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Abstract

An elucidation of mechanics of wave breaking and wave deforma-
tion after breaking has been a matter of great interest to coastal engi-
neers as well as researchers in the hydrodynamics field.

This paper is intended to discuss the wave characteristics at the
inception of wave breaking and the wave deformation in the surf zone
up to the dry bed from theories and experiments. Waves treated in
this paper are both the regular and irregular waves.

The wave breaking conditions and breaker types, wave characteris-
tics such as the wave height, wave profiles, etc., at the breaking point,
internal mechanics of breaking waves, changes of wave heights and the
mean water levels, and wave run-up heights are described. Main part
of the paper discusses the regular wave deformation in the surf zone.
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1. Introduction

As a wave generated in deep water moves in shallow water area of which
water depth is less than one-second times the wave length, the wave modifies its
height and length due to shoaling, bottom friction, percolation, reflection, etc., and
then the wave peaks up at crest and flattens at trough.

It is well known that a wave is transformed largely by current (e. g., tidal
current), or by diffraction, reflection, etc., caused by coastal structures such as
breakwaters. As the wave propagates in shallower water, the wave loses its sym-
metrical shape and becomes to show a steeper front face, and finally the wave
breaks as the result of destruction of the wave motion. The breaking wave or
the broken wave is finally transformed to a run-up wave or up-rush and back-rush
in the swash zone.

The transformation process of wave breaking up to a current like the uprush
and backrush in the surf and swash zones is strongly non-linear. Therefore, the
clarification of the process has not been made in depth. Because of this, it may
safely be said that the mechanics of sand movements is still an unexact science.
Moreover, since most of coastal structures such as sea-dikes, off-shore break-
waters, and jetties being used as shore protection works have been constructed in
the shallow water surf, it is necessary for the rational and economical design of
the coastal structures to predict precisely the wave characteristics in the shallow
water surf.

As mentioned above, since the prediction of wave transformation in the shallow



Wave Deformation in the Surf Zone 241

water surf is significantly important, many experimental and theoretical studies
have been carried out. Investigations on waves in the surf are divided into two
subjects, i. e., the mechanics of wave breaking and the process of wave deformation
after breaking.

The study on the mechanics of wave breaking was first done experimentally by
Iversen!’ in 1951. Since then, the wave breaking mechanics and breaker types have
been investigated energetically from theories and experiments. It has been thought
that each of breakers has its own wave breaking mechanics and then measurements
of the water particle velocities have been performed in order to make clear the
wave kinematics. However, the precise measurement of the water particle velocity
at the wave breaking inception is extremely difficult due to the lack of highly
accurate measuring instruments as well as the unstable phenomenon of wave break-
ing itself. Then, so far, the modeling of the wave breaking condition has been
proposed to discuss wave characteristics such as the wave height, the wave steep-
ness, etc., at the breaking point. And, by applying the proposed breaking conditions
to finite amplitude wave theories in deep water and shallow water, solitary wave
theories, cnoidal wave theories, and long wave theories, wave properties such as
the wave height, wave steepness, etc.,, at the breaking point have heen calculated
theoretically and have been compared with experiments in order to show the pro-
priety of the proposed wave breaking models. Concerning the regular wave, some
characteristics of wave breaking mechanics have been made clear and they are
applied for practical use. On the other hand, the history of investigations on the
mechanics of irregular wave breaking is still young, and detailed and systematic
researches are needed to elucidate the mechanics of irregular wave breaking.

The process of wave transformation after breaking up to the run-up/run-down
wave in the surf zone is strongly non-linear with dissipation of a lot of wave
energy, therefore the mathematical treatment is extremely difficult. However,
speaking from the engineering point of view, the wave in the surf is usually very
important physical factor giving the external force for the coastal and shore pro-
tection structures. Therefore, many theoretical and experimental investigations
have been performed in order to establish a method to predict the wave deforma-
tion. Regarding to the regular wave, a lot of investigations have been carried out.
Despite that, the basic equation describing the wave in the surf zone has not been
successfully deduced, although many theoretical models have been proposed. Studies
on the deformation of irregular wave in the surf have begun very recently, and
some theoretical treatments have been presented. The quantitative agreement
between the proposed theories and experiments, however, has not yet obtained.
This is largely due to the reason that the mechanics of the depth-limitted wave
breaking has not been clarified. Then, it is thought that systematic theoretical and
experimental studies are needed to make clear the mechanics of wave transformation
of the irregular wave.

In this paper, the breaking condition and criteria are described in chapter 2.
In chapter, 3, breaker types are discussed for the regular and irregular waves.
Chapter 4 describes wave chracteristics at the breaking point in relation to the
breaker index. In chapter 5, the mechanics of wave breaking is dealt with in
relation to the horizontal- roller, bottom friction and turbulence caused by wave
breaking. A theoretical method to predict the wave height changes is presented in
chapter 6. Section 7 treats the wave run-up height, and the theoretical estimation
method is presented.
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2. Breaking conditions

Since the wave breaking is an extreme limit of the wave motion, many breaking
conditions indicating the extreme limit for the wave motion have been presented
in order to determine wave characteristics at the breaking point such as the
breaking wave height H,, the breaking wave length L,, etc., from theoretical
analyses. The following breaking conditions have been proposed.

Wave breaking occurs,

(1) when the particle velocity at wave crest becomes larger than the wave
celerity,

(2) when the wave peaks up and the cusped crest shows the angle of 120°,

(3) when the wave profile loses a symmetrical shape and the wave front
surface becomes vertical,

(4) when the difference between the particle velocity at wave crest and at
bottom bed becomes extraordinary large and the wave crest moves much faster
than the other portion of wave,

(5 when an equation expressing a wave loses its stationary solution, i. e. when
infinite power series of finite amplitude wave diverge,
and,

(6) when the curves of characteristics describing the non-linear shallow water
wave intersect each other and form an envelope curve.

Breaking criteria can be deduced by applying the above-mentioned breaking
conditions to wave theories such as finite amplitude periodic wave theories in deep
or shallow water depth, solitary wave theories, and finite amplitude long wave
theories. So far, a number of breaking criteria have been published.

The breaking condition (1) mentioned above was first proposed by Rankine?
and is very popular at present. Boussinesq?®’, McCowan?’ and Munk® proposed
breaking criteria for the solitary wave, and Miche®, Hamada”, Sato®> and Kishi?
presented breaking criteria for shallow water periodic waves. The breaking con-
dition (2) was first defined by Stokes19. The condition (2) equals to the condition
(1) in the case of McCowan's solitary wave theory. H,/L,=0.142 by Michell is
well known as typical breaking limit for the deep water wave.

Based on the condition (3), Greenspan!'®’, Kishil2) and Murotal® deduced
several breaking criteria for a long wave. The breaking point predicted by the
theories, however, depends on an initial wave profile. This makes it difficult for
the condition (3) to be applied to the actual breaker.

The breaking condition (4) can be applied in a breaking limit for waves in the
near shore having a strong backwash or for waves advancing against or on a
stream.

Shuto!%) developed a breaking criterion by use of the condition (5). Generally,
it may be difficult to derive the breaking limit by use of condition (5).

Stoker1® first presented the breaking condition (6). However, the condition
(6) is not so useful in obtaining the breaking limit, because the breaking point
depends largely on an initial wave profile as well as the starting point of calculation
for the wave deformation, like condition (3). \

- It should be noted that all of the above-mentioned breaking criteria are proposed
for waves which break in a constant water depth. Therefore, a number of em-
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pirical breaking limit using results of laboratory experiments have been published
for the wave which breaks on a sloping bed. The breaking criteria popular among
above-cited theoretical and emperical expressions for both horizontal and sloping

bottoms are;
McCowan’s criterion;

H,/h,=0.78 (for solitary wave), ¢))
Mich’s criterion;
H,/L,=0. 142 tanh 27 h,/L, 2)
(for shallow water periodic wave),

Le Méhauté’'sl®> criterion (emperical criterion) ;

H,/H,=0.76(tan 0)*"(H,/L,) *"*, 3
Goda'st?) criterion;
H,/L,=A(l—exp[ —1.57 Z” (1+15tan 64 7). 4

In Egs. (1) ~ (4), tand is the beach slope, %, is the breaking water depth,
L, and H, are respectively the wave length and height in deep water depth. A in
Eq. (4) is a numerical constant of which value is from 0.12 to 0.18, and 0.17 is
usually used.

3. Breaker types

3. 1. Regular wave

As already mentioned in previous sections, when a wave shoals in a certain
water depth, the wave peaks up and then the wave front becomes steeper than the
back face, and finally the wave breaks as its extreme limit for the wave motion.
The broken wave with air-bubble at wave front propagates some distance towards
the shoreline. The region where the broken wave advances is usually called the surf
zone. Breaker types as limit forms of waves are classified into three types!®™
as indicated in Fig. L

a) Spilling breaker: The limiting wave shape is not so unsymmetrical as the
case of the plunging breaker. The spilling breaker is characterized by the appear-
ance of “white water” at the crest; they break gradually. Bubbles and turbulent
water spill down front face of wave.

b) Plunging breaker: The plunging breaker shows a very unsymmetrical profile
with steeper front surface compared to the back surface. The crest curls over a
large air pocket. Air-entrained horizontal roller and splash usually follows.

*) Galvinl9 defined the collapsing breaker as one breaker type and classified breakers
into four types, i. e., the spilling breaker, plunging breaker, surging breaker and
collapsing breaker. The collapsing breaker occurs over lower half of wave. Minimal
air pocket and usually no splash-up. Bubbles and foam present.
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¢) Surging breaker: The wave peaks up as if to break in the manner of the
plunging breaker, but when the base of the wave surges up the beach face with
the resultant disappearance of the collapsing wave crest.
Iversen, and Hayami?® pointed out that these breaker types can be classified

by the wave steepness in deep water, H,/L, and the beach slope, tan§.

Recently,

Battjes??> showed that the surf similarity parameter £, defined by Eq. (5) can
classify the breaker types successfully as given by Eq. (6).

{(a) Spilling breaker

ML

(b) Plunging breaker

(c) Surging breaker

Fig. 1. Breaker types.
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The classification of breakers by the parameter of the wave steepness and the
beach slope does not correspond well to hydrodynamic meaning. The present au-
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thors?2® tried to classify breaker types by the parameters of H,/L, and hy/L,
which were used by Wilson23> in the classification of wave theories, and the authors
examined the relation between breaker types and wave theories. Fig. 2 shows the
result. The figure indicates that the Stoke’s wave theory24) is useful for describ-
ing the spilling breaker, the long wave theory for the plunging breaker, and the
cnoidal or solitary wave theories for the transient state from the spilling breaker
to the plunging breaker.

3. 2. Irregular wave

Discussions on breaker types of the irregular wave have not been done enough.
The present authors?® discussed the classification between the spilling and plunging
breaker. Fig. 3 shows a relation between the surf similarity parameter &, and
two types of breakers, where L, is the wave length in deep water calculated from
L, by the linear wave theory24). In the figure, symboles of @, A and B mean

SP S-P PL
Zero=downcrossing e 4 @8
A@. £ Zero-upcrossing o A& 0O
£) ‘. s
*S 50 )
.’ Q Oy A
N0 e .‘!’. .?” alha
S B % 01 f B0 o)
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3 Plunging breaker

1

Fig. 3. Breaker type classification due to surf similarity parameter.

the zero-downcrossing wave and the symboles of O, A and [] mean the zero-
upcrossing wave, SP, PL, and S-P indicate the spilling breaker, the plunging break-
er, and the intermediate breaker, respectively. Judging from Fig. 3, it is seen
that there is no significant difference between the zero-upcrossing and zero-down-
crossing wave in classifing the breaker types. Breaker types can be roughly
classified as follow,

spilling breaker : £,<20. 2,
plunging breaker : £,>0.4, @
intermediate breaker : 0.2<(£,<0.4,

The surging or collapsing breaker should give an upper limit to the plunging
breaker occurrence. However, the range where the surging or collapsing breaker
takes place has not investigated. By the way, Eq. (7) is very similar to Eq. (6)
for the regular wave. Weishar and Byrne?® measured breaker types and waves at
breaking points on the natural beach. Their classification of the plunging breaker
almost coincides with our indoor experiments. But, the range of the occurrence
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of the spilling breaker is very different from our result. They pointed out that
the spilling breaker occurs independent of the surf similarity parameter. The
difference may be largely caused by the difference of sea bottom configuration
and the existence or non-exsistence of wind. For these points, further investi-
gations will be needed to clarify the difference.

4. Wave properties at breaking point

4. 1. Regular wave .

The breaking wave height and length given by Eqgs. (1) through (4) are some
of wave properties at breaking point. The wave height and length, and breaking
water depth measured in laboratory tanks are, however, different among inves-
tigators, since the wave breaking is phenomenon which takes place in the extreme
limit state.

Goda?? re-analyzed many experimental data obtained from laboratory flumes
by subtracting effects of side-wall and bottom friction, and he presented figures
(Figs. 4, 5 and 6) which give wave characteristics at breaking point. The figures
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are called Breaker Index.

The field of the water particle velocity at breaking point and in the surf has
not been revealed sufficiently due to the breaking wave-caused complicated turbu-
lence as well as the lack of precise measuring instruments. However, the time
history of the water particle velocity shows an unsymmetrical profile like the
water surface profile, as indicated in Fig. 7. Figure 7 shows that the steeper beach
slope produces a larger on-offshore velocity than the gentle slope, for a given
wave. Kemp?®, however, pointed out from his indoor experiments that the ratio of
the maximum onshore velocity to the maximum offshore velocity and the ratio of
the duration time of onshore velocity to the duration time of offshore velocity
increase with decreasing the beach slope.
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4. 2. Irrvegular wave

The breaking water depth, breaking wave height, and wave steepness have been
discussed by Collins29), Battjes?? 312, Kuo and Kuo3?), Nath and Ramsey?3’, Goda3®),
Sawaragi and Iwata, Iwagaki and Kimura3®, and Weishar and Byrne. In dealing
with the irregular wave, the zero-upcrossing method or zero-downcrossing method
has been used to define the irregular wave from the statistic point of view.

Generally, experimental data defined by the zero-upcrossing method are more
scattering than those defined by the zero-downcrossing method. One example is
shown in Fig. 8. Fig. 8 shows that the standard deviation of H,/h, defined by the
zero-downcrossing method is 0. 094 for the spilling breaker and 0. 111 for the plunging

30 30
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Data number 35 Data number 35

Mean value 0.671
20 |- \-  Standard 20 —
deviation 0.094
Mean value 0.637
Standard

(%) F (2) deviation 0.111
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T
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T
<
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—
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-| Mean value 0.914 ]
!
Standard Mean value 0,937

10 Geviation 0.129 B0 S ton 0.191

%y b L ) F

Plunging breaker Plunging breake)

( Zero-downcrossing ) ( Zero-upcrossing |}
20 L 204

Fig. 8. Frequency of relative _breaking wave height.

breaker. On the other hand, the standard deviation of H,/h, defined by the zero-
upcrossing method is 0.129 for the spilling breaker and 0.191 for the plunging
breaker. Therefore, it can be said that the zero-downcrossing method is better
than the the zero-upcrossing method to describe the wave at the breaking point.
Adding to this, it will be shown later that the zero-downcrossing method is better
than the zero-upcrossing method to describe small turbulent waves caused by wave
breaking. Therefore, the zero-downcrossing method is recommended to define the
wave in the surf. Hereafter, the zero-downcrossing method .is used to discuss
waves in surf.
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Let us discuss the wave properties at the breaking point. The relative break-
ing wave height H,/h, seems to be a function of shallowness %,/L,, as in Fig. 9,
although experimental data are scattering. But, grouping H,/k, for the same
breaker type, Hy/hy listed in Table 1 are obtained. The values in Table 1 is

AY
Spilling breaker

plunging breaker(S=1/20) \

Hb © © (s=1/30) |\ Spilling breaker($=1/20)
hp \/
\
1.0 \
0\\
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S sp p
" s=1/200 o e
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Fig. 9. Relative breaking wave height (irregular wave).

“Table 1. Value of relative breaking wave height
Hy/hy for spilling and plunging breakers.

Beech Breaker types ron | Sl | Nember of
1/20 Bhungiag breaker 08 0129 5
1/40 Spilling breaker 0.584 0.112 83
1/60 Spilling breaker 0.538 0. 080 57

different from H,/hy=0.63 proposed by Kuo and Kuo. In Fig. 9, Eq. (4) is drawn
for comparison. The experimental trend that H,/h, becomes larger with increase
of the beach slope and decrease of %;/L, corresponds roughly to Eq. (4). However,
experimental values are generally much smaller than Eq. (4). The same thing can
be pointed out for a relation of Y,/k, and hy/L, as indicated in Fig. 10, where
Y, is the wave crest height from the sea bottom. Therefore, it is clear that an
individual wave composing the irregular wave can break more easily than the
regular wave which has the same wave height and period as the individual wave.
The wave steepness H,/L, of the individual wave at the breaking point can be
predicted by the critical wave steepness for the regular wave as indicated in Fig.
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11. In the figure, Eq. (8) is proposed by the present authors.
H,/L,=(0.362 tan §+0. 115)tanh (2(%,+7) /L,). 8

Generally, Eq. (8) can predict the wave steepness better than Eq. (2) with
decreasing of the slope.

Weishar and Byrne showed that Eq. (9) presented by Komar and Gaughan3®
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can estimate well the breaking wave height,
H,=0.39¢""°(H:T,)*", ®

Fig. 12 indicates a relation between H, and g!/5(H3T,)2/5 for the authors
experimental values, where H, is calculated by the linear wave theory. The corre-
spondence between Eq. (9) and experiments is very good. The problem in using Eq.
(9) is the way to estimate H, from a measured value of H,. As far as the wave
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Fig. 12. Relation between Hyp and gl/5 (H,2T)2/5.

energy conservation based on the linear wave theory is used in order to calculate
H,, the well agreement between experiments and Eq. (9) is expected. Then, the
propriety of the above-cited calculation must be made clear in the future study.
In the same way, if H, and T, are assumed to be calculated from H, and L, or
T, by the energy conservation using the linear wave theory, the relative breaking
wave height H,/H, can be predicted by Eq. (10) as indicated in Fig. 13.

H,/H,=0.65tan 0'7%(H,/L,) *"*+0. 32,
for 0.9<tang(H,/L,)"'/*<3.8, (10)

As indicated in Fig. 13, Eq. (10) estimates lower values than those of Eq. (11)
proposed by Méhauté-Koh for the regular wave. This fact also shows that the
individual wave composing the irregular wave breaks more easily than the regular
wave which has the same wave height and period as the individual wave.

H,/H,=0.76 tan ¢*/*(H,/L,) "'"*, an



252 K. Iwata and T. Sawaragi

fie ¢
2.0k (Zero-down crossing)
- | s=1/40
o PP
WAVE-5.¢ » &
‘1 gk WAVE-6. s +
g WAVE-7.8 & &
I $=1/20
i 'S S-p P
T.2p WAVE-2.0 & &
WAVE-4.0 o <
- WAVE-5,a =
- WAVE-7 3 &
3 N 2.0 25
. 0. 1.0 . "2, W5
N 0.76(tan9)”7(Ho/Lo) 174

Fig. 13. Relative breaking wave height Hy/H, (irregular wave).

5. Internal mechanics of breaking wave

In dealing with the wave transformation after breaking, the internal mechanics
of breaking wave, in particular the turbulence which is caused by breaking wave
has to be made clear. So far, many theoretical models on the breaking wave-caused
turbulence have been proposed by many investigators. The laboratory observation
made by the present authors3” revealed that the wave transformation is very differ-
ent between the spilling breaker and the plunging breaker. That is, the plunging
breaker drops its crest to the stillwater
level and follows an air-entrained hori-
zontal roller and a splash as shown sche-

matically in Fig. 14. Air is entarined /\ SP‘aSh /"\1‘\%
"' r\

deeply into the water by the horizontal 3

breaking

roller and most of the air goes up to the \\ o homzontal roller

water surface as the roller disappears, ZFEESy m y. o

and then the air disappears Sf)o_n‘ Fig. 14. Schematic illustration of plunging
On the other hand, the spilling breaker breaker.

never follows the horizontal roller, and

air-bubbles and turbulent water spill down

front face of wave (see Fig. 14). The difference of breaker patterns between the
spilling breaker and the plunging breaker results in the fact that the wave height
decay of the plunging breaker is much larger than that of the spilling breaker.
This situation is illustrated in Fig. 15. The present authors calculated the energy
dissipation due to the horizontal roller by using a Rankine-type vortex model con-
firmed by their experiments, and they found that 309 of the energy dissipation
due to the wave breaking was brought by the horizontal roller and the rest por-
tion of 70% was attributed to another mechanics, which will be described in the
next section.
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Air-entrained No air-entrained

Air-entrained

0 No air-entrained
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Fig. 15. Schematic illustration of wave height attenuation.

Fiithrbster3® presented a numerical model in order to calculate the effect of
the entrained air-bubble to the energy dissipation caused by the wave breaking.
The wave height attenuation calculated by his model is, however, much larger than
the experimental facts. Therefore, the model was not so helpful to estimate the
wave energy dissipation by wave breaking.

Peregrine3?® tried to study the turbulence of the wave breaking by a flow-
visualization method. He pointed out that the surface turbulence on the front
surface of wave is not an important factor, and he insisted that the flow pattern
due to wave breaking was very similar to the turbulent mixing layer.

Various investigations on the breaking wave-caused turbulence have been per-
formed, as described above. We have to formulate the turbulence in order to
estimate the wave height attenuation from theories which will be discussed in the
next section. However, since the turbulence caused by the wave breaking is very
different among breakers, its formation is very difficult. The concept of the wall
turbulence or bore model has been adopted in calculating the wave height from
theories.

The concept of the wall turbulence was used by Horikawa and Kuo49, and the
present authorstl in their theoretical development to estimate the wave height
attenuation after breaking. Horikawa and Kuo assumed the turbulence to be isotrop-
ic. They developed a theory by using the isotropic turbulence model as well as
by using the assumption that the wave energy dissipation decreases exponentially
with wave propagation. On the other hand, The present authors assumed that
Reynolds stresses of the turbulence caused by the wave breaking, P,, and P,, can
be expressed by Prandtle-type expression as follows;

. ou ou |

Pa:z“‘ Pty ox i A% \§
| 12)

_ ou | ou |

Po= =t oe
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In Eq. (12), P,, is the normal stress acting on a vertical plane perpendicular
to the wave propagation direction (x-axis), P,. is the shear stress acting on a
horizontal plane perpendicular to z-axis, p is the density of water, [, and [, are
mixing lengths, and # is the horizontal velocity of water particle.

The present authors assumed the following relation for the turbulence with
air entrainment in the surf,

-%%—cx /L and %a w/h, (13)

From Eq. (13), P,, and P,, are given by

P:cw:‘PLf (u/L>27 }
sz:_pLg(u/h>2.

(14)

In Eq. (14), L is the wave length at the depth of %, / is the stillwater depth.
L, and L, indicating x and z components of the turbulence respectively are connected
to the turbulence scale L by

Ly=vali+pL (15)
where, « and 8 are constants satisfing the following relations,
L= (h/a),
0 LoL? /)y 1=p-2{ oL (u/ w1, (16)
0z 0x

Furthermore, they assumed L, in Eq. (15) as follow,
Ly=m(h-+n), an

where, m is a constant. Battjes3l)
used the concept of bore. He adopted the
bore model proposed by Le Méhauté42),
as in Fig. 16. Based on the conservation
of mass and momentum fluxes, the energy
dissipation D’ per one wave length due to
the bore model is given by

Fig. 16. Bore model.

L g (v, EX YD) T
D'=—og(Y,—¥yye| £iptta)l I (18)

where, Y1 and Y, are water depths (see Fig. 16).
Following relationships,

Y,—Y,=H,

[T () a



Wave Deformation in the Surf Zone 255

D' is transformed to

172
D= Log(4)" (20)
When the wave is periodic and its frequency is f (=1/T7), the average energy
dissipation D per unit area is given by
. ’ . ’ 4 1/2 1 HS
D=D'/L=fD'/C fD'/(gh)** o —fog-5— 1)
where, C is the wave celerity. The equation (21) is the turbulence model presented
by Battjes.

6. Wave deformation after breaking

As described in the previous section, wave deformation after breaking is closely
related to the horizontal roller, bottom friction and the so-called turbulence pro-
duced by wave breaking.

6. 1. Wave energy dissipation due to horizontal roller

The distribution of angular velocity of the roller is approximated as a Rankine
type vortex as indicated in Fig. 1741, The angular velocity takes a maximum value
at r=vr,, and experimental values in Fig. 18 show

1.0
T SYM | ho/Lo|SYM| he/Le
Ho O 10.0697] © |0.0489
0.8 @ 10.0700f & {0.0449
@ [0.0622f @ |0.0311
q{¢m/sec) 0.6
....dili. F—apn~ &% 5.
0.4 e
§ 0.2 —r‘@
: hb @78
! r 0
e - : ; . . :
Jefota ( distance ) 0 0.02 0.04 0.06 0.08 0.10
= ——= Ho/Lo
Fig. 17. Rankine type vortex. Fig. 18. Radius of horizontal roller.
r,=0.44 H,, (22)

Now, next consider the effect of the horizontal roller on wave energy dissipa-
tion. The kinematic energy, E, of the horizontal roller is defined by

B, =on(@ro)* (L+4n(a/r,), (23)
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where, ¢, is the angular velocity at r=7,, and p is the density of water. If the
energy of breaking wave can be expressed as that before breaking, the energy
dissipation Ez from the breaking point to the point where the roller disappears is

given by

E,= geg(Hi—H?)L, 24)

where, H, is the wave height at the point where the roller disappears. Therefore,

the ratio of E, to E is given by

_ E. _ 1.216¢5(1+4ln(a/7,))
TTE,T eL0-W/HYY )

10 2 T
a/rg curve | sym| a/g} q5/gh T
1.50 |-——-~- 8 [1.40{0.0260 /i ‘l |
0.p I=2:00 $ |1.6alo.03a5] /i ) /|, |
o symasre | ad/gt | [1.42]0.0350]/ / il |
o |1.53] 0.0585 I
¢/gh = 0,03 ;o
0.6 @ [1.714 0.0588 (Eq.(25)) A !/1 |
a2/gt = 0.05 \\ /o /’ i
/
Eq.(25)) ,

qrgl = 0.07 F9125) //\\/ I
0.4 | “Ea(PEIIN ; -
’ | \ DY e
=" e A0 /

A= l L~ ,/

0.2 ’,F e 24 /

i : ’

_____ __—_‘__”," - |

et
- i I
—

_____ T Qé/gl_ = 0.0]

4] 0.2 C.4 0.6 0.8 1.0
Hy/Hp

Fig. 19. Energy loss due to horizontal roller.

In deducing Eq. (25), Eq. (22) is used. Fig. 19 presents the theoretical values of Eq.
(25) and experimental results. The theoretical values show that e, increases with
increase of ¢2/gL and a/7,. 'The experimental values indicate that 15%~30% of
the total wave energy dissipation is transmitted to the kinematic energy of the
roller. Therefore, it is concluded that most of the wave energy is dissipated by
other factors such as bottom friction, splash, and air-entrained turbulence, etc..

6. 2. Effect of bottom friction on wave energy dissipalion

A bottom shear stress due to wave motion was measured by the shear meter
devised by the authors.4?> A schematic view of the shear meter is given in Fig.
20. A small raised channel was set transversely from wall to wall of the frame
below the shear plate. To prevent a flow through gaps under the plate, the channel
was filled with mercury until its meniscus touches the underside of the shear
plate as Eaglesont?® already devised. If the flow under the plate is not stopped,
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the pressure gradient is different between
above and below the shear plate, which
causes the force acting in the opposite
direction to the original wave force.

A shear force acting on the shear
plate was measured by converting the
force into a moment of a supporting
shaft. The shear plate is subjected to a
force due to wave pressure gradient in
addition to the shear force. Therefore,
the force due to the pressure gradient is
calculated from the pressure difference
measured by pressure measuring tubes.
Before measuring the bottom friction
force due to breaking waves, the shear
meter was checked for various conditions
where the flow is laminar, and it was
recognized that measurements coincides
well with theoretical values calculated by
the theory of Iwagaki et al..4®
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Fig. 20. Schematic view of shear

meter.
6. 2. 1. Bottom friction coefficient
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Fig. 21. Time history of shear stress and water surface profile.

Fig. 21 shows two examples of time profiles of a bottom shear stress and a
wave. The figure presents that the time profiles of shear stress of the plunging
breaker is very asymmetrical as compared with those of the spilling breaker.
Fig. 22 shows a change of non-dimensional maximum bottom shear stresses acting
in the wave propagation direction and its reverse direction for two types of break-
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Fig. 22. Examples of relation between 7y ma.x/fgH and X/L.

ers. In Fig. 22, x is the distance from the breaking point and the dotted lines
express the shear stress estimated by the smooth laminar boundary layer theory4®
given by

T,max v 2 EA NS
ogH g sin h(kh) (T) (26)

where, v is the kinematic fluid viscosity, z,m.x iS the maximum bottom shear
stress, k=2x/L, p is the fluid density, and H is the wave height at the depth of
h. The maximum bottom shear stress in the region for x<{x, is usually consider-
ably larger than that in the range for x>x,, where x4 is the distance where the
air-bubble disappears from the water body from the breaking point. Therefore, it
is clear that the bottom shear stresses become larger due to air-entrained turbu-
lence. As indicated in Fig. 21, the time profile of the bottom shear stresses are
very asymmetrical and then the coefficient of the bottom friction which was
defined earlier cannot be applied directly. Then, a coefficient of the bottom fric-
tion C; is defined newly here as follow,

Cr=y (0.C1+0.C1), @n
é.r‘c =2 ' Tbcm Ub it,
Cr=2|7,/|U,2, (28)
00 + 0t = 27{)

where, 6 is the phase, U, is the horizontal particle velocity at bottom, =, is the
bottom shear stress, subsuffix ¢ and ¢ express the direction of wave propagation
and antiwave propagation, respectively, and the super bar indicates a time averaging
value.

The coefficient of the bottom friction C, does not show a clear correlation
with the distance of wave propagation from the breaking point, as in Fig. 23. Fig.
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24 indicates a relation among é;, éfz, é;,, and Reynolds number R,. The Reynold
number is defined here by

R,=UIT /v (29)

where, T' is the wave period and U, is the mean value of horizontal water particle
velocity at bottom. C;, C; and C;, are generally recognized to increase with
decreasing of R,. Experimental value of C; are, however, generally higher than
the theoretical value given by Eq. (30) which is based on the smooth laminar
boundary theory.4®

C;=4.5R, 2, (30)

Therefore, the bottom friction cannot be predicted by the smooth laminar
boundary theory. By the way, the bottom friction coefficient f which has been
used especially in the field observations is defined as follow4D),

f: Tbmax/pUmeaxy (31)



260 K. Iwata and T. Sawaragi

where, s max 18 the maximum bottom shear stress, U, ma.x 18 the maximum hori-
zontal particle velocity at bottom. Fig. 25 shows a relation between f and Reynolds
number R.r which is defined by

Re'/’:szmaxT/y. (32>
. o _ ‘ 2 [o [WAVE CREST
The straight line in the figure 25 is the o = [WAVE TROUGH
theoretical value of the smooth laminar <10-!
boundary layer theory given by 8
f=2.08R,, /2. (33) R .
4 N~ B e
Experimental values after wave break- IR
ing in Fig. 26 are generally 2~4 times 2 TelS o %
larger than the theoretical value. There- =2_08R'e?,,2__:f\‘ MR
fore, it can be concluded that the smooth . ., rt] 11111 ~l°
laminar boundary theory cannot be applied g [(Laminar Boundary Theory)—®tei
to breaking waves. A new theory must 5
be developed. Xm:f
3x10°? 6 810" 2 4 6 810°
Ret

Fig. 25. Relation between f and Rer.

6. 2. 2. Energy dissipation due lo bottom friction

Let us discuss the energy dissipation due to bottom friction. The mean energy
dissipation, £, due to the bottom friction per unit area is given by

— 167 —
Efb:—T—SOUD’del', (34)
where, {7, and 7, are respectively the mean value of horizontal particle velocity
and the shear stress at the bottom, and the mean value is taken for the same
sign.

From the energy conservation law, the following relation is derived,

A (C.B)=F+Ep, (35)

In Eq. (35), C¢ is the group velocity, E is the wave energy per unit area, and
E;, is the mean energy loss due to turbulence excluding the bottom friction. We
have no perfect expression for C, and E after wave breaking, therefore C, and FE
are assumed to be given by the small amplitude wave theory;

C,=C

. (36)
E=—+pgH?
8 )
where, C is the wave celerity.
The ratio of the energy loss due to the bottom friction to the total energy
loss for the distance of dx is expressed by,
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~ 4ST?U,,dzf
e=—g B gHTC(@H/d%) &7
4 com

Table 2. Energy loss due to bottom friction

RUN | hcm T sec | Hycm Hcm X/L C/v/gh | €x102 Breaker
5 7 1.2 5.0 4.4 0.25 1.07 0.8 spilling
” ” ” ” 2.7 1.40 0.97 4.0 ”

7 ” ” ” 2.6 2.10 0.94 8.9 ”

6 7 1.2 8.0 5.0 0.30 1.07 0.6 plunging
” ” ” ” 3.2 1.50 1.14 4.2 7

” ” ” ” 2.7 2.20 1.03 5.5 ”

13 14 0.8 6.3 5.4 0.85 0.87 1.7 spilling
” ” ” 7 4.9 1.30 0.99 2.2 ”

y ” 7 " 4.6 2.00 0.94 7.7 7

14 14 0.8 9.5 5.4 0.95 0.94 Lo plunging
” ” ” 7 5.0 1.30 0.99 1.9 ”

” ” ” 7" 4.7 2.05 0.94 2.6 ”

The ratio ¢ is calculated easily by using experimental values for the wave height
attenuation and the shear stress. Table 2 indicates the calculated values of e.
From the table, it is clear that the energy loss due to the bottom friction is quite
small, i. e. within the distance of twice the wave length from the breaking point
in which the wave height attenuation is remarkably large, the ratio of the wave
energy dissipation due to bottom friction to the total wave energy loss is about
9 9% at most. As far as the assumption of Eq. (36) is established, the contribution
of the bottom friction to the wave energy decay after wave breaking is quite
small and it may safely be said that the bottom friction is not taken into consider-
ation for discussing the wave decay after wave breaking.

Combining the discussion of previous section and the present section, it can be
concluded that the energy dissipation due to the horizontal roller and the bottom
friction is much smaller than the actual wave energy loss. Therefore, it will be
suggested that the so-called turbulence with air-entrainment is an important factor
for the wave energy attenuation after wave breaking.

6. 3. Turbulence of water surface profile

The breaker-caused turbulence is so strong that the water surface profile in
the surf is very rough, different from a smooth symmetrical surface profile before
wave breaking. The characteristics of the turbulence including the water particle
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velocity field have not made clear. In this section, turbulence of the water surface
profile is discussed.

6. 3. 1. Regular wave

The present authors4s) revealed by
experiments that a monochromatic wave is
transformed to be a complicated wave 3 T 1.
composed of many high frequency com- # ) ; P S er
ponent waves due to the non-linearity of / -
wave breaking, as indicated in Fig. 26. In - :
Fig. 26, x is the distance with the origin J
of the breaking point and its positive
direction is shoreward, and f, is the pre- | x/L 40
dominant frequency of an incident wave. J )\JL J\ point)
Based on a dimensional analysis, the pres- ﬁ j A

|

ent authors discussed the variation of :

wave height spectrum H(f), where f is JL\ k i 0z
T
|

0240
311

=
o~
=
o
[
=3
=)

1 (c/s
(ers) Wave in front of

wave generator

@

eaking

the wave frequency. Ala i
The physical qunatities to be consid-

ered in the dimensional analysis of the |
wave height spectrum H(f) are the grav- A J\ N /Lt 2 99
itational acceleration g, the wave fre- S

quency f, the stillwater depth 4, the
density of water with air-entrainment p¥*, Fig. 26. Variation of wave height
the molecular viscosity of water with spectrum.
air-entrainment w*, and the surface ten-

sion « as given in Eq. (38),

H(f)=Flg, f, b, 0% u* «]. (38)

‘The significance of these 6 physical quantities changes according to the fre-
quency ranges of the very shallow water wave, the shallow water wave, the deep
water wave, the capillary wave and the frequecy range in which the viscosity is
predominant. Then, selecting important parameters to represent the each frequency
range and determining the combination of the chosen parameters to have the
dimension [L] of the wave height spectrum H(f), the following relations are
derived ;

(1) frequency range of the very shallow water wave;

I
H 3 4 5 6 7 8
f/fo f {c/s)

0 1 2 3 4 5 [3 7 8 9

F<f1 (see Fig. —27),

H(f)=F[h, f1=Bh, (39)
(2) frequency range of the shallow water wave;
[1<Sf< S,
H(f)=F.lh, g f1=B;(gh)*"*f7, (40)

(3) frequency range of the deep water wave;
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Fo<S<Ss,
H(f)=Fg, fl=B.&f 4D
(4) frequency range of the capillary wave;
fi<Sf=fs
H(f)=F[f, 0% «]=Bu/spx1/3f 721 “2)
(5) frequency corresponding to the viscosity;
foelSs
H(f)=Fs[ 0%, pk, fI1=Bsp¥ 1 2k /2f 7172, (43)
In Egs. (39)~(43), f: is given by
fi1=(g/625m)""?, (44)
which is deduced by the following equation,
h/L=0.04, (45)
The frequency f, is given by Eq. (46) which satisfies Eq. (47),
fe=(g/Arh)1"%, (46)
h/L=0.5, 47)

f3 is the critical frequency between the gravity wave and the capillary wave;

The frequency f4
sionless coefficients.

log H{f)

fo=—g 087/, 48)

is unknown. B;~Bj5 including in Eqs. (39)~(43) are dimen-

S ——

_,.,
—t]
e e s .

1 2 "3 4 lTog f

Fig. 27. Schematic illustration of equilibrium spectral slope.



264 K. Iwata and T. Sawaragi

Fig. 27 shows the model of the wave height spectrum given by Egs. (39)~
(43). Fig.28 indicates that the proposed spectrum slopes corresponds well to the
exepriments in the frequency range where the gravitational acceleration is pre-
dominant, f;>f>f;.
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Fig. 28. Variation of wave height spectrum on sloping bed.

6. 3. 2. Irregular wave

The variation of wave power spectrum S(f) (frequency spectrum) is discussed
in this section. The dimension of S(f) is [L2T].

6. 3. 2. 1. Case considering no return flow

Based on a dimensional analysis, the present authors46) discussed the slopes of
the wave power spectrum in the surf. The procedure adopted are the same as
the case of the regular wave. The spectral slopes proposed are as follows;

1 f<f1 (h/L<0.04; the very shallow water wave),

S(H=KRF,

(49)
where, f,=(g/625h)1/?
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(2) f1<[<fs (0.04<h/L<0.5; the shallow water wave),
S(f):Kngf_sy

(30)
where, fo=(g/4xh)'"?,
(3) fo<f<fs (h/L=>0.5; the deep water wave),
S(f)=K,g7*f,
L)

1
where, f; :g(g?’t"/") 1
In Egs. (49)~(51), K;~K; are unknown dimensionless coefficients.

6. 3. 2. 2. Case considering the return flow

When the velocity of the return flow U is considered, the following relations
can be deduced in place of Egs. (49)~(51),

O SH=KURf2; f<f1, (52)
@ S(H=KUEmVf; Llf<fa (53)
@ SH=KUgf™; fo<f</fs. (54)

In Egs. (52)~(54), K ,~K, are unknown dimensionless coefficients. The effect of
the return flow to the wave is predominant near the shoreline, according to ex-
periments on regular waves. Therefore, it will be understood that Egs. (562) ~ (54)
appears on waves near the shoreline.

6. 3. 2. 3. Equilibrium spectral slope

Summarizing the above-mentioned in the previous two sections of 6. 3. 2. 1
and 6. 3. 2. 2, the following transformation process of the wave power spectrum
shape can be said. As a random wave, of which equilibrium spectral slope is
proportional to “f=57 predicted by Phillipst”> (see Fig. 29 (a)), propagates into
shallow water depth, it experiences a depth-limitted wave breaking and forms the
so-called surf zone. The spectral slope corresponding to the shallow water waves

(a) (b) (c)
. -2
s = f=3 =| <
7 f-5 =0 ! =2 :
2 3 " f-5 S :fz i
e, 23 e\ f
t ]
L3 i3 L i3
log f log f tog f

Fig. 29. Variation of equilibrium spectral slope.
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will show the equilibrium slope of *f~%” and then the spectral slope on high
frequency range will be composed of “f~3” and “f-5”, as indicated in Fig. 29(b).
However, in this stage, the spectral slope of “f~1” given by Eq. (49) is not supposed
to appear. As the random wave advances further into shallow water depth, the
wave-induced return flow will play an important role in shaping the power spectral
slope and finally the spectral slope on the high frequency band will be constructed
by “f-27, “f=3” and “f~4” as indicated in Fig. 29 (c).

Fig. 30 shows one experimental result on the change of the wave power spect-
rum in an irregular wave on the beach slope of 1/40 performed by the present
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Fig. 30. Variation of wave power spectrum.

authors*®. In Fig. 30 (a), the spectral slope on high frequency is proportional to
“f~5”, because the wave is outside the shallow water surf. Fig. 30 (b) shows the
wave at the depth of 8cm in the shallow water surf has the spectral slope pro-
portional to “f-3” and “f-5” as an equilibrium slope. The spectral slope, however,
becomes flatter than “f-3” at the depth of 3cm and is almost proportional to
“f-27.  This will imply that the proposed spectral slope based on the dimensional
analysis is not an universal shape inside the the surf-zone.

Besides the present authors’ study#®), there are other investigations on the
change of wave power spectrum shape. Ijima4#® proposed an equilibrium spectral
slope of “f~1” and “f-5” for the frequency corresponding to the long and deep
water waves, respectively. Kitaigordskii¢® presented an equilibrium spectral slope
proportional to “f-3” and “f-%” for the corresponding frequencies mentioned above.
On the other hand, Thornton59 pointed out in his field measurement that the
spectral slope for high frequencies is proportional to “f-3".

6. 4. Analytical method

What we have a strong interest in wave characteristics after wave breaking
is the variation of wave height. Since the mechanics of wave breaking and wave
breaking-induced turbulence have not yet been clarified, some modellings on the
turbulencence have been set up in order to develop wave theories. Generally, there
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are two methods in the theoretical treatments; (a) analytical method and (b)
energy method.

The analytical method is an orthodox method which solves the basic equation
by numerical calculation by means of the characteristics method, or the finite-
different scheme, etc., because the basic equation is non-linear. On the other hand,
the energy method calculates the wave deformation by use of the energy balance
equation. The energy method usually takes advantage of a specific wave having an
unchangeable wave form such as a solitary wave and bore; therefore, the variation
of water surface profile cannot be discussed by the energy method.

Let us first deal with an analytical method. The analytical method described
hereafter is proposed by the present authors4?.

6. 4. 1. Basic equations

First calculation of the wave deformation on a sloping bottom was carried out
by StokersD). He solved numerically a non-linear shallow water wave theory by
means of the characteristics method. Since then, some analytical approaches have
been proposed. However, most of the approaches were based on non-linear shallow
water wave theories and they did not include the turbulence term caused by wave
breaking which is discussed in details in the foregoing section. Accordingly, the
foregoing analytical approaches did not explain well the wave height attenuation
after wave breaking.

The present authorstl) assumed the breaking wave-caused turbulence to be
expressed by Egs. (12)~(17) and calculated the wave height decay by the following
basic equation having the turbulence term;

Equation of motion;

Du _ oP | N oP,, . 0P,
o= gtk [ ]
(5%)
Dw 0P sy [ 0P, 0P,
“pro 8 a?*’“””*[ ox | oz ]
Equation of continuity ;
Do | ou | ow \_
Dt —.p( ox | oz )*0’ (56)

where, P,p, Pas Pss and P,, are Reynolds stressess, # and w are the horizontal
and vertical velocities of water particle, respectively, P is the wave pressure
and is given by P=pg(h+n—z), and 7 is the water surface profile. Du/D¢ and p?
are defined as follows;

Using the following assumptions,
(1) the fluid is incompressible,
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(2) P,; and P,, are neglected compared to P,, and P,,, and
3) P, and P,, are expressed by Eqgs. (12)~(17),
Eqgs. (85) and (56) are transformed to

aaz; T gz =& 31 - 8ax (’”2(’1+71>2(%)2), (57)

9
I+ 2wy =0, (58)

where, m is the constant coefficient defined by Eq. (17) and is called a turbulence
constant by the present authors.

6. 4. 2. Numerical calculation

The non-dimensional variables defined by Eq. (59) are used.

Xt=x/h, T*=(/h)/gh, U*=u/+/gh,

(59
H*=(h+n)/h, M*=m*
Then, the dimensionless forms of Egs. (57) and (58) are,
oU* 1 pU*? OH* K LTk2T T2
STy e g g (VREIRUR) =0, (60
OH* *Pk
0 (UsH*) =0, (61)

Egs. (60) and (61) are used in performing the numerical calculation. The
numerical calculation is carried out by the finite difference method (Keller-Levine-
Whitham$52). The finite difference form of Egs. (60) and (61) presents the follow-
ing set of equations which estimates the wave height and period.

H¥(P) = L [H¥(R) + H¥(Q)) |~ L [US(R)H*(Ry) —U*(Q) H*(Q1) )

(62)
U*(P) =5 [U*(R) +U(Q))]

— e R R U @) + R EH#@) |

4AT*

— Mgy g LHH (ROUR (R) — H¥(Q)U* (@)1, (63)

The numerical procedure is, in outline, to compute a wave height and velocity
on a set of net points (X;,X;). The unknown values of H*(P) and U*(P) at a
point P are calculated by use of the known values of H*(R,), H*(Q,), U*(R,)
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and U*(Q,) at points of R, and @,, as indicated in Fig. 31.

In the calculation, the spatial net and time net are chosen to be uniform
uniform; X;=i4X* and T;=j4T*, where, 4T* and 4X* are chosen to satisfy a
stability condition of the so-called Courant conditions® stated as follow,

i X
T*égl:n< U*(Pi)+(§*(Pi>>x/z ) (64)

The calculation was done by using the
mesh width of X*=0,02 and T*=0.004, 1
for which convergence and stability of

P
T,H
the solution were confirmed. J
In order to calculate the wave height AT*
Q P

X,

i

;3
g

particle velocity at the breaking point are
needed as the initial condition. The pres-
ent authors used both a theoretical wave ;l-
profile and velocity proposed by Bous- AXF AXF
sinesq and those measured in the present Fig. 31. Mesh point.
authors’ laboratory experiments as the
initial condition. Calculated values were
shown to have good agreement with experiments for a moderate values of m. Fig.
32 shows a comparison between calculations and experiments, in which the wave
profile and water particle velocity measured were used as an initial condition at
the breaking point. Suhayda53) reported that the above-cited calculations of the
present authors corresponds well to the field measurements as indicated in Fig. 33.
The value of M* in Fig. 33, however, depends upon the breaker type and cannot be
given theoretically at present.

On the other hand, an analytical method for irregualr waves have not yet
proposed. Then, the theoretical treatment is left to the future studies.

attenuation, the water surface profile and R
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Fig. 32. Comparison of calculated values with experimental values.
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Fig. 33. Comparison between fields measurements and calculated values
(from Suhaydas®).

6. 5. Energy method

6. 5. 1. Battjes’ model

The treatment of wave height attenuation by means of the energy method have
been performed by many researchrs, e. g, Le méhauté 2 Horikawa and Kuo,4®
Battjes,3D etc,. Horikawa and Kuo calculated, as mentioned already, the wave height
decay by assuming the breaker-caused turbulence as the isotropic turbulence as
well as by using a solitary wave. On the other hand, Battjes3!> used the concept
of a bore like Le méhauté. Battjes applied it to the wave height decay of a
random wave, and he proposed a method to calculate the wave height variation and
the mean water level variation. He used the equation of energy balance given by

3(ECY) |
G526 D=0, (65)

where, E is the wave energy per unit area, C¢ is the group velocity, and D is the
power dissipated.

The problem is the estimation of D. By using the assumption that broken
waves satisfy the relation of H/h==1, and introducing the probability of wave
breaking @, (at a fixed point), Battjes derived D from Eq. (21),

D=5Q.fogH}, (66)

where, « is a numerical constant, f is the mean frequency of wave power spect-
rum, and H, is the critical wave height. Battjes used the wave height distribution
given by,

F(H)=1—exp(—5 B?/H? ), 0ZH<H,
’ (67)

=1, H,>H

where, [ is the modal value. H,, Hrns (vms value of wave height H) and @,
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satisfy the following two relations,

f = PR (H) =201 -Q) T, (68)
0
Q,—exp( 5 H:/H?). (69)
From Eqgs. (68) and (69),
1"'Qb — Hfms 2
o= ) 70)
where, E and C, in Eq. (65) are given by
E =g 0gH, (71)
_[2nf(1, kGt -
cg”[ 2 (2“‘ sinh 2 (h+17) )]f=f : 72)
The mean water level 7 is calculated by the following realtion,54
dy 1 d 1zl 2k
dx = GEh A5 (5 snen) ) (73)

The variation of H, after wave breaking can be estimated by Egs. (65), (66), and
(70) with help of Egs. (71), (72) and (73). In Egs. (72) and (73), k is the wave
number (=2=z/L).

Figs. 34 and 35 show comparisons between calculated values and experiments
on a uniform slope bed and on a sloping beach with sand bar, respectively. In
these figures, H,mso indicates value of H,., in deep water. The coefficients, &
and 7 are decided in order that the calculations may agree with experiments. It
should be noted that Q,=1 in Eq. (66) corresponds to the case of the regular
wave.
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Fig. 34. Comparison between calculated Fig. 35. Comparison between calculated
values and experimental values values and experiments (from

(from Battjes31)). Battjess1)).
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5. 6. 2. Authors’ model

In order to predict the variation of wave height and period due to shoaling
and breaking, some theoretical treatments have been proposed.29 31, 34,55~57) Each
theoretical treatment has its merit and demerit. In this paper, the theoretical
treatment proposed by the present authors is introduced.

6. 5. 2. 1. Joint probability density function of wave in deep water

The joint probability density function of wave height and period P, (H, T) is
assumed here to be the simple product of the wave height distribution P, (H) and
the wave period distribution P,(T). P,(H) and P,(T) are assumed to be Rayleigh
distribution and T'2-Rayleigh distribution, respectively.

P.(H, T)=P,(H)P.(T), (74)
pam =5 o] (2], 2
P.(T)=2. 7%6){1}[—0. 675(%;)4} , (76)

where, H and 7 are the mean wave height and period, respectively.

6. 5. 2. 2. Breaking condition

The breaking condition presented by Goda for the regular wave is used for
the first approximation.

;ZML:(), 17(h,/L,) " '[1—exp(l. 57 (h,/L,) (1—15 tan *73)) ] 7

6. 5. 2. 3. Shoaling condition

The shoaling condition for the small amplitude wave of the regular wave is
used in the calculation.

H,=KH, (78)
K,=[tanh k(h+7) +k(h-+7) (1—tanh 2k (h+7))] 79

where, K is the shoaling factor, H, is the wave height in deep water, H, is the
wave height at the depth of 4, k=2x/L, and 7 is the mean water level.

6. 5. 2. 4. Variation of mean water level

The mean water level 7 at the depth of % is calculated by the following equa-
tion (Longuet-Higgins and Stewart54),

=y e F 5 ) ) (80)

In calculating the equation (80), the following difference form is used,
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- = D, 77: 7
P R /ey e H;+1~—H; y 81
T =1 (k‘%“n)wl/z[ J L)
where,
(B+D)es1s= (BT e (D), (82)
171, 2kh
D=5 5+ smnzer] - (83)

In Egs. (79)~(82), H? is the mean square wave height, subsuffix i and i+1 are
locations of calculation, and x is the horizontal distance.

6. 5. 2. 5. Re-distribution of breaking waves

Individual waves of which H/h is larger than those given by Eq. (77) break
and are transformed to smaller waves. Therefore, the joint probability density
corresponding to breaking waves (the shadow area in Fig. 36 (b)) should be re-
distributed to the rest portion. The probability density of the breaking waves is

Initial condition Depth- controlled wave Refdispﬂ'bgtion and new
breaking breaking distribution
(H/H) (H/H) it (H/F)
Lo
K
)
S @).
2 £ g
e = =
o.
T*fRayleigh i
b
(a) Pr(T/T) (b) Pr(T/T)

Fig. 36. Schematic illustration of variation of joint probability density of wave
heights and periods due to wave breaking.

assumed here to be re-distributed proportional to the probability density of the
rest non-breaking wave. The dotted portion of the wave height and period distri-
bution in Fig. 36 (c) indicates the probability density which is added. Then, in this
way, a new probability density of the irregular wave is determined as shown in
the first quadrant in Fig. 36 (c).

6. 5. 2. 6. Procedure of calculation

The calculation starts from the deep water condition h/L,=1.0 and with the
initial joint probability density of wave given by Egs. (74), (75) and (76). In the
calculation, the stillwater depth on a sloping beach is devided into many portions,
i. e., the divided non-dimensional stillwater depth 4k/H, is 100, 10, 1, 0.25, and 0. 05
for h/H,>>100, 20<h/H,<100, 5<h/H,<20, 2<<h/H,<5, 0<h/H,< 2, respectively.
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The joint probability density is, also, divided into 14400 meshes to calculate the
change of the joint probability density due to shoaling and breaking.

The shoaling factor K, at the location (i-+1) is first calculated by the known
values of T and 7 at the location (¢). The modified joint probability density due
to shoaling at the location (i+1) is calculated by the known joint probability
density at the location (i) and the shoaling factor at the location (;+1). Next,
the modified joint probability density at the location (i-+1) is modified again by
the wave breaking condition of Eq. (77). The probability density corresponding
to breaking waves is re-distributed to the non-breaking wave portion, as mentioned
at 6. 5. 2. 6. Therefore, the new joint probability density function at the location
(i+1) is determined. The mean water level 7 at the location (+1) is calculated
from Egs. (81), (82) and (83). In the calculation, the stillwater depth % is replac-
ed by 2-+7 in determing wave characteristics.

6.5 2.7. Calculated values and discussions

The change of non-dimensional wave height H,,3/H, with h/H, calculatied by
the present authors’ model is similar to that of Goda’s calculation, as in Fig. 37.
However, the calculations of the present authors are generally smaller than that of
Goda. This is largely attributed to the reason that Goda used the shoaling factor
for the finite amplitude wave theory, while the present authors used that for the
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small amplitude wave theory. The qualitative agreement between calculation and
experiments is recognized (see Fig. 38). The difference may be improved by
establishing a better breaking criterion and adopting a non-linear wave interaction
between individual waves.

The variation of statistical wave periods due to shoaling and breaking has not
been discussed so much as that of statistical wave height. Goda®®, and Hotta5®
showed that statistical wave periods such as T, 7,3, and 7.,.. become larger as
the wave approaches to the shore line. Fig. 39 shows one example of calculation
of T1,3/[T1,5]e with h/H,, where [T;,37], is the significant wave period in deep
water condition. Although the numerical estimations predict higher values than
the experiment, it can be said that experimental trend agrees qualitatively well
with calculations.
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Fig. 39. Comparison between calculated values and experiments.

I~

7. Wave run-up height

7. 1. Regulayr wave

The final stage of the wave transformation after wave breaking is the phenom-
enon of wave run-up on a dry bed. The wave run-up height is a very important
factor in determining the construction location of seawalls, the design height of
beach nourishment works, the sand drift zone for prediction of the change of beach
profile, etc..

The theoretical considerations on the wave run-up height have been performed
by many researchers since Stoker solved the non-linear shallow water wave theory
by means of the characteristics method. In particular, the achievement of Freeman
and Le Méhautés® on the run-up mechanism of solitary wave on a dry bed gave a
significant suggestion to the run-up problem of periodic waves on a dry bed. Some
researchers, however, doubt the application of the above-mentioned treatments
using the solitary wave or a bore to the run-up phenomenon of the periodic waves.
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This is due to the reason that the run-up of the periodic waves largely depends
upon the back-wash of a preceeding wave as well as the water depth at the wave
front, so the resulting run-up mechanism is more complicated. Therefore, em-
perical formulas based on laboratory experiments have been presented to predict
the wave run-up heigh. Among them, Hunt’s empirical formula®® is popular
because it is comparatively easy to use,

R o tan ¢
H, 7 (H,/L)Y*’

(84)

where, R is the run-up height from the stillwater level, ¢, is a numerical constant
relating to the permeability of bottom and ¢p,=1 for the impermeable bottom and
cp<1 for a permeable bottom, H, is the wave height at breaking point, L, is the
wave length in deep water, and tan d is the bottom slope.

The present authors® found out, in their experiments, that the stillwater
depth h, at the toe of the bottom slope plays an important part on the run-up
height, and they proposed the following equation,

R H, T2 o(tan 9)
o=Plan o) () L)@,
P(tan 0) =4. 56 x 1072 (tang) ~°-1%3, (85)

Q(tan ) =—0.421; for tan 9=1/5,
=b5.85x1073(tan §) "*#*%; for 1/40<tan 0<1/10,
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Fig. 40. Effect of h,/Lo to R/H,.

It should be noted that Eq. (85) is valid for tan@#<C1/5. Fig. 40 shows a
comparison among calculated values of Eqgs. (84) and (85), and experimental values
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obtained by the present authors and by Toyoshima et al.62>. The run-up height
predicted by Eqgs. (84) and (85) decreases as the bottom slope becomes gentler.
However, in case of steep slopes (tan#>>1/5) like those of breakwaters or sea-
dikes, the run-up height tends to become higher with decreasing the bottom slope.
Fig. 41 shows experimental results on uniform bottom slopes performed by
Savage$3), and the above-cited fact for the bottom slope effect to the run-up
height is clearly seen.
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Fig. 41. Relation between R/H, and tanf (from Savage®3).

7. 2. Irregular wave

It may be one of the interesting points to study the possibility of extending
the empirical formulas deduced for the regular wave to the run-up height problems
of the irregular wave. One interesting problem is whether the significant wave
run-up height R;,; of the irregular wave can be equal to the run-up height of the
regular wave corresponding to the significant wave or not.

Fig. 42 shows a relation between the ratio (Ry,3/Ho1,3)rr/(R/H)re and the
bottom slope, where (R,,3/Ho.1,5)zr indicates a relative significant run-up height
in irregular wave and (R/H,) sz is a relative run-up height estimated by Eq. (85)
for regular waves. In Fig. 42, h, is the stillwater depth at the toe of bottom
slope, L,;,3 and H,,,; are the significant wave length and height in deep water.
As seen from Fig. 42, the relative significant run-up height (Ry,3/H,1,3)rr almost
correponds to the relative run-up height (R/H,)rp of regular waves for tang>1/
10. But, in case of tan#<(1/15, (R1,3/H,1,2)1n becomes smaller than (R/H,)zz.
The reason is not well explained at present because the mechanism of wave run-up
has not been revealed from the hydrodynamic point of view. However, it will be
guessed that run-ups of larger waves among individual waves are predominant and
they have a strong effect to the run-up of smaller waves, in case of the irregular
wave.

Now, let us discuss a distribution of run-up height for the irregular wave.
Battjest4 derived an expression for the probability distribution of wave run-up
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Fig. 42. Comparison between run-up heights of irregular wave
and regular wave.

height. His theoretical development was, however, largely supported by the
assumptions; (1) run-up of individual waves in an irregular wave train indicates
the value following Hunt’s and (2) the joint porbability distribution of wave heights
and periods can be expressed by the bivariate Rayleigh distribution. But, as point-
ed out by Iwagaki65’, the wave period is not 7'%2-Rayleigh distributed. Its distri-
bution depends upon a wave spectral shape, then a Weibull distribution will be a
more general expression form. Then, the present authors used the Weibull
distribution for the joint probability density function of wave heights and periods.
The joint probability function P(H, T) expressed by a bivariate Weibull probability
density is given by

PH, T)=PH)P(T),

=Aymy(H/H, )™ lexpl —Ay (H/Hr)m”:|<7%:") (86)

X Ay, (T /T ) s exol — A (T/T )" (),
T

where, the variables of H and T are treated here as statistically independent, and
my and me are the shape factors of the Weibull probability density function of
wave heights and periods, respectively, A and A, are the scale factors of the
Weibull probability density function of wave heights and periods respectively, and
H, and T, are the mean square values of wave heights and periods, respectively.
The present authors assumed the followings;

(1) the run-up height of individual waves in the irregular wave train is given
by Eq. (85),
and

(2) the wave height distribution is Rayleigh distribution, i. e., mz=2.0 and
Ax=1.0.

Using the assumptions, the present authors proposed Eq. (87) to estimate the
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distribution of wave run-up height in the irregular wave.
F (r¥) :Xg*f@»k) dr*, o (87)

where,
SO =K ke (@) di,

ky(r¥) =r*“exp(a,),
o =m,—1—8b(tan 6),

o= ___t;}:Sb(tan 9)?’*4—“./1«1'1:‘*""7‘,

A7»:r<ﬁjjr_‘?_~>m7'/2’

b(tan ) =0.5—Q(tan 9),
Q(tan 9) =—0.421, (tan 0=1/5),
==5. 851073 x (tan §) "1-24¢, (1/40<tan 6<1/5),

ll(tan 6>H0T1/2Tb(tane) ’

a(tan 0) =P (tan ), (g/27)0=no)
P(tan (}) =4 56 %1072« (ﬁ&ﬂ f)) ~0.133‘
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Fig. 43. Distribution of wave run-up height.
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In Eq. (88), #* is the non-dimensional time, [' is the Gamma function, and
H,, is the root mean square wave height in deep water.

The probability distribution of the non-dimensional run-up height R/R,,; cal-
culated by Eqgs. (87) and (88) is indicated in Fig. 43. The dotted line shows the
probability distribution calculated in the case that the distribution of wave heights
and periods squared are Rayleigh distributed. The experimental results correspond
well to the curves calculated by Egs. (87) and (88).

8. Concluding remarks

In this paper, the wave characteristics at breaking point and the wave defor-
mation after ,breaking up to the dry bed are described from theories and experi-
ments, centering on the authors’ researches. The wave breaking conditions and
breaker types, wave characteristics such as the wave height, wave profiles, etc. at
breaking point are described in Section 2, 3, and 4. Next, the internal mechanics
of breaking wave are discussed in relation with the horizontal roller, bottom {fric-
tion, and the turbulence caused by wave breaking, in Section 5 and 6. And, the
quantitative contribution of the roller, bottom friction and the turbulence to the
wave energy dissipation in the surf are clarified. Also, in Section 5 and 6, several
new ideas proposed by the present authors are shown, and a new fundamental
equation for breaking wave is presentd and its correspondence with experiments is
shown to be fairly good. Section 7 showed that the theoretical model for the
wave run-up height proposed by the present authors predicts well the experimental
facts.

As stated above, a lot of knowledges on wave deformation in the surf zone
have been piling up and usefull theoretical treatments and experimental facts are
using for practical purposes. However, there are still many problems left to be
solved from theories and experiments.

Concerning the regular wave treatment, it is said that theories can predict
well the wave height variation in the surf for a moderate value of the so-called
turbulence coefficient caused by wave breaking. However, the formulation of the
turbulence has not been settled. Detailed experimental investigations on wave
kinematics will be needed to improve the theoretical treatment and to establish
the basic equation with the turbulence term for the wave in the surf.

On the other hand, in predicting changes of wave heights and periods of
irregular waves, the formulation of irregular wave breaking limit is very important.
The breaking phenomenon of the irregular wave is very different from that of the
regular wave86), Therefore, as far as the breaking limit of the regular wave is
adopted as an approximation, it should be noted that a quantitative agreement
between theoretical models and experiments will not be obtained.
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