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Abstract

The report begins with a brief introductory review on the past
works of three eignvalue problems in neutron transport, namely the
evaluation of pulsed-neutron decay constant, diffusion length and neu-
tron-wave attenuation constant. Then by the scheme of Cercignani and
Sernagiotto, the domain of eigenvalue existence is derived for neutron-
wave attenuation constant, with various models of reactor physics pa-
rameters assumed for moderators.

While general functional analyses in the past have clarified the
spectral structure of these eigenvalue problems, the present treatment
is intended to give rather heuristic and practical illustration of the
subject, giving explicit analytical expressions of the domain boundary.

The transport theory treatment of Duderstadt’s predicts more st-
ringent condition than the present diffusion theory versions. The varia-
tion of the diffusion constant D, and a constant term in the scattering
cross section produce considerable shift of the domain boundary. Effect
of fission neutrons on this problem is speculated.

I. Introduction

The eigenvalue problem of neutron transport equation for moderators was
studied extensively during 1950’s and 1960’s.1, 2,3, 4 It was initiated in 1950’s with
the analyses of pulsed-neutron decay experiments where the discrete decay modes of
the exp (—At) form was the subject of investigation. Then in 1960s the disappearance
of such discrete time-eigenvalue 2, and the upper bound in the values of 1 were
studied for moderators.

Such study on the existence of 1 was made through the scrutiny on the locus
of 2 in Laplace-transform space,5, ¢, D or through intuitive analogy to Schroedinger’s
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equation,® or through functional analysis.% 19,11,12  The energy dependence of
cross sections and of neutron flux that appear in the transport equation was always
the key factor in these investigations. The dimensions of the system studied were
either infinites, 9, 19,11 or finite,5, 6,7, 12> and the transport equation in some cases
was treated by diffusion approximation®’ to extract essential, though simplified,
nature of the problem. The medium was either gas, liquid or solid.11>  In the case
of solid, the crystalline structure brings additional complication®, 7’ in the analyses.

Then analogous analyses were soon made on the eigenvalue spectrum of neutron
diffusion experiments,13, 14 in which steady state neutron flux is expected to at-
tenuate spatially in exp (—x/L) form, and thus equations take a form very similar
to that of the pulsed-neutron experiments. A brief historical review was given in
Ref. (15) on the typical works on pulsed-neutron experiments and on diffusion
length experiments. '

Quite naturally in retrospect, another extension of the analyses to neutron
wave experiments was made,16~21 where a modulation of the form

I(t, 0)=I,(0)-+41-F(v)exp(iot) (1)

is assumed for the intensity of incident neutron beam, and a discrete decay mode
of the form exp(—xx)=exp(—(a-+if)x) is investigated. ~The first term in Eq.
(1) denotes a steady component, while the second term a component with periodic
temporal variation. The variable x denotes the distance along the direction of
propagation of the disturbance. Because the eigenvalue is a complex number in
this case, the analysis is more complicated than in the preceding two problems.
Exhausitive reviews and references are given in Refs. (4) and (22) on the three
fields mentioned.

While the possibility of eigenvalue disappearance has been examined and verified
by these elaborate studies, the explicit expressions for critical values of the ex-
perimental parameters for which the disappearance just occurs have not been ex-
plored in detail so far. Confining our review on neutron wave studies, for example,
Duderstadtl®) gave a parameter domain of eigenvalue existence, employing one-
dimensional transport theory and a separable scattering kernel. The mathematical
tool used was similar to that by Cercignani and Sernagiotto.??> The parameters
investigated were frequencies of the modulation and absorption cross section.
Williams1® obtained a minimum transverse size of a prism required for the existance
of a discrete eigenvalue «. His analysis was based on the integral form of transport
equation.

Even with these conclusions available, it appears that there is a room for
further studies of such parameter domain. Deeper physical insight would be gained
if we could draw conclusions on the effect of B} (transverse buckling) variation,
in combination with energy dependence of the diffusion coefficient D. It appears
that the more rigorous the treatment is, the more difficult to draw such practical
conclusions with it.

Thus in the present report we illustrate such effects on neutron wave experi-
ments with a use of simple models: the analysis will be made with an energy-
dependent diffusion equation combined with separable scattering kernels. Various
forms of energy dependence will be employed for the separated factors in the
kernel, and they result in large (mild condition), or small (strict) parameter
domain. It turns out that the condition obtained by Duderstadt mentioned is the
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most stringent one.

I. Statement of the Problem

Suppose a neutron beam is incident on one end of an infinitely extended slab
with a thickness ¢ cm. If its intensity is modulated according to Eq. (1), the
neutron flux well inside the slab is given by

(%, 0, 1) =¢,(x, v)+ 4L expGwt)[ fo(v)exp(—rkX)

@)
+ S S, Bexp(—rx)de]

The first term ¢,(x, v) is a solution of a problem having only the I,(v) term in
Eq. (1), and the second term corresponds to the periodic component in Eq. (1).
Neutron-wave studies deal only with this second term, and in particular, with the
discrete mode term fo(v) exp (—xox). Its motivation is that it is this term that
one can extract physical informations from.24,25,26) The integration path C is
chosen properly in the complex «-plane.

The equation describing this problem is

2@ 0, =D T+ D @e=[ .09, v, @)

according to diffusion theory, where

D) . diffusion coefficient
() : macroscopic total cross section
Y (v'->v) . scattering kernel.

In the present study we assume the form of the scattering kernel as®

Y (V=) =r(0) 2@+ X.(0)0(v—v"), €

which can be interpreted as consisting of a separable component in the first
term, and a component without any energy alteration in the second term. The
cross section ) ;(v") gives the cross section for the energy alteration in a collision,
and we often call it “inelastic” scattering cross section for convenience, although
somewhat misleading. The quantity Y .(v") is the cross section for no energy
alteration, and is likewise called quite often “elastic” cross section. The symbol
0(v—7v") denotes the Dirac delta function. The function y(v) is yet to be specified.
Because it is required that

| Su-n)dr=3.)=5.0)+ 5.0 (5)

the factor y(») has to satisfy a condition

[ rav=1, (6)

By substituting into Eq. (3) this scattering kernel and the discrete mode term
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of Eq. (2) we obtain,

{0 =D@) #3010 ()} fo(@) =07 @) | a0/ T, (0 f2(v) @
where we have introduced a notation

Yaon(0) =X (V) = X (0) =X (v) + X:(v),

Assume (iw—Dvxd+v) 1on)+0 for any v, and divide Eq. (7) by this quantity, then
multiply both sides by }';(v), and integrate over v to obtain

Ao, £3)=1={ 7 @USL@)dv/{i0—D@)VE3+0T @} =0, (8)

For D), Y aon(v), and };(v) given as functions of energy, the discrete mode
propagation exists if there is a x, satisfying this relation. Thus assuming some
simple models on };(v), D), r(v) and }.(v) we investigate in the following
sections the conditions for which this dispersion relation has a discrete root wy.

. Domains of Discrete Mode Existence for Various Models

W-1, Model-1 (1/v Model)
In this model, we assume the energy dependence of the parameters as follows:

i) =%/, Y (v)=2/v, X.(v)=0,
D()=@Y ) ' =v/[30+%) ], )
r(@)=M@)=(4/v z)@*/vi)exp(—v*/v}),

where 1; and 1, are constants, and v, is the most probable speed of the Max-
wellian distribution M (v). Note that with this model, the scattering kernel (4)
satisfies the detailed balance relation

VM) X (0 —0) =0M (0) T (0-50"),

The dispersion relation (8) takes a form

=0, (10)

] = LM@)dv
/1(26!), xg):l—go z'w——UD(Kg”}*)‘mm

where 2,00 =24;+ Zq.

In investigating the existence of «, which satisfies the relation (10), we employ
Nyquist’s theorem or argument principle.2”> The number (N,) of zeroes and the
number (Nj) of poles of a function f(z) inside a closed contour C satisfy the
relation

o ALATEf@]=N,~N, an
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including multiplicities. Here f(z) is assumed to be analytic inside and on the
contour C, except for a finite number of poles interior to C. Further, it is assumed
that f(z) has no zeroes on C. Here A Arg f(z)] is the change in the argument of
f(z) as the point z describes C once in the positive sense. The value 4. Arg
f(2)7/2x represents the number of times the point f(2)=w winds around the origin
in the w-plane, as z describes C in the z-plane.

We rearrange Eq. (10) so that this theorem can readily be applied to the
function 4(iw,x%). Put

ZLE’U/Um, 5””5/[3xnon(7‘non+iw)]a)
(12)
pE)‘a/Xh qu/xi. J

Then the dispersion relation becomes

Ao, D=1-W/VOLA+ D) i [ wexp(—ud- )

«(1+zu?v2) 'du=0,

The problem is then to investigate the existence of z satisfying the relation (13).
In identifying A(iw, z) as the function f(z) in the theorem, and choosing an appro-
priate closed contour on the z-plane, we note that the integrand in Eq. (13)
diverges for z given by

g2=—(1/viu?), 0<u<oo, (14)

Furthermore, A(z) is unity® for z at infinity. Thus we choose the path AOBEA
in Fig. 1 as the contour C of the theorem. Our attention has to be focused on
the path described by 4(z) as z moves along AO and OB. To express z along
these paths we put

2=—(viu?) t+iecon AO, 0<u,<co (15)
2=—(viul) '—ie on OB, 0<u,< oo (16)

Z -plane

L Branch cut
N
A E

WV

Fig. 1. The Contour Chosen for the Appli-
cation of Argument Principle to the
Dispersion Relation (13) in Model 1.
The branch cut z=(@2v,2?)"! is in-
dicated by the hatched line.

*) For brevity we will write A(z) for A(iw, z) in the following, whenever convenient.
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where ¢ is made as small as possible, and where 7 is the imaginary unit. By sub-
stituting these expressions to Eq. (13) we obtain

Aus) =1 (4 v 7L+ 0) + g1 Texp(—u®) /oi]

an
X[ (uv,) 2(1—u?/ud) +ic ) v du=0,
for which we employ a formula28, 29,30
. 1 1 . 0(x—2x,)
=P i 0 18
I tie L@ T Gy (18

Here P denotes a principal value integral, and y(x) is a monotonic function of z.
Thus we obtain

AQue) =1= (4/ v 2w A+ p) +iq]*[P| wrexp(—u?)du
: } (19)
X (ui—u?) 'Firuexp(—u2)/27=0,

The principal value integral in the bracket can be rearranged to give
P( wrexp(—un)du-Tug—u?T1= (= V7 /D[1+uZ ()], (20)
0

where the function Z(u,) defined by

Z(u)=(v )P\ exp(—u?)/(u—uy)du 1)

uy: real and positive
has been used, which can be related to plasma dispersion function, and can be
written®D as

Z(uy)=—2exp(—ui)| ‘exp1, (22)
0
Thus the function A(#,) can now be written as

Aug) =1=2u[ (A+p)+iq]7" - {—1+2upexp(—uf)- ]

o 23
S exp(2®)diTis/ zuexp(—ud)}, J @

0

The minus sign in the last term is for z along AO, and the plus sign for z along
OB. By separating the real and imaginary parts of A(iw, u,) we have

ReA(iw, uy) =1—u (1+0)*+¢* 17 [ — (1+p)B(uo) F (¢/2)C ()], (24)
Lnd(io, ) =u [ (1+ )2+ 17 - {—gB(u) [ (1+0)/21C(u)},  (25)

where we have employed the notations
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B(uy) =2u,[1 —Zu(,exp(—ug)S:oexp(tz)dtj, (26)

C(uy) =4~/ ruiexp(—uf), (27)

We are seeking a critical set of p and ¢ values, for which 4(iw, u,) curve just
passes the origin of A plane, and for which the root x, just begins to disappear.
To seek such a set we put

RAGw, u,)=0, (28)

and
I A(w, u,)=0, (29)
Substituting Eq. (29) into Eq. (28) we obtain
bp=—1—u,B(u,),

(30)
q="TFu,C (%) /2,

Because g (frequency) is positive, we choose the lower sign for ¢ in Eq. (30).
This means that for a certain value of z along OB the point A(iw, #,) coincides
with the origin.

Eq. (30) gives the boundary of the domain in terms of a variable wu,. It is
the curve 1 of Fig. 2, and «, exists for those sets of (p, ¢) inside this curve.
In Fig. 3 is given a Nyquist plot of A(iw, u,) for a set on the curve: p=0 and
g=1.42%

ImA
N 1.0
a 05 4
LU=05
5
| ReA
4 ] ~
3 o 0.5 1.0 -
[I.S
2
25
* _os| \ ¥ £
) p
N
-4 -3 -2 -1 O 1 2 3 4
Fig. 2. Parameter Domain of Discrete Root Fig., 3. Nyquist Diagram of 4(z) Given by
Existence for Various Models. Egs. (24) and (25). The Diagram
Curve 1: Model 1 is given for Model 1 as z describes
Curve 2. Model 2 AOBEA in Fig. 1. with p=0 and
Curve 3: Model 3 g=0.42, which are at the intersec-
Curve 4. Model 4 tion of the Curve 1 with the g¢-

axis in Fig. 2.

¥ For a set of (p, ¢) inside the domain, the root zo=—«3[3hnon(Rnon+7w)]"1 must be
found below the negative imaginary axis of the z-plane.
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Actual wave experiments in a moderator are performed in the quadrant where
$>0 and ¢>0. It is interesting, however, to observe the domain in the quadrant
where p<0 and ¢>>0. This domain corresponds to negative absorption, and there-
fore to fictitious fission process, in which the fission neutrons are emitted with
the same energy as that of absorbed neutrons. The figure shows that too many
of such fissions could also disturb the discrete mode, causing it to disappear.

The defective aspect of the curve (1) in Fig. 2 is its behavior near the p-axis.
The present pattern implies that the root ceases to exist as q decreases with a
certain positive p, and get close to zero. This is in contradiction with our ex-
perience in experiments, and we attempt to alter this behavior by changing our
models in the following.

W-2. Model-2 (1/v model with a constant D)

The only difference in this model from Model 1 is the constancy of D, namely
we put

D(v)=D%* (const), X.(v)=1/v,
Y (0)=2/v, X.(v)=0 31)
r(v)=M(),

Neither the scattering kernel, nor the total cross section 2 =)+ (v)
has been altered. The discussion goes just in parallel with the previous model,
and the dispersion relation (8) for this case becomes

A =1=2{ M©)dv/(iw —vD%e3 4 1,,,) =0, 32
0 (32)

By a transformation

z:—D*Kg/(Anan"%'iw): (33}

it becomes

A@ =1= W/ DLA+0) +ig] | utexp(—ut)dux [1+zuv, ] =0, (34)

where we have employed the similar notations as in Model 1 except the definition
of z in Eq. (33). This time we put

2=—1/(V,ty) +1e (35)
for z along the negative real axis, and the dispersion relation becomes
AQe) =14 uo[ (1+0) +iq1" {A () + B(uo) FiC ()} =0,  (36)
where we have used the notation
A()= 2/ 7){1-uexp(—u?)E,(u?)}, 37
and employed the Egs. (21), (22), and the relation®®
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[Texpl DD _exp(—ut) (v 7 [ exp()dt—E,u)/2},  (38)

where
E(%) ;PS;(et/z)dt, (39)

Then the real and imaginary parts of 4 can be given as
RoA(ug) =1+u,[ (14 5) {A(%) +B (o)} £4C () - LA+ p)2+4*]7,  (40)
LA (uy) = —u[q{Au) +B(te) } £ (L+0)C (o) J-LA+2)2+a 11 (41)
The critical value of p and ¢ can be obtained similarly as in Model 1 as
q=Fu,C(u,),
b=—1—uy{Auo)+B(u)}.

Again we take the lower sign for ¢, and Eqs. (42) gives the curve 2 of Fig. 2.
We see that the condition for the existence of the root has been relaxed as com-
pared with Model 1. This can be attributed to the smaller diffusion coefficient
of Model 1 in large v range, which causes less leakage, less diffusion cooling, and
thus a preservation of position-independent thermal energy spectrum.

It is interesting to note that the value of D* does not manifests itself in the
figure. It does influence the value of w, through Eq. (33), however. Another
point to be noted is the intersection of the curve with the p-axis. The intersec-
tion is still at the origin, leaving the paradox mentioned in the last example. It
is to be alleviated in the next model.

(42)

M-3. Model-3 (a constant term in Y ;(v))
In this model we add a constant term to the X} (v) of the Model 2 and put

2@ =(/v) 4+ Y. (43)
Other quantities are assumed to have the same dependence as in Model 2:
Yw)=2%/v, X.(v)=0,
D=D%* (const), r(w)=M(),
Then with the transformation

z:_'(D*Eg"*‘ZiD)/(?‘nun_{”iw) (44)

where
7‘non = 7\a+ 7\1‘ ’

the relation (8) becomes

A(2)=1-[({1+p) +z’q]‘1§j(1 +sau)utexp(—u?) [ 1+to,uz ] tedu=0, (45)
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where s; defined by

5=/ (hi/02)

expresses the proportion of the 3}, term as compared to the 1/v term in >};(v).
The critical values of p and ¢ are found to be

g=(L+s.20)*u,C (o) /{1+(2// 7 )84}, (46)
p=—1—u[1+ 2/ 7)8 1 {1 +820)*[A(2o) +B(uo)]
+28;(1+38/ v/ 7 +3Sitto/2) }

The curve for s;=0.50 is illustrated as the curve 3 in Fig. 2. The intersection
of the curve with the p-axis is no more at the origin, but at the point

pe=lim p(ue) =2/ 7)$:(1+3v 7 8/ DX A+28// )7, (48)

which is equal to 0.601 in the case of s;=0.50. It can be shown that the slope at
. i8 zero. Furthermore, for this choice of s; value the domain for the existence
of the discrete root has been enlarged considerably.

47

M-4. Model-4 (Duderstadi’s model)

For comparison we present Duderstadt’s model.18> It employs one-dimen-
sional transport equation with the following energy-dependent cross sections;

T.@)=0/0, Si@)=0/v, T.(0)=0,

The parameter region boundary in this case is given by the equations!®, 2%
b=—B(u,)/2u,,
q=C(u,) /4u,,

It is given by the curve 4 of Fig. 2, and is the most stringent one among the
four models.

(49)

W-5. Model-5 (Diffusion theory treament for Model 1 with
transverse leakage)

So far our treatment has been confined to the wave propagation in an infinite
slab. We here investigate by diffusion theory the effect of the finiteness of trans-
verse dimensions. If the wave is propagating in longitudinal (x-) direction of a
rectangular prism, which is finite in the transverse (y- and z-) directions, we
assume cos(B,y)-cos(B,z) distributions, and put the periodic component of Egq.
(2) as

p(x, 9, 2,0, t)=dlvexp(iwt) fo(v)exp(—r,x) +cosB,ycosB,z. (50)
For this distribution the Laplacian operator is equal to
pi=ri—(B;+B)=r;—B3. (51)

If we employ the same energy-dependent cross sections as in Model 1, the dis-
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persion relation (8) becomes
AGiw, 58 =1~ 1M@)dv-[iw—vD(x—~B1) +1,0,]7 =0, (52)
0

With a transformation
z:'—(":g—Bj.)[gxnon()\non'i—iw)]"lf (53)

this dispersion relation reduces to Eq. (13), namely the relation for Model 1.
Thus in this case the finiteness of the transverse dimension does not alter the
domain of existence. This must be because our treatment is within the frame of
diffusion approximation. In the next model we attempt to treat the finiteness by
transport theory. Although the final form of p and ¢ will not be derived, we will
see what kind of procedures are required in the analyses.

W-6. Model-6 (Transport theory treatment for Model 1 with
transverse leakage)

In this case we assume the discrete mode of neutron flux (corresponding to
the fo(v)-exp(—xox) term of Eq. (2)) of the form3®
¢(xa y; Z, 6: §0, U, t):AI°g<0’ §0, U)‘CXD{“KOx~}‘i(Byy+BZZ> ’%'Z'wlf}. (54)
Then the transport equation becomes
L@w/v) —pry+iB /1 pPcos(p—a) + X (v) 1g(0, ¢, v)
1 27 w (55)
:S 1du'g dsﬁ’g dv' 3 (0'=0, ¢'—>¢, v'>v)g(0', ¢, V),
- [ 0

where p=cos @ is the direction cosine of neutron velocity with respect to x-axis,
and ¢ is the azimuthal angle around x-axis, and a=tan~'(B,/B,). Assuming iso-
tropy of scattering, and the energy-dependent cross section of Eq. (4) and Model
1 except D, the dispersion relation becomes

k) =1= O/470,) 4/ 7| duf wexp(—ur)du

56
P Ot i) 10— ey 1B, T 08 () 1 =00, v
The integration with respect to ¢ is written as
TG, )= "dg /A idscos(g—a)] (57)
where
Ay = Qg i)/ (Ut) — i,
(58)

AZSB_L\/l——/LZ.

By using the variable s=exp(ip) this integral can be transformed to the following
closed contour integral.
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I(pu)=—(2/A,)exp (i) (f}ds[sz—2Aliexp(z'a)/fl2+exp (2ia)T™t (59)

unit
circle

The residue is to be evaluated at one of the following two poles s; and $5.19)

(1) =0 A/ & VT (AL 74,37 i explia)
2 (60)
S-S, =exp(2ia)

In the present case, however, 4, is a complex variable, and the relative positions
of these poles with respect to the unit circle depends on the variables # and u.
This point has to be investigated further. At the present review we just proceed
for the case where s; is within the circle. It may be invalid, but we can speculate
what kind of functions are associated with the result of the present problem (If
Sy is inside, it is only necessary to reverse the sign of the right side of Eq. (61)).
If sy is inside the circle, we have

I(p, u)y=2r// A7+ A% . (61)

In performing the integration with respect to g, we borrow the general conclusion
from diffusion theory that

&g >BE, (62)
With this assumption we put
v=VE=B,
and obtain
! _ 2r Yitiw/v,u-y } 63
5_1]<ﬂ’ u)dn= v In{ Yitiw/v,u—y - (63)

Next we employ the speed-dependence of Y, given by Eag. (4), and carry out the
following integration in Eq. (56) by parts.

; — _L )ki “ 2 (xnon_}_iw)_%"yvmu
A, =1——= " Souexp(—u )m{ (Mﬁz‘w)—vvmu}du' |

The resulting dispersion relation is

Ao, =1Ly 7 Qe+ i) 7 [ exp(—un)du/(zu+1)=0, (64)
where we have defined z as
2=0,9/ (ragn+i).
If we proceed similarly as in the previous cases, putting
2= —uy'+tie,

we obtain the same equations of the domain boundary as Eq. (49).
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This means that the domain has not been affected even by the introduction of
finite transverse dimension. It contradicts the conclusion by Williams!8®. This
contradiction was brought about by the assumption in evaluating I (g, #) of Eq.
(59) that s; is always inside the unit circle. Therefore, more careful treatment
of this step is necessary: depending on the ranges of g and %, the sign of (61)
must be treated differently, and it could lead to more complicated expressions than
(49).

V. Discussions

In the Models 1 through 5, an unacceptable feature of the domain near the
p-axis could not be removed. It is speculated3® that this is caused by the sepa-
rable kernel Eq. (4) we have used. This one-term kernel (with 33.(»)=0) implies
that neutrons acquire Maxwellian distribution in a single collision, and this is ob-
viously too effective tendency toward thermalization. It would be interesting to
see the effect of improvement in kernels. Although the computational labor would
be much increased, more terms in the kernel expansion could be attempted.35
Higher modes of energy spectra in ordinary thermalization problem may give hints
in selecting a proper higher term, if one wants to simulate slower thermalization
than that by one-term kernel.

The evaluation of the domain by Model 4 have not been completed. Because
of the complicated integraion over ¢, ¢ and u, explicit expressions such as in the
previous five cases may not be obtainable.

In conclusion, the present method is useful in seeing the effect of reactor
physics parameters on the neutronwave eigenvalue problem of moderators. Although
the model may not be rigorous in the present form, there is room for the inclusion
of more realistic energy-dependence in cross sections treated.
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