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Abstract

In this paper we introduce a probabilistic tree automaton by ex-
tending the notion of a tree automaton. Let . be a probabilistic tree
automaton and QRer( z;7) be a congruence relation defined by a tree
language J(_]; 2) which a probabilistic tree automaton A accepts with
a cut-point %, 0<CA<1. We prove that if 2 is an isolated cut-point
then the number of equivalence classes of Rer( g;;) is finite, that is,
G( A; 2) is regular.

1. Introduction

A probabilistic automaton introduced by Rabin (1963) is a generalization of a
finite automaton. Intuitively it is a finite automaton whose state transitions are
stochastic. On the other hand, a tree automaton, which was introduced and investi-
gated by Thatcher and Wright (1968), Brainerd (1968, 1969) and others (e. g., see
Thatcher, 1973), can be considered as another generalization of a finite automaton.
Combining these two directions of generalization, we can obtain the concept of a
probabilistic tree automaton.

In this paper we give the formal definition of probabilistic tree automaton,
and we prove that a tree language which a probabilistic tree automaton accepts
with an isolated cut-point is regular. This result is a natural generalization of
Rabin’s theorem (Theorem 3 of Rabin, 1963) concerning a probabilistic automaton.
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2. Preliminaries

In this section we first give some definitions and properties related to trees
and tree automaton, which will be used in the discussions of this paper.

Definition 2. 1. A ranked alphabet (abbreviated as r.a.) is a pair (X, #),
where Y is a finite set of symbols and 7 is a mapping from Y into N, the set of
nonnegative integers. For a symbol 4 in Y, #(4) =k means that 4 has rank k.

Let X4 be the set of symbols with rank %, i.e, Y,={4|4Ae Y, r(A) =k} We
presume that if ¢=j then }';Y ;=¢. In the sequel we simply write Y instead of
r.a. (3, 7).

Definition 2. 2. A tree over } is recursively defined as follows :

1) For any a€ )y, a is a tree,

2) If Ael; and ¢y, -, ¢, are trees over Y then Af,--f; is a tree.

Symbols in Y, are sometimes called leaf symbols, whereas the other symbols
node symbols. Let T's denote the set of all trees over ). The subset ¢ of Ts is
called a tree language.

Definition 2. 3. The depth d(#) of a tree ¢ is defined as follows:

1) d(a)=0 for ae},,

2) d(Atyty)=1+max{d(t,)|1=i<k} for t=At,-t,, where A€y, and t;¢

Ts; i=1,-, k.
Definition 2. 4. Let }'={A,, -, Ay} be a ranked alphabet. A tree automaton
M over ) is a system specified by a 3-tuple,

M=<S, Dyl=i<m}, F>,

where

1) S is a finite set of states,

2) 04;: ST —> S(1<i=<m) is transition function, and particularly d,(a € Y¢)
is an element of S, called an initial state,

3) FCS is a set of final states.

Definition 2. 5. The response function p: Ts —> S of a tree automaton M is
defined as follows:

1) If ae)y then p(@)=4d,€ S,

2) If t=Aty-t; with A€}, and t;€T5; i=1, -, k then o(f)=d4(0(ty), -,
o). , _

Definition 2. 6. The subset (M) ={t|te€Ts, o(t) € F} of T is called a tree
language accepted by tree automaton M.

Definition 2. 7. A tree language JCTy is said to be regular if it is accepted
by a tree automaton.

Definition 2. 8. An equivalence relation E over T is called a congruence
relation when for any A€}’ (here we suppose that 7(A)=k>1) and for any trees
by, =y ty; t3, -, t; over X if #,Ety, -, t,_Et;_, and t,Et; hold then Af,--f,
EAt{---t; holds.

The following lemma is well known:

Lemma 2. 1. (Brainerd, 1968) A tree language gC7Ts is regular if and only
if g is the union of some equivalence classes generated by a congruence relation E
of finite index over Ts.

For any trees ¢ and s in T, let sof denote a tree obtained by replacing one
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of leaves of symbol « in tree s by tree t.
Definition 2. 9. For a tree language §CT's, we define the relation Qg on T
as follows:

Vi, Vt' e T,
tRgt" iff VseTs, N[Soted iff sot' e

where a; is the symbol of i-th leaf node from left of tree s and we should under-
stand that sof and s o ' are two trees obtained from tree s by replacing the i-th

asg ay
leaf node of symbol @; with trees f and #/, respectively. Further, /A means that the
@t

relation in the bracket [ 7 holds for all leaf nodes of tree s.

Lemma 2. 2. QRq is a congruence relation on Ts.

(proof) it is obvious that R is an equivalence relation on T’y and it suffices
to show that R satisfies the condition of Definition 2. 8. Suppose that f, R« f;
(1< I<k) holds, namely, for any tree s,

N[sot, e iff sot;ed] (1=I=k)

holds.
Let u be an arbitrary tree in T and let A be an arbitrary symbol in 3.
Consider two trees e (Atyty-+t) and ue (Atit,-t;). These trees can be obtained

from wo (Abty-t4) by replacing the Ieaf symbol b with ¢, and f{, respectively.

Since {; Rqg t7, we have
U o (Atltz"'té) EEZ iff U o (Atitz"'tk> EEZ

Next, consider two trees u o (At|t,ts-1,) and u o (Atjt;t,--t;) and apply the

same reasoning as above. Then we can obtain
u: (Atityty--t,) €9 iff u:‘ (Atitsts--t,) €9
Proceeding in such a way as above we can conclude
uo (Atit,---t,) € iff o (Az: byt €Y
iff ufi (Atitsty-t,) €9
iff ue (Atitstst;) €ed
This means Al fy--t; Re Abil;-1}

3. Probabilistic tree automaton

Here we introduce a probabilistic tree automaton (abbreviated as p. t. a.) and
some notions related to it.
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Intuitively, a probabilistic tree automaton may be considered as a tree automaton
whose state transitions are stochastic. Formally, p.t.a. is defined as follows :

Definition 3. 1. Let ) be a ranked alphabet. A probabilistic tree automaton
A over 3 is a system specified by a 3-tuple,

(74:<S; {PA§A€ 2}7 F>

Here S={sy, Sz, =+, sx} is a finite set of states. If #(A4A)=k>>1 then P, is a
stochastic matrix with #* rows and » columns. If #(4)=0 then P, is a probability
distribution over S, i.e., an n-dimensional probability distribution. F is a distin-
guished subset of S, called a set of final states.

Definition 3. 2. Let C=(c;;) and D= (d,) be two matrices of order pxg
and #xv, respectively. Then the Kronecker product of C and D, denoted C®D, is
defined by

€11D - ¢ D
CRD= :
CpiD o D

Lemma 3. 1. Let C’s and D’s be matrices. Then

2) (C1+CH@D=Ci@D+C,RD

3) a(CRD) = (aC)RD=CR(aD) ; « is a constant.

4) (Cl®Dl) (CZ®D2) = (C1C2)®(D1D2)

5) C1®(CZ®C3):(C1®C2)®C3

Let /7 be the set of all n-dimensional probability distributions, i.e., distribu-
tions over S.

Definition 3. 3. The behavior mapping f: Tx—> // of a p.t.a. _j is recur-
sively defined as follows:

1) If t=ae}y then B()=p(a)=P,.

2) It t=At,-t, for some Ae Y, and ¢y, -, t; €Ty then S(O)=[B()R R
B Pa

Definition 3. 4. Let p=(79,, -, 7,)7 be a column vector such that the i-th
entry 7; of p is 1 if s;€ F and 0 if s;¢ F. Then let f: T5s—>[0, 1] be a function
defined by

F@O=60Dn

for te€Ts.

The function f(#), called the output function of p.t.a. _J, gives the probability
for ./ to accept an input tree Z.

Definition 3. 5. Let 2 be a real number such that 0<A<1. Define a tree

language G ( J; A) by
T(A; V= fO) >0, teTs)

, which is called the tree language accepted by J with a cut-point 2.

Now we prove the following lemma concerning the behavior mapping 8 of
Definition 3. 3.

Lemma 3. 2. Let § be the behavior mapping of a p.t.a. J=<S{Ps]Ae)},
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F> with n states. Then for any tree t€T's, S(f) can be represented as

B(t):[Pm@'”@Pai]'Pn

where P, is an #!xn stochastic matrix determined for the tree { and Pay, -+, Pay
are probability distributions over S corresponding to the leaf symbols aq, -+, @
appeared in the tree f, respectively.

(Proof) We use induction on the depth d(¢) of a tree ¢.

Basis. Trivial, since if d(#)=0, then t=« for some @ in },.

Induction Step. Assume that the lemma holds for all trees of depth less than
or equal to m—1. Let #q, t,, -, t; be trees of depth less than m and let i=A¢; -
t;, for some A€} ,. By the definition of 8, we have

B(t):[B<t1)®'“®f8(tk)j'PA
On the other hand, by the induction hypothesis, we have
Bt)=Pan@ - @Pan)Pr; 1=i=k),

where Pa;q, -, Pass, are probability distributions over S corresponding to leaf
symbols a;;, -+, ai; appeared in the tree ¢; and P,; is an n"ixn stochastic matrix.
Thus, we obtain

B(U:[(Pflu®“'@th.)Pil@'”@(P0é1®"‘®PaMk>Pfkj‘PA

Applying 4) of Lemma 3.1 repeatedly, we have

B =[(Pan@ @Pay) R+ R (Pan® QPa) |
[Pt & QP 1P,
:<P1111®"'®Pamk>[Ptl®"'®Ptk]‘P4

Here P,®--QP;, is an nh+ " Fhyxpt stochastic matrix, since Py is an nkix#n
stochastic matrix for each i(1<i<k), and P, is an n*xn stochastic matrix.
Hence [P, @QPy P4 is an nhi* " *hixp stochastic matrix. Thus, putting /=
hy+-+hy and Py=[P,@P,J-Ps, we have proved that our lemma holds for
the tree t=At-t;.

4. Regularity of tree language accepted by p.t.a. i with isolated
cut-point

In this section we consider a congruence relation QRg( 7;3) defined by a tree
language 9 (_i; 1) which a p.t.a. ] accepts with a cut-point 1. we prove that the
number of equivalence classes of the congruence relation Rg( ;7)) is finite if a
cut-point 1 is isolated. Thus, we show that the tree language accepted by p.t.a. i
with isolated cut-point is regular, i.e., it can be accepted by some tree automaton.

Definition 4. I. A cut-point 2 is called e-isolated with respect to a p.t.a. 4
if there exists an ¢>0 such that
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If(t)—X|=¢ for all teTy

The following Lemmas 4.1 and 4.2 are given in Paz (1971), which will be
used to obtain our Lemma 4. 3.

Lemma 4. 1. (Paz, 1971) Let &P, be the set of all # dimensional stochastic
vectors [ie., P,={&=(&;), &=0, 317, &=1}] and let U, be a subset of P, such
that for any pair of vectors £ and ¢ in U, the inequality V., |&—~;|=e [cis a
given positive real number] holds true. Then U, is a finite set containing at most
k(e) elements where k(e)=(1+4-2/¢)""1.

Notation : For a real number @, a*=max(a, 0) and a~=min(a, 0).

Lemma 4. 2. (Paz, 1971) If £=(&) and ¢=({;) are n-dimensional stochastic
vectors, the following equalities hold:

1D 30— =36~ L)~

2) 26— =238

Lemma 4. 3. Let Jj be a p.t.a. with n states. If 1 is an e-isolated cut-point

for 4, then the number of equivalence classes of a congruence relation RgC

induced by a tree language G (_J; A) is at most (14-—21?)11-1.

(Proot) Let T be a set of trees such that any pair of trees in 7 does
not satisfy the relation Rq(_z;7), and put B={B8(t,)|t; € T}, where 8 is the behavior
mapping of _Jj.

Assume that £ €7 and # €7. Then for some tree s either of the following
two conditions holds:

i) s oZEQ(Jl 2) and se t’eﬂ(uil ) for some leaf symbol «;,

i) s oteﬂ(ul[ A) and s ° t’eﬂ(ull 1) for some leal symbol a;

eqmvalently,
1) f(s o z‘)>/1 and f(s o t)<l for some leaf symbol «;,

i) f(s o z‘)<X and f(s ° z‘)>l for some leaf symbol «;

Now we assume that i) holds. [In a similar way to the following arguments, we
can also succeed to have the result for the case ii’)]. Since A is isolated, it follows
that

f(sot)—2=e and [f(Sot)—i=¢
Hence we have
f(Sot)—f(sot) =2 (a)

On the other hand, by Lemma 3.2 and the definition of behavior mapping #, we
have

ﬂ(S;{ D =[Pa@ @Pa1QBE)QPay & QPa, P,
and

lg(sa‘j ZJ):['Pal(g)"'®Pai—1®ﬂ(t,)®P01‘+1®"'®Pak]'PA>

where a,,---,a; are the leaf symbols of the tree s. Thus we obtain
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flset)—f(s e )
=B Dn—Pf(s e 1)y
=L(Pa®QPa; ) QB —BE)) R (Pay1 @+ RPa) ] P7 (b)

Here let () =(&;, -, &) and B(t")=(&{, -, &), where 0<¢&, &;<1 and
S16,= 31&;=1. For simplicity, put
i=1 i =1
ni—l

Pa1®'“®Pai-1:§:(’:1; Ty {ni_O’ E:J:}- <0§:1§1>9

=
Por @+ @Pa=0= 01+, 00, T 0,1 0=06,=1)
B =) =&= (5,51, -, §,—8

and

Q1

an

P, = : , where @,,'s are nxn stochastic matrices.

Qni"la 1

Quis
Then we can estimate (b) as follows:
F(s o) —f(s o )

=[LREROIP .

~[5E@6, -, Cs6REIP.

=LGE—ED0, -, L8080, -, Cui(6—£1)6,

e Gumi(6,—E0)01P

= 31 (6.0 S 660w

S —£0) " max (S0Qun) + ¢ —E0) min(300Qun)

= 560" (max(S0Qu) —min (S, 6Qum)]}

Here note that 0<{31(,0Q,,9<31¢,=1, since & and # are stochastic vectors, Qn's
I 1

are stochastic matrices, and 7 is a vector whose elements are 0 or 1.
Thus, we have
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s oD —f(sot)
St =5 Slea—ti ©
From(a) and (c) we get
2ef(s0 ) —f(s o) Sy N Eu—Ed
Therefore we obtain

7
2 iémp_i‘:;lt Z4E
=1
Thus it follows from Lemma 4.1 that the set B is a finite set containing at most

k:(H—_gl-e—)n—l elements. Hence we have proved Lemma 4. 3.

By Lemma 4.3 and Lemma 2.1 we obtain our main theorem:

Theorem 4. 1. Let J be a probabilistic tree automaton with # states, and let
f be its output function. Let 2 be an isolated cut-point such that |f(¢{)—1]=e¢
for all £€Ts. Then the tree language J(_f; 4) accepted by _j with 2 is regular,

. . -1
that is, there exists a finite tree automaton with less than or equal to (l+~L)n

2¢
states that accepts (. J; 4).

5. An illustrative example

we give a simple example to illustrate our previous discussions.
Let }'={A4, a} be a ranked alphabet, where A€}, and a€),. Let _J=<{sy,

$1}, {Pa, Po}, {S1}> be a probabilistic tree automaton over 3, where P, and P,
are the following:

So 8y
P,=(0, 1)

S 5
P,=58:8, [ 1 0

Spsy | 1/2 172
$:8, | 1 0
$:8;\1/2 1/2

The all trees over 3}’ can be represented as {=At, Aty Atna for some ¢4, tg, -
tm in Ty and for some m=0. They are topologically represented as in Fig. 1.
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t= 2 if m=0

m if m>1

Fig. 1. Trees in T's.

The output function f is computed as follows

0=(1-(8)" (3 s meo1 2 oo
=(0, 1)7,
FO=pDn=(5)" 5 m=0,1, 2, -

Here for any tree € T's.(4, 4, |f(£) —2] =¢ holds for A=3/8 and ¢=1/8. Therefore,
for an isolated cut-point 1=3/8 the tree language G (] ; 3/8) = {t|f(t)>3/8} defined
by J is {t|t=At,a and ¢, is any tree over Y'}. This tree language is accepted by
the following tree automaton

M=<LS, {04, 0.}, F>,
where S={qo, q1, ¢z}, F={q,}, and 4 is as follows.
0a=q,,
0,(4, ¢,)=q, for any qeS,
and

0.(a, ¢)=q, for any g€ S and any ¢ € S—{q,}.

This tree automaton M has three states and 3<(1+ )2“1:5.

1
2x(1/8)
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