=0.5) and (b) (#=1.5). There occur
vibrations with two frequencies p=p;, ¢-+&-+Re[n], (i=1, 2) in the hatched part
of Fig. 2. 3, and the amplitude increases in the form e™!. The roots 7 become

T
7
SN
‘21%0}&:92&!@??&.?

<
5

(@)

Fig. 2. 3 Unstable regions for small 7/p near cross points D; and Da.

two pairs of conjugate complex numbers in the crosshatched part. Let Im[77] be
+m; and +m, (my, my>0), there occur two unstable vibrations increasing in the
form e™¢!, and two other vibrations also increasing in the form e™t. The effect
of u separates further the unstable regions split by e. The number of unstable
regions remains four, but the higher unstable region becomes wider than the lower
one.

2. 3. 2. When gyroscopic effect is large

2. 3. 2. 1. Case in which a directional inequality of pedestal stiffness
is small

It is assumed that the gyroscopic coefficient i, is large, and pedestal inequality
¢ is fairly small. Since the value ¢ is much smaller than i, and 4, neglecting the
term &2 yields frequency equation (2.12):

F=fi(—P)F2(5)F>(—0)=0 (2.22)

Fy(p) and F3(—p) in equation (2.22) have roots symmetrical to the abscissa (p=
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0). Thus we may consider only the solution”of the following equation:

Fo(0)=f1(0) f1(B) — 4°9:(0)9:(5) =0 (2.23)

Let us define four real roots derived by f;(»)=0 in equation (2.13) as p; (i=1,
2, 3, 4), and two real roots derived by ¢,(p)=0 as p,; (i=1, 2). The roots p; and
b; are indicated by solid lines, and the roots p,; and pg; by dotted lines in Fig.
2.4 (a) for =1, k=1, i,=0.8 and ¢=0. The real root p of equation (2.23) may

5 BPRABRAA RRE A
1‘2 e '6;1 AN
2 » X \ »
b, N
. NERY 3
P, Sy N pﬂzz
1 NN A
— (P3P0
Q, = ’ s - h}(p)hq(p)=o
AN N B
ot ..
n S p
Fe %\}\\}wﬂmg-;
=, Iy = A
-1k SN
\ N N4
Q NN\ \ \pns.
e A
-2 i ] 1 -2 8 1 P | i
o 1 w 2 3 0] 1 w 2 3

(@) (b)
Fig. 2. 4 p—ow diagram for large ip (ip=0.8).

exist only in the unhatched area where fy(p)fi(P)g.(p)g:(H) is positive. Unsta-
ble regions are restricted to the neighbourhood of four intersecting points Cy,
C,, D, and D,, where curves f(»)=0 and f{(p)=0 cross each other. Let the
abscissa of these four intersecting points be w;j,

pi=h;=2w,;—p; (2.24)
always holds, and the following relation is obtained:
wiy=(bi+0;)/2=wy (2.25)

The abscissas w;, and w,, of intersecting points C; and C, are given as follows:

wey  [(&+1)(Gp—1) =0+ +/{(x+1)(F,—1) —o}2+4ok(i,—1)
wlf\/ i (2.26)

The abscissas w;; and wj4, and the ordinates p; and p, of intersecting points Dy
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and D, are given in a way similar to the rotating shaft with an asymmetrical ro-
tor59 as follows:

_ _\/(fc—%l)ii +4(o+r4+1)(2—1,) +(d—1p) v/ (e +1)%3 +80x(2—1,)
Wig= Wy =

80(2—iy)?

(2.27)
by L 0@, wh+2(o+r+1)— (. +1)i,
g s(d—iy) &2

The intersecting points in Fig. 2.4 (a) are given by C; (w;1=2.488), C; (w;;=
0.899), and D; and D, (@;s=w,;=1.526, p;=1.985, p,=1.068). Equation (2.23)
is expanded into Taylor's series at the intersecting point (w;; p;). When small
quantities 4, 7; and & are adopted up to the second power, equation (2.23) becomes

el ) () oo o

A quadratic equation (2.29) for 7»; has a solution

p= L[| @000, @h/O0).]
T2l T@A/p): T (3fi/3p),

(afl/aw)i (afl/aw>i 2 4A2(9’1)i(§1)i
+ — g2y 2.30
\/{ (0f1/90):  (3f1/3p); } ’ (9f1/80):(3f1/3D): } &30

When a square root in equation (2.30) becomes imaginary, root 7; becomes a com-
plex number, and there occur unstable vibrations. Symbols used in equations (2.29)
and (2.30) have the relations

(0f1/0w);=1i,(pG),;*<0, (afl/ap)i: —(0f1/00) ;,
(0f1/00) ;= (0f1/0w) ;+2(0f1/0b) 5, (F)=(91);

The unstable region has the width —|&¢|<(é<|E,|, and &, is obtained as follows:

} (2.31)

— izd\/‘(.‘71)i(91>i/(afl/?lj)i(afl/a?% (2.32)
| {(@f1/0w)/ (Of1/0D):} — {(8f1/0w):/ (8f1/0D):} |

vy

4

The negative damping coefficient m and its maximum value #n.. become

M=Muax/1— (E/Ey)?2 z
°) (2. 33)

Mo =AY —(9,),(9,):/ (81,/30):(8/2/2b),
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2.3. 2. 2. Case in which a divectional inequality of pedestal stiffness
cannot be neglected

When ¢ is not negligible, we must discuss the unstable vibrations at the inter-
secting points where curves @, (p)=0 and 9,($)=0 derived from equation (2.12)
cross each other on the p—w diagram as in Fig. 2.4(b). When the terms smaller
than or equal to 4% order are neglected in frequency equation (2.12), the following
equation is obtained :

F=f1Qw+p){0,(0)0,(p) — 421 (p) h:($)} =0 (2.34)
Because f,(2w+p) does not have 4, we may consider only the following equation:
Fy=0,(0)0,(p)—4*hy (p) b1 ($) =0 (2.35)

The roots of @,(p)=0 and %, ($)=0 in equation (2.13) are defined as p; (i=1~8)
and p,; (¢1=1~6), respectively. Roots p; and p;=2w—p; are indicated by solid
lines, and roots p,; and p,;=2w—p,; by dotted lines in Fig. 2.4 (b) for o=1, =1,
ip=0.8 and ¢=0.2. The real root p derived from equation (2.35) may exist in
the unhatched part in Fig. 2.4(b) where @, ()P, (H)h, (P)hi () is positive. In the
same manner as Section 2. 3. 2. I, unstable regions occur near sixteen intersecting
points shown by the O indication in Fig. 2.4(b) where the roots p;, of @;(p)=0
crosses the root p; of @,($)=0. The values £, and . are calculated by adopt-
ing @,(p) and hq(p) instead of f;(p) and g,(p), respectively, in equation (2.32)
and (2.33). Thus:

_ o E2V (), () (30,/0p) (00, /3);
| {(20,/0w)/ (30,/0p)} — {961 /9w)./ (60:/3p).} |

£ (2.36)

P =AY — (11),(h) o/ (90:/00) (301 /00), (2.37)

2. 3. 2.3. The change of position and number of unstable regions, and
the negative damping coefficient by the gyroscopic effect
In order to show the gyroscopic effect on unstable regions, Figs. 2.5 (a) and

T 4 2
\
e }flzz e
\ /” .

T Minax=01
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D" Hon
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Fig. 2. 5 Unstable regions by approximate solution (i/p=0~2)
Dot-dash lines; wij,0 and wij
Solid lines; Limit of stable solution by equations (2.32) and (2.36)
O, @ ; Unstable and stable solutions by analog computer.
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(b) for o=1, x=1 and 4=0.4 are derived from equations (2.32), (2.33), (2.36) and
(2.37), and an analog computer ALS-200X [cf. Fig. 1. 7] indicates whether or not
the solution of equation (2.5) is stable by the @, O indications. Dot-dash lines in
Fig. 2.5 (b) show the abscissa w;; at the intersection of p; and ;, and solid lines
are the bounds of unstable regions obtained by equations (2.32) and (2.36), res-
pectively. The arrow length of upward direction is in propotion to the magnitude
of #Mm... The rotating speed between the two O indications shows the unstable
region for a certain value of i,.

Figure 2.5 (a) shows how unstable regions change with the parameter ip, and
approximate solutions by equations (2.32) and (2.33) agree well with the results
by an analog computer.

At the intersection of dot-dash lines and a hyperbola

iy0=1/x]s (2.38)

shown by a dotted line in Fig. 2.5 (a), the width of the unstable regions near the
intersecting points C,, Dy and D, is zero. If the two relations G=1 (p=:=+/k/0)
and H,=1 (p=0, ipw) hold simultaneously, and the following two equations, namely,

i=H,—)+G-1D)=0, fi—9=EH,—1)(G-1D=0  (2.39)

also hold, this is nothing but equation (2.38).

Next, let us show that only a root p, among four roots of f;=0 is in contact
with one root pg; between two roots of g,=0 at the one point. When ire<+/k/s,
the following relation holds with regard to four roots p=0, {0, ++/k/s of equa-
tion f;—g;=0 given by equation (2.39):

b~ \/;/;<sz<p3<0<ipw<ﬁz<pg1< \//?/E<P1 (2.40)

When ipw>+/g/o, on the other hand, the following relation holds:

b~ \/;7(;<pg2<p3<0< \/K_/-G<Pz<pg1<ipw<p1 (2.41)

As shown from equations (2.40) and (2.41), the roots p; and pg; never intersect
as far as the relation ipw=+/g/g holds. When equation (2. 38) is satisfied, the
relation pgi=ps=+/g/o holds, and thus the curve f1=0 is in contact with the
curve ¢;=0. When the contacting point between two curves f;=0 and g,=0
coincides with the intersecting points C, and D,, unstable regions near the inter-
secting points C, and D, disappear whether 4 is large or not. Even if equation
(2.38) is satisfied, the unstable region near the point C; appears as shown in Fig.
2.5 (a), because the relation p;>pg; always holds. In Fig. 2.4(a) for i,=0.8, the
curve f;=0 is in contact with the curve g;=0 at the midpoint (w=1.25) between
C, and D,, and the relation p¢;>>p, always holds except the contact point.

Figure 2.5 (b) indicates solutions of approximate equations (2.36) and (2.37).
The @, O indications show stable and unstable solutions obtained by an analog
computer for e=0.2. Comparison of Figs. 2.5(a) and (b) reveals fairly large
unstable regions in Fig. 2.5 (b) near the intersecting points Cy, C3, D; and D of
Fig. 2.5 (a) ; other narrow unstable regions which are split up into three or four
parts by pedestal inequality appear near the above-mentioned unstable .regions.
This may be explained as follows; since @;(p) and k4 (p) in equation (2.13) include
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only e?, and they can be approximated as @;(p)=f1($)f1(—p) and hy(p)=f1(—
)91 (p), equation (2.35) becomes

Fs=fi(=0)f1(—=D)F,(»)=0

Solutions of equation (2.23) in Fig. 2.5 (a) near the intersecting points Cq, Cy,
D, and D, differ little from ones of equation (2.35) in Fig. 2.5 (b). Two unstable
regions to the left hand side than the intersecting points C; and C,, and three
unstable ones to the left hand side than the points D; and D, occur near the
intersecting points where f;(—p)=0 crosses f,($)=0 or f,(20+p)=0. Because
hiocfy (—p)==0, the values &, and .. become nearly zero from equations (2. 36)
and (2.37). ,
Next, the negative damping coefficient
m is considered. In Ij‘ig. 2.6, the value m E.o’ T !TU_L 1 p=175]
calculated from equation (2.37) is com-
pared with the one in solutions of an | ol m,;mz;j
analog computer for the same parameters £ OIF Lodoolidd ol o
o, k, ¢ and 4 in Fig. 2.5(b), and for i,=
0,0.25, 0.75, 1.25 and 1.75. Solid lines 02
in Fig. 2.6 indicate the value m calculated g -~
by equation (2.37), and the indications @ 01 -
(stable) and O (unstable) show analog
computer values. Vertical dot-dash lines 03
indicate the abscissa w;; corresponding to L
the dot-dash lines in Fig. 2.5 (b). Dotted 02 #4140
lines for ip=0 and 0.25 in Fig. 2.6 indi- & L . \ v
cate the imaginary part of root 7 calcu- 01 J‘:LZSU, f»if S
lated from equation (2.17). Solid lines - \’\L% Loy
agree well with the solutions obtained by 0 = [Li
an analog computer as i, becomes large, %
-
j...

but do not as i, is small, and not at all
with a special case in which i,=0, since i
equation (2.37) is obtained by assuming f i |
that ¢, is larger than ¢ and 4. Because A, 11!

dotted lines for i,=0 and 0.25 are ob- "W z 3
tained by equation (2.17), in which ip, ¢ Fig. 2.6 m—o diagram

and 4 are assumed to be small quantities Dot-dash lines; wis .
of the same order, the dotted line for S;)l;f; lines; Approximate solution
z'p:()' shows a good coincidence with the l<)<;tte)d lines; Imaginary part of
solutions from an analog computer. The roots for equation (2.17).

dotted line of equation (2.17) is not

shown for ip=0.75 or more in Fig. 2.8,

because the dotted line is calculated according to the equation expanded near the
intersecting points C;, C,, D; and D, for i,=0 (Fig. 1.2), and the positions of
the unstable region for i,=0.75 or more differ entirely.

~%,

I

«

'
s
)
'

2. 4. Conclusions

Conclusions obtained in this chapter may be summarized as follows :
(1) An approximate analysis of a conical motion similar to a parallel motion
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in Chapter 1 can be done for the two separate cases in which gyroscopic coefficient
ip is large or small.

(2) When the gyroscopic effect is small, the width and number of unstable
regions can be determined by parameters 1 and v including ¢ and «, and the para-
meter u expressing the magnitude of gyroscopic effect.

(3) The number of unstable regions does not change due to the gyroscopic
effect. When the gyroscopic effect increases, the unstable region at the higher
rotating side becomes larger, and the unstable one at the lower rotating side splits
up further and becomes smaller.

(4) When the gyroscopic effect is relatively large, the approximate analysis
can be carried out for the two separate cases in which ¢2 is assumed to be negli-
gible or not. The approximate results coincide well with the analog computer
solution.

(5) If the angular velocity w=+/g/g/ip coincides with the abscissa w;; of
intersecting points C,, D; and D,, it is confirmed by the use of an analog com-
puter that the unstable region may disappear.

3. Mechanism for Occurrence of Unstable Vibrations of a
Rotating Asymmetrical Shaft Supported by Unequally
Flexible Pedestalsg?2, 73

3. 1. Introduction

When bearing pedestals supporting the shaft ends have a directional inequality
in stiffness, each unstable region?5, 26,79, 71) in which two types of unstable vib-
rations occur splits up into several regions. In this chapter, the mechanism by
which these two types of unstable vibrations occur is clearly explained, and the
condition is obtained in which unstable vibrations occur so that input energy into
the rotating shaft system tends to increase the whirling amplitudes of the shaft.
The condition is also explained from the fact that a counter-torque to a moment
exerted by a restoring force about a bearing center line (or a component of a
restoring moment caused by inclination of the shaft in the direction of the bearing
center line) must be applied to the shaft end. Vibratory solutions in the unstable
region obtained by an analog computer are found to satisfy this instability condition.
Moreover, if the higher order of small quantities, that is, inequality of pedestal
stiffness ¢ and asymmetrical shaft stiffness 4 are taken into consideration, a num-
ber of very narrow unstable regions can occur.

3. 2. When a Rotor Moves in Parallel with the Upper and Lower
Pedestals Motion

A rotating shaft system?® as shown in Fig. 1. 1 is also discussed. When
kinetic energy (1.2) and potential energy (1.3) of this vibratory system are re-

written by use of the following complex variables and equation (1.7),
Z/:x/__}‘iyr:ze-iwt, ‘z‘/:xr_z‘y/:'geimg

(3.1)

Zo=wi iy =271 Zi=x—1y;=2.e""
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differentiation with respect to time ¢ yields the increase in rate of energy 7' and
vV
T=m,Re[Z2]+2m,Re[Z,2, |
V:kRe[(z’—z;) (2 —%2,)]—4kRe[ (2 —2,)(F—2,)] 3.2
+2k,Re[2,2,1— 24k Re[ 2,2,

where symbols Re[+++7] and Im[---7] mean the real and imaginary parts of a com-
plex number [---]. Using equation (1.7), equations of motion (1.5) are rewritten
as follows:
myZ+k(z—2,) =A4ke* (z—3z,)
3.3
2mE,—k(2—2,) +2k2, =24k z,— dke* (2 —2,)

When the first equation from equation (3.3) is multiplied by 2, the second equation
by Z., and then these two equations are added together, the following equation is
obtained :

mo[gé]+2ma[§aéa]‘%‘k[(zrza) (’?—"—Z’_a)]”%‘Zka[za?a]
:2Aka[_’£a§a] "“Ak[ezm)t (2“219 (2'—:0)] (3 4)

Substituting the real part in equation (3.4) and equation (3.1) into equation (3.2),
the increase in rate of total energy 74V is simply given as,

T4+V=—24ko(x —5,) (¥ —y:)=—dkolm[ (z—2;)?] (3.5)

It is obvious that the increase in rate of total energy (3.5) is equal to the
time rate of work done by torque applied to the shaft end in Fig. 1. 1. 1In order
to keep the points S and A on x’y’- and x;y,-planes, respectively, in such positions
as shown in Fig. 3. 1, and also to rotate an asymmetrical shaft at a constant

A o
x ) yo b
q X
2
x
wt
0,0, k-Ak e
wt
Fax A1)
fa Tr £ 5
A F
™ £ L StLy)
2 Fx
£ Mo
°-‘\-Z,: Fig. 3. 1 Shaft end torque T, and compo-
e nents of restoring forces F and
X, Xa F,.
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angular velocity w, torque 7', must be applied to the shaft end im the arrow direc-
tion. Torque 7T, is obtained at first, and then the time rate of work applied to
the shaft end w7, is compared with equation (3:.5).

Due to shaft asymmetry 4=4%k/k, a restoring force vector F acting upon the
rotor center S does not exist in the ABS-plane containing a deflected shaft. Two
components F; and Fj of the vector F in x'- and y’-directions are given as

Fi=—(k—4k)(x'—x.), Fj;=—(k+4k)(¥y'—y.) (3.6)

This restoring force F is in balance with an inertial force —F. When a moment
is produced by —F about the bearing center line AB, a counter-torque 7, to this
moment must be applied to the shaft end in order to turn the shaft at a constant
angular velocity w:

T.==F.(y=y)+F;(x"—x;)
=—24k(x"—x7) (¥ =)= —dkIm[ (2'—2z;)?] 3.7
Equations (3.5) and (3.7) give the time rate of work applied to the shaft end:
T ,=—dkolm[ (2 —z)2|=T+V (3.8)

Equation (3.8) agrees precisely with the increase rate of total energy. Moreover,
because of the directional inequality of the pedestal rigidity e=4k,/k,, a restoring
force vector F, acting upon pedestal A differs in its direction from that of a
displacement vector z; as shown in Fig. 3. 1. Hence, the produced moment about
Oz axis acts upon the foundation (the hatched parts in Fig. 1. 1). Pedestal in-
equality ¢ has no connection with the increase or decrease of total energy applied
to an asymmetrical shaft system, because the foundation does not rotate.

3. 2. 1. Statically unstable vibration

In statically unstable regions in which a natural whirling frequency p coincides
with an angular velocity of shaft w, solutions of free vibration in respect to z and
z, are expressed in the following form which is obtained by putting p=w in Table
L L

z:Aeiwt+ae-i(ub+Ce3iwt+ca—3iwt___]_Feﬁiwt_{_fe'—siwt_}He’!iwt_%.,_
3.9)
za:Aaeiwt+aae—iwt+Cae3iwt+Cae-Biwt_il_Faeﬁiwt+fae~5imt*‘»~Hae7iwt+“.

By using equations (3.1) and (3.9), the term (2’—z;)? is expressed as
(21“2;>2 — {(Z-—ZQE‘“M} 2 {(A__ Aa) + (&l . da) e——ziwt _+ (C__C‘a> eziwt
+ ((I _Ca)e~4mn+ (F#Fa) eliwt L (f“fa) g-btwe 4 (H—‘ Ha)esiwt - } 2 <3 10)

When arithmetical means in the expanded equation (3.10) are calculated during a
cycle 27/w, all time-varying terms e?¥iw¢ (N= integers except zero) become zero,
and they have no effect on the condition necessary for the occurrence of static
instability. Therefore, the following constant terms may be taken into considera-
tion as for the increase or decrease of total energy:
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K=Constant terms of (2'—z;)?
=(A—A)?+2(a—a)(C—C)+2(c—c) (F—Fo)+2(f—fo) (H—Hg) +
(3.11)

The first term in equation (3.11) solely affects the sign of equation (3.5), because
all other terms except the first one are real numbers as seen from the right hand
sides of equation (3.3). Equations (3.5) and (3.11) show the condition under which
the mean value of total energy increases with time:

Im[K]=Im[ (A—A4,)%]<0 (3.12)

When a symbol arg (i. e, an argument of a complex number) is used, equation
(3.12) is rewritten as

@N—-1Drn<2arg(A—A,)<2Nx (N: integer) (3.13)

The condition necessary for the occurrence of statically unstable vibration indi-
cates that the constant term (A—A,) of z/—z, in equation (3.10) must exist in
the second or the fourth quadrant of a complex plane z’'—z;.

3. 2. 2. Dynamically unstable vibration

Let natural whirling frequencies of the shaft be p; and p, (0<p,<w<p;). In
dynamically unstable regions, both amplitudes of frequencies p, and p, increase,
and the following relation always holds:

b1=20—p,=0,, D1+bD,=20 (3.14)

Solutions of free vibration in respect to z and z, are expressed in the following
form :

2
2= Zl {Ajeipjt+aje—ipjt+cjez(2w+17j)t+Cje—l(2w+Pj)t+Fjei(4w+13j)t
g
,l_fje~i(4m+pj>t+Hjei(6w+pj)t+ }
2 . ‘ ‘ (3.15)
Za: Zl {Aajezﬂjt+ aaje—ipjt+cajel(2w+17j)t__§__Caje—t(2w+17j)t
+Fajei(4w+Pj)t+faje—i(4cu+1?j)t+Hajei(6w+17j)t+_“}
Using equations (3.1) and (3.15), (2—z,)? is expressed as follows:
2
(Z/-—Z;)zz[ Z}I {(A___Aa>je~z(w~llj>t+ (d—da) je~z(w+1’j)t~3_ (C__Ca)jet((m-l?j)t
e
_}_ (c____ca)je—‘i(Bw+Pj)t+ (F___Fa> jei(3w+1’j)t+ (f”‘fa.) je-i(saH-Pj)t
+ (H—H,) eiw+?pt 1 Nk (3.16)

When equation (3.16) is expanded by use of the relation (3.14), the terms including
an exponential function do not affect the occurrence of dynamically unstable vib-
ration, but only cause the torque T, in equation (3.7) to change with time. Con-
stant terms in equation (3.16) are calculated as follows:
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K=Constant terms of (2'—z;)?
=2(A—A)1(A— A, +2(6—0,) 1 (C—Co) 1 +2(a—a,),(C—Co),
F2(c—Ca) 1 (F=Fo)1+2(c—¢o) s (F—=Fo), +2(f—fo) 1 (H—Ho):
+2(f—fo)e(H—Ho),+ (3.17)

All terms except the first one in equation (3.17) are real numbers, and they do
not affect the sign of equation (3.5). Examining equations (3.5) and (3.17), the
condition for the occurrence of dynamically unstable vibration is given by

Im[K]=Im[(A—4,):(A—A4.),]<0 (3.18)

Equation (3.18) indicates that the imaginary part of the complex product (A—
Ad)y (A—AL), becomes negative. Thus:

@2N—-1Drn<arg(A—A,),+arg(A—A4,),<2N~x (3.19)

The condition (3.19) means that an arithmetical mean 8 of the arguments of com-
plex amplitudes (A—Ay); and (A—A4,), must exist in the second or the fourth
quadrant of a complex plane.

Either when bearing pedestals A and B have no directional inequality (e=0),
or when ¢ is much less than 4, the solutions of free vibration in regard to z and
zZ, can be represented only by the first term in the right hand side of equation
(3.15). In view of the rotating coordinate systems O-x'y’ and O,-x;y; turning at
an angular velocity o, relative displacement z’—z; between S and A is written as

2= 3 (A= A) e @t = (A A,), P04 (A= A,),67 P~ (3.20)
i=t

Relative displacement z'—z; is a vector
sum of (A—A,); and (A—A,),, each of V¥,
which turns clockwise and counterclock-

wise as shown in Fig. 3. 2, and it describes "~ B=Y argla- dale+ argla-adte)

an elliptic locus on a complex plane z'— (A-Agk + (A=Ao)
Z,. When the two rotating vectors meet / (A-4gle
. ' (A~Aa),
as seen from equation (3.20), vector z'— b
(P v Xeia

_~ . . . o
2,=0P exists on the major axis of an

ellipse, the length of which |[(A—A.)1]|+
[(A—Ay)l3. When the two rotating vector
come in an opposite direction, vector z’'—

z;:é@ exists on the minor axis of an
ellipse, the Iengt}} of which I.S KAAA“)N Fig. 3. 2 Elliptic locusfdescribed by rela-
~ (A= 4a)s| ((Fxgure 3. 2 indicates the tive displacement z'—z,, and vectors
case in which [(A—A4,)[>](A—A4.) ), and (A—Ag); and (A—Ag)s just when ¢=
the elliptic locus moves in the arrow di- 0 for case of |(A—Ag)1>(A—A)zl.
rection). The angle 5 between the major

principal axis OP and the real axis x'—x,

is given by f={arg (A—A.);+arg (A—A.).}/2. The condition (3.19) necessary
for the occurrence of dynamically unstable vibration is that the major axis of the
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ellipse must exist in the second or the fourth :quadrant.

When the magnitude of pedestal inequality e is not negligible, the vibrations
with small amplitudes caused by both ¢ and 4 are added to the ellipse, and thus a
locus z'—z; expressed on a complex plane is very complicated (see Figs 3.6(b)
and 3.8 (b)).

3. 3. Conical Motion of a Rotor

‘When the complex variables (2.6) are used, the equations of motion (2.5) for
the rotating shaft’? as shown in Fig. 2. 1 are expressed as follows:

16,—il,00,+0(0,— 04,) = 40e%“*(§,— 8.,)
B o (3.2
2m,Za+20(0,—0as) /1+2ke2, =24k 24+ 240 (0,—0.,) /1
Equation (2.2) is rewritten by the complex number, that is,

Oa0e= 0oz +i6a,y - —Zza/l (3. 22)

When the first and the second equations in -equation (3.21) are multiplied by 4,
and %, these two equations are added to each other, and equation (3.22) is used,
the following equation is obtained :

1[62023 - Ipw[iézgzj -+ 2ma[§aéa] + 8[(0z”“ OGZ) (02”‘ 5%)] + Zka[zaéa]
=24k ,[ 2,2, ]+ 40 (6, 04,) (0.— 0a) | (3.23)

The kinetic energy 7T and the potential energy V in equation (2.2) which are
rewritten by using equaticn (2.6) and the following complex variables

0:=05+i05=0,.7"", 0;=0:—1i0;=0,.e""
_ A B ) o (3.24)
H;z: 0;z+26;y: 6aze~m}‘5) 0;2:0;;3—‘10;_,;”—:0‘1;61“”
are differentiated with respect to time ¢ as follows:
T=1IRe[6,6,1+(1/2) I,wIm[0,0,]+2m.Re[ 2.5, ]
V=0Re[ (0:—0..) (6:—0.,)]—40Re[ (02 —0:,) (§:—02)]  (3.25)
-+ Zk GREEZEEU,:] —24 kaReEZaéa]

When relation (3.24) is used, and the real part of equation (3.23) is substituted
into equation (3..25), the increase in rate of total energy 7+V 1is derived as the
following simplified relation similar to equation (3.8):

oT,=T+V=—460Iml (6 —0;z>2]—~%—1pw1mtézéﬂ (3.26)

Torque T', applied to the shaft end about the bearing center line AB is ob-
tained from the equilibrium of moments in Fig. 3. 3 (a). Let us consider two
parallel planes which make a small distance z=+4h/2 from xy-plane as shown in
Fig. 3. 3(a). Let the intersections of these two planes and the bearing center line
AB be C and (, and let the intersections of these two planes and the tangent line
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TT' to an asymmetrical shaft at the ori-

gin O be T and 7’. The deflection angle v
of a shaft /TOC=/TOC' is equal to |0, e
—f4.). Because of shaft asymmetry, a re- 4~
storing moment M, is expressed by a
vector sum of a moment M., perpendicu-

lar to the 70C plane and a moment M,
which is at right angle to tangent OT and  m__#e

exists in the TOC-plane. Strictly speak- M
ing, a vector M, exists on the plane in- pay
cluding the origin O and perpendicular to @
tangent O7 as shown in Fig. 3. 3 (a).

R ’ Fig. 3. 3 Shaft end torque 7, and res-
The same symbol M, as Fig. 3. 3(a) is toring moment M:.

used in respect to the projectional vector

of a vector M, to the xy-plane in Fig. 3.

3 (b), because the inclination angle ¢=|0,| of tangent OT is a small quantity, the
second order of which can be negligible. Components M ;. and M;, of a restoring
moment in x’'- and y’-directions are expressed as follows:

M= (0-+40)(0;—0:,), Mj,=—(0—40)(0:—0:2) (3.27)

Component M,; of restoring moment M, tends to decrease the deflection angle
|6,—84,] and, on the other hand, component M,, encourages the whirling motion of
a rotor. A restoring moment M, in Fig. 3. 3(a) can be replaced by the equivalent
restoring forces F and —F, which are at right angles to the tangent OT, and act
on the two points T and 7, respectively. Let F, and —F, be the perpendicular
components of F and —F to the TOC(T'OC’) plane, respectively. To maintain a
constant angular velocity against the inertial couple balancing to a couple of F,
and —F,, torque T, has to be applied to the shaft end. This torque 7, about AB
line is equal to the OB component of a moment M,,, and 7', is obtained from
equation (3.27) as follows:

T,=—M:.(0;:—0.)—M;,(05—0;,)=—40Im[(0:—0:.)*] (3.28)

Equation (3.28) multiplied by w becomes the first term on the right hand side of
equation (3.26). Take a time average of the second term —/,wIm[d,6,]/2 of
equation (3.26) ;

1

o (3.29)

t+te
t

Ipwf“lm[aze;]di:“ 2%:0 I pw[xm(ézéz)}

When 6, and 8,, are expressed by solutions of steady state free vibrations, an
inclinational motion of the rotor returns to its original position after a certain
time f,, and thus term (3.29) becomes zero. In the case of unstable vibration,
since the inclination angle of the rotor @, gradually increases, and term (3.29)
does not become zero, a torque 7T, applied at the shaft end is smaller ‘than a
torque given in equation (3.28). Thus, the second term in equation (3.26) has an
effect on torque T, in the unstable region, yet has no connection with the condi-
tion for the occurrence of unstable vibration. From the first term in the right
hand side of equation (3.26), the condition under which unstable vibration occurs
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is obtained as:
— 40 wIm[Constant terms of (4;—0.,,)27>0 (3.30)

If 6, 6,. and 46 are replaced by 2/, z; and 4k, respectively, then the condition
(3.30) for instability of the conical motion coincides with the condition for insta-
bility of the parallel motion. When similar solutions of free vibration to equation
(3.9) are considered in respect to statically unstable vibration, and to equation
(3.15) in respect to dynamically unstable one, the discussion of Section 3. 2 still
holds. Equation (3.13) can be used as the condition in which the statically unstable
vibration occurs, and equation (3.19) as the one in which the dynamically unstable
one occurs.

3. 4. Solutions Obtained by Analog Computer and Condition Necessary
for the Occurrence of Unstable Vibration

When the equations of motion (2.8) are rewritten by using equation (3.24),
the real and imaginary parts of the equations of motion with respect to rotating
coordinates 6; and 6., are obtained as follows:

0:=Q—ipwy+(A—i)w?0:—A—4)(0:—0;,)
0;=—Q—ipwl;+A—i)w?0;—A+4)0;—0;,)
0ra=2w0,,+w0;,+1/0){—x0;,+ Q=2 (0;:—0;.)
F(3.3D)
+xe(0,,c08 2wl —0,,sin 2wt)}

Goy=—2w0},+w0,+ /o) {—x0,,+ A+ (05—0.,)

—xe(0,,8in 2wt +6,,c08 2w1)}

Figure 3. 4 shows a simulation circuit from an analog computer which satisfies
equation (3.31). Vibratory waves 63, 03, 64., 64y, 6;—6,, and 8;—6,, are given
by recorders 1, 2, 3, 4, 5 and 6. When i, is adjusted to zoro in four potentiome-
ters regarding ip, vibratory waves x’, ¥, ¥, yi, #'—x, and y’'—y, in Section 3. 2
are given by recorders 1~6. In order to investigate whether the conditions neces-
sary for instability (3.13) and (3.19) are satisfied, output 6;—6,, and 6;—6,,

Fig. 3. 4 Simulation circuit for analog com-
puter
Rec 1: 03, Rec 2: 05, Rec 3: 04z,
Rec 4: 0,5, Rec 5: 0;—04z,
Rec 6: 65;—045
Potentiometers @D: 2w, @: «e,
@: (A—ipw?, @: C—ipo, ®: w?
©®: 14, @:1+4, ©:« @:1/0.
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should be put in the abscissa and the ordinate of an X-Y recorder.

L .
4 Y-Va

o < 5 K

(a) e=0 (b) e=0.2
Fig. 3. 5 o=, «=1, ip=0, 4=0.4, w=1.66.

Figures 3. 5 (a) and (b) for £=0 and 0.2, respectively, show statically unstable
examples of parallel motions, the parameters of which are o=1, =1, i,=0, 4=0.4
and w=1.66. The solid circles on the vibratory loci indicate a dimensionless time
interval (4t=2). In view of the rotating coordinate system, loci z’—z; exists
always in the second quadrant, and then the necessary condition (3.13) for statical
instability is satisfied. Because of e¢=0.2, Fig. 3. 5(b) shows that the terms with
frequencies +2w, +4w, - are added to the straight motion resulting from the
first term (A—A4,) in equation (3.10). Figures 3. 6 (a) and (b) show dynamically

< \ | X; X;
- N O -Xa
.y X“Xs s NS

\\ ) ﬁx\&)

) (

(@) =0 (b) €=0.2

Fig. 3. 6 o=l k=1, ip=0, 4=0.4, 0=1.10.

unstable examples in parallel motions for the same parameters as Fig. 3. 5 except
that w=1.10. The locus of dynamically unstable vibration in Fig. 3. 6 (a) describes
an ellipse which is composed of two rotating vectors, that is, one whirls at
counterclockwise velocity (p;—w)>0 with amplitude |[(A—A.),| and the other
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whirls at clockwise velocity — ($;—w)<0 with amplitude |(A—A4.),|. Major and
minor axes of this ellipse increase with time. The major axis of the ellipse always
exists in the second and the fourth quadrants, and the remaining time at the
second or the fourth quadrant is much longer than the one at the first or the
third quadrant as seen by time marks @ on the locus. Thus the condition (3.19)
necessary for ithe increase of the total energy T4V is always satisfied. Figure 3.
6 (b) shows a complicated locus, since the waves of small amplitude with frequen-
cies +(w+p1), £(w+p3), £Bw+p,), --- overlap an elliptic locus of Fig. 3. 6 (a).
In this case, the major axis of an ellipse composed of two rotating vectors moving
in opposite directions with frequencies =+ (p;—w) exists in the second and the
fourth quadrants, and the condition for instability is satisfied.

Figures. 3. 7 (a) .and (b) for e=0 and ¢=0. 2, respectively, show the loci for
statical instability of conical motions, the parameters of which are =1, k=1,
1,=1.5, 4=0.4 and w=1.16. Figures 3. 8 (a) and (b) show the loci of dynamically
unstable vibration for the -same parameters as Fig. 3. 7 except that w=3.00. Com-
parison of Fig. 3. 7 with Fig. 3. 5, or of Fig. 3. 8 with Fig. 3. 6, shows that the
loci of conical motion on the §;—#;, plane have shapes very similar to the loci of
parallel motion on the z’—z; plane. This means that only the position and width
of unstable regions change as the factor i, changes remarkably from 0 to 2.

? H
Ey-Eay

&) 'y "’(90)'

67; "&;x

0 5’;"50;

(a) e=0 (b) e=0.2
Fig. 3. 7 o=1, k=1, ip=1.5, 4=0.4, w=1.16.

8y-Bay Gy~EGay

? ?
Gx~Eox

(a) e=0 (b) &=0.2
Fig. 3. 8 o=1, «=1, ip=1.5 4=0.4, 0==3.00.
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3. 5. The Occurrence of Uustable Vibrations of Higher Order

Solutions of free vibrations whirling at two natural frequencies p; and p,, and
whirling at many other natural frequencies caused by p, and p, vibrations are
generally expressed as follows?® :

2
Z—= ZI {Ajetpjt+aje—tﬂjt+Bjei(2w—Pj)t+bje-z(zw—llj)t+Cjez(2w+pj)t
i=
+Cje~£(zw+pj)t+Djei(4w~pj)t+dje~i(4w—Pj)t+Fjei(4w+pj)t
- feiteree LY
. | . ‘ | (3.32)
zm: 21 {Aajelpjt‘j\—aajeszft“}‘Baiel(zwmpj)t _%_‘baje~z(2w—17])t
=

_;N_Cajel(zwﬂij)t+Caje—:z(2w+Pj)t71‘_Dajel(4w~17j)t+‘daje*l(4w—17j)t

j._];‘ajeiuwwj)t +faj,e—i(4w+pj)t+ }
A relative displacement 2’2z,
2 -2l = ﬁj’l {(A—«AG) jevicm—pj)t,l, (a _ ag) je—smn-pj)t 4 (B-—BE) jei(w~l7j)t
=
»g‘_ﬂ (b__ba>je~i(3w—'}7j)i+ (C;_ca) jei(w+l7j)t+ (C‘Cu) je—i(3w+l7j)t
;F (D _Da) jei(3w—17])t+ (d;da) je~i(5w—17j)t 7%_ (F_Fa)jei(saij)z
(L) (3.39)

Table 3. 1 The terms of relative displacement z'—z,' in view of the rotating
coordinate system and magnitudes of amplitudes.

Order of € and 4 | 40 “ a #
g0 (A—Ag)exp{—~i(w—p)t} (B—Bg)exp{i(w—p)t}
(b—boyexp{—i(Bw—p)i}
3 (a—ad)exp{—i(o+p)t} (D=DajexpliBu=p)t]
(C—Co)exp{i(a+p)t}
(d—dg)expl—i(Bu—p)i}
2 (c—c)exp{—i(3w-+p)t}
(F—=Fexp{i/Bu-+p)e}

is derived from equation (3.32). Table. 3. 1 shows the order of magnitude for each
amplitude of equation (3.33). When term (z'—2z;)? is calculated from equation
(3.33), and terms including up to the fourth order of ¢ and 4 are considered, there
are 87 terms. -Constant terms 2(A—A4.)1(B—Ba)1, 2(A—A)3(B—Ba)2, 2(a—
@)1 (C—Cu)y and 2(a—ay)2(C—~Cy), are primarily included in these terms. How-
ever, these constant terms are always real numbers, and do not affect the sign of
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Im[(z—z;)?] of equation (3.7). Some terms in (z’—z;)2 may be constant in
accordance with a combination of frequencies p,, p, and w. Table 3. 2 shows some

Table 3. 2 Examples of frequency combination which results
a constant term of (2'—z,')?

Order of Term of (s'—zg)? Relation between
term t “ w, p1 and p2
(A—Ag)1%exp{—2i(v—p1)t} p1=uw
€040 (A— Ay 2exp{—2i(w—p2)t} be=w
2(A—A)1(A—Ay)2exp{—iQuw—p1—p2)t} b1+02=20
e140 2(A—Ag)1(a—an)2exp{—7Qu—p1+p2)t} b1—b2=2w
2(A—~Ag)1(b—ba)1exp{—2:Quw—p1)t} p1=2w
e 2(A—Ag)2(b—bg)2exp{—2i2w—p2)t} p2=2w
2(A—A)1(b—ba)zexp{—i(do—p1—p2)t} b1t pe=dw
2(A—Aa)2(b—ba)1exp{—i(4do—p1—p2)t} bitpz=4dw
c241 2(A—Ag)1(c —ca)zexpl{—i(dw—p1+p2)t} bi—pr=dw
2(a—aq)2(b—ba)1exp{—7(dw—p1-+p2)t} pi—p2=dw
2(A—Ag)1(d—dg)1exp{—2iBw—p1)¢t} p1=3w
(b—ba)1%2exp{—27 (Bw—p1)t} p1=3w
2(A—~Ay)2(d—dg)zexp{—2i(Bw—p2)t} b2=3w
g2 42 (b—ba)22exp{—27 (3w— p2)t} p2=3w
2(A—Aq)1(d—da)zexp{—i(6w—p1—p2)t} b1+ p2=6w
2(A—Ag)2(d—da)1exp{—7(6w—p1—b2)t} b1+ p2=6w
2(0—ba)1(b—ba)2exp{—i(6w—p1—p3)t} b1+ p2=6w

combinations of p;, p, and @ under which unstable vibrations might occur. The
amplitudes of these vibrations have a magnitude up to the order of 242, If imag-
inary parts of the constant terms in Table 3. 2 become negative, then the torque
T, in equation (3.7) becomes positive, and unstable vibrations occur. When free
vibrations with small amplitudes are considered up to much higher order of small
quantities ¢ and 4, innumerable unstable regions occur. If a little damping force
is applied to the system, the unstable regions disappear, since the magnitude of the
negative damping coefficient m is very small in these unstable regions.

As an example of vibratory waves for unstable vibration of a higher order,
Fig. 3. 9 (a) shows a vibratory solution derived by an analog computer, the para-
meters of which are 0=0.1, #=1, i,=0, ¢=0.8, 4=0.4 and w=1.111. In Fig. 3. 9,
a high frequency appeared on x- and x,-components is P;=3.560, and a low fre-
quency on y- and y,-components is P,=0.880. In this case, the relation P;+P,~=
4w holds, and this example of vibratory waves is an unstable vibration of the order
e141 shown by Table 3. 2. A negative damping coefficient m obtained by vibratory
waves is m=0, 023.

Figure 3. 9 (b) shows the vibratory locus of the same unstable vibration of
higher order as in Fig. 3. 9(a) on the 2z'—z, plane. The locus in Fig. 3. 9 (b)
indicates the very complicated form, because two vibrations with two frequencies
P,—w and P,—w overlap. Thus, the quadrant on a complex plane where the major
axis of this locus exists is not clear.
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Fig. 3. 9 Vibratory waves of unstable vibration of higher order
o=0.1, k=1, ip=0, ¢=0.8, 4=0.4, w=1.111, P1=3.560,
Po=0.880.

3. 6. Conclusions

Conclusions obtained in this chapter may be summarized as follows:

(1) When an asymmetrical shaft is supported by asymmetrically flexible bear-
ings, the necessary condition in which unstable vibrations occur is given by the
relation T, >0 of equation (3.7) for the case in which a rotor moves in parallel
to upper and lower pedestals. In the case of a conical motion, the necessary con-
dition is expressed by 7T,.>0 of equation (3.28).

(2) The condition for statically unstable vibrations is that a constant term
A—A, in #'—z, must exist in the second or the fourth quadrant of a complex
plane.

(3) The condition for dynamically unstable vibrations is that an arithmetical
mean of arguments of two vectors (A—A,); and (A—A.). turning to opposite
directions must exist in the second or the fourth quadrant of a complex plane.

(4) These conditions necessary for the occurrence of unstable vibrations can
be otherwise expressed that a moment about the bearing center line acted upon by
a restoring force (or a component in the direction of bearing center line of a
restoring moment) must be externally applied to the shaft end.

(5) It is ascertained that all solutions of unstable vibrations obtained by an
analog computer satisfy the condition necessary for the occurrence of unstable
- vibrations.

(6) When the terms with a higher order of small quantities ¢ and 4 are con-
sidered, a number of very narrow unstable regions can be made to occur, and the
examples of vibratory solutions derived by an analog computer are shown.
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4. Influence of Unegual Pedestals Stiffness on the Unstable
Regions and Mechanism for Ocecurrence of Unstable Vib-
rations of an Asymmetrical Rotor?s3, 74

4. 1. Introduction

The rotor which has two different principal moments of inertia I, and I,
about the axes perpendicular to the rotating axis, is called an asymmetrical rotors7,
A few papers5s, 61~63) are reported on the unstable vibrations of a shaft having
an asymmetrical rotor, both ends of which are supported by flexible pedestals with
a directional inequality in stiffness. These studies concern the unstable vibration
of an overhung shaft with an asymmetrical rotor6), an asymmetrical rotor mounted
the shaft with the statically directional inequality in stiffness®’, an asymmetrical
rotor with a uniformly distributed mass supported by massless pedestalst2?’, and
the case that both pedestals are rigid in the longitudinal direction of the pedestal
but flexible only in its lateral direction®® (i. e., directional inequality of pedestal
rigidity e=1).

This chapter deals with conical motions of an asymmetrical rotor, the shaft
ends of which are supported by flexible pedestals, each with a directional inequality
in stiffness e=0~1 and a concentrated mass. The position, width and number of
these unstable regions are approximately obtained by a similar analysis to Chapter
179 and Chapter 271. The approximate result in this case coincides well with the
vibratory solutions obtained by an analog computer. The conditions under which
unstable vibrations occur, just as input energy into the rotating shaft system tends
to increase the whirling amplitudes of the shaft, are clearly given. The solutions
obtained by an analog computer are found to satisfy these conditions.

4. 2. Equations of Motion and Frequency Equation

4. 2. 1. Equations of motion

Rotor inclination and lateral displacement are not interconnected in a rotating
shaft system shown in Fig. 4.1, because an asymmetrical rotor is mounted on the
midpoint of shaft S. This chapter only deals with the conical motions of an asym-
metrical rotor. Let O-xy be a stationary rectangular coordinate system, z-axis
of which coincides with a bearing center line 0,0, in equilibrium. Eulerian angles
0, ¢ and ¢ as shown in Fig. 4.1 (a) denote the angular position of a rectangular
coordinate system S-XYZ which consists of three principal axes of inertia passing
through the rotor center S. The principal axis of inertia SZ coincides with a
bearing center line Oz in an equilibrium state, because the rotor has no static
unbalance and dynamic one. The x,- and x,-axes are parallel to x-axis, and also
Yo- and y,-axes are parallel to y-axis. Let us consider that the upper and lower
pedestals move symmetrically to the origin O, that is, ¥,=—x, and y,=—y,. The
upper and lower flexible pedestals B, A shown in Fig. 4.1 (b) are dynamically
alike, i. e., pedestals A and B possess the equivalent concentrated masses m, and
my (me=my), and the directional difference in stiffness k,+4k, and k,+4dk,
(ko=ky, dko=4k;). Mass of the asymmetrical rotor is m,, and principal moments
of inertia about axes SX, SY and SZ are I, I, and I, (I,<I;), respectively.
Let 8, and ¢, be the projectional angles of rotor inclination #=_,ZSz to xz- and
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Fig. 4. 1 An asymmetrical rotor and Eulerian angles 0, ¢, ¥.

yz-planes, respectively, and let #., and ., be the projectional angles of the in-
clination .= BSz of the bearing center line AB to xz- and yz-planes. A unit
deflectional angle of shaft /ZSB yields a restoring moment 6. The total kinetic
energy T and the potential energy V of this system are expressed as follows®7):

2T =1,{6>+6(0.0,—0,0,)}-+1(0%2+63)
— AT{(62—03) cos 26 +20,0, sin 20} +2m, (2 +32) 4.1)
2V =0{(0s—00:)*+ (0y—0as)?} +2(ko— 4R %% +2(Ro+4ko) ¥
where
o=o-+9, I=(,+1,)/2 AI=(I,~1,)/2 (4.2)

@ is rotational angle of shaft, and 4/ is inertia asymmetry of rotor. When
equation (4.1) is substituted into Lagrange’s equation, and the second order terms
of small quantities are neglected, the equation of motion in regard to @ is obtained
as

0=w=Constant, @=wl (4.3)

The equations of motion regarding 6,, 6y, ¥, and y, are obtained as follows:
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1§,+1,00,+0(0;—00,) = AI (0,003 2wt + 0, sin 2wt)

I§,—I,w6,+6(0,—04y) = T ((%SIHZLULL 0,cos 2wt) Foo(4.4)

ma-ééa")— (ka_“dka>xa+8(0x—0a2)/l:0
MoYot (Bot+4k0) yo+3(0,—0a,)/1=0

Use equations (2.2) and (2.6), add the first equation of equation (4.4) to the
second equation multiplied by ¢, and also add the third equation to the fourth
equation multiplied by 7; then the following equations are obtained:

1§,—il,0w0,+0(0,— 04,) = Al <0e2“"‘>
(4.5)

malzéaz+ka120az—Akalzgaz—za(oz—oaz) :0

For simplicity, ¢ in equation (l.6), dimensionless quantities (2.7), and the follow-
ing dimensionless one are introduced:

A1/I=4, (4.6)

Hereafter, the primes of the dimensionless quantities are omitted, and the dots
over the dimensionless ones mean the differential coefficient with respect to #’.
The equations of motion for dimensionless quantities are then given as:
6'z—'iipw0.z+0z"“0azzdo dt <0zezuut)
“4.7)

0502+ (1+’C)0a2_0z:/c€5az

4. 2. 2. Frequency equation

The solutions of free vibration (2.9) is substituted into the equations of mo-
tion (4.7), and the determinant of the 10th order consisting of the coefficients of
complex amplitudes A, A,, @, Gq, B, Ba, b, bo, C and C,, is put equal to zero,
that is,

Hi(p) —1 0 0 —dopp O 0 0 0 0
-1 G®» 0 —ke 0 0 0 0 0 0
0 0 Hi(—-p) -1 0 0 0 0 dopw+p) 0
0 —ke =1 G(—p) O 0 0 0 0 0
g —AeB 0 0 0 Hi(p) -1 0 0 0 0 0
0 0 0 0 -1 G@ 0 —xe 0 0
0 0 0 0 0 0 Hiy(—p) -1 0 0
0 0 0 0 0 —ke =1 G(=p) 0 0
0 0 dopQu+p) 0 0 0 0 0 HiQu+p) -1
0 0 0 0 0 0 0 0 —1  GQ@uw+p)
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Expanding this determinant, a frequency equation is derived as the following simple
form:

F=f1Qw+0)0,(0)0,(5) — 45 {(05)*f1 (2w +p) k1 (D) k1 (D)
+(—=0)2Q2w+0)*G Qo+ )0, (H) ki (— D)}
+45{0?h Qu+D)PCQRu+p) R (D) {G(D)G(— D) —r*e’}=0  (4.8)

where H,(p), G(p), f1(p) and @, (p) are defined by equations (1.11), (2.11) and
(2.13), and k,(p) is defined as follows:

k(D) =f1(=D)G (D) —«**H (— D) 4.9)

4. 8. Occurrence of Unstable Vibrations, and the Position, Width
and Number of Unstable Regions

4. 3. 1. Case of a small dirvectional inequality of pedestal stiffness

The following relation3?) holds between the principal moments of inertia I,
I, and I, for an asymmetrical rotor:

LI, =, <1, +1, (24,=i,<2)

When e? is smaller than 44, and terms including 2 are neglected, the frequency
equation (4.8) is approximated as follows: ’ ‘

Fxfi(=p)Fi(0)Fi(—p)=0 (4.10)

The term f;(—p) in equation (4.10) does not contain 4, and has no relation to
the occurrence of unstable vibrations. Because the equation

Fi(0)=£1(0)f1(5) —45(05)*G(2)G () =0 4.1D)

and the equation F,(—p)=0 in equation (4. 10) have symmetrical roots with respect
to the axis of the abscissa p=0 in the w, p plane, we may consider equation (4.11)
alone. Four real roots derived from f,(p)=0 are defined as p; (i=1, 2, 3, 4), and
two roots derived from G(p)=0 are defined as pg; (i=1, 2). For parameters o=1,
k=1, ¢e=0 and {,=0.8, the roots p; and p;, and pg; and pe; are shown by solid
lines and dotted lines on the p—w diagram of Fig. 4.2, respectively. The real
roots p derived from equation (4.11) may exist in the unhatched area where the
sign of f{(P)f1(H)G(P)G(H) is positive. Unstable regions are restricted in the
neighbourhood of the four intersections Cy, C;, D; and D, where the curves
f1(p)=0 and f{(p)=0 cross each other and the real roots p separate right and
left. When inertia asymmetry of rotor 4, is assumed to be small, the coordinate
near the intersecting points C,, C,;, D; and D, in Fig. 4.2 may be put as

w=w;;+E&  p=Di+y; (4.12)

The frequency equation (4.11) is expanded by equation (4.12) in Taylor's series at
these intersections. If small quantities 4y, & and 7; are counted to the second
order, the frequency equation becomes as follows:



H. Ota and K. Mizutani

>i5} i( %J;l )i"/]i'f"( g{} >i$} —Ag (pﬁ) f (Gé>i:0 (4. 13)

By
k
A
L .
Y —— KPP =0
T I A GPGMA =0
Y P
RS SOV n—— =i'5z
= : R Fig. 4.2 p—o diagram (e=0).
-2 1 I !
0 1 2 3
w

Equation (4.13) is reduced to a quadratic equation for %;, and the solutions for
this equation are obtained as follows:

11 [@fifow), , (3f1/0w),
01 2[ {<af1/ap>i * @fl/a.zm}g

(0f1/00): _ (0f1/9w)
i\/{ @f1/9P):  (3f,/0p).

‘When a square root in equation (4.14) becomes imaginary, the root 7; becomes a
complex number, and an unstable vibration occurs. A limiting value £, of the
unstable region —|&y|<E<|&,]| is obtained as follows:

b= TN — (05)1(GG)/ (0f:/00),(0f/00);
|(@f1/0w):/ (0f1/00)} — {(@F1/0)/ @11/08) |

}252 4Az<pﬁ>%<{;é>iJ (4.14)
(01/20):(0f1/20);

(4.15)

The negative damping coefficient m and its maximum value #,.. become
M=/ 1— (£/E)) % mmax:zfo«/ —(pﬁ)?(Gé)i/( %’;1 )( %J; ) (4.16)

When the asymmetry of shaft stiffness 4 and symbol g, is replaced for 4, and
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P?G, equations. (4.15) and (4.16) coincide with equation (2.33) which gives £,

and #Mn.. of an asymmetrical shaft for the case in which «<1.

4. 3. 2. Case of a not small divectional inequality of pedestal stiffness
The fifth equation @;(p)=0 in equation (2.13) is a frequency equation for the
case that 4,=0 and &+0. When ¢ is not small, unstable vibrations occur in the
neighbourhood where roots p; (i=1~8) derived from @, () =0 and roots #; derived

from @,(p)=0 cross each other on the
o, p plane in Fig. 4.3. The higher-order
terms. smaller than 43 and 420,(p) in 5 Pef .
the frequency equation (4.8) are neglect- B, /
ed, and then the following equation is de- / $
| N
/o &Q

rived :
F~fQuw-+p)F,(p)=0 (4.17) e

4
AW

where the term f; (2w p) without 4y has
no relation to unstable vibrations, and

v

AN

7]

Figure 4.3 shows the p—a diagram for o=t . =1

Fy(0)=0,(0)0,(p) VSN
A0 (D) (D) =0 (4.18)  ° \ A\
/8

A > / % < N l\\_\_ ~\\‘
1 'M \x\ AN\

SR O

3 SABEP 0N

\ T kP k(P =0 N
\\ ey
N \ NN

o=1, k=1, ¢=0.5 and i,=0.8. In Fig. 4.  _ | sseo £705. b=08 |
3, Ps; (1=1~6) are defined as the roots i B '%;4
derived from £,(p)=0. Occurrence of SN e Bs
unstable vibrations is limited in the neigh- == B, A
bourhood of 16 intersections shown by 2 0 = ; ; é
the O indication in Fig. 4. 3 where the w
roots p; deriYed‘ from @1 (p)=0 and roots Fig. 4. 3 p-w diagram (¢=0.5).
by from @,(p)=0 cross each other, be-
cause a real root p:derived from equation
(4.18) may exist in the unhatched area
where 0, (p)O1 (P ki (p)k(p) is positive. The values £, and #Mn.x are derived as
follows :
O 1A Y DL DR
T2l @0./00): " (36, /0p),)
90,/0w); _ (30,/3w),|* L HCIDH DY
:t\/{( 1/0w), _ (90 £+ i (4.19)
(00,/00):  (3d,/3p). (00,/0)(89,/31), }
g 24N — (0B): (Riky)i/ (30,/0),(20,/00),
1{(00:/0w)/(00,/3b):} —{(001/0w)./(0D:/0b)}] (4. 20)

Mnax =40V — () ¥ (hsfer) o/ (90,/00): (06, /21),



200 H. Ota and K. Mizutani

The width of the unstable region 2/&,|, and the negative damping coefficient m
given by equation (4.20) are shown by solid lines in Figs. 4. 4 (a) and (b) for o=1,
k=1, 4,=0.2, i,=0.8, and e=0.1 and 0.5. Vertical dot-dash lines in Fig. 4. 4 show
the rotating speed w;; of intersections between p, and p; in Fig. 4. 3. Because the
width of unstable region 2|&,]| is fairly wide for w,,=2.489 (¢=0.1), and for wi,
=2.491 (¢=0.5) in Fig. 4. 4, approximation (4.20) assuming that £ is enough small

08 06
o=1 [ o=1 .
05 K=1 @%&’9 o__)’.g 05 K =1 000.396,0__‘629
04~ € =01 g°° 04— Ae:g? o
£o=02 $ L do= o
go3 A & Bo3- 7 -08 &
02 Prorer 1§ | L I A .
o1 [ A I SR ] o1 l_!lil[%lj j
o ilfﬁiimAél i 0 FR 15 AW VRIS oY) i
0 1 w 2 3 0 . 1 w 2 3
(a) &=0.1 (b) e=0.5.

Fig. 4. 4 m-—w diagram (O, @: unstable and stable solutions by
analog computer).

cannot apply. Thus, the imaginary part m of complex roots p obtained by solving
the frequency equation (4.18) is shown by dotted lines in Fig. 4. 4. The circles in
Fig. 4. 4 show the value m obtained by an analog computer ALS-200X. Solid and
blank circles indicate stable solutions (m=0) and unstable ones (m>0), respectively.
The solid and dotted lines agree well with the circles derived by an analog com-
puter. When the directional inequality of pedestal ¢ increases, the unstable regions
near the four intersecting points C,, C;, D; and D, in Fig. 4. 2 split up into many
unstable regions as shown in Fig. 4. 4.
Figure 4. 5 shows how the unstable
regions change with the coefficient of the

gyroscopic term i,=0.4~2 for o=1, k=1, ?:_ ’ T
e=0.5 and 4,=0.2. Solid lines are given 18- * Stable

by equation (4.20), and dotted lines by e

the frequency equation (4.18). Vertical o2

dot-dash lines in Fig. 4. 5 show the ab- 105

scissa w;; of the intersection of p; and OBZZS’?

p; in Fig. 4. 3, where unstable vibrations o

may occur. The circles in Fig. 4. 5 are o4

derived from the analog computer solu- Fig. 4. 5 ip—o diagram (ip=0.4~2).

tions, and the rotating speed between the
two O }indications shows the unstable
region-for a certain value of 7.

For the conical motion of a rotor mounted on an asymmetrical shaft which is
supported by flexible pedestals with a directional inequality in stiffness (cf. Chapter
2), unstable regions near the intersecting points C,, D, and D, disappear on a
curve in ip— o diagram where the relation ipw=+/k/s holds, but this tendency is
not shown by Fig. 4. 5. When the value (p$)2(GG) is equal to zero, the relations
£,=0 and #Mn,.,=0 are obtained from equation (4.15) and (4.16). Both values
F1(p) and f;(p) are not equal to zero simultaneously at the point where (p$)2(GG)
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=0 is satisfied. Namely, the relations f;(p)=« and f,(p)=H;G—1=-1 hold on
the straight lines p=0 and p=pe, satisfying G=0, respectively, and thus f;(p) is
never equal to zero. When the value $2G equal to zero, the relation f;($)=0 is
obtained by replacing p and G with p and G, respectively. Consequently, a point
where three values (p$)2GG, f(p) and f(p) are simultaneously equal to zero, does
not exist on the p—aw diagram.

4. 4. Mechanism for the Occurrence of Unstable Vibrations™®

4. 4. 1. Increase in rate of total energy

The increase in rate of kinetic energy T and potential energy V is given by
differentiating equation (4.1) with respect to time ¢ and using equation (4.3):

2T:1Pw (6zﬁy "‘6‘»35:?) +21(6x6z+éy03)
4 I“—gz (62— 62) cos 2wt +20,6, sin 20t} +4m, (%oke+ JoVa)
4. 21)
2V:28{(0$_—0a11> (63"0az) '{' (0:7-“00.}’) (éy“éay)}
+4ka<xaka+ya5)a> —4Aka(xa.xa,_ya,j]a>
Equation (4.21) is rewritten by use of the relations (3.24) between inclinational
angles 0,, 04, in view of the stationary coordinate system O-xy and angles 0:, 0.
in view of the rotating coordinate system O-x'y’:
ZT:Iprm[ﬁﬁz]+2[Re[§z(§z]-*AIT%—{Re[é;z]

—20Im[0:0:]— w*Re[0:21} +m.I*Re[ oo (4.22)

ZV _ 28Re[ (63— 0@3) (gz~ 5(;2) ] + kalzRetaazéaz] - AkalzRe[gazéaz]

When the first equation in equation (4.5) is multiplied by 26,, the second equation
by 3., and the real parts are substituted into equation (4.22), the increase in rate
of total energy T'+V is given as follows:

T+ =~ dTolm (~ 0g:+i62)* ]~ T,oTm[5.4.] (4.23)

Because torque T, applied to the shaft end is a generalized force with respect to
rotation angle @, the application of equation (4.1) to Lagrange's equation of motion
gives the following:

_d (3T\_oT | oV _ i 1
’"F(ag) gl =— Al (—0: +i) )= L Im.4] (4.24)
From equations (4.23) and (4.24), the relation

wT,=T+V (4. 25)

holds. It can be confirmed that the time rate of work o7, applied to the shaft
system is identified with the increase in rate of total energy.
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4. 4. 2. Torque applied to shajft end

Let us obtain the relation of equation (4.24) by using Eulerian angles 6, ¢ and
¢. The angular velocities wx, wy and wz about the principal axes SX, SY and SZ
in Fig. 4. 1(a) are expressed as followsé1 :

wy=0sin ¢—¢ sin 0 cos ¢, wy=¢ cos ¢-+¢ sin g sin ¢,
. (4. 26)
wy=9¢ CoS O+ ¢

The X-, Y- and Z-components of the time rate of the angular momentum are
given by the following Euler’s equations:
My=TIia,—I—1,)wyw,, Myzlz‘(by”—(ly"ll) WzWgy
) (4. 27)
My=1I,0,— Ui—1)wwy

When higher terms than the second power of .6 are neglected hereafter, the follow-
ing relations hold:

0,=0e, 6,=0cos¢, 0,=0 sing,
(4. 28)

0:=0.e""=0e ", @i=0cos¢, 0;=—0 sing¢

Equation (4,26) is rewritten by use of equations (2.2), (4.3) and (4.28) as fol-
lows:

7z

wp= =l 00, wy=0i- 085, 0,066 (4. 29)

By substituting equation (4.29) into equation (4.27), the following relations are
reduced :

M= — (I +40)§;— @I —1,)wi;— (I,— I+ 4T) w6}
My=I—4D)§;— @I 1) 0l;+ (I,— 1~ A1) 0*0;

(4. 30)
M= — 5 Ty G (90%) 241 (05 + 00) (65— 005)
When the X- and Y-components of restoring moment, that is,
My=8(05—0:,), My=—0(0;—0:.) (4.31)

are replaced for the left hand side of equation (4.30), the equations of motion can
be obtained68 for an asymmetrical rotor with respect to the rotating coordinates
0; and g;. The Z-component of torque T., i. e, T, cos |0;—0;.|, is identified
with the moment M, about SZ axis. When the terms including the third power of
small quantity é are neglected, and the relations

d . d < o
——(9502) =3 (01:03’ - 01:03') :ImEazﬁz]

2005+ w0) (0;—w03)=—Im[(— wl:+i6:)?]
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are used, the torque applied to the shaft end is given as the following equation
from the third equation of equation (4.30):

T.=M,— — AIlm[ (— w0’ ~if ;)23~%szm[a,e;j (4. 33)

Equation (4. 33) agrees precisely with equation (4.24) which is reduced by Lagrange’s
equation.

4. 4. 3. Condition necessary for the occurvence of unstable vibration

When the right hand side of equation (4.23) is positive, the total energy of
shaft system increases with time, and unstable vibrations occur. A time average
of the second term —(1/2)[,0Im{7,0,] of equation (4.23) becomes zero in a
steady-state vibration?’?. Since the inclinational angle of rotor 6, gradually in-
creases in the case of unstable vibration, a time average of this term does not
become zero. Thus, this second term of equation (4.23) has an effect on torque
T, in the unstable region, but has no connection with the condition for the occur-
rence of unstable vibration. The condition for the occurrence of unstable vibration
is represented by the condition under which a time average of the first term of
equation (4.23) is positive, that is,

— AT wIm[K]>0 (4.34)
where

K=Constant terms of (—w@;+f;)? (4. 35)

4. 4. 3. 1. Condition necessary for the occurrence of statically unstable
vibration
In statically unstable regions in which a whirling natural frequency p coincides
with an angular velocity of shaft w, the solutions for free vibration are put in the
following form72’:

02:Aeiwb+ae—iwc+ce3iwz+06~3imt+Fesiwt+fe~5iwt+He7iwt___ (4 36)

By using equations (3.24) and (4.36), the term (—w@;-+if:)? in equation (4.34)
is derived as follows:

(——0)6; +26;)2: (iﬁ’ze—iwt)z:__wz(Awae—ziwt+SCeZiwt_306—4imt
+BFetiut _5fe=biwt 17 [ebior )2 (4.37)

When all time-varying terms e2?¥i@t (N=integers except zero) in the expanded
terms of equation (4.37) are averaged for a cycle 27/w, these terms become zero,
and they hardly influence the condition whether or not statical unstable vibrations
occur. Therefore, the term K in the condition for instability (4.34) is expressed
as follows:

K=w?*(A*—6aC—30cF —70fH —---) (4.38)

Since all but the first term in equation (4.38) are real numbers as seen from
the equations of motion (4.7), the condition for instability (4.34) is given by
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Im[ A%]<0 (4. 39
The symbol arg is used in equation (4.39), so
@N —1)r<2argA<2Nr (4. 40)

The condition necessary for the occurrence of statically unstable vibration (4.40)
means that a constant term wA of —w@;-+if; in equation (4.37) must exist in the
second or the fourth quadrant of a complex plane.

4. 4. 3. 2. Condition necessary for the occurrence of dynamically
unstable vibration

The solutions for free vibration have the following form?2):
2
Oz: jzjl {Ajeipjt+aje—ipjt__}_Cjei(2w+17j)t+Cje—i(zw-*-Pj)t+Fjei(4w+1?])t
_[_fje~i<4w+pj):+Hjei(ew+pj)c+m} (4‘ 41)
The term (—w6;-+i6;)2 is rewritten by use of equations (3.24) and (4.41):
2
(—o0i+i6) =0 3 (p;A,07 77 = D0, 74 2w+ b ) ottt
- (2w"}'pj>c_je_i(3w+pj)t+ (40) "’;-ﬁj)Fjei(sw"Lpf”
— (b +p;)fe 0 (6w 4 p O H eiGerrt 12 (4, 42)

Only a constant term K in the expanded terms of equation (4.42) affects the
occurrence of dynamically unstable vibrations. The constant term K is expressed:

K=2p,p,4,4,—2p,2ow+1p,)a,C,—2p, 2w +pz)a,C,
—24w+p1) 6w +p1) [LH 1 —24w+ D) 6w+ py) fLH,— - (4.43)

Because any but the first term in equation (4.43) is real and it has no effect upon
the condition for instability, the condition under which dynamically unstable vibra-
tions occur is given by

Im[ A, 4,7<0 (4. 44)

Equation (4.44) is rewritten by using the arguments of complex numbers A4; and
A, as follows:

@N—-Drn<largA,+argA,<2N~= (4. 45)

If an arithmetical mean of the arguments of complex amplitudes A4; and A, exists
in the second or the fourth quadrant of a complex plane, the dynamically unstable
vibrations occur.

In the case in which either of pedestals has no directional inequality (¢=0) or
e is much less than 4,, the solutions for free vibration #, can be represented only
by the first term in the right hand side of equation (4.41). A term —w@;-+i0;
describes an elliptic locus on a complex plane. The length of the major axis of
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the ellipse is 2(|A4;|+|4;]), and the length of the minor one is 2(JA4;|~]A4,))72%
The angle between the major principal axis of the ellipse and the real axis is (1/2)
x (arg A;+arg A,). When the major axis of an ellipse exists in the second or the
fourth quadrant, satisfying equation (4.45), the dynamically unstable vibrations may
occur. In the case that e is not negligible, the vibrations with small amplitudes
derived from & and 4, are added to the ellipse, and a locus of —w@;4i0; express-
ed on a complex plane is very complicated (see Fig. 4.8 (b)).

4. 4. 4. Solutions of vibration obtained by analog computer and condition
necessary for the occurrence of unstable vibriaton

In order to substantiate whether the conditions for the occurrence of unstable
vibration (4.40) and (4.45) are satisfied, the vibratory solutions with regard to
rotating coordinates ; and 6. are obtained by an analog computer ALS-200X.
Figure 4. 6 shows a simulation circuit in an analog computer which satisfies simul-
taneously both the real and imaginary parts of the following equation:

Fig. 4. 6 : Simulation circuit for analog
computer
Rec 1: 60, Rec 2: 6y Rec 3: 04z,
Rec 4: 0.y, Re: —wl,—gy,
Im: —wly+4s
Potentiometers @: 20, @ e,
®: (Q+4do—ip)w?, @: 1/0A—4o),
®: @—ipw, ®:1/A+40q),
@: A—4o—ip)w?, @: w? @: 4
©: 1/o, @: w.

01--iQ2—i) 0l 4 (l,—1) w?0; 01 —05,=4,(0:+w?F?) |
o o (4. 46)
G (G125 w00, —w?02,) + (L+1)0;,— 01 =red,e 2 |

Let us show the results on a complex plane in which the real part (Re=-—wf.—
63) and the imaginary one (Im=—wd;+6;) are derived by an analog computer,
and they are put into the abscissa and the ordinate of an X-Y recorder.

Examples of statically unstable vibrations are shown in Figs. 4. 7 (a) and (b)
for e=0 and ¢=0.5, respectively, and other parameters are set as o=1, v=1, 4=
0.2, ip=0.8 and w=0.83. The loci of —wfd;-+if; on a complex plane always exist
in the second quadrant, and the necessary condition for static instability (4.40) is
satisfied. Because of the pedestal inequality e, Fig. 4. 7 (b) shows that the terms
with frequencies +2w, +4w, --- are added to the straight line motion resulting
from the constant term wA in equation (4.37).

Figures 4. 8 (a) and (b) show examples of dynamically unstable vibrations for
the same parameters as Fig. 4. 7 except w=1.50. The locus of dynamically unst-
able vibration describes an ellipse in Fig. 4.8 (a). This ellipse is composed of two
rotating vectors, one whirling at a counterclockwise velocity py—w >0 with am-
plitude |pyA:, and the other whirling at a clockwise velocity @—p;<0 with
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Im ‘Im
o =1 =1
A =1 A =1
€ =0 € =05
A0=Q2 Ao-‘-QZ
\\ [p=08 Ip=08
) w =088 w=088

Re Re

@) (v)

Fig. 4. 7 Unstable vibration expressed on a complex plane — w0} +i6}.

Im Im =1
o=1 & =1
K =1 € =05
€ =0 Ao=02
Ao =02 (=08
[p =08 P
w =150

w =150
O TN

RN Re N

i

e
D

@) (b)

Fig. 4. 8 Unstable vibration expressed on a complex plane -w6;+ié;.

amplitude |p,4,|. The major axis of the ellipse always exists in the second and
the fourth quadrants, and the condition for dynamic instability (4.45) is always
satisfied. TFigure 4.8 (b) shows a complicated locus, because very small vibrations
with frequencies +(w-+p1), £(w+p3), £ Bw+p,), £Bw+p,) - overlap upon an
elliptical locus of Fig. 4. 8 (a). Nevertheless, the major axis of an ellipse com-
posed of two motions whirling in an opposite direction with frequencies -+ (p;—w)
exists in the second and the fourth quadrants, and the condition for the increase of
the total energy of this systen is satisfied.
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4. 5. Conclusions

Conclusions obtained in this chapter may be summarized as follows:

(1) The analysis of unstable vibrations for conical motions of an asymmetrical
rotor supported by unequally flexible pedestals is carried out by a similar approxi-
mation applied to an asymmetrical shaft supported by unequally flexible ones in
Chapter 2.

(2) When the approximate analysis is applied by assuming the two cases in
which &2 is either negligibly small or not so, the approximate results coincide
with the solutions obtained by an analog computer.

(3) For the conical motion of a rotor mounted an asymmetrical shaft in
Chapter 2, unstable regions near the intersecting points C,, D, and D, disappear
at the angular velocity w=+/x/c /i», but such a phenomenon does not occur for an
asymmetrical rotor.

(4) When a shaft with an asymmetrical rotor is supported by unequally flex-
ible pedestals, the condition necessary for occurrence of unstable vibrations is
given by the relation (4.34) under which the total energy of the shaft system
increases.

(i) The condition for static instability means that a constant term wA in a
complex plane of —w@;+4if; must exist in the second or the fourth quadrant.

(ii) The condition for dynamic instability means that the locus of — b0
in a complex plane describes an ellipse, and the major axis of this ellipse must
exist in the second or the fourth quadrant.

(5) 1t is ascertained that all solutions of unstable vibrations obtained by an
analog computer satisfy the necessary condition under which unstable vibrations
occur.

5. On the Shaft End Torgue and the Unstable Vibrations of an
Asymmetrical Shaft Carrying an Asymmetrical Rotor?

5. 1. Introduction

In a rotating asymmetrical shaft carrying an asymmetrical rotor?25,26,%6,48,64~66)
as well as in a rotating asymmetrical shaft70~7%, and in an asymmetrical rotor?s,
74) there occur two types of unstable vibrations?®, 26,57, 59, 70~74)_ It is obtained
from analytical and experimental studies?5,26) that the width of the unstable re-
gions changes with the orientation angle between the inequality of shaft stiffness
and that of rotor inertia.

In this chapter, in order to clarify the dependence of the orientation angle ¢
upon the occurrence of unstable vibration, the condition is obtained, under which
input energy supplied at the shaft end increases the whirling amplitudes of the
shaft, so that these two types of unstable vibrations occur. T. Yamamoto, H. Ota
and K. Kono?5, 26 indicate -analytically and experimentally that the width of the
statically unstable region57) becomes narrower as the orientation angle ( increases
from zero to z/2, and on the other hand the width of the dynamically unstable
one’? becomes greater as ( increases. The condition necessary for occurrence of
instability depends on the angle ¢, and the analytical results agree qualitatively
with that of the experimental ones25:26), Furthermore, when inertia asymmetry
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4y and stiffness asymmetry 4;; are combined suitably, the condition under which
the unstable region vanishes is realized. It is ascertained that the solutions of the
unstable vibration obtained with an analog computer satisfy the condition necessary
for instability.

5. 2. Equations of Motion

The principal moments of inertia about
three principal axes of inertia SX,, SY,
and SZ; through the center S of an
asymmetrical rotor in Fig. 5.1 are de-
noted by I, I, and I,(I,>>1,), respectively, x AL
and I=(I;+1,)/2 and 4I=(I,—1,)/2. =—— Nl 0,
The mass of the rotor is m,, but the g % (araa,r+A7,5+48)
mass of the shaft is assummed to be \

i

¢

negligibly small. Let the bearing center & == Gk k=l-aD
line be Oz. The rectangular coordinate IypEsrr———icr ;‘i?,(a
system O-xyz is parallel to the rectangu- Eé'%ff_ — y

lar coordinate system S-XYZ; thus, xy-
plane coincides with XY -plane. The rect-
angular coordinate systems S-X,Y,Z, Fig. 5. 1 Eulerian angles 0, $ and ¥, and
and S-X,Y,Z, are fixed to the rotor, the orientation angle <.

angular positions of which are denoted by

Eulerian angles 4, ¢ and ¢. The rectangular coordinate system S-NKZ is obtain-
ed by rotating the rectangular system S-XYZ about the vertical axis SZ by ¢,
and then the system S-LKZ, is obtained by inclining the coordinate system S-
NKZ about the axis SK by ¢. Next, the coordinate systems S-X,Y,Z; and S-
X3Y3Z, are obtained by rotating the system S-LKZ, about the axis of inertia
SZ, by ¢ and ¢+, respectively. The orientation angle between the inequality of
shaft stiffness and that of rotor inertia is defined as {=_/X,SX;=_Y,SY,;. The
stiffnesses of the asymmetrical shaft are a+4e, y+47 and 6446 in which the
lower negative signs correspond to the displacement in the SX;-direction, and
upper positive ones to that in the SY;-direction. Let two components of displace-

/ \
Xe(h=l+al) Xsla-da,r-47,8-45)

ment vector OS be x and y, and let projectional angles of inclination angle 6=
L ZSZ, to xz- and yz-planes be @, and @,, respectively.

When the terms higher than the 3 rd order of small quantities #, and 4, are
neglected, the kinetic energy of the asymmetrical rotor 7 both of translation and
rotation is represented as follows:

2T =my (24 y%) +1,{6%+-6(6,0,—0.0,)} +1(62+62)
—AI{(6%—0%) cos 20+ 20,0, sin 26} 5.1

where @ is the rotational angle of the shaft end. Let the projections of the dis-

placement vector 0S to X3SZ and Y 3SZ planes be x; and y;, respectively, and let
the projectional angles of inclination angle 6 to X3SZ and Y3;SZ planes be 65,
and 6;,, respectively. The potential energy of the asymmetrical shaft V is re-
presented as follows57):

W=(a—da)x:*+2(r—4Ar) %5055+ (6 —48) 015+ (@ +da) ;2
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+2(r+47)y:0;55+ (0-+48)053 (5.2)
When the following relations
x; X y Vs x y
P = cos (40 + sin(6+0), 3 =— sin(@+) + " cos(6+0)
;3 61: 6y 6}'3 03 6)'

(5.3)

are used, equation (5.2) is rewritten as follows57):

2V =a(x2+y%) +2r (%0,+30,) +0(05+635) — da{(x*—y*)cos 2(6+0)
+2xysin2(0+0)} =24y {(x6.—¥0,) cos 2(6+L) + (%0, +¥0,) sin2(0 +0) }
—46{(0%—65) cos2(6+1) +20,0,sin2(0+0)} (5.4)

Substituting equations (5.1) and (5.4) into Lagrange’s equation of motion, and
neglecting the terms higher than the 2nd order of 6, and 6, the equation of

motion regarding angle @ is derived as @=0, which leads to
0=w=Constant, =wt (5.5)

The equations of motion?5, 26> regarding x, y, 8, and 6, are obtained by using
equations (5.1). (5.4) and (5.5):

Mok 4% +70,=da{x cos 2(wl+&) +y sin 2(wt+2)} A
4+ dr{0,c08 2(wt+{) +6,sin 2(wi+0)}

Moy +ay-+r0,=da{x sin 2(wt+&)—y cos 2(wt+{)}
+Ar{ezsin 2(wt+&)—0,c08 2(wt+£)}

I,+1,00,+7x+00, ::.AI (6xcos 2wt+0, sin 2wt)

+ Ay {x cos 2(wt+c)+y sin 2(wt+2)} €0
+40{0,c082(wt+C) +0,sin2(wl+7)}

—Twl,+7y+30,= AI—(%_(éx sin 2wf—§,cos 2wt)

+dy{x sin 2(wt+2) —y cos 2(wt+{)}

+-46{0,sin 2(wt+) —0,c08 2(wl+0)} )

Complex variables (1.7) and (2.6) are introduced into equation (5.6), and the
equations of motion regarding z and ¢, are expressed as:

mE+az+r0,= (da-z+ 4y-0,)e?" @

I~ Tyt rz-+30,=41-& (.0 + (dy-F+ 3.5 )0 [ O1
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5. 3. Mechanism for the Occurrence of Unstable Vibrations

5. 3. 1. Increase in rate of total energy T+V
By differentiating equations (5.1) and (5.4) with respect to time ¢ and using

equation (5.5), the increase in rate of kinetic energy and potential energy are

obtained :

T=m,(xX+95) + T,/2) & (0:0,—0.0,) + 1 (6.0.+6,6,)

— (AI/Z)%{(QE —(2) cos 2wt + 20,0, sin 2wt}

V=a(xi+y9) +7&0,-+%0,+0,+30,) +0(0.0,+0,0,)
—da{uwxy+x%—yy) cos2(wt+&) — (wx*— wy? — Xy —xy) sin 2(wt +)}
— A {Quwx0,+2wy0,-+%0,+%0,—¥0,— ¥0,) cos 2(wt-+L)
—Quwx0,—2wy0,—x%0,—%0,— Y0, — ¥0,) sin 2(wt+)

— 40{(200,0,+0,0.—0,0,) cos 2(wt-+{)

— (0% — w03 —0.0,—0,0,) sin 2(wl +0)}
(5-8)

Use of complex variables (1.7) and (2.6) in equation (5.8) gives the following
equation;

T=mRe[ 2]+ (1,/2) oTm( 0.5, )+ IRe[ 0.1~ (41/2) - & ReCgze "]
V =aRe[2Z]+yRe[ 20+ 20,1+ 0Re[ 0,0,] — daRe[ z2e 2@+ $7]
— dawIm[ 2% 2@+ O — gyRe[ (20,+ 26,) ™21 @+$7] L (5.9)
— drwIm[ 220,67+ $7 ]~ 43Re[ 00,0t ¢]

_Aawlm[ﬁfe—zi(wmg)]

When the first equation in equation (5.7) is multiplied by 2, the second one by &,
and these are added together, the following equation is given from the real part
of the derived equation:

mRe[ 337+ aRe[ 23]+ 1Re[ 20,20, -+ IRe[ ,0,]+ 0Re[ 0,0,

:Re[dléz—ddt—((?ze“"“) b {daBE+ Ay (36,4 30,) + 406,5,) e 9T (5.10)

By substituting equations (3.1), (3.24) and (5.10) into equation (5.9), the increase
in rate of total energy 7'+V is given as

T+V=—oIm[ 4] (—wb;+if:)?+ (da-2'2 247 +2'0; + 45-0;2) e %S
"{_ (IZU/2> 62523 (5. 11)
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Torque T, supplied at the shaft end is a generalized force with respect to shaft
end rotation ©. When equations (5.1) and (5.4) are substituted into Lagrange's
equation of motion, and equations (3. 1), (3.24) and (5.5) are used, torque T, is
obtained as follows:

=4 <%§>#~%g~%%g=:~Im£AIG~w&%4692
(a2 247201+ 45-0:2) e - (1,/2) 6,0, ] (5.12)
From equations (5.11) and (5.12), the relation
wT,=T+V (6.13)

is obtained. Equation (5.13) means that the time rate of work applied to the shaft
end w7, agrees with the increase in rate of total energy?2~"4,

5. 3. 2. Frequency equation

For simplicity, ip in equation (2.7), 4, in equation (4.6) and the following
dimensionless quantities are introduced:

/NI m, =%, ¥/VIT/my=Y, tNa/m,=t, b/vajm,=D,

w/vVa/my=w, r\/mo/[/a':r’, w0/ (al) =0, daja=4d, (6.14)

dpfy=4dvs, 48/0=4dy, m,T./(@)=T};
The primes in the dimensionless quantities (5.14) are omitted hereafter. The dots
over the dimensionless ones mean the differential coefficient with respect to £'.
The equations of motion (5.7) regarding z and ¢, are rewritten by using dimen-
sionless quantities (2.7), (4.6) and (5.14):

Z+Z+T0z: (Allg_%_rdlzéz)ezi(wt-kg)

4 I (5.15)
G,—tviywl,+7r2+00,=4, a (0,29%) + (74152 +04,,0,) 2 Wets?

The existence of the rotating inequalities 4, and 4;; yields a pair of natural fre-
quencies p and 2w—3 (7 is a conjugate complex number of p), and the solutions
for the free vibration of equation (5.15) are represented as follows:

2= Aei?t + A'ei?o-Pt 0,= Bei?t - B'gi2e-t (5.16)

where amplitudes 4, 4’, B and B’ are complex numbers. When equation (5.16) is
substituted into equation (5. 15), the 4th order determinant which consists of coef-
ficients of A, A'e?$, B and B'e*$ gives the frequency equation (5.17),

H@)  —dn r 14
—All H(ﬁ) —.—r‘AT.Z T :

= . |=0 .17

r —rdis G(p) — 04y, — A, ppe? ( )

—7rdi, 4 —3dy,—d,ppe* G
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where

H(p)=1—p% G(p)=0+i,wp—p? (5.18)

Expanding equation (5.17) and using the relation e¥$+e-%$=2cos2{, a frequency
equation is derived as follows:

F=f(0)f()+[—450*p*H(p)H (H) — £:G ()G ()
—1*dL{H(0)G(P) +H (H)G(p)} — 02 43,H (p) H ()
+27241141,{G(0) +G (D)} 207241, 45, {H (P) +H(H)}
—2(0d11dp+ 72 4) 1? + 240D P {— 12 A1+ 7241, H (D) + 72 41,H (B)
— 04y H(P)H ()} cos28 1+ {(9411dyy— 2 4) 2+ 45 44102 5*
42404110 p (841145, —124%) cos 27} =0 (5.19)

where
fB)=H(P)G(D)—71* (5. 20)

5. 3. 3. Condition necessary for the occurrence of unstale vibration

The increase in rate of the total energy (5.11) is rewritten by use of dimen-
sionless quantities (2.7), (4.6) and (5.14):

T, =T+V=—oIm[dy(—w0;-+if:)?+ (41122 +2r 41,2'0; +04,,012) e 26
+ (4,/2) 0,0, ] (6.21)

The condition under which the input energy is supplied to the shaft system and
the unstable vibration occurs, coincides with the condition where a time average of
the increase in rate of total energy represented by equation (5.21) is positive.

5. 3. 3. 1. Condition necessary for the occurrvence of statically unstable
vibration

When the root p derived from equation (5.19) is not a real number but an
imaginary one, an unstable vibration occurs. In the statically unstable region5”) in
which the real part of a complex root p coincides with an angular velocity of
shaft o, whirling natural frequencies in equation (5.16) may be replaced by p=
w+im and 20—p=w=im, and the solutions of free vibration are given as follows:

z:Alei(w+i1n)t+Azei(w_im)t, 0z:Blei(w+im)t+Bzei(w—i1n)t (5- 22)

If the imaginary part m of a complex root p is positive, then the first term of
the right hand side of equation (5.22) decreases exponentially with time as e ™t
regardless of the initial condition. This first term in equation (b.22) may be
neglected unlike the second one which increases exponentially as e™!. Thus, only
the second term in equation (5.22) is considered, and the subscript 2 is omitted:

z=Aem+iot g — Bemtiwt (5.23)
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In a statically unstable region, the increase in rate of total energy (5.21) is re-
written by use of equation (3.1), (3.24) and (5. 23) as follows:

wT,=T+V=—we™Im[ J] (5.24)
where
J=dy(w—im)2B? + (4, A2+ 2y 4,, AB+04,,B%) e — (i,/2) (w—im)*BB
(5. 25)

The condition under which unstable vibrations occur is given by the relation in
which equation (5. 24) is positive; that is,

Im[J]=—T,e?™<0 (5. 26)

Let the arguments of the complex numbers A and B be arg A and arg B, respec-
tively, and the imaginary part of equation (5.25) is expressed as follows:

Im[J]/|Bff=4,(w?—m?) sin 2 arg B—24,mw cos 2arg B
+41,|A/BP?sin 2(arg A—{) +274,,|A/B|sin(arg A-+arg B—20)
+04,,sin 2(arg B—{) +i,mw (5.27)

If the equations of motion (5.15) have the free vibration (5.23), the following
determinant consisting of the coefficients of Re[A], Im[ A7, Re[ B] and Im[ B must
satisfy the following relation:

1—4dic0828 —w?+m? — 4y sin2—2maw  y(1—4,,c08 28)
—AnSinZC*’rgmw 1+411C032§-w2—{—m2 ‘—'rdlzsin 2:

0(1—4,,c0828)

M)’Alz Sin ZC
y(1+4,,c08 28)

7(1—4y,c08 20)

"—rdlg sin 2:

+(iy—1—4) w?
+ (1—4,)m?

—0d,,8In2¢

—04,,8in28
—(2—i)mao

0 (14 4y5c0s 22)

— 7y sin 2 +dy5008 27 ' iy A
rdi,sin 2 r(1+4y,c08 27) +@—i)maw +8p+jo):mg)w
0 (5.28)

The cofactor of each row (i=1, 2, 3, 4) of the determinant (5.28) has the follow-
ing relation:
Ay Ay Ay Ap=Re[A]: Im[A]: Re[B]: Im[B] (5. 29)

Thus, the absolute value of ampltude ratio |A/B| and arguments arg A and arg B
in equation (5.27) can be calculated as follows:

4
B
The condition necessary for occurrence of unstable vibration coincides with the
condition under which the right hand side of equation (5.27) is negative.

A2 . AZ
ALt di arg A:1:a1n~’1—-~—A"2 arg B:tan‘l—m—A"4

A, Al A z, &30
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An appropriate combination of inertia asymmetry 4, and stiffness asymmetry
4,; makes the imaginary part of a complex number J of equation (5.25) zero, and
the unstable region may almost vanish.

5. 8. 3. 2. Condition necessary for the occurrence of dynamically unstable
vibration

When whirling natural frequencies of a shaft system are put as
p=P,+im, 2w—p=P,+im (0<P,<w<P) (6.31)

a dynamically unstable vibration59 is considered which certainly satisfies the rela-
tion

P, +P,=2w (5.32)

and in which both amplitudes of frequencies P, and P, increase exponentially as
e™t. In this unstable region, the solutions of free vibration (5.16) are rewritten
as follows:

z:Alei(mwmn_}_Azei(p,~im)r+A1ei<p,+im)z+Aéei(m-—imn
(5.33)
gz:Blei(Per)tWlegei(Pr‘im)t»i_B;ei(pa.um)t+Béei(l,2_im>t

As with equation (5.22), the first and third terms in the right hand side of equa-
tion (5.33) may be negligible. Thus, the second and fourth terms of equation
(5.33) are adopted as the solutions of free vibration, and subscript 2 is omitted.
Thus,

Z:Ae(m'(-iPx)t,{_A/e(mﬁ'iP,)c’ az:Be(m+iP;)t+B/e(m+z’Pg)t (5. 84)

When equation (5.34) is transformed by using equations (3.1) and (3.24), and
substituted into equation (5.21), the increase in rate of total energy is given as
follows :

0T, =T+V = — we*™Im[ 4,(P,—im)2B2e?r-wt
+2A0(P1"«im) (Pz“‘im>BB,+A0(P2-——im)2B’Ze-21(Prw)t

+ {A11A282i(Pl—w)t+2411AAl+AllAlze—w(P‘_w)t+2TA]2ABeZi(P]—w)t
+2rd,,(AB +A'B) +2r4,,A'B'e” #® Dt 0 4,,B?e? Wt 120 4,,BB’

+04,,B'2e 2P} gm 2 (4, /) {W—}— (P,—im)2BB e " rat
+ (Py—im)*BB'e "4 (Py —im) BB’} ] (5.35)

The sum of the constant terms shown by underlines in equation (5.33) is defined
by J, and a time average of torque T, is expressed by T,». The condition under
which an unstable vibration occurs is reduced as follows:

Im[J]=—T,,e"*™<0 (5.36)

By using the argument of a complex number and equation (5.32), Im[ /] in equation
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(5.36) is obtained in the following form:

Im[ J]/2|BB'|=4,(PP,—m?) sin(arg B-+arg B’)
—24ymw cos(arg B+arg B') -+4,,|AA’ /BB |sin(arg A-+arg A'—20)
+714.,{|A/B|sin(arg A+argB' —2{) +|A’/B|sin(arg A’ -+arg B—2() }
+04,,sin(argB+argB'—20) -+ (i,/2)m(P,|B/B'|+ P,/ B’ /B|) (56.37)

Amplitude ratio and argument of complex amplitudes 4, B, A’ and B’ are necessary
in order to calculate the right hand side of equation (5.37). For the whirling
solutions of free vibration (5.34), the cofactors of determinant (5.17) into which
p=P,—im and 20w—p=20—P,+im=P,+im are inserted have the following rela-
tion:

At Ay Ay Ay=A " A'e? . B Be® (5. 38)

which gives absolute values of amplitude ratio and arguments regarding the com-
plex amplitudes A4, B, A’ and B’ as follows:

Al A, A A, lB% A, |
HIEE ) =, =l | 5.39
lBI {Am; [B‘ ‘Am B Ay ( )
arg A=arg A;;, arg A'=2{—arg A,,

(5. 40)

arg B=arg A;;, arg B’ =2]—arg 4,,

Because the right hand side of equation (5.37) includes the orientation angle (,
the condition under which a dynamically unstable vibration occurs changes remark-
ably with the angle ¢.

The right hand side of equation (5.37) can be made zero with an appropriate
combination of inertia asymmetry 4, and stiffness asymmetry 4;; and thus, the
unstable region may almost vanish.

5.3. 3. 3. Approximate equation for the condition under which unstable
vibration occurs

As the imaginary part m is much smaller than the real parts P, and P, for
complex natural frequencies p=P;+im and 2w—p=P,+im shown by equation
(5.31), the imaginary part m is ignored in this section. Free vibrations in a steady
state are assumed by putting p=P; and 2w—p=P, in equation (5.16), and the
sum of constant terms J in [---] of equation (5.35) is rewritten as follows:

J=24,P,P,BB' +2{4,,AA +y4,,(AB'+ A'B) +04,,BB'}e~%¢
— (i,/2) (P%|BP+P3|B) (5. 41)

The third term in equation (5.41) is omitted hereafter, because this term is
always a real number and does not influence the instability condition (5.36).

The amplitude ratios A/B and A'/B’ of equation (5.16) are obtained by sub-
stituting the cofactor A;; of determinant (5.17) into equation (5.38). Hence,
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A _ Ay
B Aj
_ “T[f(ﬁ) - {Ale(ﬁ) — 441} {3422+A0pﬁezig} “Alz:{AnG(ﬁ> —7r%di5} ]
H () (D) +2r2 4,14y, — 2 43:H (§) — 454G (D)
A _ Ay
B Au
= —r[f(p) —{4d::H(p)— 411} {8422“}‘4019??3‘21‘;} ”“Alz{AuG(P) — 72415} ]

H(ﬁ)f(ﬁ) ‘1‘2724‘11412“724‘%2}1 (»)— 4G )]
(5. 42)

When the terms higher than the 2nd order of small quantities 4, and 4;; are
neglected, equation (5.42) is represented as follows:

A_ =1 , _}_Z:_:J_‘:;fl.’_ (5. 43)
B H(®»' B H(@p) B

The substitution of equation (5.43) into the first and second terms in equation

(5.41) yields the following relation:

H()H($)J/2BB =Qe *$+R (5. 44)

where
Q=724 — 4. {H(p) +H ()} +04,,H (p)H (H)
R=4,ppH (p)H (p)

Let the absolute value of equation (5.44) be [/,

J'=|H(b)H ($)]/2BB|=|Qe ** + Rl=+/ Q"+ R*+2QR cos 2¢ (5. 46)

which is in proportion to Im[ /7] of equation (5.36), the width of dynamically unst-
able region, and the negative damping coefficient irrespective of the argument of
B and B’. When the product QR is positive, the absolute value J' takes the
maximum value |@Q|+|R| for {=0 and the minimum one |@|~|R| for {=n/2. When
QR is negative, value J' has the minimum |@|~|R| for (=0, and the maximum
|Q|+|R| for {==/2. In order to eliminate the dynamically unstable region, the
parameters of shaft system must satisfy the relation J'=0, that is, |@|=|R]| and
cos 20=—QR/|QR|. The above-mentioned analyses can be applied to the statically
unstable vibration by putting p=w in equations (5.43)~ (5. 46).

(5. 45)

5. 3. 4. Effect of orientation angle { upon unstable regions

According to the experimental results2s, 26> reported by T. Yamamoto, H. Ota
and K. Kono, and Figs. 5. 5, 5. 6, 5. 8 and 5. 9, the statically unstable region be-
comes narrower as the orientation angle { increases from zero to z/2, and on the
other hand, the dynamically unstable one becomes wider as { increases. This
tendency can be explained later.
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5. 3. 4. 1. Statically unstable vibration

In statically unstable region, substitu-
tion of m=0 into equation (5.23) yields
the solutions for free vibration z=Aei®*
and @,=Beivt, When the complex ampli-
tude B exists in the second or fourth
quadrant (hatched parts in Fig. 5. 2) of a
complex plane with the real axis (#') and
the imaginary one ("), the unstable vib-
ration occurs in an asymmetrical rotor
(cf. Section 4. 4. 3. I). When the am-
plitudes A and B exist in the second or
fourth quadrant of the coordinate O-x;y;
which is obtained by turning the coordi-
nate O-x'y’ counterclockwise by an angle
¢ in Fig. 5. 2, the unstable vibration
occurs in an asymmetrical shaft. There-
fore, the two unstable quadrants superim-
pose when (=0, and so the statically
unstable vibration occurs vigorously. On
the other hand, when (==z/2, these two
quadrants do not superimpose, and the
statically unstable vibration hardly occurs.

The condition under which the time

Fig. 5. 2 Superposition of two rotating
coordinate systems O—x'yp" and
O0—x393.

average of torque is positive are given from equation (5.25) as follows:

Im[J]=Im[4,w?B?+ (4, A?+2y 4, AB+64,,B)e ¢ ]<0  (5.47)

The vector J is composed of two vectors as shown in Fig. 5. 3 (a). Magnitude of
the first term is 4,02/B|?, and that of the second term is 4;[A[2+2r4,,|AB|+
84,5/ B|2. The magnitude of the vector J is given by sum of the two absolute

Im
J
LB
2¢ . .
(AR £ 270,)AB1 +845,15
\2arg B B Re

(a) Statically unstable vibration

Fig. 5. 3

Im
24,RRIBB'|

/ argB+argB’

/ 4 Re
20 !

2{AJAA7ALUAB-HABN 84,88}

(b) Dynamically unstable vibration.

values when (=0, and by difference when {==/2. From equation (5.24), the shaft
end torque has a maximum for {=0, and so the unstable region becomes widest.



218 H. Ota and K. Mizutani

On the other hand, the shaft end torque has a minimum for {=m/2, and the unst-
able region becomes narrowest.

5. 3. 4. 2. Dynamically unstable vibration
When solutions for free vibration z=AetPit4 A’ei?st and @,= Bei?:t Bleifst are
obtained by substituting m=0 into equation (5.34), the condition under which the

time average of the shaft end torque is positive is given by the following condi-
tion:

Im[ J]=Im[24,P\P,BB +2{4,, AA' +74,,(AB' + A'B) 1 54,,BB'} e *$ <0
(5. 48)

Because the relations A/B<0 for p=P; and A’/B">0 for =P, hold from equa-
tion (5.43), the vector J is composed from two vectors. Magnitude of the first
term is 24,P,P,|BB’|, and that of the second term is 2{4,,|AA’|+74,,(AB'|—
|A'B)—04,,|BB'}. The magnitude of vector J is given by difference of absolute
values of these two vectors when ¢=0, and by sum of those when {=n/2. The
dependence ¢ for the dynamically unstable vibration is completely contrary to that
for the statically unstable one.

5. 4. Solutions for Free Vibration Obiained by Analog Computer

Substitution of equations (3.1) and (3.24) into equation (5. 15) yields the follow-
ing equations of motion regarding 2z’ and 6;:

X'=—1—4y,c08 2 — ) %'+ 2wy 4 4y, sin 28y’
—7(1—41,c08 20) 074, 8in 28+0;
V'=—(1441,c08 20— w?) ¥y —2wx 4+ 4y, sin 22«5
—r (1443008 20) 05+ 74y, sin 280
:=[—{0(1—4z3c08 20) + (i,—1—4p) w?} 61 4 (2—1i,) wb;
+0dy,8in 2005 — 7 (1— 415008 20) 5"+ 74y, sin 20+ 91/ (1—4,)
J3=[—{0(1+4y5c08 20) + (i,— 1+ 4,) 02} 05 — (2—1,) wl;
+04dy,8in 20+ 07—y (1+ 4y,c08 20) ¥ -+ 74y, 8in 22277/ (1+ 4,)

Torque T, of equation (5.21) is given by using equations (3.1) and (3.24) as
follows:

To={dy (& —=y"") 4+ 2rd:,(%'0;—3'05) +04,,(0:2—05%) ]} sin 27
—2{d1 X'y 7 d1, (%05 +3'05) +045,0.603) cos 28
—24,(00:+05) (00;—0:) — (6,/2){0:65—0:05+2w(020:+0363)} (5.50)

Figures 5. 4 (a) and (b) show the simulation circuits which satisfy equations (5.49)
and (5.50). A time average of the fourth term — (i,/2){0:05—0;0;+2w(050%+

(5.49)
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e

' ! EZD s
-

&

. 5 D0
] 5

& —

8‘){’

Fig. 5. 4 Simulation circuit for analog computer
(a) Potentiometers @: 1—411 cos 2{—w?, @: 1+411c082{—0w?,
@: 8(1—422c08 20) + (ip—1—4dg)w?, @: 6(1+4dz2c08 20) + (ip—1+dp)w?,
®: 2w, @:1/0—4y), @: C—ipow, ©:1/(1+40), @: rdrzsin2f,
@: 7(1—412c0820), @: 411sin2l, @: r(1+4d12c0820), @: 0d2zsin 2
(b) Potentiometers @: sin2;, @: 2cos2(, @:24¢, @: 411, ®: 2rdss,
®: 0422, @D: 141z, ®: o

#,67)} in equation (5.50) becomes zero?2) in a steady state vibration or as small
as the negative damping coefficient m in a nonsteady state vibration [cf. equations

(5.27) and (5.37)]. Thus, this term is omitted in Fig. 5. 4 (b).

5. 4. 1. Solutions for statically unstable vibration

The vibratory waves %, y’, 6; and §;
obtained by an analog computer ALS-200X
are shown in Fig. 5. 5 when the orienta-
tion angle  is changed to 0, z/4 and z/2 L .0048  me0033 00036
with other parameters?5 26 fixed as ip= - —,/

1.993, §=1.797, y=-—1.050, 4,=0.304,

:

O}

w=0.725. Because the number of poten-

e ——

T

Jy,=0.058, 4y,—0.051, 4;,—0.069 and |z —  ——————"
£
:ﬁ.__/

- __’——/
A ————
Fig. 5. 5 Vibratory waves of statically Tsos] Lo Ts0i]

unstable vibration (w=0.725). 0 goxra o 2
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tiometers and multipliers of an analog computer is short for {==/4, torque T, is
not shown in Fig. 5. 5. A torque applied to the shaft end and the negative damping

0.5
0.4 —
exact solutions o
0.06 — OO 0®@® analog computer E 0.3 -
> .
2
0.04 £ L
E T 0.2
002 01—
0 0 |
06 0.6 0.7 0.8
v
(a) m—ow diagram () Im[{J]—w diagram

Fig. 5. 6 Statically unstable vibration
ip=1.993, 6=1.797, r=—1.050,
40=0.304, 41;==0.058, 412=0.051, 422="0.069.

coefficient decrease as the orientation angle ¢ increases.
The tendency of Fig. 5. b agrees with that of the ex-
perimental results?® for the same parameters.

The negative damping coefficient m and Im[J7/| B2 0.02
calculated by using equations (5.27)~(5.30), are plotted S
against the shaft speed w in Figs. 5. 6 (a) and (b) for
the same parameters as Fig. 5. 5 but (=0, =/8, =/4, 3=

—- exact solutions

e o analog computer
o stable o unstable

Ao=0.5

/8 and =/2. The circles in Fig. 5. 6 (a) indicate the EO'O1JA0=04 1
negative damping coefficient m measured from the vib- 0 soddd
ratory solution of an analog computer, and the solid 0.01

lines represent the imaginary part m of the exact com- g m
plex root p calculated from equation (5.19). When the 0

angle { increases from 0 to 7/2, the negative damping 0.02 Ao=0.2
coefficient m decreases, and the width of the unstable E ‘* -
region is also reduced. Because Im[ /] has a negative 0 if\
value in the statically unstable region, it satisfies the
condition (5.25) under which a statically unstable vib- Ao=0.1
ration occurs. EO 02 — >
When inertia asymmetry 4, is changed from 0 to — f\
0.5 and the orientation angle { is fixed as #/2 with the 0 I
- O
0.0z 200
Fig. 5. 7 Effect of inertia asymmetry 4y on negative g |
damping coefficient m for statically unstable
vibration 0 l eeee
(=mn/2, ip=1.993, §=1.797, r=—1.050, 0.6 0.7 0.8

411=0.058, 413=0.051, 453=0.069. g
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other parameters being same as Fig. 5. 5, the negative damping coefficient m is
shown as in Fig. 5. 7. The circles and the solid lines in Fig. 5. 7 have the same
meaning as those in Fig. 5. 6 (a). From Fig. 5. 7, it is clear that the unstable
region is narrowest in the neighbourhood of 4,=0. 34.

5. 4. 2. Solutions for dynamically unstable vibvation

The vibratory waves x/, y’ 6; and 4}

for dynamically unstable vibration obtain-

ed with an analog computer are shown in 3[' . 4
Fig. 5. 8 when the orientation angle ( is T m=0 ’"’O'OZG.W il ”"""m%%%;
changed to 0, #/4 and =/2 with the other el H% i

arameters?® fixed as i,=0.7536, = f,, — -
?4. 170, 7——3.253, 4o-0.0903, 4y— L L
0.1032, 4;,=0.0880, 4,,=0.0780 and w= |z "
2.760. Torque T, for (=mn/4 is not ’F .
shown because the number of potentio- "1.6’7“‘ ] i

meters and multipliers is short. A torque o T T 5] |
applied to the shaft end is equal to zero e £ e
when (=0, and the vibration is always Fig. 5. 8 Vibratory waves of dynamical
stable. On the other hand, the torque 7, instability («=2.760).
increases rapidly with time when {==/2,
and an unstable vibration occurs. The tendency of Fig. 5. 8 agrees with that of
the experimental results?® for the same parameters.

Figures 5. 9 (a) and (b) for the same parameters as Fig. 5. 8 except ({ show
the measured results and exact solutions of the negative damping coefficient m,

0.4
006 exact solutions $‘ = 7172
e 06 ®o® analog computer E 0.3 —
Q 37,
0.04 ~ 8
N 02 - 7
& 2
002 E ’78
701 -
0
0
27 0 1
2.7 2.8 2.8
LW
(a) m —o diagram (b) Im[J]—o diagram

Fig. 5. 9 Dynamically unstable vibration.
ip=0.7536, 6=14.179, y=—3.257, 44=0.0903, 411=0.1032,
412=0.088, 427=0.078

and Im[JJ/2|BB’| calculated from equation (5.37). The circles in Fig. 5. 9 (a)
indicate the negative damping coefficient #m measured from vibratory solutions of
an analog computer, and the solid lines correspond to the imaginary part m of
exact complex root p calculated from a frequency equation (5.19). An unstable
vibration does not occur when {=0. As { increases till z/2, the negative damping
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e coefficient m increases, and also the width of
o_oaL o o analog computer the unstable region becomes greater. Because
e stable o unstable N . :
L Im[ /7] has a negative value in the unstable region,
0.06 | Ao=0.4 it satisfies the condition under which a dyna-
B mically unstable vibration occurs.
Figure 5.10 shows the negative damping
g 0.04 1= coefficient m, which changes with'the magnitude
B of 4, for the same parameters as Fig. 5. 8 ex-
0.02— cept {=0. A dynamically unstable vibration does
— not occur in the neighbourhood of 4,=0.09 as
0 shown in Figs. 5. 8 and 5. 9.
0.04 | Ao=0.3 N
& 0.02 —
0 I
£o0=0.2
g 002 m
0 i !
0.01 Fig. 5. 10 Effect of inertia asymmetry 4o on nega-
S 0 IA": 01, A l tive damping coefficient m for dynami-
cally unstable vibration
002 (=0, ip=0.7536, 7=—3.253, 6=14.179,
B - , &1 411=0.1032, 412=0.088, 42,=0.078.

5. 5. Conclusions

Conclusions obtained in this chapter may be summarized as follows:

(1) In a rotating asymmetrical shaft carrying an asymmetrical rotor, the
increase in rate of the total energy of the shaft system is identified with the time
rate of work, and it is given by equation (5.21).

(2) The condition under which a statically unstable vibration occurs means
that Im[ /7] of equation (b5.27) is negative, and this condition depends on the orien-
tation angle { between stiffness asymmetry and inertia asymmetry. As  increases
from 0 to /2, the statically unstable region becomes narrow in the present study,
and the negative damping coefficient # decreases.

(3) The condition under which a dynamically unstable vibration occurs means
that Im[ /] of equation (5.37) is negative, and this condition also depends on the
orientation angle {. When (=0, an unstable vibration does not occur in the pre-
sent study. Width of the dynamically unstable region becomes greater and the
negative damping coefficient m increases as ( increases to =/2.

(4) Im[J] of equations (5.27) and (5.37) becomes negative in the region in
which the vibratory solutions obtained with an analog computer are unstable. Thus,
it is apparent that the necessary conditions for instability (5.27) and (5.37) are
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correct.

(5) An appropriate combination of inertia asymmetry 4, and stiffness asym-
metry 4,; may give the condition under which an unstable vibration does not occur.
This condition holds in each case of the statically unstable vibration and the dyna-
mically unstable one, which is ascertained by the vibration solutions obtained with
an analog computer.

6. On the Shaft End Torque and Forced Vibrations of an
Asymmetrical Shaft Carrying an Asymmetrical Rotor?s

6. 1. Introduction

It has been reported24~28) that the response curve is considerably influenced
by the angles between the principal axis of inertia of an asymmetrical shaft or an
asymmetrical rotor, and the direction of rotor unbalances. T. Yamamoto and H.
Ota? report analytical results that the response curve for an asymmetrical rotor
and an asymmetrical shaft changes with the angular position of static unbalance.
T. Yamamoto, H. Ota and K. Kéno?25: 26) obtained the relation between the angular
position of rotor unbalances and the response curve of a rotating asymmetrical
shaft with an asymmetrical rotor. K. Okijima and Y. Kondo??? discuss the effect
of the angular position of rotor unbalance on the response curve of a rotating
asymmetrical shaft, both ends of which are supported by flexible pedestals with
directional inequality in stiffness. T. A. Henry and B. E. Okah-Avae?® indicate
that the response curve depends on the angle between a crack and rotor unbalance
when a crack takes place in a rotating shaft system.

This chapter clarifies the effect of two angular positions &, 7 of the static
unbalance ¢, and the dynamic unbalance v on the increase in rate of total energy
and the torque?2~75 applied to the shaft end in an asymmetrical shaft carrying an
asymmetrical rotor. When a rotor is mounted on the middle of an asymmetrical
shaft, the parallel motion of a rotor is not connected with its conical motion, and
so a torque applied to the shaft end is directly obtained from the equilibrium of
forces and moments acting upon the rotor. Moreover, it is shown in an asymmet-
rical shaft and/or in an asymmetrical rotor that the shaft end torque changes with
the orientation angles £, 7 of rotor unbalances in a manner similar to the response
curve.

6. 2. Equations of Motion

A rotating shaft system as shown in Fig. 5. 1 is considered. Let ¢; and ¢; be
viscous damping coefficients for rotor displacement and inclination, respectively.
Dissipation function F is given as

QF =c (22 +32) ¢, (02 +03) (6.1)

Substituting the kinetic energy (5.1), the potential energy (5.4) and dissipation
function (6.1) into Lagrange’s equation of motion (6.2);

d (8’[) oT [ oV |, oF —0 (6.2)

dt 621s o 04, + 0q; v BQs -
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taking generalized coordinate ¢, as @, x, ¥, 6, and 6,, and using equations (1.7),
(2.6) and (5.5), the equations of motion for z and 4, are obtained as follows:

ME+ €12+ Q2+ 10, — (da- 2+ dy - 6,) e @9 =0

15,1yl + o+ 72+ 30, AT~ (5.7 6. 3)

_ (AT‘E+A8'62)€2i(wt+g):O

In general, there are both the static unbalance ¢,=SG and the dynamic one
t=/Z1SZ, as shown in Fig. 6. 1. Displacements x; and y, of the gravity center
G of a rotor are represented by complex variable Zg=Xg+1Yg, and the projected
angles 6, and 6,, of the principal axis SZ; by 60,,=60,,+i0,,. When the four

terms underlined in equation (6. 3), that is, my%, 16,, —il,wf, and *AI—(de(ﬁze?i‘“),

are replaced by moZg, 16, —ilpw6,;, and —AI%(élzeZiwt), respectively, the equa-

tions of motion with rotor unbalances are rewritten as follows :

Fig. 6. 1 Angular positions ¢ and 7 of static
unbalance ¢; and dynamic unbal-
ance 7.

X, LXSXe=L2,5Z0 =T

M2+ C12+ A2+ 70,— (dasz+ Ay +,) e2 @+ =(
Jélf-upwélﬁczéﬁrz+aaz—u~§_t(élze2fwt) 6.0

— (dy-z+46+0,)eri@t+$—=()

As shown in Fig. 6. 1, the gravity center G exists in the SG-direction given by a
rotation of the SX,-axis about the SZ,-axis by angle £= _X,SG, and the dynamic
unbalance ¢ exists in the X,Z,(X,Z,) plane which is perpendicular to the SY,-
axis of the rotated SY,-axis about the SZ,-axis by angle 7=_,Y,SY,=,/X,SX,.
The following relations®® are obtained by neglecting terms higher than the 3 rd
order term of small quantities:
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Z,=% + eoei(wH ¢ )’ 01,=0,+ Zei(wt%ﬂ)) (6 5)

Substituting equation (6.5) into equation (6.4), the equations of motion are re-
written as follows25, 26, 69);

MeZ-+CiZ2+az+70,— (dasz+ dy+0,)e? O =mye,w?e! @+ e
16,—il,00,+¢0,+12-+00,— Alw(ezezm) (dy-z+40+0,)e?* @5 + (6.6)

— —“T(UZ{(lp"l)ei(w“r")*A[eﬁwt-n)}

6. 3. Relation between Shaft End Torque and Increase in Rate of
Total Energy

In the case that rotor unbalances ¢, and ¢ both exist, the increase in rate of
kinetic energy 7' is obtained by replacing %, %, 0,, 6, 0, @, and 0, in the first
equation in equation (5.9) with Zg Zg 64, 0y, 6., 6, and 0,,, respectively.
Thus,

T=mRe[ %2, ]+ (1,/2) wIm[alzélz] +IRe[01.0:.]
- (41/2) Re[ﬁ Lem et ] 6.7)

The increase in rate of potential energy V is the same as the second equation
in equation (5.9). The first equation in equation (6.4) is multiplied by 2, the
second one by §, and these two equations are added together, the real part of
which gives the following equation:

moRe[25,]-+c1| 2P +aRe[ 22+ rRe[20,+20,]-+ IRe[0.01, ]+ c,| 6.7

- ORe[ 6.0, 1—Re[ 416, L (.0 + (dazz+ Ay (30, 26,)

A dt
+A‘3(Z§-z}eziwc+§>]:0 (6. 8)

Using equations (3.1), (3.24), (6.7), (6.8) and the second equation in equation
(5.9), the increase in rate of total energy T7+V is given as:

T4+V=—olm[4I(—wf,+if.) 2+ (da-2"2+-24y+2'0; + 43+0,%) e 2
4 ([p/g) 5252*7’750@026_“(”” e)+ 752{(11)# I) e ilwerm) A[e—i(wt—n)}]
—ci|ZP—e,l0. (6.9)

Applied torque 7. to the shaft end should be a generalized force with respect
to rotation of shaft end ©, so the torque is obtained by putting ¢,=@ in Lagrange’s
equation of motion (6. 2) :

r_d /aT) 0T oV  9F

at e ) 06 Ta8 a4
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=—Im[ 4l (—wf:+0:)*+ (da-2"?+- 24720+ 4001 e ™2 + (1,/2) 6.6,

__moeoée‘i(a)t-lr €)+T@'z{(lpnl)e—i(wt+ﬂ)_“Ale"i(wt“’ﬂ)}] (6. 10)

From equations (6.1), (6.9) and (6.10), the following relation holds:
wl,=T+V+2F (6.11)

Equation (6.11) means that the time rate of work applied to the shaft end wT,
agrees with the sum of the increase in rate of total energy and the dissipated rate
by damping forces. The amplitude of whirling motion changes with the orientation
angle { between the inequality of shaft stiffness and that of rotor inertia, the
angular position £ of static unbalance ¢, and 7 of dynamic unbalance 7, because
the right hand side of equation (6.10) contains the three angles ¢, & and 7.

6. 4. Effect of Angular Position of Rotor Unbalances on Shaft End
Torque for Asymmetrical Shaft

6. 4. 1. Case of parallel motion of rotor

Let us consider only a parallel mo-
tion of a rotor mounted on the middle of ’
an asymmetrical shaft (6,=0), and put y

{=0. Three force vectors F, D and P et 4

in Fig. 6. 2 indicate restoring, damping \ N\ /

and inertial forces, respectively; the res- \ ?// o X

toring and damping forces act upon the \\\/Ll F=-azraaze

rotor center S, and an inertial force acts /\\

upon the gravity center of the rotor G. \ _Pi Glxg, %)

A restoring force vector F does not \ R P=-myz
point?72:7% to the direction of lateral dis- \

placement OS. Components of a restoring \

force F in #’- and y’-directions are ex- X D=-c:z

pressed as follows: Fig. 6. 2 Three force vectors F, P and

D acting upon rotor with parallel

Fi=—(a—da)x', Fy=—(a+4da)y’ motion (6,=0, {=0).

(6.12)

Let F, be the perpendicular component of F to the OS-axis. In order to turn
the shaft end at a constant velocity w, a counter-torque T,; must be applied to
the shaft end against a moment produced by a reaction force —F, about the
bearing center line Oz:

T =F)z|=—F;y+Fi;x'=—2dax"y' = — daIm[ 2'?] (6.13)

As shown in Fig. 6. 2, an inertial force P=-—my%; acting upon G is in balance
to a vector sum —P shown by a dotted line consisting of two vectors F and D=
—cy4. By using equation (6.15), an inertial force P is expressed as

P=P, +iP,=—my{Z—e, w2} (6.14)

An inertial force P makes a moment about S, because vector P does not point to
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the direction SG. The following counter-torque T,, against a moment produced by
P

T,o=P,(3,—) —P,(x,—x) =mye,Im[ Ze """ ] (6.15)

must be applied to the shaft end in order to turn a shaft at a constant velocity

.
Therefore, the applied torque T, is obtained from equations (6.13) and (6.15)
as follows:

T,=T +T,,=—Im[ da-2'? —mye,Ze ] (6.16)

Equation (6.16) agrees precisely with the underlined terms obtained by setting
=0 in equation (6.10) excepting ¢, terms.

Next, let us investigate how the shaft end torque and the amplitude change
with the angular position & of the static unbalance e,.

The solutions for forced vibration of equation (6.6) are represented by

z=Ae!" ' =ze ¥=A4 - (6.17)

where A is a complex constant. Substituting the solution (6.17) into equation
(6.16), the torque is given as follows:

T.=—~Im[daA?+mee w2 Ae™] (6.18)

Using the argument of complex number, equation (6.18) is rewritten in the follow-
ing form:

T,=—Ada|APsin 2arg A—m,e,w? Alsin(arg A—¢) (6.19)

When the solutions of forced vibration (6.17) are substituted into the first equa-

tion of equation (6.6), the real and imaginary parts of this derived equation are
as follows:

(@—da—myw?)| Al cos arg A—c,w|A|sin arg A=m,e,w?cos &
(6. 20)
ciw| Al cos arg A+ (a+da—myw?)|Alsin arg A=mqe,w’sin &

|A| cos arg A and |A| sin arg A in equation (6.20) can be solved as follows24>:

mye,w?{ (a+ 4o —myw?) cos £-+c v sin &}

|Alcos arg A= (a—myw?)?—da®+ciw?

(6.21)
Mee,w?{—ciw cos &+ (¢—da—m,w?) sin £}

|A| sinarg A= (@—myw®)?—da? +¢ciw®

Substitution of equation (6.21) into equation (6.19) gives a driving torque T..
Thus,

T,

_miesc, 0 {2c,wda sin 25 - 240 (a0 —mow?) cos 25 + (@—myw?) +4a?+ciw?}
{(d—myw?)?—da®+ciw?}?

(6.22)
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The dimensionless torque T',/(ee?) and amplitude |A|/e, derived from equa-
tions (6.21) and (6.22) are indicated by solid lines in Figs. 6. 3(a) and (b) where
Eis —n/4, 0, n/4 and n/2 for da/a=0.322 and ¢,/vm,a =0.5. For the sake of
comparison, the calculated values for a symmetrical shaft are also indicated by
dotted lines in Fie. 6. 3. The shaft end torque shows a qualitative tendency similar
to the response curve. The shaft end torque and response curve have the maxima
for the angular position £=n/4, and have the minima for £=—n/4.

151
° %
4
5_
10}
aes ar
MI/&eB
51~ 24 -
1+ %
S : | ; | | ; \ 0 T ! 1 1 ) i 1 i :
90506 07 08 09 10 11 T2 13 1415 0506 07 08 09 10 11 12 13 14 15

sz

w/¢a/mo

(a) Shaft end torque

(b) Response curve

Fig. 6. 3 Shaft end torque and response curve for parallel motion of a rotor
mounted on an asymmetrical shaft.

6. 4. 2. Case of conical motion of rotor

Let us consider only a conical motion of a rotor mounted on the middle of an
asymmetrical shaft (z=0) putting {=0, and derive applied torque 7, by using the
equilibrium of moments shown in Figs. 6. 4(a) and (b). Take two parallel planes
to the xy-plane having a short distance % as shown in Fig. 6. 4 (a). The tangent
TT’ at the origin O intersects those two planes at 7' and 7', and the principal
axis of rotor inertia UU’ intersects those at U and U’. Restoring moment M,, the
damping moment M, and the moment by inertia M, are indicated by three vectors
in Fig. 6. 4 (a). Two vectors M, and M, drawn from O exist on the plane per-
pendicular to the tangent OT, and the vector M, drawn from O exist on the plane
perpendicular to the principal axis of inertia OU. When the 2nd order terms of
small quantities in § and 6, are neglected, three vectors projected on the xy-plane
[Fig. 6. 4 (b)7] can be represented by the same symbols M,, M, and M, as those in
Fig. 6. 4 (a). Components of restoring moment M, in x’- and jy’-directions are
expressed as

M= (0+40)0;, Mi,=—(0—40)0; (6.23)

The component M,, of M, on TOz plane encourages a conical motion of the rotor.
The restoring moment M, can be equivalently replaced by two forces F and —F
which act on two points 7 and 7’. In order to maintain the shaft end revolution
at a constant velocity w against the reaction of M,,, the following torque T,
must be applied?2 :
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(@ )]

Fig. 6. 4 Three moment vectors M;, Mp and M, acting upon rotor
with conical motion (z=0, {=0).

To=My=—M;,6.—M;,0,=—2400:0;=—45Im[0:?] (6.24)

Components of moment by inertia M, in x- and y-directions are obtained from
the underlined terms in equation (6.4) as follows:

My,=161,—I,06,,=16, —I,00,-+(I,—1I)rw*sin(wt+17) \l
‘. . o (6. 25)
My, = — (Ifust Tywdsy) = — I — Loy — (I,— D) zw?cos (wt+1))

The moment by inertia M, can be equivalently replaced by the couple of inertia
forces P and —P which act on the two points U and U’. Equivalent inertia forces
P and —P produce a moment about TOT’ axis. The counter-torque 7T,, to this
moment is obtained as follows:

TTZZMPJ:<61$'—6::)+MP?<01Y '__03’)
=TI+Im[§,e"“* "] — I,z wRe[f,e @] (6. 26)

Thus, equations (6.24) and (6.26) give the torque T, required to turn an asymmet—
rical shaft at a constant velocity o : .

T, =T, +T.=—Im[40-0:>— [ j,e 1 ]—I,>wRe[d,e @] (6. 27)

When a rotor behaves with a conical motion, the solutions of forced vibration
of equation (6.6) are expressed by

6Z:Beiwt’ 6; — Oze—iwt: B <6. 28)

The shaft end torque I, is obtained by substituting {=0 and the solution (6.28)"
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into the double-underlined terms in equation (6.10);
T,=—Im[46B*—~+w*B({,—I)e "] (6. 29)

When the solution (6.28) is substituted into equation (6.27) which is derived di-
rectly from balance of moments, equation (6.27) agrees with equation (6.29).
Using an argument of a complex number, equation (6.29) is rewritten as

T,.=—46|Bj*sin 2arg B+ cw?(I,—I)|B| sin(arg B—1) (6. 30)

When the solution (6.28) is applied to a conical motion in which zero is put for
z, 2, 41 and ¢ in the second equation in equation (6.6), the real and imaginary
parts are

{8—46+{I,—I)w?}|BlcosargB—c,w|B|sinargB= —tw?({,—I)cos7
c,w|Blcosarg B+ {0+ 40+ (I,—I) w?}|B|sinarg B= —tw?({,— 1) sin7
(6.31)

Equation (6.31) is solved for |B| cos arg B and |B| sin arg B. Thus:

(I, — D[ {3+ 48+ (I,— ) w*} cos 7+, w sin 1]
’B!cosargB— {5‘}—(]?#])0)2}2“‘1182’1{“0%0)2

—rw?(I,— ) —cywcosn+ {0— 40+ (L,—I) w?} siny |

|B| sin arg B= {0+ T,—Dw?}?—45%+ciw?

(6.32)

Substituting equation (6.32) into equation (6.30), the shaft end torque 7', is given
as

T,=,—D)?%c,w[240{0+ (I,—1)w?} cos 29+2¢c,wd0 sin 27
+{0+UTp,—D)w?}2+ 48+ ciw? /[ {0+ [ ,— 1) w?}?—46%+-ciw?]?* (6.33)

25 7
5 774 meady=0322
7=y — 4%/ 120322 20 <z Med47=0
<m0
1.
. 18} o 7 e
a4 TS S T T —— T

05
0] L i I
15 20 25 30 35
w/Ja/mo
(a) Shaft end torque (b) Response curve

Fig. 6. 5 Shaft end torque and response curve for conical motion of
a rotor mounted on an asymmetrical shaft.
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the value of which changes with the angle 7.

On the conical motion of a rotor mounted on an asymmetrical shaft, dimen-
sionless torque mo7,/(alr?) and amplitude |B|/c are indicated by solid lines in
Figs 6. 5 (a) and (b) where n=—=n/4, 0, w/4 and /2 for ip=0.8, myd/(al)=1. 060,
mydd/(al)=0.322 and ¢y /' m,/a/I=0.3. For the sake of comparison, the calcu-
lated values for a symmetrical shaft (£6=0) are indicated by dotted lines in Fig.
6. 5. The shaft end torque and the response curve in Fig. 6. 5 show a similar
tendency to Fig. 6. 3 for the parallel motion.

6. 5. Effect of Angular Position of Rotor Unbalances on Shaft End
Torque for an Asymmetrical Rotoy

Let us consider a coupled motion of an asymmetrical rotor mounted on a
symmetrical shaft. When the solutions: of forced vibration (6.17) and (6.28) are
substituted into the equations of motion (6.6) and shaft asymmetries 4a, 4y and
49 are considered to be zero, the real and imaginary parts are represented as
follows :

(@—mow?)| Al cos arg A—c,w|Alsin arg A+ |B| cos arg B=me,w?cos &

ciw| Al cos arg A+ (a—m,w?)|A| sin arg A+y|B| sin arg B=me,w?sin &

7|Alcosarg A+ {8+ ([,—I—4I)w?}|B| cos arg B—c,w|B| sin arg B
=—(I,—I—4I)rwicos Y

7|A| sinarg A+c,w|B|cosarg B+ {0+ (I,—I+4I)w?}|B]| sinarg B

=—,—I+4)rw?siny
(6. 34)
Substituting solutions of forced vibration (6.17) and (6.28) into equation (6.

10) and putting zero for da, 4y and 46, a torque 7. applied to the shaft end is
derived as

T — —Im[ 4] (— wB)?+ (I,/2) (— w2BB) ~ mye,w?Ae i
—cw?B{(I,—De " — dIet"} ]
=—4Iw?*|Bfsin 2 arg B—me,w?| Al sin(argA—¢&)
+rw?|B|{(I,—I)sin(arg B—7) —4I sin(arg B+17)} (6. 35)

When |Alcosarg 4, |A|sinarg 4, |B|cosarg B and |B| sinarg B obtained by solving
equation (6.34) are substituted into equation (6.35), the shaft end torque can be
calculated. Only amplitude A4 regarding the parallel motion of the rotor is shown
hereafter, because the rotor’s parallel motion is larger than the conical one at the
first major critical speed.

6. 5. 1. Influence of angular position & upon torque

Let us examine the influence of the angular position £ where ¢, exists in case
only the static unbalance ¢, exists and no dynamic one. Putting zero for 7 in
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equation (6.34), the real and imaginary parts of amplitudes A and B are expressed
as follows2z4) :

|Al cosarg A= (me,0?/K)[ {(a—myw?) (X, X,+ciw?) —r2X }cosé
+{c1 (X1 X +ciw?) +ric} o sin £]

|A| sin arg A= (mye 0/ K)[ —{¢1 (X 1 Xp+ciw?) +r%c,}w cos &
+ {(@—my0?) (X, X+ i w?) —12X,} sin €]

B cos arg B= (myeorw? /K[ — {(d—mow?) X,— c1¢,0% — 12} cos & 639
—{c,(@—myw?) +¢,X,}w sin &]
|B| sin arg B= (mye,y w?/Ky)[ {c;(@d—myw?) —c, X} w cos &
—{(a—myw?)X;—C 02 —7?} sin &
where
K,={(a—my0®) X, — 7} {(@a—myo?) X, —1?} +ciw? X, X,
+ciw?(@—myw?)?+2c.¢,7%w?+ciciwt (6. 37)

Xy=0+4+ Iy~ —AD) w?, X,=0+I,—I+41)w?

The shaft end torque can be calculated numerically by substituting equation (6. 36)
into equation (6.35) and putting zero for r.

For i,=1.987, 4,=0.322, 74/ m,/T /a=—0.855, med/(al)=1.060, ¢/ moa =
0.1 and ¢, vmy/a /I=0.1, dimensionless torque T./(ae}) and amplitude |A|/e, are

16

Ao =0322

=74

10
T4 a2

aeo L

0 i 1
06 07 08 09 w
Sz, A larms
(a) Shaft end torque (b) Response curve

Fig. 6. 6 Shaft end torque and response curve for an asymmetrical
rotor (v=0).
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indicated by solid lines with the parameter £ in Figs. 6. 6 (3) and (b). The calcu-
lated results for a symmetrical rotor (4,=0) are indicated by dotted lines. The
shaft end torque and the amplitude with respect to an asymmetrical rotor show a
tendency similar to that of an asymmetrical shaft. When £==/4, the torque and
the amplitude have maxima. When £=—=/4, on the other hand, the torque and
the amplitude have minima, and they are smaller than those of the dotted lines.

6. 5. 2. Influence of angular position 1 upon tovpue

The real and imaginary parts of amplitudes A and B are obtained?®) from
equation (6.34) by putting e,=0 when there is no static unbalance but only the
dynamic unbalance ¢ :

|A| cos arg A= (yro?/K)[(I,—I—A4I) {(a—myw?*) X, —¢1c,0° —7?} cos 7
(I~ I+ 4D {c X+ e (a—myw?)}w sin 7]
Al sinarg A= (yr?/K)[— I,—[—41) ¢, X +c,(@—myw?)} o cos 7
I, —I+4D){(a—myn*) X, —cic,02—1%} sin 1]
[B|cos arg B=(rw?/Ko)[ — (I,—I—4I) {(¢—m,w*)*X,
—r¥(a—my0w?) +ciwiX,}cos y
— ([, —I+dD){c,(a—mow?)2+cic,wi+c17?} o sin 7]
|B| sin arg B= (rw?/K)[(I,—I—4I){c,(@a—mw?)?*+cic,w?+c7?}w cos 1
— (I, T +4D) {(a—myw?)* X, —7*(@—mw?) +ciw?X;} sin 7]
(6. 38)

Torque applied to the shaft end is calculated numerically by substituting equation
(6. 38) into equation (6.35) and putting e,=0.

7="74 — Ao =0.322

o] | !
06 or 08 oS
(%a/mo
(a) Shaft end torque (b) Response curve

Fig. 6. 7 Shaft end torque and response curve for an asymmetrical
rotor (eo=0).
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Figures 6. 7 (a) and (b) show the shaft end torque and the response curve
which are derived by numerical calculation for the same parameter as for Fig. 6.
6 except e,=0 and r=0. Figures 6. 7 (a) and (b) show a tendency similar to those
of Figs. 6. 6(a) and (b).

6. 6. Conclusions

Conclusions obtained in this chapter may be summarized as follows:

(1) In an asymmetrical shaft carrying an asymmetrical rotor, the increase in
rate of total enmergy of the shaft system and torque applied to the shaft end are
given by equations (6.9) and (6.10). These analytical results vary with the angular
positions £ and 7 in which static unbalance ¢, and dynamic one = exist.

(2) In the case of parallel motion of a rotor mounted on the middle of an
asymmetrical shaft, the shaft end torque can be obtained from the equilibrium of
forces. Near the major critical speed, the shaft end torque and the response curve
have maxima when £=n/4, and minima when §=—z/4.

(3) In the case of conical motion of a rotor mounted on the middle of an
asymmetrical shaft, the shaft end torque can be obtained from the equilibrium of
moments. The same as with parallel motion, the shaft end torque shows a tendency
similar to the response curves near the major critical speed. The shaft end torque
and the response curve have maxima when 7=r/4, and minima when 7= —z/4.

(4) When parallel motion of an asymmetrical rotor is accompanied by conical
motion, the shaft end torque and the response curve are obtained. In the case r=0,
the shaft end torque and the response curve with respect to the parallel motion
have maxima near the major critical speed when £=-r/4, and minima when £=
/4.

In the case ¢,=0, the shaft end torque and the response curve with respect to
the parallel motion show a tendency similar to that for the angular position 7.
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