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Abstract

Since the main difficulty to solve non-linear differential equation
has been eliminated with the provide of electronic computer, present
attentions in performing precise inelastic deformation analysis of
engineering structures are concentrated to establish constitutive equations
with an accuracy suitable to that obtainable in the electronic computer.

The essentials in establishing the constitutive equations consist in
the precise control of the optionally assigned system of combined
loading or deformation applied to specimen and the precise measurement
of the corresponding deformation or resistance, and the systematic
description of the variation of deformation behaviours due to the effect
of deformation history. Formerly, experimental results of this kind
have been expressed in a form of empirical formula in which the
history effect is not always reflected clearly. However, the necessary
and sufficient conditions have been settled for the constitutive equation,
and the method has been proposed to consider clearly the history effect
in the equation, in the continuum mechanics.

In our laboratory, investigations to establish the constitutive equation
in reflecting the history effects from the theoretical view point in the
continunm mechanics have been developed since more than ten years
ago, in accordance with the experimental results of plastic deformation
behaviours of various metals under combined loadings or deformations
obtained by using an automatic combined loading testing machine. The
present paper summarizes the early results of the investigation.
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Chapter [ Introduction

Accurate analysis of inelastic deformation of metallic structures becomes more
necessarily with the increasing severity in the condition under which structures are
used. It has also a significant meaning to find more efficient and precise process
of plastic working. For this purpose, it is necessary first of all to observe precisely
the deformation behaviour of engineering materials under complicated loading systems,
and to formulate the constitutive equation of the materials so as to express the
results of observation as precisely as possible.

Complicated nonlinear phenomena accompanying the history effects due to the
change of micro-structure in the material appear in the inelastic deformation of
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real materials, and thus it has been very difficult to take into account these
behaviours properly in the mathematical analysis of inelastic deformation.

However, these history effects in the inelastic behaviour described in the
form of stress-strain curve have been regarded as the secondary ones. Thus, to
avoid the difficulties mentioned above, an elegant “plastic flow theory” which is
convenient for mathematical analysis has been formulated by neglecting the compli-
cated history effect appearing in real materials, and used to solve engineering
problems in a wide range. However, this simplified theory is able to approximate
only a part of plastic behaviour of real materials and is found as insufficient to
approximate the deformation behaviour of metals under complicated loading system.
For this reason, various investigations!~7> have been conducted to modify this theory
so as to reflect the history effects. However, many problems are left unsolved
theoretically and practically as well.

Nowaday, precise observation of deformation behaviour accompanying complicated
history effect may be performed easily by using a full-automatic testing machine,
and thus even the effect of tensorially nonlinear term in the stress-strain relation
can be discussed experimentally. However, it is difficult to take into account such
a nonlinear effect in the flow theory.

Since most of the difficulties in mathematical analysis have been eliminated by
the introduction of electronic computer, it may be said that the accuracy in the
result of deformation analysis depends mainly on the approximation in formulating
the results of precise observation of deformation behaviour of real materials under
complex loading systems.

In the field of continuum mechanics, a general form of constitutive equation
has been constructed in terms of functionals concerning characteristics of defor-
mation behaviour which the materials obtain by the history effect.®> The general
plastic theory in a five-dimensional vector space corresponding to the stress or
strain deviator, proposed by Ilyushin® in formulating the plastic behaviour of metals
under complex loading, also belongs in this category, and his “postulate of isotropy”
and “principle of delay” seem to be useful approximations to simplify the infinite
varieties of history effect. His theory has been discussed experimentally by Lensky,*®
who verified the validity of this theory for some metals under certain comlex
loading systems. However, as Ivlevl) and Novozhilovl?> have pointed out, the
vector space used by Ilyushin cannot reflect explicitly some of the characteristics
in the tensor space.

At present, the constitutive equation of metals under inelastic deformation are
considered in more detail by taking account of a change in the micro-structure of
metals due to deformation. A kind of constitutive equation is established in terms
of the internal state variables together with the equation showing their evolution
in the view point of irreversible thermodynamics.1®  Another kind of constitutive
equation is constructed by taking into account an interaction between slip-systems
in every crystal grain and the microscopic residual stress as well.14

As mentioned above, the investigation to clarify the inelastic deformation
behaviour of metals under complicated loading system becomes more intensive
in these days. Under such situations, a full-automatic complex-loading testing
machine with high accuracy was constructed in our laboratory (1970) for measuring
precisely the plastic behaviour of metals under combined loading at room tem-
perature.!s) The same kind of apparatus also established two years later for
measuring the inelastic behaviour of metals at elevated temperature. Ever since,
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these equipments have been used to observe the inelastic behaviour of metals under
some fundamental patterns of complex deformation history.

The present paper collects briefly the results of investigations performed at
room temperature, concerning the history effects on the inelastic behaviour of
metals under complex loading system.

Chapter [ Experimental Apparatus

2. 1. Testing machine al room temperaturets’

Figure 2. 1 shows the automatic complex-loading testing machine (Shimadzu
1S-10-TS) specially constructed for observing the history effect affecting on the
deformation behaviour. As shown in the figure, it consists of a loading apparatus
(D, a pressure generator (2 as well as recording and controlling panels for axial
force @), torque @ and internal pressure (5. A thin-walled tubular specimen is
subjected to combined action of these three kinds of load so that the specimen may
deform along arbitrarily specified shape of strain trajectory. The value of load or
deformation of each kind is applied independently to the specimen through a photo-
reader which traces along a specified curve described on a sheet fed with a constant
speed, and the corresponding response is recorded precisely.

Each kind of load is measured by the corresponding dynamometer. The loading
capacities of the testing machine are 98 kN (10 tons) in axial load (temsion/com-
pression), 49 kN-cm (5000 kgf-cm) in torque (right/left) and 58. 8 MPa (600 kgf/cm?)
in pressure, respectively.

Measurement of deformation in the specimen may be performed by using either
strain-gauge of electric resistance type or differential transformer for obtaining
mean value directly over the gauge length. The out-put from the strain gauge of
each kind is recorded by the corresponding panel through an amplifier.

When the differential transformer is used, measurement is performed as follows.
Axial elongation over the gauge length of specimen is transmitted to a differential
transformer in a measuring device shown in Fig. 2. 2 as a relative displacement
between knife-edges of the specimen, and the out-put from the transformer is

Fig. 2. 1 Automatic complex-loading testing machine.
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Fig. 2. 2 Device for measuring deformation.

recorded on a sheet fed a constant speed in the recording panel §). Torsional
deformation appearing over the gauge length is converted into a relative movement
between two fine piano-wires in the measuring device and recorded by the panel @
through the differential transformer. Circumferential deformation of the specimen
is measured through a very fine piano wire wound around the specimen at two
locations where the mean value of deformation appears and is recorded by the panel
(® through the differential transformer. The differential transformer has an
accuracy up to 10-3mm. The accuracy of measurement may attain as high as 1.4
MPa (0.15kgf/mm?) in stress or 0.005 percent in strain.

Chapter T Specimen

3. 1. Geometry of specimens,1®

Thin-walled tubular specimens for room temperature whose geometries are
shown in Figs. 3.1a and 3.1b were machined from a bar of each material. Outer
and inner surfaces over the gauge length were finished very smoothly with
tolerances 21+0.0lmm and 19+3“mm in diameters, respectively.

Measurement of deformation was performed by using either the electric
resistance strain gauge or the differential transformer. In usual procedure, strain
components in the specimen are measured by the strain gauge attached to the
central part of the specimen. However, this does not always seem suitable to
obtain proper mean value of strain over the gauge length, because the strain may
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Fig. 3.1a Geometry of specimen (dimension Fig. 3.1b Geometry of specimen (for
in mm). internal pressure, dimen-
sion in mm).

be obtained only over the range where the gauge is attached when the strain
distribution is not uniform over the gauge length in the deformation within the
range of yield step of mild steel for example. In such a case, the deformation
state due to axial force or torque is preferable to be estimated as a mean value
over the gauge length from the relative displacement between knife-edges at both
ends.

In order to measure the circumferential strain, a variation in diameter at the
center of gauge length is usually considered. However, the value is also affected
by the local deformation state. In order to avoid the error due to circumferential
irregularity in deformation state, a very fine piano-wire was used in winding around
the specimen together with a row of small rollers arranged around the specimen.
The circumferential relative displacement may be measured by the differential
transformer as a movement at both ends of the wire. In order to avoid the effect
on the uniformity of deformation state due to the restriction of knife-edge at both
ends, the knife-edges are reduced to the only parts necessary to hold the measuring
device (Fig. 3.1Db).

The location where the mean value of circumferential deformation appears
under internal pressure has been found by a preliminary test, and the fine wire
is wound at two such locations within the gange length.

The specimen shown in Fig. 3.1a was used for axial force and torque, aud that
shown in Fig. 3.1b was used when internal pressure was combined with them.
The specimen without knife-edges was used when the strain of each kind was
measured by using the strain gauge.

By the way, a comparison of the results obtained by using the differential
transformer and the strain gauge has shown that both results agree well with each
other if a sufficient number of strain gauges are used for each kind of strain
component.

3. 2. Materials of specimen

3. 2. 1. Mild steel*®

" Chemical components of mild steel S1I0C and S15C used are shown in Tables 3.1a
and 3.1bh. In order to obtain the state of initial isotropy, a bar of 36 mm diameter
as-recieved was annealed carefully (furnace cooled after soaking at 830C for 1
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Table 3. 1 (a) Chemical composition of mild steel S10C

Constitwent | C | s Mn s 3 Fe
Content (%) | 0.0 | 0.2 0.44 0.009 0.018 | Balance

Table 3. 1 (b) Chemical composition of mild steel S15C

Constituent C Si Mn S P Fe
Content (%) 0.12 0.23 0.48 0.035 0,021 Balance

hour). Since an effect of mean area of crystal grains on the mechanical property
was recognized to be significant for this kind of measurement, the effect was
taken into account to secure the reliable experimental results.

3. 2. 2. Brass1D

The chemical composition of brass BsBM2 used is shown in Table 3. 2. For
obtaining the initial isotropy, a bar of 36 mm diameter of brass was carefully
annealed (furnace cooled after soaking at 580°C for 8 hours). The optimum annealing
condition was determined by preliminary test to obtain the isotropy in mechanical
property as well as in grain configuration. The isotropy in mechanical property
after annealing was examined by comparing the result of uniaxial tension test and
that under internal pressure without axial restraint. The reproducibility of the
mechanical property of specimen was confirmed on each piece sampled out from
every lot annealed together.

Table 3. 2 Chemical composition of brass BsBM2

Constituent Cu Pb Fe Sn Zn
Content (%) 54.85 3.03 0.03 0.02 Balance

3. 2. 3. Aluminum alloyl®
The specimen was machined from a

bar of 40 mm diameter of aluminum alloy 375
?gSgavgiosge ghemlcal composition is shown % 30 / ,,’,o';(’;
. 3. £ . 7

Result of test on the bar in as- g /%
received state is shown in Fig. 3. 2. In P
the stress-strain curve shown in the figure, 300 - ;
the difference between the stress values - e~ Compression grag:::)l)
in the radial and axial directions of the p o ompreston e
bar at 4 ¢ strain is only 1.7%, and the 250o 1 ; L L ]

material may be regarded as almost £ (%)
isotropic. However, because the grain Fig. 3. 2 Stress-strain curve of aluminum
was elongated in the axial direction, the alloy 5056 in as-received state.



History Effects on Inelastic Deformation of Metals 9

Table 3. 3 Chemical composition of aluminum alloy 5056

Constituent Cu Si Fe Mg Cr Zn Al

Content (%) 0.01 0.09 0.14 4.60 0.06 0.005 Balance

specimen was annealed in vacuum (furnace cooled after soaking at 340° for 20
minutes). Though the grain configuration became isotropically and the isotropy in
mechanical property was improved, a slight yield step appeared after annealing on
the experimental results at room temperature.

Chapter I Tensor and Vector Spaces

4. 1. General relation beetween deviatoric tensorst®

In the consideration of deformation properties of materials with regard to
stress and strain or strain-increment as tensorial quantities, the properties may be
expressed by the functional relations between these tensors. Moreover, as the
relation between their spherical parts may be regarded as elastic for metals, the
inelastic properties of metals may be discussed as the relation between their
deviators.

The resulting variation in deformation properties after various plastic defor-
mations of initially isotropic materials, that is the history effects on the deformation
properties, may be formulated in a form of tensorial functional relation between
the above-mentioned deviators in the isotropic deviatoric space. Thus the ex-
perimental results will be discussed in a form of the above-mentioned relation.

In order to formulate the experimental results in the most general form, the
relation between a stress deviator Dq(=s;jeej; i, j=1, 2, 3) and a strain-increment
deviator Dgy.(=de;je;e;; 1, j=1, 2, 3) is derived, for example, where e;(i=1, 2, 3)
denote the base vectors which prescribe the space, e;e; denote the corresponding
base tensors, and s;; and de;; are the corresponding components. When a set of
orthonormal base vectors concerning the principal directions of D, is selected as
e;(i=1, 2, 3), the trigonometric form of D, may be expressed as

D,=s;;e,e;=(2/+/3)C,{cosa,eie; —cos(c,+7/3)ejse;
—cos(t,—m/3)ezes}, (4.1a)
=tr (DY) 2=L,(D,),
cos 3. = (3+/3/2)13(Ds) /1:(Ds)*"*= 3+ 3/2)15(D.) /25,
I,(D,)=tr(D3%)/3, (4.1b)

where [,(Ds) and I3(Ds) denote the second and third invariants of the stress
deviator Dy, respectively, and a, denotes an angle expressing the stress state (Fig.
4. 1).

In terms of three deviatoric base tensors with respect to the stress deviator
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Glzvmaue:‘e; (Zv ]:1) 27 3)7 Gzz(l/'\/ug-) <2€;ei“eéeé“—e§e§>y
Gy,=eje;—ejes, (4.2)

which are mutually orthonormal, the expression (4.1 a) may be rewritten in the
following form:

D,=,(cos &, G,+ sin @, G). 4. 3)

In the same way, the strain-increment deviator D,. may be expressed in terms of
a set of orthonormal base vectors d;(1=1, 2, 3) along the principal directions of
Dy, in the following form;

Dde:‘cde(cos a(deH2+ Sin ad€H3)$

Ci=tr(DE)/2=1,(D..), (4. 42)
€08 3= (3+/3/2)I;(Dy.) /1,(Dy)* = 3y 3/2)1:(Dy.) /<2,
I;(Dgy)=tr (D) /3, (4. 4b)

where I,(Dy,) and I3(D,.) denote the second and third invariants of the strain-
increment deviator Dg., respectively, and ay, denotes an angle expressing the strain-
increment state.

H,=+/2/30,d.d; (i, j=1, 2, 3), H,=(1/v3)2d\d:—d,d,—d:d;),
ngdgdz""dgdg (4. 5)

are designated as base tensors along the principal directions of the strain-increment
deviator Dy, which are orthonormal with each other.
Since the principal directions of Dy and D, are not always coaxial in general
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plastic deformation, the above-mentioned two sets of base tensors G; and H;(i=1,
2, 3) may differ from each other. Since the functional relation between the
deviators Dy and D4, should be derived on common bases, the deviator Dy, is
expressed with respect to the base &; of Do.

By introducing a rotation tensor L of orthonormal system such as

e;=Ld, (i1=1, 2, 3) (4.6)
and using the relation
eie;=Ldd;L™" or did;=L"e;e’L,
the following relation is obtained:
H=L"'G/[L (i=1, 2, 3), 4.7)

By substituting the relation (4.7) into (4.4 a), a form is obtained in which Dyg, is
expressed with respect to the orthonormal hase tensor G; for the deviator Do as
follows :

LDdeL—l/fdez cOos Cl(der "§‘ Sin adeGS. (4. 8)

In order to construct the base tensors G, and G, as two tensors with respect
to LDy L 1/ 4., a quadratic deviator of LDy L=/ .

(LD L1/24)— v/2/3G=LDLL™ /i~ v2/3G,
=(1/4/3) (cos 204G, — sin 204G 5) (4.9)

may be selected as the simplest normarized tensor which is not coaxial with
LD L1/, In this respect, the relation between the orthonormal base tensors

GG =2/3G,+1/v/3)Gs, GG:=G:G,=—(1/v3)Gs,
G:G,=/2/3G,—(1/v/ 3)G, (4.10)

found from the relation (4.2) were used.
The following expressions are derived from Egs. (4.8) and (4.9):

sin 34, G ;= cos 204, (LD L7/ 40)
—3 cos 2 (LDAL™ /22— /2/3G ),
sin 304G, = sin 20y, (LD L7/ 4)
+3sina, (LDLL /(5 —/2/3G)). (4.11)

In the case of sin3ay,=<0, the following relation between stress and strain-
increment deviators may be obtained by substituting &, and G; from Eq. (4.1D)
into Eq. (4.3):

D,/Z,=(1/sin 3a,,) {sin Qg+ o) LD o L7 /4,
+ \/—3- Sil’l (ddewCK@) (LDdZeL‘l//:ch‘— \/mal)} (4. 12)
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When the deviators D, and D,. are coaxial, the rotation tensor is reduced to the
unit tensor I and the well-known relation2? is obtained as follows:

Do-/if:o-: <1/ sin 3@@) {Sin (2“de+aU>Dde/:de
+ /3 sin (&g — o) (D&/Ch— v/2/3Gh) ] (4.13)

In the case of as=ay. in Eq. (4.13), the relation between Ds; and D, is reduced
to the linear relation corresponding to the St.Venant-Levy-Mises Law used
conventionally :

Do': (Ca‘/Cde)Dde. (4' 14)
In the case of sin3a,u.=0, the following relation is obtained from Eq. (4.11):
T LD L) 0=3(LDLL™ /5 —~/2/3G).

Thus the quadratic deviator cannot be used as the base tensor. In such a case, the
deviator Dy may be expressed in the following form by selecting LDg.L™1/{4. and
G as base tensors, for example,

D, =, {cos @, (LD L™/, + sin 2,G;}. (4.15)

4. 2. Deviatoric strain vector space and deviatoric stress vector space

As shown in Eqgs. (4.1b) and (4.4b), each third invariant depends on the angle
g OF ag.. The angle as or ay, expresses the state of Dg or Dy, i. e., the relation
between the elements of the deviator. For convenience, this relation may be
expressed geometrically in the corresponding vector space. Since geometric represen-
tation is very effective in discussing the history effect on the deformation behaviour
of materials, the behaviours are expressed in the vector space corresponding to the
deviatoric tensor space. In this respect, a special care must be taken in expressing
experimental results, because the first and third invariants of the tensor cannot be
expressed explicitly whereas the second one can be expressed in the isotropic vector
space.

A strain deviator D,=e;je;e; (i, 7=1, 2, 3) may be expanded as follows:

D,=e A, (k=1, 2, ---, b) (4.16)
with respect to five orthonormal base tensors g
A,=Alee; (=1, 2, -, 5; 1, j=1, 2, 3).
The scalar coefficients ¢, have the following relation in connection with e;;:
e ;=e Al (4,7=1, 2, 3; k=1, 2, ---5), 4.17)
The relation
e =08, (4,7=1, 2, 3; k=1, 2, -, 5) (4.18)

together with
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V3/2€nn=B.e, (m=1, 2, 3 are not summed; k=1, 2),
Dl =es, \2e=e, \/ 2€=¢; (4.19)

is designated between the second invariant in the deviatoric tensor space and the
invariant in the corresponding vector space, wher By, are scalar coefficients.
The following relations hold between e¢; and e;;:

€1~ \/‘2‘{511C03(T+7f/6) —€,,C08 7},
e,=1+/2 {e;,sin(y+7/6)+eycos 1},
es=+/2 €15 €=1/2 €z, €5=+/2 ¢, (4. 20)

On the other hand, the following expressions are obtained for the base tensors A,
(k=1, 2, -, 5),

A,=+/2/3{cos re;e;— sin(y +7/6)e,e,+ sin(y —n/6)eze;},
A,=+/2/3{sin re;e, + cos (y+7/6)e.e, —cos (y —7/6) eses},
A;=+/2/3cos(n/6) (e,e,+ese.), A;=+/2/3cos(n/6) (ese;+eqe,),
As=+/2/3cos(7/6) (e;e;+e:e5), (4. 21)

where 7 is an arbitrary parameter. From Eq. (4.21), the base tensors A, are
found to be orthonormal.

From Egs. (4.16), (4.20) and (4.21), the state of deviatoric strain corresponding
to D, may be expressed by the coefficients e¢; (i=1, 2, -, 5) by using the base
tensors A; constructed from a set of suitably prescribed orthonormal base vectors
e;. Thus the deviatoric strain vector

e=e,n, (=1, 2, ---, 5; n, : orthonormal base vectors) (4.22)

may be introduced for the state of deviatoric strain corresponding to D, if a
five-dimensional vector space V5, of deviatoric strain

[ey, €, -, es 1=/ 2 {eicos(y+m/6) —e,;sin 1},
Vo (e sin(y+7/6) +e55c08 1}, A 2 €12 V2 €2 V2ey, ] (4.23)

is used. This vector space has been introduced by Ilyushin.?’

By an approximation that the plane stress state appears in the tubular specimen,
if the axis-3 is selected in the radial direction of the specimen, the components of
stress o;3(i=1, 2, 3) and strain e;3(z=1, 2) vanish, and thus the axis-3 becomes a
fixed principal axis for the stress deviator D, or strain deviator D, Then, D,
may be expressed as follows for y=0:

D,= /372 e {v2/3(ee;—ese;/2—eze3/2)}+(2/+/ 3)(e11/2
+322){\/T/_Z(ezez“eses)}+(2/V§>elzvm<elez+ezel>]
=e, A4, (k=1, 2, 3). (4. 24)
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Accordingly, the state of deviatoric strain corresponding to D, given in Eq. (4.24)
may be expressed by a strain vector

e=ey1,+(2/4/3) (€11/2+€55) 11,4+ (2/4/3) €xams (4.25)

in a three-dimensional vector space Vs,

Lei, € es]=[e1, (2/+/ 3)(e11/2+€22), (2/+/3)erz]. (4. 26)

The history of deviatoric strain may be expressed by a hodograph of the strain
vector e(strain trajectory) in the vector space Vg,

The state of deviatoric stress at an arbitrary point on the strain trajectory
may be expressed by a deviatoric stress vector

0=3/2){31n,+ 2/ 3) (811/2+S5)n+ (2/ 4/ 3)S12ms}  (4.27)

in a local vector space V3, established at that point

Lo1, 03, 05]=[(3/2)811, +/ 3 (S11/2+S32), v/ 3 S12], (4.28)

corresponding to the deviatoric stress, where s;;(4, j=1, 2, 3) are components of
Ds, and o,(k=1, 2, 3) denote the components introduced for D, in the same way
as in the relation (4.26).

In the representation (4.24), if the base vector e, and e, rotate orthogonally
around the base vector es corresponding to the fixed principal axis of D, the
components e;1, ¢z, and e¢;, of D, vary so as to correspond to the basis after
rotation, and the strain vector e also rotate around the origin in the space Vje.
Thus, a history of a deviatoric strain state given in the space established with the
base tensor A4;(k=1, 2, 3) may correspond to a set of strain trajectories in the
isotropic space V.. In other words, the strain trajectories in such a set may be
equivalent to each other nevertheless these have different orientations in that
space. On the other hand, the strain trajectories which are tensorially equivalent
may be confirmed to have an identical geometry in the space V.

The magnitude |e| and direction (¢., 6.) of the deviatoric strain vector e in
the space V. and the magnitude |¢| and direction (s, 8s) of the deviatoric stress
vector ¢ in the local space Vo appearing in (4.25) through (4.28) are expressed
as:

le|=(ei+ei+ed)P={eli+ (4/3) (€11/2+€55) %+ (4/3) €1} 7%,

tan g,=¢,/e,=(e1,+2€5;)/+/ 3 €11, coOSO=e-ns/|e|=2¢e,,/+/ 3 e, (4.29)
lo|= (0405 +03)1 2= (3/2) {sh+ (4/3) (S11/2+855)*+ (4/3) sk},

tan ¢, =0,/0,=(8114+28,3)/+/ 3 S11, COS Oo=0+n3/|6|=4+/3 S15/|a|. (4.30)

As found from Egs. (4.29) and (4.30), the magnitudes |e| and |g| agree with the
equivalent strain and the equivalent stress, respectively.

4. 3. Distributions of the first and thirvd invariants in the three-dimensional
vector space

Since the second invariant [,(D) of the deviatoric tensor is maintained in the
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corresponding vector space introduced in the provious section, the magnitude of
I,(D) is kept constant at every point on the spherical surface around the origin in
the vector space. On the contrary, values of the third invariant 7;(D) of the
deviator and the first invariant 7,(7) of the tensor are not constant but functions
of orientation in the vector space. Thus, the distributions of [3(D) and I,(T) on
the surface of unit sphere in the vector space are discussed in the following.

A reduced value I;(D,) of the third invariant of the strain deviator D, by
means of the second invariant 7,(D,) may be expressed in terms of the components
e;(i=1, 2, 3) of the deviatoric strain vector e as follows:

I,(D,)=1{e(e?—3e}) +(3/2) (e,++/3ey)ed}/ (el +ef+es)®?
= sin 0,{ sin?@,cos 3¢, +3 cos?6,.cos (p.—7/3) }. (4. 31)

As found from Eq. (4.31), a distribution of I5(D,) in the space Vj. depends
only on the orientation and may be expressed by the curves on the unit sphere in
Fig. 4. 2 obtained as an intersection of Eq. (4.31) and the surface of the unit sphere
eiteit+ei=1.

€3
ol 0
30°
~
O ! 18
. o® RIS
=20 o>
6 =30 \{,’\ 60° > S
2 /
o2 0! /
\\ / 06 /
s CO /
60’ 0 90° /
| 2
w71 /S
o 50° !
0 959'—;30" e
e ! ei
Fig. 4. 2 Distribution of [3(D.) in the Fig. 4. 3 Projection of the curves I3(De) =
space Vge. const on the plane ejes.

Projections of these curves I;(D,) onto the plane e;e, become a set of
straight segments shown in Fig. 4.3 with the dashed lines in the range —1<{e;+
v/ Je, <1, and may be expressed by one of the solutions of the following cubic
equation obtained by eliminating e; from e?-+e}+ei=1 and Eq. (4.31):

(e1++/3¢5)°—3(er+ /3 e;) +21,(D,) =0,

The solution of this equation satisfying the condition —1 <Ce;++/3e, <1 is found
as follows:
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e;++/3e,=—2cos(2r/3—a,),
where
a,= (1/3)arccos{l,(D,)}. (4.32)

On the other hand, the curves I;(D.) on the spherical surface are projected as a
set of concentric circles on the plane e;+ 4/ 3¢;=0.

In the same manner, a reduced value 7;(Dy) of the third invariant of the
stress deviator D, may be expressed by the components o;(i=1, 2, 3) of the
deviatoric stress vector ¢ as follows:

I,(D,)=36 L(D,)/I,(D,)*?
={0,(61—-30%) +(3/2) (61,++/ 3 02) 05}/ (0} + 05 +0%)%?
= sin 6,1 sin®f,cos 3¢, +3 cos?0.cos (p, —7/3)}, (4. 33)

A distribution of I4(Ds) may be expressed
by a set of dashed curves on the surface
of unit sphere as shown in Fig. 4.4, as
the intersection of g2+o02+0%=1 and Eq.
(4. 33).

The first invariant 7,(Ts) of the
stress tensor Ts=o0;;e;e;(i, j=1, 2, 3) is
expressed as follows:

Fig. 4. 4 Distributions of I3(Ds) and
I1(Ts) in the space Vio.

I, (T,)=tr(T,)=011+05;+033, (4. 34)

Since the plane stress state (o33=0) may be assumed in the thin-walled tubular
specimen, [;(7T,) may be approximated as follows in considering Eq. (4.28) :

I.(T;)=011+0=01++/ 30, (4. 35)

A dimensionless value I,(T,) reduced by the second invariant I,(Ds) is
expressed as

I, (T)=1/2)I,(T.)/{31,(D.)}"?=(0,++/30,)/(2]a])
= sin §,cos (¢, —7/3). (4. 36)

A distribution of I;(Ts) in the space V3, may be expressed by a set of solid
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curves on the surface of the unit sphere as shown in Fig. 4.4. The following
relation is obtained from Egs. (4.33) and (4.36) for I,(D,) and 7,(Ts) in the
space Vig.

I,(Dy)=—41,(TH){(To) +3/2HI:(T,)—+/3/2}.  (4.37)

It is found from Eq. (4.37) that the values I;(7T5)=0, ++/3/2 correspond to
I:(D,)=0, and the value /3 /2 is close to the extreme value 7, (%) =1. As shown
in Fig. 4.4, the following conditions exist:

I(TH=+73/2 I,(D,)=0 along the axis-o,,
I.(T,)=0, I.,(D,)=0 along the axis-o,. (4. 38)

As found from Fig. 4.2, there is a regular distribution of —1<{I;(I,) <1 in the
space Vi, and the distribution of I;(Ds) is also governed by the same regularity,
as shown in Fig. 4.4. Especially, in the plane-c,03, 73(D,) varies monotonously in
the whole range from the value 1 along the axis-o; to —1 along the axis-(—o;)
through the value 0 along the axis-s;. Accordingly, the most suitable tests for
discussing the effect of I;(Ds) on the deformation behaviour of materials are
those using the proportional deformation in the plane-o,0;. Such tests may be
performed by applying combined loads of axial force and torque to the thin-walled
tubular specimen.

Chapter V¥ Experimental Procedure

Experiments were performed on the proportional deformation and the defor-
mation along orthogonal bi-linear and tri-linear strain trajectories by applying
combined load of axial force (tension/compression), torque and internal pressure to
the thin-walled tubular specimen, with the use of the automatic combined-loading
testing machine [S-10-TS. An increasing rate of strain intensity along the
trajectory was set mainly at ds/dt=3x10"%/sec (¢: time in second), which has
been ascertained to affect little the stress-strain curve obtained for the plastic
deformation of metals at room temperature.

Special care was paid to strain control in the experiment performed under
internal pressure. In applying internal pressure to the tubular specimen, automatic
control based on strain is disturbed just after the upper yield point by a sudden
change of deformation state of specimen made of mild steel. Since the plastic
deformation of mild steel develops at its lower yield stress, the strain may increase
smoothly under strain control when the decrease of pressure due to an increase of
volume inside the tubular specimen is recovered by a supply of oil so as the lower
yield stress to be kept. However, such a smooth supply of oil is disturbed by a
delay of response to the instantaneous defomation of tubular specimen just after
the upper yield point, because of the compressibility of pressurized oil inside the
specimen and pipe system connecting up with the oil pump and the elasticity of
the pipe system as well. In other words, the stress value cannot decrease to the
lower yield stress for the delay of response. Thus a large plastic strain, which is
somewhat larger than the maximum yield strain, appears instantaneously for the
stress value close to the upper yield point. In order to avoid this, the volume
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inside the tubular specimen was kept as small as possible by the use of a close-

fitting core within the specimen.

Moreover, the effect of the elasticity of pipe

system was eliminated by throttling an oil feed from the pipe system by means of

an adjustable cock located very close to the specimen.

smooth strain control to be achieved.

0e=30

180°

(uniaxial compression)o (uniaxial tension) &

Fig. 5. 1 Deviatoric strain vector space

V3¢ for combined loads of axial
force and torque.
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Fig. 5. 2 Orthogonal bi-linear strain
trajectories in the space Vge.
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Fig. 5.32a Orthogonal tri-linear strain
trajectories in the space Ve

These precautions enabled

5. 1. Proportional deformation

The proportional deformation test was
performed along the strain trajectories
starting from the zero-strain point in V,,
(Fig. 5.1) or V,, (Fig. 4.2). The trajec-
tories may be specified by angular direc-
tions 6% or ¢, and 4,.

5. 2. Orthogonal bi-linear strain .
trajectory

Figure 5.2 shows the strain trajec-
tories consisting of two straight branches
intersecting normally for which ex-
periments were performed. For con-
venience of comparison between the ex-
perimental results, the pre-strain was
mainly set at 2 percent for every case.
These experiments were performed for
discussing the wvalidity of the “postulate
of isotropy”.

5. 3. Orthogonal tri-linear strain
trajectory
Figure 5.3 shows the orthogonal tri-

>
Y
@

e~esplane
So

(]

€,

&

Fig. 5.3b Orthogonal tri-linear strain
trajectories in the space Ve
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linear strain trajectories in the spaces V,,(Fig. 5.3 a) and V3. (Fig. 5.3 b). These
experiments were performed for discussing the interaction between the effects of
the first and second corners on the strain trajectory.

5. 4. Estimation of stress and strain components

In estimating the stress components from experimental data on the thin-walled
tubular specimen, the stress components o,, o4, v, were estimated as mean values
by taking into account the effect due to the variation of size in the specimen owing
to large deformation. Especially, the radial stress component o, due to internal
pressure, which is neglected in general for the thin-walled tubular specimen, was
taken into account for discussing precisely the history effect in plastic deformaiton
because the radial stress is contained in the deviatoric stress components. The
radial stress component was estimated as a mean value of the distribution of o, (#)
over the tube thickness under internal pressure calculated by the conventional
method?1> of plastic analysis of thick tube. The error in neglecting o, amounted
at most to 5 percent of |g|.

In the experiment, the circumferential strain component e; of the specimen
was estimated from the relative displacement measured on its outer surface.
However, ¢4 of the tube under internal pressure is not uniform exactly over the
wall thickness. Thus, a ratio of the mean value of ¢4 taken over the thickness to
the value of ¢4 estimated on the outer surface was found by using the conventional
method2?> of plastic analysis, and a mean value over the thickness was estimated
from the value on the outer surface obtained by the experiment. The strain
components e, 7, were estimated directly from the experimental data as mean
values.

The components o;, o4, 7, and ¢, &4, 7, estimated from the experimental data
correspond to the above-mentioned components oii, 035, oy, and e, £29, 2eqo,
respectively. The differences between the values of strain components and their
deviatoric parts were negligibly small in the range where the deformation behaviour
was discussed. g

Chapter VI Experimental Results

6. 1. Experimental results for proportional deformation

6. 1. 1. Proportional deformation in the plane-eie; (Vi for ¢,=0)

Figure 6.1 shows the relation between |¢| and s?1 obtained for the mild steel
S10C by the experiment on the proportional deformation along the trajectories
shown in the inserted figure. As found from the figure, the curve for pure torsion
(6%=90°, I3(D,)=0) appears lowest and the curves become higher with an increase
of the axial strain (or stress) component, and the corresponding curves in the
hardening region are close to each other for each pair of strain trajectories which
are symmetric with respect to the axis-es, although the curves on the compression

f Superfix p denotes hereafter the plastic part of the corresponding value obtained by
subtracting the elastic part under an assumption of the constant elastic moduli during
plastic deformation.
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side (90°<C#%<C180°) appear a little higher
than those on the tension side (0°<Co%<C
90°) and the trend is more pronounced on
the yield step.

The angles 6% and 6% are expected to
agree with each other for every pro-
portional deformation. However, the ex-
perimental results proved that these angles
did not always do so. They agree for %
=0° and 180°, but the angle 6% is smaller
than on the tension side and larger on the
compression side than the angle 6% As
shown in Fig. 6.2, the values of | *—0%|
remain almost constant at less than 5°.

Figure 6.3 shows the same curves
obtained for brass BsBM2 for the trajecto-
ries shown in the inserted figure2?>, Since
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Fig. 6. 2 Relation between the angles 0%,
6% and sP of mild steel S10C.
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the curves for uniaxial tension (e;-axis) and compresssion (—e-axis) agree almost
completely for brass, the curves are shown only for the tension side. The curve
for each axis in strain space is shown in Fig. 6. 4.

Figure 6.5 shows the curves for aluminum alloy 5056 for the trajectories
shown in the inserted figurel®). As found from Figs. 6.3 and 6.5, the curves for
pure torsion appears lowest and the curves become higher with increase of axial
strain component. Besides, the curves on the compression side appear a little
higher than those on the tension side. These trends are the same as that appeared
on the mild steel. In Fig. 6.4, the curve for the deformation along es-axis(l;(7T%.)
=T (TH=0, I3(D)=I;(Ds)=0) and that along e,-axis(J;(T)==I;(Ts)=+3/2,
I,(D,)~=I,(Ds)=0) agree with each other almost completely. The trend mentioned
above on the mild steel between the angles #% and 6% were recognized also for
brass and aluminum alloy.

6. 1. 2. Proportional deformation in the space Vi,

Figure 6.6 shows the relation between |¢| and |e| in a plane e,e; obtained for
the mild steel S10C, where various symbols indicate the experimental results. As
seen from the figure, the two experimental results obtained for each of the
assigned trajectories agree well, and thus the solid curve is entered as an average
thereof. The result of uniaxial tension (¢,=0, ¢,=90°) is also entered for com-
parison. The curves |¢| ~ |e| for the trajectories ($,=30°, 0.=30°) and (¢.=30°,
8,=60°) are shown in Fig. 6.7 together with the curve for pure torsion (6.=0)
for comparison. These curves also differ from each other with the values of ¢.
and 4,, but the ordinate differences stay almost constant at large values of |el.

I T v
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08 A (8.=0") ~ 730 %=
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0 1 2 5 6 [ -
1@l (%) lel ¢
Fig. 6. 6 Relation between [o| and |e] Fig. 6. 7 Relation between |o]| and |e]
obtained from experiments obtained from experiments.
A, E, F, G.

6. 1. 3. Equi-strain curves

For the proportional deformation, [e| may be expressed as a scalar function of
stress invariants:

el=lel{I,(T,), |o|, I;(D,)}.
Thus, the solution of the above equation for |¢| is

al=lo|{I.(T,), |el, I,(D)}. (6.1)
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It follows from (6.1) that the relation

7

|o| ~ |e| is affected by 1 (T,) and I3(Do). otes0'] (MPa)

In order to make clear the effect of e | 300J>-\ 60

15(Ds) and to discuss that of I,(Ty), 135° %ﬁ\({\ 45°
equi-strain curves are described from the }’: L750 = E?(\ -
experimental results. Figure 6.8 shows 15075’ / SO
an example of the equi-strain curves for ///// 100 \‘\ \\\:\“
mild steel S10C. In the figure, the small | [//// e =7\
circles corresponding to the experimental % _30; [ fzooy‘e{d:‘ge T 21)(‘) g0s,
results are connected by the solid curves. (MPa)
The dashed curves show Mises’ circle Fig. 6. 8 Equi-strain curves for mild

passing through the experimental points steel S10C.
in pure torsion (I5(D,)=0) which corre-
spond to the equi-strain curve without the
effect of 73(Dy).
These equi-strain curves may be approximated with high accuracy by the
following ellipce:

{011(8)/0(8)}P+[ /3 012(8)/{v/ 37(s)} =1, (6.2)
By introducing a modifying coefficient
Ry=+/3t(s)/0(s), (6.3)
the expression (6.2) is rewritten as follows:
{Ry(8)011(8) 1P+ {v/ 3012() }P={/37(S)}5, (6. 4)

where o(s) denotes the magnitude of the stress vector for uniaxial tension as a
function of the arc length of the strain trajectory when the stress vector is in
the first quadrant of the plane (o4, ¢3) and for the compression when the stress
vector is in the second one, and /3¢ (s) denotes that for the pure torsion.

Equation (6.4) expresses a circle in a modified space with coordinate axes
Ry(s)ay1(s) and +/301,(s), whose radius corresponds to a modified magnitude |a*|
of the deviatoric stress vector. In the modified space, every curve |e¢| ~ s obtained
in the experiment may be reduced to a curve |6*| ~ s corresponding to pure torsion
irrespective of the angle 6% In other words, by eliminating the effect of I3(Ds)
from the experimental results, the deformation behaviour may be discussed as the
relation between the second invariants of stress and strain deviators.

By expressing the modified magnitude |¢*| as R|e¢|, the coefficient R is ex-
pressed as follows :

R=|o*|/|o|={(R,011)%+30%}'"?/ (05 +30%) ' *
= {14 (R2—1) sin?9,} "2, (6. 5)

In the plane (011, v/ 3012) with ¢5=0°, a solution of (4.33) satisfying the condition
—1<I;(D,)<1 is obtained as follows:

sin @,= —2 cos {27/3— (1/3)arccos I,(D,)}. (6.6)
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By substituting (6:6) into (6.5), the following relation is obtained:
R=[1-+4(R%—1)cos?{27/3— (1/3)arccos I,(D,)} /2, 6.7

In the three-dimensional space V34, the following expression is obtained by sub-
stituting (4. 33) into (6.7):

R=[14+4(R:—1)cos? 2n/3— (1/3)arccos {sin®f,cos 3¢,

43 sin 0,co820,cos(p,—/3)} 1JV2, (6.8)
where :
(Re=a(s)/b(s) (0= I,(D,) <),
" R=a) ) (1= LD <0),
and a(s), b(s) and c(s) denote the values

of stress vector for pure torsion, uniaxial

tension and compression in relation to the
arc length of the strain trajectory.

In the next, equi-strain curves in the 100
deviatoric plane IT in the principal stress -
space are given in Fig. 6.9 on the basis g
of experimental results on mild steel S10C N
where the alphabetical symbols indicate i?:‘s "
the corresponding experiment shown in 20
Table 6. 1. SSSSE

/ 3004.0
Fig. 6. 9 Equi-strain curves in the plane IT of deviatoric LM *jg
stress. "7

Table 6. 1 Directions of strain vector selected for experiment

Experiment A B C D E F G H I J K L M N

3. (deg.)

0c (deg.)

— 0 30 3 9 9 90 0 0 0 180 180 180 180

0 9 30 60 30 6.5 9 60 45 30 30 45 60 90

In the figure, the circles connected by solid curves show the experimental results,
and the dash-dot curves (circular arcs) and the dashed ones (sides of normal
hexagon) show the subsequent yield curves following the Mises and Tresca yield
criteria, respectively. Figure 6.10 shows the relation between I;(Ts) and |e|
obtained from experimental results. In Fig. 6.9, the values of |¢| for experiments
A and G(J4(Ps)=0 for both cases) coincide well for the same values of I;(Do).
On the other hand, the values of [{(7Ts) for experiments A and G given in Fig.
6.10 are quite different one another. Thus, it is clear that the relation between |o|
and |e| varies with I;(Ds) but is little affected by I;(Ts), and the systematic
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Fig. 6. 10 Relation between 71(T¢) and|el. Fig. 6. 11 Experimental results for uniaxial

tension and internal pressure
(without axial restraint)

deviations of the experimental equi-strain curves from Mises’ circle in Fig. 6.9
may be regarded as an effect due to 7;(Dy).

It may be concluded from Figs. 6.9 and 6.10 that the values of J{(Ts) and
13(D,) in experiments C, E and H are closely similar although their principal
stress directions are different. Consequently, the argument with |¢| for the same
values of |e| in Fig. 6.9 serves to substantiate the initial isotropy of the material.
On the other hand, the initial isotropy of the material used here has been ascertained
already by experimental results for uniaxial tension and internal pressure (without
axial restraint) on the specimen, the stress-strain curves agreeing well as shown
in Fig. 6, 11.

In Fig. 6.9, the equi-strain curves are located between the Mises’ circle and
the Tresca’s hexagon, and the deviation from the latter increases with |e| whereas
that from the former is almost constant irrespective of |e|.

As an example of the modified results, adjusted values of the experimental
results shown in Fig. 6.9 using (6.8) are shown with the open circles in Fig. 6.12,
whereas the corresponding ones before
modification are denoted with the solid
circles. In the usual manner of expression
applying in the plane II of the relation
between the Mises and the Tresca yield
criteria, the Mises circle passes through
the vertices of the Tresca hexagon. On
S | the other hand, remembering that the

8% a % plastic behaviour is affected by I;(Ds),
3 both criteria should be related so that the
Mises circle coincides with the Tresca
hexagon at the center of each side of the
latter where I5(Dg) =0, because the Mises
circle corresponds everywhere to I3(Dy)
=0, while the Tresca hexagon for which
I3(Ds)=0 holds only at the center of each
" Fig. 6. 12 Modified results of experiments Side, may be regarded as an extreme case

with parameter R. of the effect of third invariant. Thus,

© Experimental
© Modified value
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unlike the conventional expression in Fig. 6.9, the Mises circle and the Tresca
hexagon coincide at the center of each side of the latter in Fig. 6.12. Consequently,
the fact that the experimental results indicated by the solid curve between the
Mises circle and the Tresca hexagon are modified into the corresponding values
shown with the open circles on the Mises circle may be regarded as an evidence that
the effect of third invariant has been eliminated almost completely with the use of

the coefficient R.

6. 2. Experimental results for ovthogonal bi-linear strain trajectories

Bi-linear strain trajectory has been
used most frequently for the experiment
of complex loading, because it is the most
fundamental case of the complex loading
for which the history effect of deformation
appears strongly just after the corner
point. Here, the history effect just after
the right-angled corner is discussed in
detail for this case.

The plastic behaviour along the
orthogonal bi-linear strain trajectory may
be discussed in the three-dimensional local
vector space of deviatoric stress Vjo
shown in Fig. 6.13. In the figure, the
length s, of the first branch corresponds
to the pre-strain, 4s(=s—s;) shows a
length of the second branch after the
corner point, and e=e;n;, de=de;n; and
o =o0;n; denote the strain, strain-increment
and stress vectors, respectively.

6. 2. 1. Experimental results for
mild steel S10C
Experimental results are discussed for
the deformations along the orthogonal bi-
linear strain trajectories shown in Fig. 5.2
and Table 6.2, which are obtained by

4

e
e
0]
Q'@ M3
n Ny ——=(,
‘ t)
0 B
e
/)
K &0
0
My €2
]

Fig. 6. 13 Local stress space Vio(oi,

gz, 03) on the orthogonal bi-
linear trajectory in the space
Veler, ez, e3).

applying the combined loads of axial force, torque and internal pressure to the thin-
walled tubular specimen of mild steel SI0C. The pre-strain s, is fixed 2 percent,
for which the history effect has been confirmed to be saturated sufficiently by

Table 6. 2 Orthogonal bi-linear strain trajectories (s=2%)

Experiment 1A 2A 1B 2B 1C 2C 1D 2D 1E 2E

first' ¢€ OQ 900 900 00 00 1209 Oo 0-:7 Og Oo
branch 0, 0° 90° 90° 90° 0° 90° 45° 45° 0° 90°
second  %e 90° 90° 0° 90° 120° 120° 0° 0° 0° 0°
branch g, | 90> | 0°| 90° | 90° | 90° | 0° | —45° | 135° | 90° | 0°
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preliminary tests. Strain rate is kept constant at ds/di=3x1076/sec.

6. 2. 1. 1. Curves |e| ~ 4s

Curves obtained by the tests along the trajectories 1A and 2A through 1E and
Z2E are shown in Figs. 6.14 through 6.18. In these figures, the dashed and dash-dot

T T T
O Experiment 1A O Experiment 1B
~ 300 © Experiment 24 ’ | & Experiment 2B
g —-— Uniaxial tension % 5 300 _—Uniaxial tension
Z =~ Pure torsion < ~--Pure torsion
5 _ | /
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e
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s
s
s
Ve
250 250
| s !{ e,
2 ) 225 o) 2B
2 1A 2 1B
1 i
- e
0T 20w 0 120"
200 ! 200 L
0 1 2 3 1 2 3
AS () AS (%)
Fig. 6. 14 ¢! ~ 4s curves obtained by 1A Fig. 6. 15 {e| ~4s curves obtained by 1B
and 2A tests. and 2B tests.
T T
O Experiment 1C O Experiment 1D
. 300 ® Experiment 2C ~ pd ~ 300L © Experiment 2D Z
] —-- Uniaxial tension r B ~== Uniaxial tension 7
= ~7 Pure torsion P = ~~~ Pure torsion ;/ e
~ P : =~ Prop. deformation // -
5 S (h=0.64 K/‘/ L
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(/}/ Va g
/A
f}// //
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e
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1
0 1T Z,w S
(°) 1D
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3 0 1 2 3
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Fig. 6. 16 ¢! ~ 4s curves obtained by 1C Fig. 6. 17 6|~ 4s curves obtained by 1D
and 2C tests. and 2D tests.
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curves show the corresponding parts of the curves for torsion and tension, respectively.
A sudden drop of |s| occurs just after the corner of trajectory in every experiment.
This drop occurs for increasing strain at constant rate, and thus cannot be regarded
as the so-called unloading which has been defined with decreasing strain in the
quasi-static process. This might be attributable to a stress relaxation effect,
because the strain at the corner due to the first branch persists, whereas the other
strain component begins to increase along the second branch. However, when the
second branch is not present, the decrease of stress has been ascertained to attain
only about one-third of the total decrease obtained above. Moreover, from the
results obtained for the bi-linear trajectory in ese;-plane, this stress decrease may
be found in the deformation in which the principal axes do not rotate through the
first and second branches of trajectory. Therefore, this phenomenon may be ascribed
to a microscopic instability of materials induced by a change in microscopic
structures (release of dislocation piled up during pre-strain, for example) just after
a sudden change in strain (or stress) state. In other words, the cummulative
dislocation fixed during the deformation along the first branch is released due to
the strain application in the direction of the second branch, and the resulting
increase of plastic strain reduces the elastic part of the total strain which is
increasing with constant rate. This may be related directly to the sudden drop of
l6| mentioned above. The above-mentioned phenomenon may be regarded as a
transient one and cannot be discussed by means of the flow rule on the premise of
a quasi-static process. Such a phenomenon may be regarded as a similar one occuring
just after the upper yield point of the mild steel.

As found from these figures, the curves |o¢| ~ 4s corresponding to the
trajectories which are in the relation of mirror transformation in Vs, do not

200
| |
300~ O Experiment 1E ; 1‘2)’;‘ vioditied + T
—~ . o 3 I
© @ Experiment 2E & A1B experimental e
= ~-~ Uniaxial tension Z 280428 resuits ey P
_ ~-—= Pure torsion o »1C ® 7
s ] T | -
275 - :
®
/ 260
/ a
7
4 e
e
e
240
—-— Uniaxiat tension} before
e - === Pure torsion Modification
—— 10712 6(28) : Caleulation —
2 1E |
: |
0o 1z [
2008 ! 1 2 3
9% 1 2 3 s e
AS (1) 4S5 (%)
Fig. 6. 18 |¢|~ 4s curves obtained by IE Fig. 6. 19 Modified curves |[¢*| ~ 4s ob-
and 2E tests. tained by using the coefficient

R for mild steel S10C.
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always agree with each other. In line with the foregoing discussion, this may be
attributed partly to the effect of I;(Ds). For example, the curves for the second
branch of trajectory agree well for the tests 1A and 2A along the axes ¢, and e;
for which I;(Ds) have the same value 0.

Figure 6.19 shows an example of the curve |o*| ~ 4s modified by using the
coefficient R in the previous section. As shown in Fig. 6.19, the remarkable
difference observed between the curves for the trajectories in the relation of
mirror transformation has disappeared and these curves may be reduced to an
identical curve after modification.

6. 2. 1. 2. Angle 0 between the strain-increment and stress vectors

In the results obtained by the tests of strain-controlled type, the direction of
stress vector delays from that of the
C

the directions of ¢ and de is expressed by
f=arccos(o-de/|c||de]). The value of @
varies with increase of 4s. An example 60
of the relation 6 ~ 4s is shown in Fig.
6.20. As shown in the figure, the relation
may be approximated by a unique curve
for every trajectory.

Experimental

T

GxE00GOFPOO

P e e e ]
MMUoOOwWmP >

strain-increment vector de which coincide

with the trajectory. An angle 6 between oo :
O=F(as):
alculation

ok T
|

6. 2. 2. Experimental vesults for e ’%‘%&u,&ﬂ b L

brass?® L — 10 15 20 25
AS (%)

Figure 6.21 shows the curves || ~ s . )
obtained by the tests along the bi-linear Yig 6. 20 Relation between ¢ and 4s for
strain trajectories shown in the inserted mild steel S10C.
figure. The tests A, B, C and D have
pre-strains s,=0.66, 1.165, 2.20 and 3.20
percent in total value, which correspond

300 1

. . ~ o A (55=0.5%)
to the plastic pre-strain $,7=0.5, 1.0, 2.0 & % B (35=1.0%) - ]
. E —O-/c (Sg:zo "[,) unsax:al tens‘on
and 3.0 percent, respectively. The test S0 T ?233‘0%) 1

X . . X $5=2.0 %)
C’ has a tajectory which is a mirror \

transformation of that for the test C. % .
In the same figure, the curves |¢| ~ s % 7 £
for tension and torsion are indicated by "’ﬁf%@ Sol 7
the dash-dot and dashed ones, respectively. ﬁi

As shown in the figure, stress value 0 [ 2 3 4 5

S (=S50+AaS) (%)

suddenly drops for brass after the corner
an.d increases afterwards. As opposed to along the orthogonal bi-linear
mild steel, after the recovery from the strain trajectories A, B, C, D
drop in |e¢|, the curves |¢| ~ s for brass and C.
tend to agree with the curve of propor-
tional deformation corresponding to the
stress state in the second branch. For example, the curves after the recovery in
the tests A through D tend to agree with the curve of tension, while the curve
after recovery in the C’ test almost tend to agree with that of torsion. Figure
6.22 shows the modified curves |¢*| ~ s obtained by using the parameter R from

J)(D D O

e

Fig. 6. 21 |e| ~ s curves for deformation



History Effects on Inelastic Deformation of Metals 29

50’ | T
o A (S5=05°%)
@ B B (85=1.0%)
o € (S5=20%)
‘e D, (S5=3.0 %)
3 T i 60° |~ Calculation .
= ® 0.5 %) e T
£ o8 (Seroom g
Ce EEER
B B/O— O & (si20% .
S
3¢ L ° —
e
20 B 0 !
-
,/ 7 ,‘p .- A~D,C’ before modificatiory
/L —— Calculation G o 8
ol L % ! ] °s 05 10 15 20
° ' ’ ? l‘s (%) ’ AS (%)
Fig. 6. 22 Modified curves |g*| ~ s obtained Fig. 6. 23 Relation between the angle of
by using the coefficient R for delay 60 and 4s.

brass BsBM2.

the curves |¢| ~ s shown in Fig. 6.21. In the figure, the experimental curves
before modification are shown with the dashed curves for the tests A through D
and the test C'. As found from the figure, modified curves for the tests C and C,
whose trajectories are in the relation of mirror image, agree well with each other
after modification.

In Fig. 6.23, the angle of delay 4 in the direction of stress vector from that
of strain-increment vector is shown in relation to the arc length 4s. The value of
0 decreases to 0 at about 2 percent of 4s. The decreasing rate is small for a
large value of pre-strain, but the effect of pre-strain is not so significant.

6. 2. 3. Experimental results for aluminum alloy?®

Figures 6.24 and 6.25 show the curves |o| ~ s? obtained by the tests of
torsion after tension (T—S) and tension after torsion (S—T) for the deformations
along orthogonal bi-linear trajectories in the plane-e;ej.

The value of plastic pre-strain s,? corresponding to the corner is entered on
the trajectories in the inserted figure. In these figures, the curves || ~ s? for
tension and torsion are shown with the dashed and dash-dot curves. In Fig. 6.24

250 I
- =7l =5 22 265 gp. o
g //’% "‘; s 28 $ i
= ,//A/ x £ . L =
5 vﬁ//,/ 5 2000~ 1 / //’
— ' X - /4/ -
I o sl o P
M 150 = Vs
~—-— Pure torsion , &f —=— Pure torsion
e Uniaxial tension | 125 ==L A ; —==~ Uniaxial tension |
100 | | | . 100 | ! | .
0 1 2 3 A 5, 640 0 1 2 3 3 5 8x10
S 154
Fig. 6. 24 |¢| ~ s? curves of aluminum Fig. 6. 25 @] ~ sP curves of aluminum
alloy 5056 for torsion after alloy 5056 for tension after

tension. torsion.
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showing the curves |o| ~ s? for T — S, the curve after the corner for s,7=0.5
percent almost agree with that for torsion after the recovery of sudden drop in |e|.
However, those curves for s,?>>1 percent appear higher with increase of s,” after
recovery of sudden drop of [s|. On the contrary, the curves |¢| ~ sP after the
corner for S—T tend to a certain curve after the recovery, which is parallel with
that for tensison, for every value of s? (Fig. 6.25).

Modified curves |e*| ~ s? obtained from the curves |o| ~ s shown in Figs.
6.24 and 6.25 by means of the coefficient
R are shown in Fig. 6.26 with the dashed
curves (T—S) and solid curves (S—T).
As shown in the figure, the above-
A mentioned difference in the history effect
1 after the corner between the trajectories,
T~=% which are mirror image with each other,
i )M still remains after eliminating the effect
25 \%/ :;—j of I;(Ds). In other words, for the

VA ‘ geometry of trajectories, the history effect
¢ &0 after the corner for aluminum alloy depends
on the orientation of trajectory in the
space V..

Since the postulate of isotropy cannot
be satisfied for aluminum alloy even after
eliminating the effect of 7;(Dy), in order to formulate the deformation dehaviour
of such materials under complex laoding accurately, it is necessary to take into
account a parameter relating the orientation of strain trajectory in the space Vige.

Judging from the above discussion for history effect, the material such as mild
steel or brass may be classified as orientation-insensitive material and aluminum
alloy as orientation-sensitive one in the space V3,. These trends might be attributed
to a difference in the aging effects due to the deformations along the trajectories
T—S and S—T, which is remarkable for aluminum alloy.
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Fig. 6. 26 Modified curves [o*| ~ s? for
aluminum alloy.

6. 8. Experimental results for non-orthogonal bi-linear trajectories

The effect of corner angle §, on the plastic behaviour is discussed. Figure 6.27
shows the curve |¢| ~ s obtained for the deformation of the mild steel S10C along
the trajectories shown in the inserted figure. It may be seen from the figure that
le| increases after the corner, initially departing from the hardening curve for
torsion, but tending to be parallel to it at the last stage. By comparing the results
of the corresponding deformation along the orthogonal bi-linear trajectories with
these curves, it is found that the drop of stress value just after the corner does
not appear significantly for #,<60°. However, it should be noted that the curve
for @,=-—60° is higher than that for §,=—90° after recovery. Moreover, it is
found that these curves coincide with each other for the same value of @4, irre-
spective of the value of s,. This shows the saturation of the history effect for
s¢>2 percent. Figure 6.28 shows the results obtained for the deformations along
the trajectories shown in the inserted figure, which are in the relation of mirror
images of those shown in Fig. 6.27. It may be seen from Fig. 6.28 that in this
case |o| behaves in a similar fashion to that exhibited in Fig. 6.27. However, the
increase of |¢| are not as large as those of Fig. 6.27 and all curves coincide with
a curve parallel to the one for tension, irrespective of the value of #,. These
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results show that in this case, d, only has a small effect on the hardening curve

after the corner on

the trajectory.

In order to clarify the effect of §, on this behaviour of |s], relevant parts of
Figs. 6.27 and 6.28 are again shown in Figs. 6.29 and 6. 30 in detail, together with
It may be seen from these figures that,

the results of supplementary tests.
although the drop of |¢| is negligibly small for [8,/<60°,

it

increases with an
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increase in 8, for |6,>60°.

Figure 6.31 shows the curves |o*|~s obtained by modifying the results shown
in Figs. 6.27 and 6.28 by means of the coefficient R,. In the figure, the curves
corresponding to the trajectories for the same value of |8, in the inserted figure
also coincide well, which appeared quite differently before modification. In other
words, the different trends appeared on the deformations along the trajectories
being mutually mirror images may be attributed to the effect of I,(Ds) almost.

90
xe
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2 2%, -60°
) 2%, -90°
320 0 —a_
© So=2%, Bo=-30 60 59 e
- ° 2" 30" ’D/O/‘O"O‘_—O-_—O‘
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[} —-~uniaxial tension e 2%, 90°
.280 30
7,
/
260 , .
/ /g/
240 L o
A 5 0 05 1.0 1.5
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Fig. 6. 31 Modified results | 6%| ~ 4s of mild Fig. 6. 32 Variation of modified angle of
steel S10C for bi-linear trajecto- delay 0o% after the corner.

ries with 0p=:=:30° and +60°.

Figure 6.32 shows the variation in the modified value 6% by using the
coefficient R, after the corner. As found from the figure, the curves #%~d4s for
each pair of trajectories having the same values of #, and —@, are symmetric with
respect to the direction 45°, to within a high degree of accuracy. The dashed lines
in the figure, showing 6%=57° and 29°, correspond to the directions of stress vector
for proportional deformation with #,=60° and 30°.

It may be seen that for the cases |0,|=30° and 60°, §% after the corner does
not tend to 6§, in the corresponding proportional deformation, but to the angles
29° and 57°, respectively. These discrepancies are small, however, and if they are
neglected, the relation between 6% and 4s in these experiments are sensibly sym-
metrical with respect to the direction 45°.

6. 4. Experimental results for ovthogonal bi-linear strain trajectory with
rounded corner?®

Experiment investigating the history effect on the deformation behaviour along
the orthogonal bi-linear strain trajectory with rounded corner was performed on
the brass BsBM2.

The trajectories shown in Fig. 6.33a consist of the first branch of tensile pre-
strain as much as e;=1.5 percent and the second branch of trosional strain e
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changing through a quarter circle in the vector space Vi, Values of the radius
of the quarter circle were selected as =0, 0. 045, 0.09, 0. 19, 0.45 and 0.95 percent.
The strain rate along the trajectory was selected also as ds/di=3x10-6/sec.

For the procedure of controlling displacement along the rounded corner of the
trajectory, curves showing the variation with time of the axial and angular dis-
placements over the gauge length of specimen were described on each corresponding
sheet around the drums rotating with constant speed respectively and traced by
reading heads of photo-electronic type.

Experimental results concerning the geometry of the strain trajecotry are
plotted in Fig. 6.33a and compared with the corresponding curves showing the
assigned geometries. Figure 6.33 b shows the relations between the experimental
results and the assigned curves in more detail. From these figures, it may be seen
that the assigned geometry of the strain trajecotry has been reproduced well in
the experiment.

Figure 6.34 shows the curves |o*|~4s
after the end-point P, of the first branch

. e . 200

obtained by modifying the experimental 7

. %,:j
results by means of the coefficient Ry 190~ gepgnyaonm, St

S - 3 s

for eliminating the effect of I;(Ds) for %; B Exwimn/m
every radius of the rounded cormer. In 180 T DA
the figure, the dashed curve obtained & o | - r20.09% |
under pure torsion of the specimen of this x‘:‘““ A DY
type is entered for comparison. According 160 RGF T T Pure forsion = r=0.95% |
to the meaning of the modifying coefficient o by oferane
R, the curve under tension should coincide o 0z 04 08 o8 10 12 1z 1s
with the dashed curve after eliminating A5 ()
the effec.t of the third invariant. As found Fig. 6. 34 Relations between |o*| and the
from this figure, the effect of curvature arc length after the beginning

of trajectory on the relation |¢*|~4s has of rounded corner 4s.
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the following features:
(i) A significant decrease of |¢*| with the increase of 4s at constant rate,

which occured just after the corner point (r=0), also occurs even when the strain
state changes continuously from tension to torsion through the rounded corner.

(i) If the magnitudes of the stress vector for the deformation along the
trajectory after the beginning of the rounded corner of radius » and the stress
vector for that under torsion are expressed as |e*|(4s; 7) and |e*[(4s; oo0) re-
spectively, then the difference between them, viz.

dlo*|(ds; ¥)=|e*|(4d; co)—|e*|(4s; 7) (6.9)

may be taken as a value for estimating the effect of the radius of curvature on
the |o*|(4s; #). As found from Fig. 6.34, the maximum value of 4{¢*|(ds; 7) is
the larger the smaller value of 7, and the value of d4lo*|(4ds; r)/|e*|(4s; r) attains
as much as 8 through 10 percent for the experimental results in the range »<C0.19
percent.

i) Though the maximum value 4|¢¥*|... occurs after the end-point P;(s=s;) of
the rounded corner (shown by the arrow in the figure) for small value of 7, the
location where 4|e*|,,. occurs approaches the point P; with increase of » and
almost coincides with the point P; for #>>0.45 percent.

) The effect of curvature is not regarded as occuring for 4j¢*|=0. According
to the experimental results, though the value of 4|¢*| is different from zero even
when the value of # is fairly large, the effect of curvature may be regarded as
sufficiently small for =0.95 percent since the value of 4/¢%*|/|e*| reduces to less
than 2 percent.

(v) The value of 4/¢* may be regarded as tending to zero in every experiment

for the development of deformation along

o the second branch after the rounded corner.

P This shows the decline of the effect of
&%\(

o T curvature on the subsequent deformation.
= e Figure 6. 35 shows the relation between
= ide the angle of delay 6(=04.—05) and 4s
-
~

9P

Po!

o= 9t = obtained from the experiment for every
30 6™ 1.9 o)

value of the radius of curvature ». The
effect of curvature of the trajectory on

e
-
[;&}ﬂﬂ i the relation @~4s is found from Fig. 6.35
)

as follows.

The value of @ increases with the
increase of 4s and attains a very large
value for a small value of 7, but decreases

[7

0 5 10 15 zo  quickly at first and slowly afterwards
A5 (=550 (%) after the end-point P; of the rounded
Fig. 6.35 Relation between 6 and 4s. corner, and tends to zero with the in-

crease of 4s.

6. 5. Experimental results for orthogonal tri-linear strain lrajectory

6. 5. 1. Strain trajectories in two-dimensional vector space?®
Experiment was carried out to discuss the history effect and its fading feature
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on the plastic deformation along orthogonal tri-linear strain trajectories. As the
tri-linear trajectory may develop in two or three dimensional vector space, the
experiment was performed at first for that contained in the two-dimensional one,
for discussing the history effect of first corner on the second one leading to loading
or unloading.

A series of complex loadings of axial force and torque were applied to a thin-
walled tubular specimen of brass BsBM2. The specimen was finished from a bar
of brass carefully annealed (furnace cooled after soaking at 650° for 8 hours) so
that the material may have a sufficient isotropy.

Table 6.3 shows the configurations of strain trajectory used in the experiment,
which correspond to Fig. 5.3 a.

Table 6. 3 Tri-linear strain trajectory

el wen g
E 1.5 % (1.32%) T c
G 1.5 % (1.32%) T 0.25% (0.13%) S T
H 1.5 % (1.32) T 0.5 % (0.35%) S T
I 1.5 % (1.32%) T 1.0 % (0.83%) S T
! 1.5 % (1.327) T 2.0 % (1.8229) S T
K 1.5 % (1.32%) S 1.0 % (0.83%)T s
L 2.38% (2.17%) S T
M 3.35% (3.14%) S T
N 1.5 % (1.32%)T 0.25% (0.13%) S c
P 1.5 % (1.32%) T 0.5 % (0.35%) S c
Q 1.5 % (1.829%) T 1.0 % (0.83%) S ¢
R 1.5 % (1.32%) T 2.0 % (1.82%) S C
v 1.5 % A.32%) 8 0.5 % (0.35%)T s

In the table, s, or s; denotes the length of the first or second branch, and the
symbols T, S and C express the tests under tension, torsion and compression,
respectively. Moreover, the superscript p shows the plastic part of the corres-
ponding quantity. The strain rate along the trajectory was kept constant at ds/d¢
=3 x10-6/sec.

The stress vector ¢ obtained from the experiments after the second corner of
trajectories G through J and those N, P, Q and R shown in Table 6.3 are shown
in Figs. 6.36a and 6.36b. In these figures, the solid lines, the short segments with
“arrow and the small solid circles with symbol represent the strain trajectories,
the stress vectors and their starting points, respectively. Moreover, the dashed
curves express the corresponding plastic strain trajectories obtained by subtracting
the elastic part with the use of Hook’s law from each strain component obtained
by the experiment. The small open circles with symbol on these dashed curves
correspond to the above-mentioned solid circles. The symbols attached to these
small circles are ommited just after the corner for avoiding complication. As found
from these figures, the direction of ¢ after the second corner tends quickly to the
tangential direction of the strain trajectory along the third branch, and the effects
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of two right-angled corners decline with the development of plastic deformation
along the third branch. In what follows, the features of decline in history effect
will be discussed on the magnitude |o| and the direction ¢, of the stress vector in
relation to the increase of strain after the second corner.

6. 6. 1. 1. Magnitude of stress vector

Figure 6.37 shows the relation between |¢| and s? obtained by the experiments
for the plastic deformation along the trajectories G through M with various
symbols. As shown in the inserted figure,
the trajectory K is a mirror image of the
trajectory I, and the trajectories L and M e !
are the bi-linear trajectories corresponding ™~ Torsion P
to the trajectories I and J in which the
length of each first branch corresponds s
to the sum of the lengths of the first and ;f
second branches of the trajectories I and .
J, respectively. 125

In the experimental result along the
trajectory J shown in the figure, the
magnitude |o| decrease suddenly jusr after
the first corner, but increases again and
tends to lie on the curve under torsion
with an increase of plastic arc length s?.
This trend may be related with the fact that the second branch develops under
torsion, and it shows the decline in the effect of first corner on the magnitude |&]
along the second branch.

As found from the experimental results along the trajectories G through J,
each of the magnitude |o| after the second corner tends to lie on the curve under
uniaxial tension with an increase of s?. Such a trend may also be related with the
fact that the third branch develops under uniaxial tension. To be more specific,
the effect due to the two corners of trajectory on the magnitude |o| declines with

101 (MR}

Fig. 6. 37 |6] ~ s? curves of brass BsBM2
for the trajectories G through M.



History Effects on Inelastic Deformation of Metals 37

an increase of s? after the second corner, and the magnitude |o| tends to lie on
the curve under uniaxial tension. The state of decline in the effect of first corner
on the plastic behaviour along the third branch may be understood in more detail by
analysing the variation of magnitude |e¢| after the second corner. In the trajectory
G or H having a short length of second branch s;, a sudden decrease of |s| just
after the second corner does noi apper remarkably because the effect of first
corner does not decline sufficiently. On the other hand, as found from the relation
along the trajectory I or ], a sudden decrease of |g| after the second corner comes
to appear with a decline in the effect of first corner accompanying the increase of
St

This feature becomes more clear from the comparison of the trajectories I, J
and L, M. The sudden decrease of |g| after the second corner on the trajectory I
is less remarkable than that on the trajectory L, and it shows that the effect of
first corner on the trajectory I does not decline sufficiently even after the length
of second branch s;=1 percent (5,7=0.83%). On the other hand, the sudden
decrease of |¢| just after the second corner on the trajectory J(s:=2%, s:?=1.82%)
agree well with that just after the corner on the trajectory M. This may be taken
as an experimental evidence that the effect of first corner on the magnitude |¢| has
vanished in the plastic behaviour along the third branch. Thus the variation of |o]
along the third branch for a trajectory having the value s;=2 percent (s,7=1.82%)
may be regarded as that of the bi-linear trajectory M having only the torsional
pre-strain s?(=s,?+s5:?)=3. 14 percent.

Though the trajectory K is a mirror image of the trajectory I, the relation
along the third branch of the former differs from that of the latter, and thus it
seems that the special postulate of isotropy does not hold in this case. This may
be attributed to the effect of third invariant I;(D,) discussed in Section 6.1.3.
Then, the relation will be modified by using the coefficient R, for eliminating the
effect of third invariant in the same way as in Section 6.1.3. The relation between
the magnitude after the modification |o*| and s? are shown in Fig. 6.38. As found
from the figure, the relations between |o* and s? for the trajectories I and K
agree well with each other. Thus, it may be concluded that the method of
eliminating the effect of I;(Ds) from the experimental result by using the coeffi-
cient R, is available for tri-linear trajectory, and that the special postulate of
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brass BsBM2 for the trajectories
G through K.
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isotropy holds also in this case with high accuracy after eliminating the effect
of I3(Ds) from experimental results.

Accordingly, it may be said that the relation |o*|~s? can be determined by the
shape of trajectory within the range s?=1.8 percent preceding the point considered
on the trajectory.

Figure 6. 39 shows the relation |g|~s? obtained from the experiments along the
trajectories F, N, P, Q, R and U. As found from the figure, the sudden decrease of
|e| just after the second corner, unlike in the above-mentioned example for the
trajectories G through J, becomes less remarkable for larger value of s?. Moreover,
the magnitude |o| approaches that for the curve under uniaxial compression (this
curve coincides with that under uniaxial tension) with an increase of s?, but these
values cannot be said to agree perfectly. This trend reflects the softening of
material (Bauschinger effect) accompanying the unloading on the trajectory F with
0=180°.

On the trajectories N and P with a short length of the second branch s;, the
magnitude |o| does not agree with that for the curve under uniaxial compression,
because the trajectories N and P are akin to the trajectory F and a sufficient
strain hardening does not appear with an increase of arc length after the second
corner. However, the effect of first corner declines with an increase of sy, the
softening effect becomes less remarkable, and the magnitude |a| after the second
corner of these trajectories seems to approach that on the curve under uniaxial
compression, just in the same way as for the bi-linear trajectories L and M.

As found from the figure, the magnitude |o| after the first corner almost agrees
with the curve under torsion, and the behaviour of [¢] after the second corner on
the trajectory Q or R, in which the effect of first corner may be supposed to have
vanished, approaches that of dashed curve of orthogonal bi-linear trajectory L or

M, while the magnitude |¢| for the former appears a little lower than that for the
latter.

Judging from this trend, though the effect of the shape of trajectory on the
magnitude |o| has vanished apparently after the first corner, something similar to
Bauschinger effect may be said to persist more or less. In other words, when the
direction of de is reversed on the trajectory such as on the trajectories N, P, Q
and R, the above-mentioned principle of fading memory cannot be said to hold
perfectly even for a sufficiently long s;.

Though the trajectories U and P lie
in the relation of mirror image, the

, —
5t ::;o,s;o:{ (okoe = /":/_ —  corresponding relations |o|~s? are dif-
N ~1, —=*—"] ferent from each other because of the
e T = effect of I4(Ds). However, these relations
175 /// < may be modified by using the coefficient
ol R, into an identical relation |[g%|~s?
;‘Ef ] }f e shown in Fig. 6.40 with various symbols.

o v Pesosew | From this result, it is found that the
10¢ o Rem2om special postulate of isotropy may hold
’s / . : with high accuracy after eliminating the

° ’ *o effect of I;(D,) from the experimental

Fig. 6. 40 Modified curves |g*|~s? of brass result by using the coefficient R, even
BsBM2 for the trajectories F, when the direction of de is reversed on
N, P, Q R and U. the trajectory.
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6. 5. 2. Strain trajectory in three-dimenstongl vector space®®

Plastic behaviours of mild steel S15C
along the orthogonal tri-linear strain
trajectories were examined as the most
fundamental example of three-dimensional
strain trajectories. Figure 6.41 shows the
tri-liner trajectories in the three-dimen-
sional vector space, where a length s, of
the first branch was kept constant at sq
=2 percent and the deformation along the
third branch was realized under combined
loadings of compression and torsion in
the direction of an angle 4, from the axis
¢, in the plane-¢;e,; which is perpendicular
to the second branch. Seven values of the
angle 6.(=0°, 30°, 60°, 90°, 120°, 150° and
180°) together with four lengths of the
second branch s,(=0, 0.25, 0.5 and 1.0%,
si: a length along the second branch) were
selected in the experiment. A strain rate
along each of these trajectories was kept
constant at ds/dt=3x10-6/sec.

Figures 6.42 through 6.44 show the
curves |o*|~s for s;=0,0.25 and 1.0
percent obtained by modifying the ex-
perimental results by means of the coef-
ficient R. In these figures, the dash-dot
and dashed curves show the results of
compression and torsion tests before
modification, respectively. In every figure,
the magnitude |¢*| decreases suddenly just
after the point B(point A for s;=0%).

However, the decrease is recovered and
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the curve tends to become parallel with the dashed one. Moreover, such a trend
varies quantitatively in a wide range with respect to the values of angle ..

In the case of s;=0 percent, the magnitude |{¢*| decreases little after the point
A for 0.=30°. However, the decrease becomes to appear significantly with an
increase of §.. Though every curve for 6,<120° tends to lie on the dashed curve
after the recovery, the curves for §,=150° and 180° tend to parallel with, but
fairly lower than, the dashed one.

In the case of s;=0.25 percent (Fig. 6.43), the starting point B of the third
branch is situated on a way of recovery from the drop of |o*| after the point A.
Thus, though the drop of |e*| just after the point B due to the effect of first
branch differs fairly remarkably in relation to the angle 4, an extent of drop
decreases in comparing with that after the point A for the case of s;=0 percent,
especially for 6,>>90°. This shows a quick decline, in the early period of second
branch, of the history effect of first branch on the deformation along the third
one.

In Fig. 6.44 corresponding to the case of s;=1.0 percent, the starting point B
of the third branch lies on the dashed curve after the recovery of the drop of |o*),
and the effect of 4, becomes sufficiently weak in comparing with the case of s;=
0.25 percent. In other words, the curve corresponding to each value of 4, lies very
close to that for 6,=90°.

As an index for estimating quantitatively the history effect, a ratio of deviation
r1=(o*|—|o*};) /|¢*|; of the magnitude |¢*| from the corresponding magnitude |a*|,
on the dashed curve is shown in Table 6.4 at a point after the start of the last
branch by 1.5 percent, for each value of 4,.

Table 6. 4 Values of r1(%) at the points after the second corner by 1.5 percent

P 0o | 300 60° 90° 120° 150° 180°
0 % - 2.9 2.0 | -13 ~2.1 ~5.0 | —1L9
0.25% 0.3 1.5 0.3 | 0.8 -2.8 | —3.6 ~7.3
0.5 % 1.1 2.4 1.1 0.1 ~17 | —16 —4.2
1.0 % 1.6 2.4 2.7 0.4 ~13 | -17 —2.2

As found from the table, the maximum deviation (for 0,=180°) in these curves
for each value of s; from the dashed curve becomes less with an increase of s;.
Moreover, for s;=1.0 percent, every curve may be regarded to agree with the
dashed curve within an error of 3 percent. Such a trend shows that every curve
tends to the dashed one with the increase of si.

As another index for estimating the fading property of history effect due to
the second branch, relation between a ratio 7,(=4|o*|/|6*]s) of the amount of drop
4]e*| after the point B(point A for s;=0%) to the magnitude |e*|z at the point
B(or A) and the length s; is shown in Fig. 6.45 for each value of 6,.

As found in the figure, the ratio #, is affected little by s; for 6,=90°, but it
decreases remarkably in the range of $,<0.25 percent for 6,>90°. For the case
of §,<90°, the ratio 7, increases slightly with the increase of s;. In other words,
if the third branch lies in an unloading situation even partially to the first one,
the scalar effect of the latter on the deformation along the former decreases
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quickly for the existence of the second 100
branch, especially in its early period. In
the case of s;=1.0 percent, the ratio 7,
for the curves corresponding to 6.>90°
and 4,<°90° deviate from that for 6,=90° 7
almost symmetrically, and the ratio for

every curve may be supposed to tend to

that for ,=90° in such a manner there- 4
after.

2 (%)

Fig. 6. 45 Relation between ry=4{6%|/|o*[z and s1.

Chapter VI Formulation of the Experimental Results

In order to apply the results of experimental investigation to the deformation
analyses, constitutive equation should be formulated from the results in a form of
stress-strain relation. The effects due to the complex deformation history on the
deformation behaviour of metals may be reflected as variations in the relation.

Concerning the method to formulate stress-strain relation from the experimental
results, a method to formulate a stress-strain relation as a tensorial one has been
introduced in Chapter . Another method to formulate stress-strain relation of
integral type may be established according to a concept of the intrinsic time scale
proposed by Valanis2?? in his endochronic theory.

These methods may be used to establish precise expressions of the history
effect for deformation along each of complicated strain trajectories. However, the
expressions of experimental results in these types may lead fairly complicated
ones for complicated strain history.

On the other hand, if the stress drop just after the corner on the trajectory
and the succeeding recovery would be negligible, the stress-strain curve may be
approximated by the curve for the proportional deformation after modification.
Judging from the experimental results, the stress drop just after the corner of bi-
linear trajectory does not appear significantly for the angle of corner less than 60°.
Moreover, the drop decreases with the decrease of curvature of the corner for bi-
linear trajectory with rounded corner. Thus, this approximation may be useful for
the deformation analyses of practical structure, because the strain trajectory in
most of the element of engineering structures or materials under plastic processing
may be expected as that of medium curvature.

The above-mentioned situation in mind, examples of these three methods will
be considered in the following.

7. 1. Stress-strain relation in the form of tensorial equation'®
From the discussion in Chapter ¥ and its experimental verification for special
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case in ChapterVl, every strain trajectory
oriented in the direction of I;(Ds)=
constant is tensorially equivalent, whereras
the corresponding stress state may be
different. For example, equivalent strain
trajectories for the trajectory 2E shown
in Table 6.1, obtained by rotating the
coordinate axes established in the element

-t
! ]
i . .
) I | 5 - by an angle ¢ around the axis-3 (radial
e . . N . .
® R AT '!‘/230 e,  direction of the specimen), are shown with

§% ‘//%{/,/1 e the thick solid lines in Fig. 7.1. In other
174 '8 g R .

i 1./0//3///&\*?3 7 words, an orthogonal bi-linear trajectory
Y ey having the right-angled corner at arbitrary
|///’ — , . . =
4 point on the circle 73;(Ds)=constant on

20 the spherical surface, whose center lies at

& the origin, may represent all the trajecto-

ries having the corner point on the circle.

On the other hand, since the plane
4/ 3e,—e,=0 intersects with every circle
mentioned above, as seen in Fig. 4. 3, every
trajectory having the corner on the spherical surface may be equivalent with either
trajectory having it first branch in this plane. When a coordinate system e;’e;’e;’
(Fig. 4.3) is introduced by rotating the system e;ejze; by 120° clockwise around
the axis-3, the values of ¢,/, ¢y’ and e¢;” may be expressed as follows:

e/ =—(e; 1+ 3¢)/2=—(e11+€3), ¢/=(+/3e —¢,)/2
=(e11—03)/4/' 3, es’=e;=2¢e1,/+/ 3. 7.1

7

Fig. 7. 1 Orthogonal bi-linear strain tra-
jectories equivaent to that for
the test 2E.

Since the plane 1/ 3e;—ey,=0 is expressed by the plane-¢,’¢;’ in the system eq’e.’es’,
every trajectory mentioned above may be replaced by a trajectory having its first
branch in the plane-ei’ey’.

7. 1. 1. Stress-strain relation for orvthogonal bi-linear strain trajectory
whose first branch lies in the plane-e;’es’

As shown in Fig. 7.2, an orthogonal bi-linear trajectory is considered in which
the first branch makes an angle 8 to the axis-e,’ in the plane-e¢,’¢;’, and the second
branch makes an angle « to the plane-e;’¢;’. Moreover, s, denotes the length of
the first branch (pre-strain) and 4s denotes that of the second branch after the
corner. When a local coordinate system o,'0,’0;" whose axes are parallel with those
of the previous system is established at a point on the second branch, the relation
between ¢,’, 05/, 03’ and o4, 0, 03 are expressed as follows:

0y = —(01+4/202)/2=—3(811+822) /2,
0 =(4/301—03)/2= 4/ 3 ($11—522)/2,
0y =03=1/ 3 S12. (7.2)

the vector de coincides with that of the second branch and the

£

The direction of
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direction of ¢ delays by an angle ¢ from
that of de in the plane of bi-linear trajec-
tory. Therefore, in order to formulate
the stress-strain relation in the form of
Eq. (4.13), it is necessary to determine
the orthogonal rotation tensor L as well
as the angle of the stress state «, and
the intensity (s of the stress deviator
Ds.

o5}

|/10 1 cosat cosgcos B {0 lsind sinB

Fig. 7. 2 Local stress space Vo (o1’ g2', 03")
on the orthogonal bi-linear strain
trajectory in the space Vze(ei' ez,
e3").

7. 1. 1. 1. Determination of angle as 07 aq.

When the direction of ¢ delays from that of de by the angle ¢ at the length
ds after the corner, the following relations are obtained from Fig. 7.2:

o,'=la|(sin 0 cos §—cos @ cos & sin 8),
g,/ =|c|cos 0 sin &, o, = a{(cos 0 cos & cos 3+ sin 0 sin @), (7.3)
Moreover, the following relation is obtained from Egs. (4.33) and (7.2):
I,(D,)=cos3a,=0c;(0{°—30;"—303%) /(ai+05"+05%) %2, (7.4)
By substituting the relations (7.3) into (7.4), as is expressed as follows:
a,=(1/3)arccos (sin @ cos 8—cos § cos « cos f3) {(sin 0 cos {8
—cos 0 cos a sin 8)2—3 cos?0 sin’a—3(cos § cos & cos B
-+ sin 6 sin 8)%} ], (7.5)

In the same way, as for the vector de, the following expressions are found from
Fig. 7.2:

de,/ = —\|del cos a sin B, de,’=|de| sin «, de,’=|de| cos & cos 3, (7.6)

By substituting the relations (7.6) into the relation obtained from Egs. (4.31) and
(7.1), ay, is expressed as follows:

tg=(1/3)arccos{— cos« sin (cos’a sin?f—3sin’a—3 cos*acos’P)}. (7.7)

7. 1. 1. 2. Determination of the orthogonal rvotation tensor L

There exist the following relations between the orthogonal rotation tensor
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L(=L;jee;; i, j=1, 2, 3) and the rotation vector @=w,e, :
L=exp(wf)=1+sinwf+ (1—cos w)?,
Li=exp(—wf)=I— sinwf - (1 cos )22 (7. 82)

and
]zgijeiej, Q:injeiej, Qij:(aij‘*a,ji>/27 a’ij:eijk&,,g., <7. Sb)

where w denotes the magnitude (rotation angle) of @, and «, denotes the direction
of @ (direction cosine of the axis of rotation).

Along the second branch of the orthogonal bi-linear trajectory, the magnitude
 is given as

W= W g~ Wy, (7.9a)

where
tanZ2w, =285/ (S11—S32)=03/05=(cosf cosc cos 3+ sin ¢ sin ) /cosf sin«,
tan2w,,=2de,,/(de,,—de,,)=de;/de; = cosa cos 3/ sin, (7.9b)

Since the axis of rotation coincides with the axis-3 (radial direction in the
specimen) of the coordinate system established in the element, the above-mentioned

R=ee,—ee, 2'=—ee,—e,e,, (7.10)

By substituting Egs. (7.9 a), (7.9 b) and (7.10) into (7.8 a), the orthogonal rotation
tensor may be obtained.

7. 1. 1. 3. Determination of (s

The parameter {, expressing the intensity of D, is given in the following form:

Lo (48)=[a[(48)/ v/ 3 =|o*|(45)/V 3R, (7.11)

where R is given by Eq. (6.7). Since the expression {arccos 7,(Ds)}/3 in Eq. (6.7)
corresponds to as given in Eq. (7.5), if the functional form as(4s) in Eq. (7.5) is
obtained from the experimental results, (s(4s) may be found with the use of
|o*| (4s).

The relation between D, and D, may be obtained by substituting these para-
meters into Eq. (4.13). From the relation thus obtained, the stress deviator Dg
may be calculated along the second branch of bi-linear trajectory whose first branch
lies in the plane-e,’es’.

7. 1. 2. Stress-strain relation for orthogonal bi-linear trajectory of
arbitrary orientation
Stress-strain relation along the second branch of orthogonal bi-linear strain
trajectory, whose first branch starts at the origin (state of zero strain), may be

determined by selecting the corresponding angles « and § in Fig. 7.3 in the follow-
ing manner.
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If a strain vector on the first branch
and a strain-increment vector on the \
second one are expressed by e,=e?n; and \ @
de,=deln;, where n; denotes the base
vector of the axis-e¢;/, respectively, the
following condition holds:

ey AN

|
e
Al
/
Fig. 7. 3 Equivalent orthogonal bi-linear
trajectories in the space Ve
e -de, =0, (7.12)

One of the orthogonal bi-linear trajectories equivalent with the above-mentioned
ones, whose first branch lies in the plane-e ¢y, is shown in Fig. 7.3 with the
dashed line. In the same figure, the relation

cos f=n,"+e./|n'||es=e,/ €, (7.13)

may be found. From the relation AB=e,~0A=e,—|eq|n1'/cosp, the following
relation is obtained:

cos a=de, - AB/|de,||AB|= —de,/|de, sin . (7.14)
These relations are expressed in tensor components as follows:
cos B=—(efit+ezn)/(2e5;e/3)1 %,
cos a=(de}+deb)/(2deldel/3)* ?sin B, (7.15)

7. 1. 3. Determination of the functional forms of |e*|(4s) and 6(4s)

On the second branch of the strain trajectory, the components of stress vector
parallel and perpendicular to the trajectory are designated as Gy (4s) and G,(4s).
Since the component perpendicular to the trajectory decays with increase of 4s
from the value at the corner, the functional form G,(4s) may be obtained from
Fig. 6.19 and 6.20 as follows:

G, (4s) =223 exp(—2. 845), (7.162)

where 223 MPa corresponds to the magnitude of the modified stress vector at the
corner point.

On the other hand, the component of the stress vector parallel to the trajectory
increases almost exponentially with the increase of 4s just after the corner, thus
the form of G;(4s) may be approximated by
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G (4s)=232. 4{1—exp(—7.445)} +|35.58(45)*7—9.8],  (7.16b)

where the second term on the right hand side modifies the function so that the
experimental result may be approximated well for large value of 4s. This term
does not affect significantly the value of |o*|(4s)=G(4s) at the corner (4s=0)
for the sufficiently large value of G,(4s). Then, the functional form of G(4s) is
obtained from the following relation:

G (45)={G? (45) +G}(48)} 72, - (7.160)

The functional form of @(4s)=F(4s) obtained from the experimental result
may be expressed as follows:

F(4s)=30{2exp(—104s8) +exp(—2.549)}. (7.17)

The results of je*| and 6 calculated by Egs. (7.16) and (7.17) are shown in Figs.
6.19 and 6. 20 with solid curves, respectively. As found in these figure, the functions
(7.16) and (7.17) are close approximations of the experimental results, respectively.

7. 1. 4. Calculation of stress-strain relation and comparison with the
experimental result

The calculation was carried out for the above-mentioned strain trajectories 2C
and 2E (Figs. 6.16 and 6.18). These two trajectories are equivalent tensorially and
correspond with the case of cosa=0 and cos = —1/2 as found from the relation
(7.15). In this case, the angle e, expressing the stress state is obtained from (7.5)
as follows:

a,.=(1/3)arccos(sin®0-+ (3/2) sin § cos?d). (7.18)

As the relations
tan2w,= (/3 /2)tand, tanZw,=0 (7.19)
are obtained from (7.9b), the direction of principal axis is determined as follows:
w=(1/2)arctan{(+/3/2)tan6}, (7. 20)

The orthogonal rotation tensor L is obtained from (7.8a), (7.10) and (7.20) as
follows :

L=cos[ (1/2)arctan{(+/ 3 /2)tan 6} |(e,e;+e,e;)
+sin[ (1/2)arctan{(+/3/2)tan 6} ](e,e,—e,e,) +e,e;,
L '=cos[ (1/2)arctan{(+/ 3 /2)tan b} |(e,e;+e,e,)
—sin[ (1/2)arctan{(+/ 3 /2)tand} J(e;e,—e,e;) +ese;,  (7.21)
From (7.11) and (6.7), the following relation is found:
. =G(45)/v/ 3R,
R=[1 +4(R% —1)cos?{27/3— (1/3)arccos(sin®0+ (3/2) sin  cos?6)} |2,
(7.22)
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By substituting these relations into (4.12) and using the relation §=F(4s), com-
ponents of D, may be expressed in relation to 4s as follows:

$;;(48) =G (4s)(sin {x/3+ (1/3)arccos [ sin®0 -+ (3/2) sin 6 cos?0 ]}
X Lyde, Lit/C.-++/3 sin{x/6— (1/3)arccos [ sin®0-+ (3/2)
% sin@ cos?0 Y[ L de,nden, L/l —~/2/30,;1)/[3+12(R5—1)
% cos? {27 /3— (1/3)arccos [ sin®0+ (3/2) sin § cos?0 1} 1*/2

(¢, 7, B, m, n=1, 2, 3), (7. 23a)
where
Lyy=L,,=Li*=Ly'=cos[ (1/2)arctan(+/ 3 tan 0/2)7,
Lyy=—Ly = —Ly'=Lz'=sin[ (1/2)arctan(+/ 3 tan6/2) ],
Ly;=Lgz=0,
Lyy=Ly=Lyy=Lyy=Ly'=Ly'=L3'= Ly'=0, (7.23b)
and

R,(s)=1—1/(21. 485%2%),
G(48)=([232.4{1— exp (—7.445)} +|35.58(48)*"—9.8[*
+ {223 exp (—2.84s8)}23"?, (7.23c)
F(48)=30{2exp (—1048) +exp (—2.548)},

s=/372(," (deyde)'?, ds=s—s, $=2%. (7. 23d)

The results of calculation are shown in Fig. 7.4 by the solid curves. In the
figure, various symbols show the corresponding experimental results. These solid
curves approximate the experimental results with high accuracy, and almost the

same degree of approximation can be ob-

tained for other experimental results.
300

] Therefore, it may be concluded that the

_ ] Mww tensorial equation (4. 12) may approximate

§ %&y?f}‘ﬂw o o with high accuracy the stress-strain rela-
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trajectory in the set of orthogonal bi-linear strain trajectories of fixed geometry,
if the deformation characteristics of the material are measured along anyone of
them.

The above-mentioned history effects cannot be formulated by the conventional
flow rule. However, in the range 4s>>1.0 percent, since such a complicated history
effect declines sufficiently, the conventional stress-strain-increment relation may
become a good approximation.

7. 2. Stress-strain velation of integral type accovding to the concept of
intrinsic time scale?®

In the vector space corresponding to the strain deviator, a geometrical concept
of deformation history may be secured by drawing curves in the space. When the
curve is assigned, if closely adjacent two points are taken arbitrarily on the curve,
the stress increment between these two points depends on the corresponding strain
increment through the following form:

de=K'de,

The coefficient K’ plays a role of influence function operating on the strain-
increment. If the deformation property does not vary completely, K’ may be
expressed in terms of a matrix having constant elements and is independent of the
geometry of the curve. This situation corresponds to the elastic deformation.
When the history dependence appears, the influence function varies at each point on
the curve according to its geometry. The coefficient of de at the preceding point
contributing the stress-increment de¢ at a point considered on the curve may be a
function of arc length together with the geometric parameter (curvature, torsion
and others) of the curve. Accordingly, the stress state at a certain point (s) on the
curve may be expressed by an integral form

G(S)ZS;K(M; s, shde(s") 0<s'<(s (7.24)

of the stress-increment taken at every preceding point (s’), where s and s’ denote
the arc length of the curve up to the corresponding points, and «;(s’) are the
geometric parameters. Ilyushin?’ proposed another integral form:

6(S>:Si_hK(K"; s, sNde(s"y s—h<(s'<s, (7.25)

restricting the range of integration to a finite arc length % (s—h<(s’<(s) preceding
the point (s) instead of of 0<(s’<(s, by taking into account the fading memory which
appears in real materials. The arc length % is called “trace of delay”. This
hypothesis is called Ilyushin’s “principle of delay”. According to this principle, the
expression of the history effect may be remarkably simplified, since the effect may
be considered by taking account of the geometry of the curve only in a finite range
preceding the point considered.

In the linear viscoelastic theory, for the stress-strain relation of history
dependent materials, the stress components at a certain instant in the real time
scale during the deformation process have been expressed in the following form:
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75 (D)= Koty )denu(s) 0<r<t, (7.26)
In this form, since the stress-strain relation is expressed in terms of real time as
a parameter, the influence coefficient may be understood as a function of real time.
That is, the deformation property may be understood to vary according to real
time. However, since the deformation property of real materials depends not on
time but essentially on deformation history, the concept expressed in the form
(7.26) is not always accurate because it may express definite deformation phenomena
only when a certain relation between deformation history and time is given for the

influence coefficient.
In the linear viscoelastic theory, the form

¢
05O = Kijua (=) dena(s) 0ot (7.27)
is often used as a special case of (7.26) together with

Kijmn<t_“-) :/lijmnem,\(t-” (7. 28)

for convenience of calculation as well as for the consideration of fading memory.
Such a coefficient of the difference type is a fairly strong limitation, since it is
effective only for the deformation in which the influence function may always be
described using Eq. (7.28) for arbitrary instant f.

Recently, Valanis?? proposed an “endochronic theory” for materials with memory
depending on deformation history. According to this theory, the relation between

the stress deviator S;; and the strain deviator e;; is expressed in the following
form:

. ¢ .
Su=2 Kz, )L ds =2 Kz, 20 2oar @.29)

2 ac

with the use of an intrinsic time scale z, where an intrinsic time measure ¢ is
defined as:

di*=k*de;;de;; (k>0: material parameter), (7. 30)

The intrinsic time scale z, which expresses the sequence of variations of deforma-
tion behaviour of materials and does not necessarily correspond to real time, is

defined as a monotonously increasing positive function of the intrinsic time measure
{ as follows:

dz(0)= or z(C)zgg ac

at

(e o SO
It may be found from Eq. (7.30) that the intrinsic time measure ¢ is a certain
parameter expressing the deformation behaviour in relation to the deformation
history of materials, and thus the measure is related with the state and intensity
of deformation. As found from Eq. (7.31), if a converted time scale reflecting
the history dependence is used for establishing a stress-strain relation, the formula
(7.29) having the same form as Eq. (7.26) may be expressed in an analogous form
as Eq. (7.27) together with Eq. (7.28). The corresponding influence coefficient of

dz/d:>0, (7.31)
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difference type K{z({)—z({)} is free from the above-mentionned limitation,
according to which Eqgs. (7.27) and (7.28) have been restricted. This is so because
the value z(£)—2({’) is not constant but is always a function of the corresponding
value of ¢. In other words, the formula (7.29) may express non-linear effect of
deformation history nevertheless it has a linear form with respect to the intrinsic
time scale z, because the non-linear variation of deformation behaviour of material
in the course of deformation may be separated in the function f({). Consequently,
the stress-strain relation may be formulated reasonably for plastic behaviour under
arbitrary deformation history, if Valanis’ endochronic theory is used together with
Ilyushin’s postulate of isotropy and principle of delay.

As an example of the application of this theory, Valanis calculated a plastic
deformation under tension after torsion??”. He expressed Eq. (7.30) in the form
dt2=k,de?+Fkydn?, used a linear function f({)=1-+p¢ of ¢, and established a
stress-strain relation by using the parameter {,=Fk,8 showing torsional pre-strain
as well as a cross-hardening parameter 8. Moreover, the relation (={,+k,¢ or
d{=Fk,de is assumed in the tensile deformation, and a new parameter $;=Fk8 is
determined under the assumption that the stress-strain curve under unijaxial tention,
starting at the state where effect of pre-strain has vanished after pre-torsion,
would tend to a linear form

_ B, 0.
= (1+8:0), (7.32)

for a sufficiently large value of tensile strain e.

However, his method as quoted above was not found to be sufficient to approxi-
mate with high accuracy the experimental results of plastic deformation of brass
under the severe history effect mentioned in Section 6.5.1. ‘This may be attributable
to the fact that the influence function and the intrinsic time scale z were not found
in suitable forms to reflect reasonably the severe history effect.

In what follows, a method is proposed to formulate the experimental results
of plastic deformation of brass having the severe history effect in the form of
integral type, by selecting the influence coefficient and the intrinsic time scale z
so as to reflect reasonably the history effect.

o

7. 2. 1. Fundamental equations

The history of strain deviator appearing in the thin-walled tubular specimen
under torsion and axial force may be described as curves showing the strain tra-
jectory in a vector plane of the strain deviator (e;=e1;. e3=2¢:5/4/3), where
¢11 and e, denote the axial and shear components of the strain deviator calcu-
lated from the experimental results of the thin-walled tubular specimen, and the
indices 1 and 2 correspond to the axial and circumferential directions of the
specimen, respectively. As mentioned in Section 4.2, the states of the strain
deviator and its increment at each point on the curve may be expressed by a
strain vector e=eq1n1-+(2/4/3)e12n3 (e] is equal to the effective strain e.q) and
de=deiin1+ (2/+/3)de,sn,, respectively. Moreover, the state of stress deviator
may be expressed by a stress vector e=o;n,++/ 301213 (Jo] is equal to the
effective stress o.,) in a local vector spece of the stress deviator (S;,=(2/3)
Xo11=1(2/3)01, S13=013=03/+/3), where o, and o,, denote the axial and shear
stress components. These components appear in the specimen, which are used



History Effects on Inelastic Deformation of Metals 51

after modifying the effect of third invariant by means of the coefficient R, intro-
duced in Section 6.1.3. The orthonormal base vectors rn; and n; are used in the
stress and strain vector spaces in common.

By using the components mentioned above, the formula (7.24) is expanded into
the following forms:

S 2 S

0'11:S Kii(s, s ffi)d911+"?‘“*g Ki5(s, 8'; r)deyy,
0 v 3Jo

s s , 2 s ,

\/3”12350[{21(3, s ﬁi)d911+“\7=“§S0K22(3, 8" k)deyy, (7.33)
where «; in the argument of the influence function in Eq. (7. 33) are the geometric
parameters of the strain trajectory expressing the deformaiton history of materials
quantitatively. If the history effect including the effect appearing in the case of
zero curvature is reflected in the functional relation z(s) by putting {=s, and the

influence coefficients are expressed as K,;{z(s), z(s")}, the above formula (7.33)
may be transformed as follows:

s 2 rs
=5 Su={ Kulz(s), 20 St as + ol Koalz(s), 2(s)) Lz as,

VEo=vESu={ Kalz(s), 2(s)) Lty

ti_zgsz{ (2(9). 20 Ltas (7. 30)
RV R ’ ds' ' ’

Valanis defined the intrinsic time measure ¢ in relation to the feature of
strain state and the response of the material to that state in the material parameter
k in Eq. (7.30). He also determined the influence coefficient in the form of the
scalar function according to the proportional deformation by assuming a simple
scalar relation between the intrinsic time measure and the intrinsic time scale.
However, his method is not suitable to formulate reasonably the deformation
behaviour along the strain trajectory with a corner. On the other hand, in order
to reflect the experimental fact in which the response of materials is affected
essentially by the existence of corners, the influence coefficients and the functions
z(s) and z(s') in Eq. (7.34) are assumed to have different characters before and
after the corner.

7. 2. 2. Stress-strain relation of brass for the deformation along orthogonal
tri-linear strain trajectory in two-dimensional vector space

The experimental results discussed in Section 6.5.1 along the orthogonal tri-
linear trajectories in two-dimensional vector space are formulated by using Eq.
(7.34).

As shown in Fig. 7.5, the experimental results have been obtained along the
strain trajectory conmsisting of the first branch (de;,>0, dey =0, 0<ls<sy), the
second branch (de;; =0, dey, >0, so<s<(s,) and the third branch (dey 1540, de, =0,
$1<s), and thus the stress-strain relation will be formulted in relation to each
branch.
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2e,//3
R($122.0%) =2 T (51=2.0 %)
Q(S$:=1.0 %) =1 1(S=1.0%)
P($1=0.5%) H(s,=05% Fig. 7. 5 Orthogonal tri-linear strain trajecto-
N($y=025%) 6(51=0.25%) ries in the space Vae.
F(Si=0 %) L |

1 S, 2
(=1.5%) ey

7. 2. 2. 1. First branch (0<s<(sy)

Since de;; >0, de;,=0 and there is no shear stress (o;,=0) in this branch, the
stress-strain relation may be established from Eq. (7.34), by using K, and 2,(s)
as the influence coefficient K and the intrinsic time scale z(s), as follows:

S0 () =2 Kalzu(9), 200} Gas' (7.35)

If a function of the difference type
Ko{2.(8), 2a(SN}=poexp [ —{2.(8) —2.(8)} ], wme=const (7.36)

is used as the influence coefficient, then the contribution of the strain increment
de at the preceding instant of the intrinsic time scale z,(s’) to the stress increment
de at the instant z,(s) decreases from a constant amount de¢=p.de exponentially
in relation to the intrinsic time interval between these two instants, and Eq. (7. 35)
is described as follows:

S11(5) :%ﬂae—zacsgz 02:() ‘ifsl,1~ds', 0<s'<s (7.37)

Since the variations of the deformation property are reflected in the functions z,
(s) and z,(s"), the coefficient of the difference type may be applied to arbitrary
value of s and &, and the above equation can formulate the experimental results
with high accuracy.

7. 2. 2. 2. Second branch (sy<<s<sp+S$1)

When a point under consideration (s) lies in the second branch, the contribution
of de at the preceding point (s’) to the stress-increment do at the point (s) is
quite different from that in the previous Section 7.2.2.1. For example, de(de;,
>0, de;,=0) on the first branch changes suddenly into de(de,,;=0, de,;.>0) at
the corner point s=s,, while |de|/di{(=3$) is kept constant along the the trajectory,
and S;; decreases quickly at first and slowly afterwards along the second branch.
This trend may be attributed to a kind of instability in microscopic structure of
materials at the corner sy=e¢;; besides the relaxation of S;; due to the sudden
vanishment of de;;. The instability may correspond to a release of dislocation
which has piled up during the deformation process along the first branch by a
disturbance de;, applied after the corner in another direction® (release of locked
potential energy). By taking account of these effects, the influence coefficient on
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the second branch is distinguished as K, which is different from K, on the first
branch. Moreover, for the same reason the intrinsic time scale should also be
different according to whether the preceding point (s') lies on the first or second
branch. Therefore the influence coefficient at the point (s) on the second branch
may be selected as

Ky{2,2(8), 202 (8N} =pyexp [~ {2, () =2, ()} ]
for z(so) <z(s) <2(so+s1), 2(0) <z(s) <z(sy),
Ky {205 (8), 250 (8N} =ps exp [ — {255 (8) =250 ()} ]
for z(s,) <z(s) <Cz(s,+8,), 2(8,) <<z(s")<<z(s), (7.38)

and the stress-strain relations on the second branch are found from Eq. (7.34)
in the following form:

~So Se
S, :33 Ky {2,0(8), 2.(s)) ‘ff;f ds'=2 o 2| ezwwwi‘%—dsz
0 0

3 3
SlZZ%S K, {2,:(8), 248 (s')}—éﬁ?mds ::%/,Lb ’?(S}Sz ezw(s’t—ﬁdjslf ds’,

(7.39)

because de,,=0 (0<<s<sq) and de;;=0 (s¢<<s). The influence coefficient K, is
equal to 0 because there is no shear stress S;; on the first branch, and K, is
taken as 0 since the effect of torsional strain to S;; after the corner has been
considered in the difference between K, and K.

By using the expression Si;(S¢)=0,, 0, may be found from (7.37) and the
following relation is obtained from (7.39) .

2 (S) Z, (St dell ’
ag " S C b il ds
3/ b Q ds' ’

In this way, we get

So
S AT del} ds'=-3 7oe%0atS)
i] dS 2/1',5

Consequently, the stress-strain relations on the second branch may be established
as follows:

S11(8) =000~ Foa® Fpa) S (s) =2 Sme <s>§ PE ‘ifwazs (7. 40)

7. 2. 2. 3. Third branch (sq-+-5,;<8)

Since the method for deriving the stress-strain relation is almost the same as
those in the previous section, only the results are described without detailed
derivations. There are de;;¢0 and de;,=0 on the third branch, and thus the
stress-strain relation may be expressed as follows:
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2 _ So de - s
Si=“2y.e zw(S)SO 07ealSD dsl’l ds'+ 2 P ZCT(S)S

de
3 vg—/,lc ezcr(s)—‘w«dsl,LdS/,

So+8:

_2 ~2,,(9) Sot S 3, (SN deiy ;.
Sia= 4 e e S eseron Lz dy (7. 41)

If the values of S;; and S;, at the second corner s=so-+s; are denoted as o; and
71, the following relations are obtained from (7.41):

S de N
S ezw<31) d 1/1 dSl?—“ 93 qlezcd(s“‘s’),
0 S Lfhe

de 3
S I 12 g — T10%ep(Sot S0

So ds Zﬂc

Consequently, the stress-strain relation on the third branch may be established as
follows :

S

de
S11(s) :ole--{zw(s>—zw<so+s,>}+%Mce~z”<s)g ezcr(s,)TSl'lﬁdS,’

So+ 82

S12(8) =710 Eep®Fey(sr 5, (7.42)

7. 2. 3. Determination of the intrinsic time scale z and the coefficient u

7. 2. 3. 1. First branch (i, 24)

The following equation may be obtained by the Taylor expansion of Eq. (7.37)
in the vicinity of s=0 and after disregarding the infinitesimal terms higher than
the second order :

481;=5,,(4s) -‘511(()):%/111 d;; AS:%/;GAS (ds=deyy), (7.43)

By using (7.43), ¢, may be determined from the tensile stress response in the
early stage of deformation.
The formula

dz,=[(2/3) p.de;—dS;,1/S1 (7. 44)

to find dz, may be obtained by tranforming Eq. (7.37) into a differential type.
The values of z,(s) and dz,(s) may be calculated by using Eq. (7.44) from the
experimental results obtained by uniaxial tension.

7. 2. 3. 2. Second branch (tts, Zvar Zsp)

The expression (7.40), has the same form as Eq. (7.37). Thus the following
formula may be found in the same way as that for Eq. (7.43):

de 2

d;‘? AS:—g-ﬂbAS (ds=4dey,), (7.45)
By using Eq. (7.45), ¢, may be found from the relation between shear stress and
strain measured just after the corner. After transforming Eq. (7.40), into a

4S1,=51;,(S,+45) '—Slz(so>:—§—ﬂb
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differential form, the following formula to find dz,, may be obtained:
Az,e =12/ pyde,—dS, /51, (7. 46)
In the same manner, the formula
dz,,= —dS5.,(8)/S,.(s)

may be found from Eq. (7.40),. By using these formulas, the values of z,,(s) and
Zy2(s) as well as dz,,(s) and dz,,(s) may be found from the experimental results
on the second branch.

7. 2.3. 8. Third branch (tte, Zea Zepy Zer)

By transferring the first term of the right hand side of Eq. (7.42); to the
other side, and indicating the left hand side as X(s), the following formula may be
obtained :

s

X(S} :Sn(s) _glg‘izw(m—zw(sws,)}:%ﬂcg-z“(s)g P 62@;,1 ds"

So+81

Then the Taylor expansion of X(s) in the vicinity of s=sy,-+s; may derive the
following relation:

AX=X(Sg+81+48) =X (S5+81) =511 (Sg+81+48) =51, (Sg-+51)

—a, (e~{zm(sn+s,+As)—zm(s,ﬁsx)};l):%/ic_égm‘él_l_d‘g:%#cden, (’7 4’])

after disregarding infinitesimal terms higher than the second order.
If the condition z..($)=2z.,(s) is assumed for simplicity, the formula

dzca':dzcr:E(Z/B)ﬂcdell"dsllj/sll ("7 48)
is found from Eq. (7.42),. The formula
dz,;=—dS5,(8)/S:2(8) (7.49)

is also obtained from Eq. (7.42),.

By using Egs. (7.47), (7.48) and (7.49), the values of ., 2..(s) (=2..(s)) and
Z.(s) as well as dz..(s) (=dz.,(s)) and dz.,(s) may by obtained from the ex-
perimental results along the third branch.

7.2.8. 4. Values of ¢ and z found from the experimental vesults

The values of x and z were determined by using the experimental results along
the strain trajectories shown in Fig. 7.5. Since the stress-strain curve obtained
from experimental result did not tend to straight line for large value of strain, the
functional form f({) =1+ B¢ used by Valanis?? was not suitable to reproduce them.
On the other hand, the functional form f(s)=a(s-+c)? was ascertained to be able
to approximate every stress-strain curve with high accuracy. The corresponding
values of @, b and ¢ for each branch differ from each other. Since the amounts
sp=1.5 percent(=const) and s,;=0, 0.25, 0.5, 1.0 and 2.0 percent have been
assigned, the values of @, & and ¢ on the third branch should be functions of s;.
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Moreover, there are remarkable differences between the trends in the values of g,
b, ¢ and y. along the third branches of the group G through ], in which the
magnitude of stress vector continuously increases along the branch, and those along
the third branches of the group F, N, P, Q and R, in which the magnitude of stress
vector decreases in the early period of the third branch, shown in Fig. 7.5. The
differences correspond to the experimental results in which a strain-anisotropy
analogous to the Bauschinger effect appears along the third branch in the latter
group and decreases with an increase of s;. The functional relations for these
characteristics relating to s; were obtained as follows :

Rep i a(S;)=b5.26x1071(1—0. 6067 8%455)
and for the grop F, N, P, Q and R
1e(81)/3=[9.8(1—e314%) 114, 771—3106. 6s,¢72°°%:  (GPa),
Req=2,,: a(S;)=(7.047¢~5:+7.103) x 1079,
b(s,)=—0.4682s,+2. 611,
c(s;)=—0.0341s,+0. 4297

The values of u and z obtained from the experimental results along the strain
trajectories in the group G through J and the group F, N, P, Q and R are sum-
marized in the following tables.

These values have been determined from the experimental results with s,=1.5
percent. However, the values relating to the second and third branches may be
functions of s, in general. On the other hand, it has been ascertained that the
experimental results along the second branch for s,=1.17, 2.2 and 3.2 percent
obtained in the previous experiment22?) are approximated with high accuracy by
using the values shown in Table 7.1. This verifies the well-known property that

Table 7. 1 Values of z and z for the first and second branches

# (GPa) z a b c
1re=137.2 g 3.38x10-3 0.266 8.34x10-3
wy= 73.5 Zop 5.26x10-3 0 0

1Y 5.98x10-3 0.246 7.03x10-3

Table 7. 2 Values of z and z for the third branch: Group G through J

#e (GPa) z s1 (%) a b c
98.1 Zea=Zer 4.64x10-3 0.259 8.12x10-3

Zep 0.25 2.71x10-3 0 0

0.5 3.47x10-3 0 0

1.0 3.92x10-3 0 0

2.0 4.76x10-3 0 0
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Table 7. 3 Values of z and z for the third branch: Group F, N, P, Q and R

s1 (%) | 1 (GPa) z a | 5 ¢

0 4.1 o 13.92x10-3 | 4.28x10-2 2.59x10-2
2o 1.75%10- 0 0

0.25 47.53 Zow=2er 12,7410 4.20%10-2 2.51x10-2
Zes 2.71x10-3 0 0

0.50 53.9 — 11.32x10-8 4.15%10-2 2.39x10-2
Ze 3.47%10-3 0 0

1.0 64.68 — 9.41x10-3 3.98%10-2 2.1410-2
2o 3.9210-3 0 0

2.0 74.5 O 8.03x10-3 3.60x10-2 1.67x10-2
Zer 4.76%10-3 0 0

the effect of pre-strain s, saturates for pre-strain of s, >1 percent.

7. 2. 4. Comparison of theovetical results with experimental ones

By using characteristic values determined above, after the saturation of pre-
strain s,, stress-strain relations may be realized for arbitrary deformations of
brass along the above-mentioned strain trajectories for any amount of s;. Moreover,
since the modification of the third invariant has been conducted on the stress
value, the stress-strain relation thus obtained holds for any strain trajectory of
the same geometry oriented in any direction in three-dimensional vector space
(11, @/VT3)(er1/2+e32), 2/ 3)e12).

Corresponding stress values expected to be measured in the experiment may be
obtained by restoring the effect of third invariant from the stress value calculated
by the above formulas. The stress-strain relations established above are compared
with the corresponding experimental results by using the following figures.

The relation between the value o,,;=1(3/2)S;; or v/ 30,3=+3S;, and the arc
length 4s=s5—s, relating to so<ls for the group G through J is shown in Fig. 7.6
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or 7.7. 'The thick solid curve corresponds to the calculated result, and the various
kinds of point show the corresponding experimental ones along the trajectories
indicated by the inserted figure. The thin solid curves in Fig. 7.7 show the relation
between the resultant modified stress intensity [¢*|= /%21 357, and 4s found from
the thick curves in Figs. 7.6 and 7.7. Figures 7.8 and 7.9 show analogous curves
for the group F, N, P, Q and R as compared with the corresponding experimental
results. As found from these figures, the calculated results may approximate the

corresponding experimental ones with high

accuracy.
o " 2enis The dashed curves in Figs. 7.6 and
& R O=2 7.7 show the restlts calculated by Valanis’

method? 7> mentioned above briefly. There
are considerable differences between the
solid and dashed curves.
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F, N, P, Q and R.

7. 2. 5. Relation between fading memory and limit of integration

As found from the experimental results, the stress-strain relations of materials
just after the corner of the strain trajectory are subjected to a severe history
effect and the effect decreases thereafter with an increase of deformation without
severe history effect. In other words, the deformation property accompanying the
preceding plastic deformation is altered by the change in microscopic structure of
materials due to the succeding plastic deformation, and thus the memory of history
effect declines with the succeeding plastic deformation. By taking this trend into
account, Ilyushin proposed Eq. (7.25) instead of (7.24). Suitable choice of the
length % (trace of delay) included in Eq. (7.25) has a significant meaning for
effective use of the stress-strain relation obtained above in accurate analyses of
plastic deformation of structures, thus a reasonable estimation of the length &
will be discussed in the following.

When the trend of fading memory is assumed in a form of the exponential
type, the effect of preceding disturbance to the instant considered, though it
decreases with an increase of the interval between the relevant two instants, does
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not vanish completely for any finite interval. Thus the concept of the “trace of
delay” is an approximation and the length 4 may be regarded to depend on deforma-
tion history as well as on materials. The length % should be determined in com-
plying with the accuracy required for the calculated results. On the other hand,
this concept is very effective for simplifying calculations for complicated history,
and thus the necessity to discuss the relation between % and the accuracy of cor-
responding calculation should be emphasized for establishing the general plastic
theory.

In the following, the relation is discussed according to the examples mentioned
above.

7. 2. 5. 1. Stress-strain relation within the length h along the orthogonal
tri-linear strain trajectories in two-dimensinal vector space

The stress-strain relation within the length % may be expressed in the follow-
ing manner.
Along the first branch:

Suu(s)= 2w’ e Ly, (7. 50)

Along the second branch:
So

w2_' =%, (8)
Sll(‘S):'( Sﬂ'bg ’ SS-!L
lo (So<Zs—h)

7 d 7
e%pa'S >_desl,-1_ds (s —h<s,),

2 -2 s ’ d@ i -
e bﬁ‘(S)gsqezbﬂ(s ’Wﬂzds‘ (s—h<sy),
SIZ(S> =

2 -z (s)g
=M€ Tbe
8//17

s oy de
ezw“’bams%zads' (So<is—h). (7.5D)

S—h

When the value of Sy; concerning % at s=s, is indicated by a symbol ¢,’, o,
is known from Eq. (7.50), and the following expression

Ss" Prames: 52@1/1 ds' — 3Uo'ezw<su> (7.52)

So—h S - 2/1[;
may be found from the relation
S

|

055D de;, ds’
So—h dS,

obtained from Eq. (7.51),. By substituting Eq. (7.52) into (7.51), the following
relations may be obtained:

S~/ /(Seo
oo ®=2 o] (" gzaen 211 g eFaatsn_ Be11 g
! - So-1 ds’ So—4 ds’ -
o / o=/

Si(s)= (s —h=<s,),

0 (Se==s—1h) ;
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2 -z s ’ d ’
ghe ‘bsa(”gsaezaﬁ(s )—a%-,z——ds (s—nh<sy),
=, ; d
L -z (S) z, (s _4€13 g _
3 /0 e S3~he b8 7s ds (So<lS—h).
(7.53)

In the same manner, the following relations are obtained along the third branch:

S—n d So _
Su()=are ez 1" e Lo gy [ g Lo gs

Se+Si—n SotSi—h
S
e - (s—h<sy),
3 So+Sy ds -
2 = o° 2 s iy g
S11(8) =2 peZer >S 0%ert 2811 g g (So<2S — RSy --51),
3 So+S: ds - ”"
S
Su(s :gﬁce_zcr(s)g QZ”(S/)E?%}”CZS’ (30+31§3~k);
3 S—n ds
S1a(8)= et segtsere (s h<s0),

S—n de / (SotS) de
512(3) — rl’e’{zc/s(s)“zcﬂ(s"'w‘))El __S BZCB(S’)«——l—,Z/-dS'/S ezep(sn 1,ld3']
Se+Si—h ds / Jsersi—n ds

(So<S—h<Ts,+$1),
S1,(8)=0 (So+8,<ls—h),
(7.54)

I

where o," and 7’ are expressed as follows:

So d
Gl/z_aﬂce_zca(s°Ts‘)S ezca(s/>——-~—del,1 dsl,
3 So4+Si—n S

2 So+S8,
T ’ e—ZcB(SM“S;)S

1= w5 e
3 So+Si—h

eww%dsq (7.55)

The corresponding values of ¢ and z in the above formulas are the same as
those shown in Tables 7.1 through 7. 3.

7. 2. 5. 2. Relation between the range of integration and accuracy of
calculation

It is necessary to shorten the arc length 2 for simplifying calculation whereas
it is desirable to take % as long as possible for improving the accuracy of cal-
culation. In order to determine the arc length 2 for general application by taking
these two points of view into account, stress components were calculated along the
trajectories of the group G through J in relation to four values of 4 (=0.5, 1.0,
1.5, and 2.0 %), for example. As examples of the results obtained, Figs. 7.10 and
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Fig. 7. 12 Relation between the range of in-
tegration and accuracy of calculation
(h=00,1.5,1.0 and 0.5% for v/ 3 o12).
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7 11 show the relations between o,;=(3/2)S;; and the arc length 4s after the first
corner of the trajectories. Moreover, Fig. 7.12 shows analogous relations between
v/ 30, and 4s. In these figures, the results of calculation without considering the
trace of delay (h—oco) are shown by the solid curves, and the results for h=2.0,
1.5, 1.0 and 0.5 percent correspond to the dashed curve, dash-dot curve, double-
dot and dashed curve and thin solid curve, respectively. In Fig. 7.12, the results
relating to #=1.5 and 2.0 percent almost coincide with those for fi-—»co along the
trajectories G and H for s;=0.25 and 0.5 percent, and these results are not entered
in the figure.

As found from Figs. 7.10 and 7.12, there is a considerable difference between
the results relating to £=0.5 or 1.0 percent and s—co. However, it is found from
Figs. 7.11 and 7.12 that the results relating to h=1.5 and 2.0 percent agree well
with the results relating to A—co. Judging from these results, it may be concluded
that the accuracy of calculation is not sufficient for practical use and depends on
the geometry of trajectory for a length / less than 1. 5 percent, but it is sufficient
for estimating stress value independently of the geometry of the strain trajectory
for a length % longer than 1.5 percent.

7. 8. Stress-sttain relation according to local determinability

As mentioned above, the stress-strain relation in the form of tensorial equation
and that of integral type are very complicated for deformations along the strain
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trajectories of complicated geometry. However, it is preferable to formulate the
relation as simply as possible even for accurate defomation analyses of engineering
structure, if it would be of sufficient accuracy to represent the complicated history
effect on the deformation behaviour. The hypothesis of local determinability
proposed by Lensky?9,39 is worth noting from this point of view.

7.3 1 Hypothesis of local determinability

The hypothesis of local determinability29) has been formulated first for the
strain trajectories consisting of straight segments as follows:

FB=fi0, -, 055 9), (0800 (cos6)=1 (=1, 2, -, 5), (7.562)

As Lensky has pointed out, the hypothesis should be expressed in general in the
form3®

0= Filluy ()3 ), (c0800) (cos) =1

(¢, k=1, 2, .-+, 5; m=1, 2, 3, 4) (7.56b)

along the strain trajectory of arbitrary shape, where «,(s) are the geometric para-
meters of the trajectory.
Lensky has confirmed experimentally that the relation

%:f(ﬁ, s), cos—o-de/|s||del (7.57)

holds in the plastic deformation of an alloyed steel XI"CA along the orthogonal bi-
linear strain trajectory?®. Equation (7.57) is a simplest case of Eq. (7.56a).
However, in order to confirm Eq. (7.57) may hold along the straight-line trajectory
independently of the shape of preceding trajectory, it is necessary to discuss this
experimentlly for a variety of deformation histories with preceding curved parts
of arbitrary curvature or bi-linear ones with arbitrary corner-angle. For this
purpose, the hypothesis is discussed by the experimental results obtained hereto.
Figure 6.23 obtained for the brass BsBMZ suggests a possibility of this hypothesis.
Figure 6.32 for the mild steel S10C also has a regularity in the relation between
6% and 4s. The hypothesis will be discussed in some detail in the following.

7. 3. 1. 1. Bi-linear strain trajectorvies with arbitrary corner-angle3v’

The relations between the angle of delay ¢ and the arc length 4s after the
corner for the deformation of mild steel S10C along the bi-linear trajectories shown
in the inset figure in Fig. 7.13 are shown in Fig. 7.14. As shown in Fig. 7. 14, the
relations for 6,=30° and —30° (d,: corner angle measured clockwise) agree well
with each other for so=2 and 3 percent. Such a feature may be observed also for
0,=060° and --60°. Thus, it may be said that the relation é~4s for the complex
loading is independent of the sequence of loading as well as the amount of pre-strain,
and depends only on the value of corner-angle @,. Further, the relations for §,=
+30° and £60° shown in Fig. 7.14 are transferred to those shown in Fig. 7.13 so
that the experimental point at the corner in each experiment may coincide with the
corresponding experimental point on the solid curve showing the relation §~4s for
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0,=90°. It is found from Fig. 7.13 that the relations along the second branch
agree well with each other and may be expressed by a unique curve, and the
corner-angle @, shows the beginning of the relevant part of this curve. In more
detail, the relation #~4s is affected by the magnitude of so for s,<(2 percent where
the history effect is not yet saturated.

The feature found from Fig. 7.13 has been obtained also for the case of 4>
90°. Figure 7.15 shows the curves similar to those shown in Fig. 7.13 obtained by
the experiments for mild steel S10C and brass BsBM2. As shown in Fig. 7.15, the
above mentioned feature also appears clearly in these cases. Further, it is worth
noting that the curve for mild steel appears lower than that for brass.

7. 3. 1. 2. Orthogonal bi-linear trajectovies with vounded corner3®

The relation §~4s for brass BsBM2 after the biginning point P, of circular arc
has been shown in Fig. 6.35. The similar relation for the mild steel S10C is shown
in Fig. 7.16 for the trajectories in the inset figure. As found from these figures,
the magnitude of @ increases from the point P, along the circular trajectory, and
the rate of increase is larger for larger value of curvature. Further, the value of
§ turns to decrease at the end-point P; of the arc, decreases quickly at first, and
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tends to zero slowly thereafter.

The part after the point P; of the curve for every value of radius 7 shown in
Fig. 6.35 is transferred in Fig. 7.17 so that the value of ¢ at the point P; may
coincide with that on the curve for r=0. As found from Fig. 7.17, these parts
agree well with each other and may express by a unique curve. In other words,
the effect of the different shapes of the trajectories preceding the point P, on the
plastic deformation along the straight-line trajectory after the point P, are ex-
pressed only by the magnitudes of § at the point P, and are not transmitted to

the relation #~4s after this point.

This may be regarded as an important feature

of the plastic deformation.
Figure 7. 18 shows the similar relation

90"T I as mentioned above for the mild steel S10C
i derived from Fig. 7.16. As found from
@ \\\ o T this figure, a feature similar to that for
%\\ a0 brass may be observed also for mild steel.

60° '\\\ e onné;:'(amss) —  In Fig. 7.18, the relation for brass shown
ZX\\ == O%h(Mild Steel SI5C) in Fig. 7.17 is indicated by the dashed

.h ,\( curve. In comparing these relations, it is

.\\\ found that the decreasing rate of 4 for

30° ¢ mild steel is larger than that for brass.
.KT N - Further, it is found from the comparison

5%: g of the relations shown in Figs. 6.35 and
%a&“:oz;?&i“&‘o 7.16 that the magnitude of ¢ for mild

o s 0 5 o steel appears smaller than that for brass.
AS'(245-X) The dash-dot curve in Fig. 7. 18 shows the

Fig. 7. 18 Relation O~4s’ (As'=s—zx; x: arc similar relation for the mild steel S15C
length transferred leftward) 1R the case of 7=0, which may be regarded

obtained by modifying the rela-
tion shown in Fig. 7. 16.

as coinciding well with that for the mild
steel S10C.
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7. 3. 1. 3. Straight-line trajectories after a trajectory of arbitrvary shaped?

In order to confirm the hypothesis of local determinability from an opposite
point of view, the feature of plastic deformation is discussed for the experimental
result on the deformation of the mild steel S15C along the straight-line trajectory,
after the trajectory is turned instantly so as to give the assigned values of ¢
(= arccos[e-de/la||de[]) with respect to the direction of the stress vector ¢ at
an arbitrary point on an optional strain trajectory. In assigning-the -optional
trajectory preceding the straight-line part, the arbitrariness was restricted as
follows. '

(i) In order to consider the strain-hardening range where the effect of pre-
strain on the deformation behaviour is saturated sufficiently and the elastic strain-
increment may be negligible in comparison with the plastic one, the arc length of
the preceding optional part should have a sufficiently large value.

(i) Unloading should not be included in the preceding optional part.

(i) The value of ¢ should be sufficiently large at the end of the optional part.

Figure 7.19 shows a strain trajectory of arbitrary shape selected in such a way.
In this figure, the preceding part OP in the strain vector space (e;1, 2¢12/V'3 ;
where ¢, and ¢, are the axial and shear strain deviators for the tubular specimen)
consists of a circular arc with radius 1 percent concave upward starting at the
origin (s=$,=2%, s= [ {(dey1)?+ (2de,;/+/3)2}172) and a succeeding circular arc
with radius 0.4 percent convex upward (s;=0.5%), and has a common pre-strain
(s=8,+5;,=2.5% at the point P) for every experiment.

The strain-increment vector de(=de,n{+ (2de,;,/+/3)n;, where de,; and
de,, are the components of strain-increment, and n; and n; the orthonormal base
vectors) is turned instantly at the point P so as to give the value shown in Table
7.4 (defined positive clockwise) with respect to the stress vector o(=0;in;+
v/ 30,.n3, where o,; and o, are the axial and shear stress components for the
specimen) at the point P on the trajectory and goes forward in that direction.
These cases are called experiments 1, 2, 3, 4, 2, 3 and 4, respectively. Further, an
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experiment 1 is supplemented to examine the deformation along the trajectory with
a small curvature (a circular arc with radius 2% concave upward) after the
direction of de is turned to coincide with that of ¢ at the point P. The trajectories
corresponding to these experiments are given in Fig. 7.19 by the solid lines. The
strain-rate along these trajectories was selected as ds/d{=3x107¢/sec.

135°

right-angle corner along the strain

4578 | trajectory illustrated in the inserted
i E}‘o] figure 7| Fing. 7. 20 Relations 0~4s along the straight

“%dh A5-Peg part after the end point P of the
W M SR WP optional part.

AT K, 8 TAw
0 025 05 075
AS (%)

AX (Y i -~~ Experimental results after the
Q
°

Figure 7.20 shows the relation §~4s (4s: arc length after the point P) in the
deformation along each trajectory after the point P. In the figure, the dashed curve
corresponds to the relation for the deformation along the bi-linear trajectory shown
in the inset figure. As found from the result of experiment 1, if the condition
f=0° is given at the point P, then the condition is maintained almost completely
for the subsequent deformation along the straight-line part in that direction.
Further, in the result of experiment I, though the value of ¢ increses slightly with
increase of 4s, it may be regarded as being saturated within the range #<6°.
Therefore, it may be said that the effect of complex loading on the angle § can be
cancelled out with the condition §=0°.

As shown in Fig. 7.20, the relations #~4s for the experiments 2 and 2, 3 and
3 as well as 4 and 4 respectively agree well with each other. Thus, it may be said
that the relation 6~4s after the point P depends only on the absolute value of @
at the point P. Further, the relations §~4s for experiments 3 and 3 agree well
with that for the orthogonal bi-linear trajectory. Thus, it may be concluded from
the above-mentioned feature that the relation #~4s in the deformation along the
straight-line trajectory after the point P depends only on the value § at the point
P, independently of the shape and the relative arrangement of the preceding
trajectory. To make sure, it is necessary to note that the value of 6 at the point
P is related not only to the history effect of the preceding deformation but also
the instant rotation of the vector ¢ or de at that point, that is, an instant variation
of the loading or deformation state.

As shown in Fig. 7.21, when the results of the experiments 2, 2 and 3, 3 shown
in Fig. 7.20 are transferred rightward so that the experimental point at the point
P in each experiment may coincide with the corresponding experimental point of
the experiments 4, 4, these results are now found to coincide on the whole with
the results of experiments 4 and 4.

From this experimental evidence, it may be said that the relation #~4s'(4s'=
4s—x, where x denotes an arc length transferred rightward) for the deformation
along each subsequent straght-line trajectory can be expressed by a unique curve,
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and the corresponding part of the curve is determined by the value of 4 at the
beginning point P of the trajectory. From a comparison of the dash-dot curve
shown in Fig. 7.18 with the relation shown in Fig. 7.21, it is found that the former
is simply a part of the latter.

From the experimental results mentioned above, it may be concluded that the
history effect due to the preceding inelastic deformation, whatever it may be com-
plicated, is represented only by the amount of # at each point on the trejectory, and
the fading rate of the history effect is determined uniquely along the succeeding
trajectory. This trend may be regarded as an important suggestion to systematize
the complicated variation of microscopic structure in metals under inelastic defor-
mation.

7. 3. 1. 4. Orthogonal tri-linear strain trajectory in three-dimensional vector
space?®

In order to express the trend in the relation @~4s(ds: arc length after the
first corner point A in Fig. 6.41) on the deformation of mild steel SI5C along the
orthogonal tri-linear strain trajecotry in the three-dimensional vector space,
according to the results obtained from the experiments in Section 6.5.2, two
kinds of angle ¢ and y are introduced. When an orthogonal coordinate system is
established together with base vectors ¢, n in the directions of the third and
second branches and & in the direction perpendicular to a plane including these
two branches, relations between these angles and the corresponding stress com-
ponents o%, ¢¥ and ¢%, modified by using the coefficient R, may be determined as
in the following.

t=cosf,1;— sinf,2,, n=n, b=nXi,
o¥*=c%t +okn-+oitb,
tand=c%/c%, tany=o%/0%, (7. 58)

where ni, 12, and ns; are the base vectors in the directions of e;—, ¢,- and e;-
axes. Thus, the angles ¢ and y may be regarded as the angles showing the decreas-
ing rates of stress components owing to the histories of the second and first
branches with a development of deformation along the third branch, respectively.
As an example, the relations between the angle ¢ and the length s, of the
third branch measured from the point B are shown in Fig. 7. 22 for s;=0. 25 percent.
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Fig. 7. 22.

As found from the figure, though an angle ¢; (¢ at the point B) appears larger
for larger value of #,, the value of ¢ seems to decrease in the same trend with an
increase of s, for every case. Thus, if a relation ¢~s, for each value of 4, is
transferred with respect to that for ,=180° so that the value of ¢, in the former
coincides with the value of ¢ on the relation ¢~s; ford,=180°, Fig. 7.23 may be
obtained. As found from the figure, various symbols corresponding to the values
of 0, may be found on a unique solid curve. From this fact, it may be regarded as
that the angle 6, affects only on the value of ¢;, and the decreasing rate of ¢ with an
increase of s, is not affected by #,. In Fig. 7.23, curves for s;=0.5 and 1.0
percent obtained by the above-mentioned procedure are entered with the dashed and
dash-dot curves so that the value of ¢; in these curves coincide with the value of
¢ (shown with the arrows) on the solid curve. The curves for various values of s;
agree well with each other, and thus it may be concluded that the decreasing
property of ¢ with the increase of s, is affected by neither the angle 4, nor the
length s;. As the value of ¢ tends to a certain value different from zero for
sufficiently large value of s, such a deviation will be taken into account in the
following formulation.

Also for the angle y, the relations y~s, for
various values of ¢, may be confirmed to agree
well with each other for each assigned value of
' e $120 $1, by using the procedure mentioned above for
T s the angle ¢. Curves obtained in such a way are
—— 10 shown in Fig. 7.24 for each value of s;. As
found from the figure, a decreasing rate of x
with an increase of s, becomes more quickly for
large value of s,, and the curve y~Sy may be
ol \ N supposed to tend to the coordinate axes for suf-
N\ S ficiently large value of s;. Furthermore, it is

e T found that the curve y~s, for s;=0 percent

0 08 s coincide with the curve ¢~s,. Thus, each of the
Fig. 7. 24 Relation between the curves y~s, forms a group varying from the

angle z and the arc length curve ¢~s, to the coordinate axes with the

sy after modification. variation of s;.

The following relations may be selected as
those satisfying the features of experimental
results mentioned above.

60
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¢=arccot{A(0)s;+cot (¢ +d.)} —¢o,
7=arccot{A(s,)s;+cot (¥ +%w)} — o (7.59)

In Eq. (7.59), cot(¢+d.) or cot(y+7y.) is expressed as a linear function of s,.
Thus the value of ¢, or ., is estimated so that the value of cot(¢+¢..) or cot(y
+%.) together with the value of ¢ or y found by the experiment may have a
linear relation with respect to the value of s,. In the result, it is found that ¢.,
is related with s; and 6, by means of the following relation.

¢..={90s, exp(—4. 4s,) +5. 5} {1—(0./185)2} 12, (7.60)

where s; and 4, show numerals in percent and degree, respectively. Since the
value of y. is found to be sufficiently small in comparing with that of ¢., it is
neglected in this formulation. A function A(s;) may be estimated from a gradient
of straight line showing the relation between cot(¢d-+¢.) or cot(x+yx.) and s,
which may be approximated by the following relation.

A(s;)=16.9exp(2. 26s,) —11. 2, (7.61)

In the next, a relation between ¢, or x; and the angle 6, may be obtained from
the relation between the directions of the modified stress vector ¢* and the third
branch at the point B. Angles a and S expressing the direction of ¢* at the point
B are defined as follows;

a=arctan(o%/0}), P=arctan{ct/(c}?4-0%2)17%}, (7.62)

where %, o% and o% are components of o* in the directions of ni, n, and nj.
It is found that the relation between « or 5 and the length s; of the second branch
measured from the point A is approximated by the following relation with sufficient
accuracy.

a=arccot(8.90s,), p=—109exp(—>5.5s,)—2.37. (7.63)

By using the angles « and 8, the relation between the angle ¢; or x; and the angle
g, can be expressed in the following form:

¢ =arccot(cos f,tan @ — sin f,sec « tan3),
71=0,+arctan(tanf/sina), (7. 64)

The values of ¢ and y may be calculated by using Eq.(7.59) together with the
relations (7.60), (7.61), (7.63) and (7.64).

An example of comparison of the results calculated by using the above-obtained
relations with the corresponding experimental ones is shown in Fig. 7. 25 in the case
of 6,=90°. In the figure, the experimental results are shown by the various
symbols in the inset table, and the calculated results of angles ¢ and y are entered
by the solid and dashed curves. It is found that both results agree well with each
other. Such a good agreement has heen ascertained in every value of the angle 4..

Finally, each relation in Eq. (7.59) corresponds to a solution of either one in
the following differential equations.
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d(g+¢)/ds=—A(0) sin® (9+¢.),
d(g+7.) /ds= —A(sy) sin® (7 + 7). (7. 65)

As found from Egq. (7.65), if the value of ¢ or y is measured from —¢., OF — e,
the value of ¢ or y for s,—»co, the former equation expresses the fact that the
curve ¢~s, may be determined by a function of the corresponding ordinate only,
while the latter equation is a similar relation to that in the former for each value
of s;. If the small value ¢. or y. is neglected in each of these equations, the
following equations are obtained.

dg/ds=—A(0) sin%, dy/ds——A(s,) sin?y, (7. 66)

Each of these equations may be regarded as a specialized form of Eq. (7.56 a) along
the orthogonal tri-linear strain trajectories in the three-dimensional space.

7. 3. 2. Estimation of the stress-strain relation using the hypothesis of local
determinability

Experimental results mentioned above showed a regularity concerning the
history effect and its fading property in the inelastic deformation of metals along
the strain trajectories with complicated geometry. The regularity may be sum-
marized as follows.

(i) The history effect on the deformation behaviour of metals arises from the
geometry of strain trajectory, and its variation is represented by the geometric
parameter of the trajectory showing the variation rate of deformation state.

(i) The intensity of history effect at any point on the trajectory is represented
by the angle of delay of the direction of stress vector from that of the strain
trajectory at that point, whatever the geometry of the preceding part may be
complicated, and the fading rate of history effect depends only on the angle of
delay for the deformation along the succeeding trajectory.

Such a trend corrobolates the relation

_,.Zz =£(6, s)+«x(s), 6: argle of delay, x(s); curvature (7.67)

proposed by Lensky2?9 as a simplest form of Eq. (7.56 b) for the trajectory with
arbitrary shape in the space V,.. Since the angle ¢ in the space V,, or the angle
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¢ and y in the space V3, (ref. Section 7.3.1.4) may represent the relation between
the components and the intensity of stress vector, the relation between the com-
ponents of stress and strain-increment may be found by using the variations of
these angles along the trajectory as functions of the arc length s of the strain
trajectory, if the relation between the intensities of stress and strain-increment
vectors is given as a function of s.

On the other hand, the fundamental equations in the deformation analysis
include the components of stress and strain or strain increment deviators, and thus
the relation obtained above may be used as a constitutive equation of materials in
reflecting the complicated history effects to close the fundamental system to solve
the deformation state. Though the relation between the intensities of stress and
strain-increment vectors has a sufficient variety depending on the complicated
history effect as recognized in the experimental results mentioned above, the range
of variation with respect to the relation in the proportional deformation is not so
remarkable in the deformation along the trajectories with mild values of geometric
parameters, which may be expected in most of engineering practice.

Therefore, the constitutive equation is simplified so that the deformation analysis
may be performed without appreciable complexity, if the relation in the proportional
deformation is used as that between the intensities of stress and strain-increment
vectors for the deformations along the trajectories of mild value of geometric
parameter, even when the complicated history effect is reflected in the analysis.
This conception is used in a new method of deformation analysis proposed recently
by Lensky®®, which may be expected to be useful for the first step of accurate
analysis of elasto-plastic deformation problems in engineering.

In the following, an accuracy of the stress-strain relation according to the
hypothesis of local determinability will be estimated experimentally on the brass
BsBM2 mentioned previously, for the case of orthogonal tri-linear trajectories in
the space V,, with two rounded corners3?, as shown in Fig. 7.26. In the experi-
ment, values of pre-strain and strain rate are selected as so=1.5% and ds/dt=3x
10-6/sec, respectively. In the figure, five values of 7 are selected as »=0. 049, 0.09,
0.19, 0.45 and 0.959%. The length between the points P; and P, is selected so
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that the angle #(=6,.—0s) at the point P, declines to less than 6° while the
deformation develops during tht length, which means that the effect of deformation
history obtained during the rounded corner PoP; almost vanishes at the point P,.

Figure. 7. 27 shows the relation between # and 4s(=s—s,) after the pnint P,.
As found in the figure, the angle 6 increases after the start P, of the rounded
corner, attains its maximum at the end point P, of the corner, and declines to
tend to zero along the succeeding straight part. After the start P, of the second
rounded corner, the angle ¢ decreases quickly to the end point P; of the second
corner, and increases to tend to zero afterwards. 1In the figure, the experimental
points corresponding to the points P;, P, and P; are shown with the arrows, for
the case of »=0.45 % (A) as an example. The variation of angle ¢ after the point
P, seems almost the same as that after the point P,. This shows a weak dependence
of the trend of variation in # on the arc length s for s>1.5%.

Figures 7.28 through 7.32 show the stress components oy, (@), v/ 312(A)
and their resultant value |¢|(Q) after the point P, obtained by the experiment, in
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relation to 4s(=s—s,) for the five values Calculated

of . As found in these figures, the —— g e Reuss
magnitude |o| decreases just after the & Frager-Ziegler  —--— Mrz
start of the rounded corner. This decrease S 200

almost disappears for #>0.95%, while it 7.

is remarkable for small value of r(large &

curvature), as recognized in the experi- S 100

mental results in Section 6.4. For every
value of 7, the feature of decrease in | o |
is almost the same for the first and second
rounded corners having the same shapes.
This trend is similar to that recognized ast20s) (g 0
in the experimental results for the ortho- Fig. 7. 32 Variation of stress state along
gonal tri-linear trajectories in two di- the trajectory (r=0.95%)
mensional space discussed in Section 6. 5. 1.

According to the weak dependence of
the history effect on the arc length s for s=1.5%, Eq. (7.67) may be simplified to

0 1.0

A0 — o) +(s), (7. 68)

where the function f(#) showing the property of materials may be determined by
the relation d@/ds~@ which is found from the curve #~s obtained by experiment
along the straight branch after the corner of orthogonal bi-linear strain trajectory.
The relation d@/ds~6 obtained from the experimental results of brass BsBM2
along the second branch of orthogonal trajectory may be approximated by the
following function.

f(e)=—2.78(6+0.14)2, (7.69)
from which the following epuation may be established.

0 2.78(0+0.14)2+5(5), (7.70)

Results of calculation by using Egq. (7.70) are eutered in Fig. 7.27 with the
solid curves. As found in the figure, the solid curves approximate well the corres-
ponding experimental ones. .Thus, it may be said that Eq. (7.70) of the hypothesis
of local determinability holds with a sufficiently high accuracy, together with the
weak dependence of d@/ds on the arc length s.

In the next, the magnitude of stress vector |¢| as well as its components o4
and +/3;, will be estimated with the use of the stress-strain relation under
uniaxial tension. The latter relation for the brass BsBM2 obtained by experiment
may be approximated with a sufficient accuracy by the following funciton.

0=51.36y ¢ +106.7 (MPa) for £>1.0%,

where ¢ and ¢ denote the stress and strain under tension. Thus the above mentioned
values of |¢|, 0,y and /3¢, may be calculated by the following system.
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6|=51.367/ 5 +106.7 (MPa) for s=1.0%,
0 2.78(010.14) 4 £(5).

(7.71)

Results of calculation by using Eq. (7.71) are entered in Figs. 7.28 through
7.32 with the solid curves. In these figures, results of calculations by using the
Prandtl-Reuss’ incremental theory, the Prager-Zieglar’s kinematic hardening theory?
and the Mréz’s theory3®) are entered also with the dashed, the dot-dash and the
double-dot-dash curves, respectively, for comparison.

As found in these figures, it is said that the results of calculation using Eq.
(7.71) may approximate the results of experiment with higher accuracy than that
using any of the other three kinds of the existing theory, in reflecting well the
trend in the experimental results.

Chapter V111 Conclusion

In order to perform precisely the inelastic deformation analysis of engineering
structure or the theoretical analysis of plastic working, it is necessary to use the
constitutive equation of materials in which the effect of deformation history is
reflected with high accuracy in their deformation behaviour. Since mathematical
difficulties have been eliminated with the appearance of electronic computer, and
since the precise experiment of complex deformation under combined loadings
becomes to be possible with the advance in testing apparatus with automatic control
systems, present attentions are concentrated mainly to improve the constitutive
equation in taking the history effects of complicated inelastic deformation on the
deformation behaviour into account. Under such a back-ground, investigations are
performing actively to formulate the inelastic deformation behaviour under com-
plicated loading in taking account of the effect of deformation history.

In our laboratory, the above-mentioned investigation has been continued more
than ten years at room temperature and elevated tempearature as well with the
use of the corresponding automatic combined loading testing machines. The present
paper reviews fundamental results of our investigations concerning the inelastic
deformation behaviours of metals at room temperature.

Our experiments could be performed with high accuracy owing to the recent
improvement in the performance and precision of testing apparatus so that a kind
of phenomenon which had been regarded as a random scatter in experimental results
could be arranged systematically. Furthermore, some effects in the response of
combined deformation, which cannot be expected from simple combination of
elemental deformation processes, could be discussed systematically.

According to the experimental results together with the theoretical foundation
in continuum mechanics, a kind of stress-strain relation was formulated in a form
of tensorial equation, which has a generality for a fixed sequence in deformation
history. The history effects due to complex deformations having infinite varieties,
however, are very difficult to be formulated systematically in a simple form.
Though the history effects apparently have infinite varieties, the material response
to disturbance should be due to the change in microstructure. Thus, a light would
be thrown on the systematization of infinite varieties if the response of polycry-
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stalline structure to the disturbance would be clarified.

In this kind of investigation, a method has been proposed in which the history
effect is analysed as evolutions in the internal state variables, which are parameters
representing in global the behaviour of microstructure of materials. As an example
of application of this method, another kind of stress-strain relation was formulated
according to the experimental results with the use of intrinsic time measure, which
may be regarded as a kind of state variable. Two kinds of stress-strain relation
formulated above have fairly complicated forms, whereas they reproduce with high
accuracy the experimental results.

On the other hand, it was clarified by the experimental results that the
hyporhesis of local determinability enables us to secure the trend of complicated
history offects on the inelastic deformation behaviour with a simple conception.
A formulation of the relations between the corresponding components of stress
and strain-increment according to this hypothesis seems to have fairly simple forms.
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