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Abstract

To facilitate theoretical analyses of Kyoto University Critical
Assembly (KUCA), reactor physics group constants were prepared. In
this report we describe the procedures of the preparation, and verify
the feasibility of the resulting constants through criticality calculations.
For this purpose we first use computer code “UGMG-42” for fast-
group constant production, and “THERMOS” for thermal group constant
production. With these constants as inputs, criticality calculation is
carried out by a two-dimensional code “EQUIPOISE-3". The difference
between the criticality calculation and experiment proves to be in the
range 1.0~1.5%.

In addition, comparison is made between the theoretical prediction
and measured values of temperature coefficient, which is one of the
fundamental characteristics of the Assembly. The calculation, which is
performed with a one-dimensional code “EXPANDA-25-IMPORT,” re-
produces successfully the experimental lattice-pitch dependence of this

quantity.

1. Introduction

Group constants are a set of parameters prepared for the analysis of a nuclear

reactor or critical assembly. To facilitate the following presentation of the constants
for Kyoto University Critical Assembly (KUCA), we first give a brief introduction

of critical assemblies in general, and of the role played by group constants.
A critical assembly is a neutron-multiplying apparatus which is constructed to

perform low-power experiments, so that the neutron-economy characteristics of a
newly proposed reactor can be determined. The typical characteristics determined
for a given arrangement of core materials are: (a) critical size, (b) effectiveness
of control rods, (¢) temperature coefficient, namely the variation of multiplication
factor with temperature rise, (d) void coefficient, namely the variation of multipli-
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cation factor upon introduction of voids into the core, and (e) neutron flux dis-
tribution. o o o

In attempting to support such experimental characteristics by theoretical esti-
mation, one expresses the system with a one-dimensional (1-D), twp»dimensional
(2-D) or three-dimensional (3-D) model, and solves diffusion equations with proper
boundary conditions.  From the results one can evaluate the characteristics mentioned
above. The diffusion equations in such practice are set up respectively for many in-
tervals of neutron energies involved, and the constants (neutron diffusion coeffi-
cients and neutron cross sections) of the equations must be prepared for all these
neutron energies. These constants are called reactor physics constants, or group
constants, where the group means energy group. Thus the group constants are
indispensable for the analysis of reactor characteristics. . While the need for the
effort of solving diffusion equations can easily be understood, it is no less important
and painstaking to produce proper group constants with reasonable method and
make them available to reactor analysts.

In the last five years, a reactor physics group at Nuclear Engineering Department
have been participating in experiments to determine the parameters of the KUCA.D
It is a part of joint research activities involving several universities in Japan. At
the same time the theoretical verifications of the typical parameters already men-
tioned have been underway, which can also be viewed as the test of the group
constants proposed. As the result we have reached the following tentative set of
constants, which leaves several areas to be investigated and refined. Another set
of group constants are being prepared also by the staffs at the Research Reactor
Institute of Kyoto University.?2> Judging from the importance of the matter, we
feel the investigations by several independent research groups with their own
methods are necessary and rewarding.

II. The Specifications and the Criticality Data of the Kyoto
University Critical Assembly3®

In the building of KUCA there are three cores which are called A-core, B-core
(both of them are solid-moderated), and C-core (light water-moderated). Ever
since the C-core was brought to its first criticality on August 6, 1974 (B-core on
Nov. 16; A-core on Dec. 3 of 1974), the three cores have been used as the apparatus
of joint research activities by universities over the whole country. In addition to
our participation in its test experiments, we took part in preparing the group
constants of the C-core. As shown in Fig. 1, C-core has a base lattice plate of
stainless steel which supports the fuel assembly frames (Fig. 2) within a water
tank of 1.8 m depth. The core is constructed by placing the fuel frames on the
lattice plate (Fig. 1) in a desired core configuration.

The fuel frames can be loaded with fuel plates® (Fig. 3; Table 1) with three
different pitches, namely 2.96mm, 3.49mm and 4.54 mm, corresponding to the
H/235U values (atom density ratio of H to 235U) of 159.1, 212.0, and 315. 2, respec-
tively, within the unit region illustrated in Fig. 5 (see Sec. ¥). In the following
we call these loadings C30, C35, and C45 loading, respetively. In terms of number
of plates loaded per frame, these loadings hold 47, 40 and 31 plates, respectively.
Fig. 4 illustrates by a plane figure how the arrangement of the fuel frames form a
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Fig. 1. The Sketch of the C-Core.

Table 1. Fuel Plate Specifications.5’

Plate dimension 62x600x1.5 mm?3
Meat layer 52.8%569.2x0.5 mm3
. ) (Average value from
dimension X-ray photo)
Weight of 235U 8.893 g/plate
Density of 3.22 g/cm?

meat layer

Uranium content
in the meat layer 19.741 %
of U-Al alloy

Uranium o
enrichment 9.1 %

Fig. 2. The Fuel Frame Which Holds Fuel Plates.
It can hold 47, 40, and 31 plates in the
cases of C30, C35, and C45 loading, res-
pectively.

core. It is a rectangle core with four corners cut away.

As for the criticality core dimensions, the height (in z-direction) is determined
by the height of the meat content within the fuel plate, while the length in y-
direction by the number of the frame arrays (which is fixed at five during routine
experiments). The dimensions in x-direction have been determined by criticality
experiments of individual loadings, in which fuel plates were added until the core
became critical. In such experiments core water was kept at the height of 21~31
cm above the top of fuel plates. Six control rods were pulled off the core com-
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Fig. 4. A Plane Figure Illustrating an Arran-
gement of Frames in Constructing a
Core.
Fig. 3. The Fuel Plate. C1~C3: Control Rods

S4~86 : Safety Rods

Table 2. Criticality Data for the Three Ways of Loading.3:4

C30 loading C35 loading C45 loading
X, of Fig. 4 28.4 cm 21.3 cm 28.4 cm
X2 32.4 cm 34.6 cm 30.2 cm
Y 35.5 cm 35.5 cm . 35.5cm
Z 57.0 cm 57.0 cm 57.0 cm
Critical number of plate 510 412 322
Critical mass of 235U 4,535 g 3,664 g 2,863 g

pletely. In Table 23,4 are given the critical dimensions of three loadings obtained
by such experiments.

. Group Constants

To lay out more specific definitions of group constants in connection to the
present analysis of the Assembly, we first sort the neutrons into two groups, namely
into thermal neutrons (0~0.625 eV), and fast neutrons (0.625 eV ~ 9.99 MeV),
and set up the following equations for respective groups.

Core region (the region including fuel plates)

The first group:

Dip?oi— (e + 20k, 102) 01 +v2001 020,85 =0, @

The second group:
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Dip2;—3:05+ >k 10201 =0. @)

Reflector region (light-water region around the core)
The first group:

Dip2p;— (e +30% 1)1 =0, 3)
The second group:
D;VZS‘J’;”’“era?ﬁ;‘jl‘zzg,l—»z‘pfzo. (4)

This system of equations are called two-group equations, and describe the following
physical processes:

The reactor is in a stationary state (it is critical in this case). There are
high energy neutrons (2 MeV on the average) produced by fissions. They either
leak out of the system after colliding with the nuclei of reactor materials (D1p%¢1),
or get absorbed by the nuclei (33,.9,), or trigger fissions (v33;,¢4,) of 235U and
2387 at this energy, or get slowed down (3lz,1.:01) to lower energy (thermal
energy: E<0.625 eV) by scattering. The neutrons which have been slowed down
can be absorbed (31,,8,), can leak out (D,p2¢,) or can produce high energy neutrons
by fission reaction (vSl,s,) with fissile material (235U). The decrease and
increase of neutrons by these processes are in balance, and reactor keeps a constant
power by repetition of above cycles. Superscripts “c” and “¢” indicate core region
and reflector region, respectively.

In the diffusion equations Egs. (1)—(4), neutron fluxes are unknown quantities,
and the constants needed in calculation procedure are the diffusion coefficients D,
macroscopic absorption cross sections 3., macroscopic removal cross sections Xiz,1-2,
and macroscopic fission cross sections 31;. These constants are obtained as averaged
values over the respective energy ranges. The absorption cross section XY, for
example, is evaluated by the following formula:

w={ i@ (BYdE /v, 5)

where
oi=("s:E)dE, ®)

and where E, and E, specify the energy range involved. As 315(E) is known as nuclear
constants,® 3, can be determined if we could obtain flux ¢¢(E) for the core as a
function of energy. The main objective of this report is to describe the computer
calculation of ¢¢(E) and ¢7(E) over the two energy regions mentioned, and to
determine the constants appearing in Egs. (1)—(4) by Eq. (5). We call the resul-
tant constants “two-group constants’”. If the formulations are carried out with
four energy groups, the constants needed are called “four-group constants.” In this
report, we provide four-group as well as two-group constants (in Secs. [V and V),
then calculate critical masses and temperature coefficients of the assembly (in
Sec. V), and compare them with the experimental values.

The procedures of constant production are described next for the three core
loadings, and for the reflector (light water) region. The neutron spectrum ¢(E)
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within the two groups mentioned previously are governed by entirely different
physical mechanisms. In the fast group (0.625 eV ~ 9.99 MeV) the motions and
chemical bindings of the medium nuclei can be neglected whereas in the thermal
group (0 ~ 0.625 eV) they must fully be considered. The fast group is further
divided into fifty-four energy groups in the present calculation, while the thermal
group into twenty-nine. These group structures are called multi-energy groups, and
are differentiated from few energy-groups. The latter is a general term attached to
the final group structure for which the constants are produced (two groups or four
groups in our example). For the i-th nuclide from which the core is composed (H,
0, Al, 235U and 23%U) microscopic cross section o} for the j-th reaction are
available for each of the multi-groups in a form of library tapes prepared for
computation codes. The macroscopic cross section 33; of the j-th reaction is given
by the sum of ¢iN,; with respect to i, where N; is the number density of the i-th
nuclide. The density N, is calculated from the specifications of the assembly given
in Sec. [, and is supplied to the codes as input data. Computer codes solve the
transport equations for each of the multi-groups, with such 33;/s as constants in
equations.

The fast enegry spectrum is obtained by the code “UGMG-42"7,® which solves
transport equations with a continuous slowing-down model for a homogenized core
region and the reflector region. For thermal energy group, integral transport
equations are solved by “THERMOS” code? over a minimum unit (called a “cell”)
of the periodic structure consisting of fuel plates and water (Fig. 5). Because of the
~ different models included in the two codes, the number densities are evaluated and
provided differently. In the following the input data for each case will be described.

IV. Procedure for Fast Group Constants

Number densities : The UGMG code can perform only homogeneous medium calcu-
lation in the case of plane geometry. The number density N,’s for the core region
is evaluated as follows. In the allocation of fuel frames, a water region of 2mm
thickness lies between the consecutive frames in x-direction, and a water region of
1mm thickness in y-direction. Including these regions we regard one unit of a
modelled frame as forming a 142mmx71lmm rectangle, as seen in Fig. 5 (cf. Fig. 2).
Such a modelled frame consists of four kinds of regions: meat layer (which contains
U-Al alloy), aluminum cladding, moderator regions between fuel plates, and frame
structure. All the nuclides included in these regions are mixed uniformly and the
resultant number densities N;’s are used as those for the core, which are given in

] Fuel Plote

 Light Water pig 5. A Modelled Frame for UGMG.
The water channel attached
_g.[--------_-___--,_-___ﬂ___\ ,___1 around the frame (indicated by
I | dotted line) is included in the
Al-Frame treatment.
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Table 3. Number Densities Used for Fast Constants at 20.447C.
Based on this table the densities at 35.12C were

evaluated with thermal expansion taken into account. (%1024 n/cm?)
Nuclide C30 loading C35 loading C45 loading
235U 1. 8666 10-4 1.5886x 104 1.2311x107¢
c . 2387 1.3659x10-5 1.1625x10-5 9.0094 % 10-6
ore region
Al 3.3096 < 10-2 2.9537x 102 2.4962x10-2
H;0 1.4845x10-2 1.6840x10-2 1.9405x 10-2
Reflector region H20 3.3330x10-2

Table 3 together with N;’s for the reflector (light water).
Options: By input parameters’,® to the UGMG code, the following options were
specified :

1. Use of B-1 approximation in solving transport equation.1®

2. To deal with degradation integral, Selengut-Goertzel approximationd ') is
employed for H, and consistent-age approximation® is used for heavy nuclides,
O, Al, 2350, and 2380,

3. Doppler effect is included in resonance integral evaluation.

4. In editing few-group cross sections, neutrons are included which skip an energy
group or groups during moderation. It is called “inelastic scattering” in the
code manual for convenience, in spite of kinetic energy conservation. The
reason for such consideration is the light water content in the system, which
slows down neutrons effectively. In our case it means Slg,1.3540 in the three-
group fast constants.

5. Resonance integral is treated by intermediate resonance approximation.8,}2

Energies and dimensions: Beside the above options, few-group energy widths,
and the dimension of the system (dimension of the whole core in this case) have
to be specified in the input. As for energy width, UGMG calculates ¢(E) (to be
more precise ¢;, j=1, 2, 3, -.- 54) for fifty-four energy groups. The intervals of
the fifty-four energy groups are fixed in UGMG, whose values are given in Ref. (8)
and are not given here. In reducing the resultant fifty-four group cross sections
with weights ¢;'s, we specified the following intervals: (the first group 9.99 MeV~
0.8197 MeV; the second group 0.8197 MeV~5.52 keV; the third group 5.52 keV~
0.625 eV). Such three-group fast constants and one-group thermal constants (of
Sec. V) form a set of four-group constants. Later, the fast cross sections are
further reduced to one-group cross sections with the weights of three group neutron
flux ¢,(I=1, 2, 3). ’

As to the size specification of the system, UGMG is based on a 1-D model.
Thus the thickness of this 1-D slab has to be specified in such a way that the effect
of leakage on the spectrum is equivalent to that in the real 3-D system. It is done
by providing as input data a constant B? (called “buckling”), which are defined by

the relation

B*=B: B} B!
where Bi=(x/a)?, Bi=(z/b)?, Bi=(z/0)*, @
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if we are to carry out the calculation on a bare parallelepiped core with the di-
mensions &, b and ¢ c¢cm in x-, ¥-, and z-directions, respectively. Then UGMG solves
a bare slab (1-D) problem with a thickness of e*==/B, and obtains a spectrum
equivalent to that of the given 3-D system.1®

To include the reflector effect in such a bare core calculation, we form a
fictitious bare core model as follows: In Fig. 6 is given a rough sketch of the
neutron flux distribution in x-direction of the system. It was obtained by a pre-
liminary 2-D calculation by the diffusion equation code “EQUIPOISE-3.”"1®  Deep
inside the core region, the flux ¢, (x) in the figure can be approximated with a
function ¢} (x) =AcosBjx, where Bi=n/(a+26,). The flux ¢;(x) vanishes at the
distance d, from the core-reflector boundary. We determine 4, by fitting on the
flux ¢, (x) of Fig. 6, and call it a “reflector saving” in x-direction. We use B}?
as the buckling B? in Eq. (7). It is equivalent to replacing the real reflected
system with a fictitious bare core of thickness ¢+2d, (see Fig. 6). We determined
B?% and B? similarly. Then B2 given by Eq. (7) is supplied as input data to UGMG.
We give those reflector savings (d,, 8y, 8,) and bucklings (B2%, B%, B?) in Table 4.

As to the reflector dimension needed in reflector constant evaluation, this much
thickness of water in x-direction can be regarded as infinite!®, and only a single
attenuation constant needs to be specified. First, the reflector flux cosine distri-
butions in the - and z-directions similar to those of the core are confirmed by
the preliminary calculation mentioned above, Thus we adopt the same B? and B?
for the reflector region. In such a problem, the energy spectrum of the 3-D
system with spatial attenuation exp(—«x) in x-direction can be reproduced by a
1-D system spectrum with exp(—u#x) attenuation, provided g is taken as p2=x2—
(B3+B%).15,18 Thus we read « from the figures of neutron flux in Fig. 6, and

Table 4. Reflector Savings and Bucklings for the Three Loadings.

C30 loading C35 loading C45 loading
8z (cm) 9.4 8.2 7.8
8y (cm) 9.4 8.2 7.8
d: (cm) 9.4 8.2 7.8
Bz?2 (cm™2) 3.7605x10-3 3.8014 %103 4.6981x 1073
By2 (cm~2) 3.3473x 10-3 3.6641x 103 3.7797x 1073
B;2 (cm~2) 1.7178x 103 1.8319x10-3 1.8725%x10-3
B (cm™1) 9.3945x 1072 9.6423x 102 1.0174 < 10-1

Reflector Core Reflector
¢ Fig. 6. Neutron Flux Distribution in x-Direc-

tion over the Core and Reflector
(Output of Two-Dimensional Prelimi-
nary Calculation).

¢1: Fast flux

¢3: Thermal flux

a : Core thickness in x-direction

¢ : Reflector saving
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provide the values of B2=-—pg? (for which exp(iBx)=exp(—px)) as input data
(#=0.1565 cm~! for the reflector attached to the C35). Unfortunately, however,
negative flux appeared for such input as the result of UGMG calculation, probably
due to the strong attenuation of flux in x-direction. We regarded it as a non-physi-
cal solution emerging from numerical procedures, and selected a g, smaller than
u, for which the flux becomes positive. At the same time g, was made as close
to ¢ as possible. The result is p,=0.1189% cm~!, which is used for all three
loadings hereafter.

From the specifications above as inputs, the three-group fast constants at
20.44°C and their edited one-group version were obtained, and given in Tables 5

and 6, We also give those at 35.12°C in Tables 7 and 8, which we will use later
Table 5. Three-Group Fast Constants at 20.447C.
Core Reflector
C30 loading C35 loading C45 loading H,0
D; (cm) 2.5281 2. 5287 2.5190 2.7571
D 1.2309 1.1908 1.1453 0.97904
D3 1.0817 0.99171 0.89545 0.58424
e (cm~1) 5.5931x 104 5.3599 104 5.0471x10-4 7.3403x 1074
l2a 5.2740x 1074 4.5288x 10"+ 3.5674x 1074 0.0
3lsa 8.6582% 103 7.6339x10°3 6.2275% 1073 9.6865x 104
Shr (em™1) 2.4446x 1074 2.0812x 1074 1.6133x 1074 /
Sler 3.3615x 104 2.8615x 104 2.2174x10-4 )
Slar 4.4355x 103 3.8326x 1073 3.0155x10-3 /
yShr (ecm~1) 6.5688x 104 5.5084x 10-4 4.3452x 1074 /
vSlar 8.2618x 1074 7.0329x 1074 5.4499x 1074
var 1.0798 x 10-2 9.3301x 103 7.3408x 103
Se1 (em~1) 8.8689x 102 9.1782x1072 9.5527%10-2 9.5902x10-2
Sir2 6.5677 x 10-2 7.4552x 102 8.5853x1072 1.5289% 101
>ir3 5.9441x 102 6.8933x10-2 8.1045x10-2 1.5268x 101
B (cm~1) 9.3946x 1072 9.6423x 1072 1.0174x 107! 1.1890x 101
Table 6. One-Group Fast Constants at 20.44C.
Core Reflector
C30 loading C35 loading C45 loading H,0
D (cm) 1.5941 1.5554 1.5111 1.5161
St (cm™1) 3.0838x 1073 2.7500x 103 2.2716x 1073 5.8518 %104
Sy (cm™1) 1.5910x 103 1.3826x 1073 1.0906x 10-3 —
vy (em™1) 3.8955x 1073 3.3852x 1073 2.6703x 103 —
S (ecm™1) 1.8615x 102 2.1796x 102 2.5773x 102 4.9042x 102
B (cm™1) 9.3946x 102 9.6423x 1072 1.0174x 1071 1.1890x 10"t
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Table 7. Three-Group Fast Constants at 35.12C.

Core Reflector
C30 loading C35 loading C45 loading H,0
D (cm) 2.5329 2.5338 2.5244 2.7668
D, 1.2342 1.1941 1.1487 0.98277
D3 1.0854 0. 99520 0. 89868 0. 58656
She (cm~1) 5.5815x10-4 5.3477x 104 5.0343x10-4 7.3451x10°4
2l2a 5.26841074 4.5240x 104 3.5637x 1074 0.0
>l3a 8.6347 103 7.6125x10-3 6.2095x10-3 9.6491x 104
s (em™1) 2.4421x 104 2.0791x10-¢ 1.6117x 1074 ~
227 3.3579x 104 2.8585x 1074 2.2151x 104 /
Slar 4.4249x 1073 3.8233xx10-3 3.0080x10-3 /
v3lr (cm™1) 6. 56203104 5.5927 x 104 4.3408x 104 /
v3lar 8.2530x10-4 7.0256 104 5.4444 1074
v3isf 1.0772x10°2 9.3073x 1073 7.3226x< 1073 /
Se1 (cm™1) 8.8443x 102 9.1516x10-2 9.5235x10-2 9.5381x 102
>ir2 6.5404x 102 7.4243x10-2 8.5499x 102 1.5231x10-1
SRs 5.9179x10-2 6. 8634 10-2 8.0699x 102 1.5210x 101
B (cm™1) 9.3946x 102 9.6423x10-2 1.0174x 10! 1.1890x 1071
Table 8. One-Group Fast Constats at 35.12C.
Core Reflector
C30 loading C35 loading C45 loading H;0
D (cm) 1.5981 1. 5594 1.5152 1.5223
S (cm™1) 3.0747x 103 2.7417x 1073 2.2647x 1073 5.8433x 1074
>y (em™D) 1.5868x10°3 1.3789x10-3 1.0878 <1073 e
vy (cm™1) 3.8854x 1073 3.3763x 103 2.6634x 1073 R
e (em™1) 1.8524 <102 2.1692x10-2 2.5653x10-2 4.8837x 1072
B (cm™)1 9.3946 1072 9.6423x10-2 1.0174x 1071 1.1890x 101

for temperature coefficient calculation.

V. Procedures for Thermal Group Constants

In order to carry out 1-D calculations by THERMOS, a proper unit cell has to
be modelled after the real system. The periodic structure in Fig. 7(A) is deformed

to that in Fig. 7(B).

(a) - - meat,
(b) - - aluminum cladding excluding both edges of the plate,

In Fig. 7(A), five regions can be identified:
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(¢) - - side plates of the frame, d b 7' Cladding
(d) - - both edges of the fuel plate, Szoooooee > &Y d ( Layer
(e) - - moderator. L X K IMeat
As far as dimensions are concerned, the ':°\W ) |'* ( Layer
regions (a), (b) and (e) are stretched E /‘ e —= 7lmm c‘ Moﬁzrggd
in y-direction, retaining their original ib L s
thickness in «x-direction. To evaluate EI_' ¢ '
N's, on the other hand, atoms in a“ S
(a) are diluted over the stretched A Unit Cell
region (a’), (A) (B)
(b) are diluted over the stretched  Fig. 7. Modelling a Unit Cell for THERMOS
region (b"), from the Real Frame.
(¢), (d) and (e) are all crammed into
region (c').

The resulting N,’s are given in Table 9. The THERMOS code solves an infinite
medium problem in which a set of regions (&), (b)), (¢), and their symmetry
images repeat themselves indefinitely in x-direction, extending at the same time to
infinity in y-direction. The input data specify the axes of symmetry (m) and (n),
and impose the law of reflection on neutrons incident on (m) and (n). This law is
the particle-based description equivalent of periodic condition. The code solves on
the unit cell between these axes.

Table 9. Number Densities Used for Thermal Group Constants at 20.44C.
Based on this table the densities at 35.12C were evaluated
with thermal expansion taken into account. (%1024 n/cm?)

Nuclide | C30 loading | C35 loading | C45 loading
Meat | 23U | L1279x107 | 11279x107 | 1.1279x10°3
, 238 | 8.2537x10-5 | 8.2537x10-5 | 8.2537x10°5
Unit cell for region Al 4.2808x 1072 | 4.2898x 1072 | 4.2808x10-2
the Cores Cladding™ Al | 44801x102 | 4.4801x107% | 4.4801x10°2
Moderat Al 2.2180%x10-2 | 1.8833x10-2 | 1.5611x10-2
region H,O | 2.0483%10-2 | 2.9162x10-2 | 2.8853x10-2
Reflector medium H:;0 3.3330x10-2

* Region (a’) in Fig. 7 (B)
** Region (b") in Fig. 7 (B)
#k Region (¢') in Fig. 7 (B)

For thermal neutron scattering, the energy of hydrogen-oxygen bonding in a
water molecule cannot be neglected. Including this effect by Nelkin model the code
“GAKER” prepares for THERMOS the neutron scattering kernel of light water.®
Then THERMOS obtains the twenty-nine group flux, and calculates macroscopic
cross sections by Eq. (5). An exception is diffusion coefficient D, which is calcu-
lated manually with a use of the following equation, in contrast to the fast diffusion
coefficient given directly by UGMG :
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D=33,/(3%D
=21+ (8)

Here, 33; is macroscopic thermal scattering cross section, and 3, is macroscopic
total cross section, both being given by THERMOS as output. Contrary to the case
of fast group calculation, twenty-nine thermal groups were collapsed directly to one
group. We give the obtained thermal constants for 20.44°C and 35.12°C in Tables
10 and 11.

Table 10. Thermal Constants at 20,44C.

Core  Reflector
C30 loading C35 loading C45 loading Hzo
D (cm) 0.24082 0.21492 0.18843 0.11240
Se (ecm™1) 9.1123x10-2 8.3429x 10~2 7.1475x10-2 1.9100x 10-2
> (cm™1) 6.7309<10-2 6.0016x10-2 4.8868x10-2 —
vy (em™1) 1.6356<10-1 1.4584x10-1 1.1875x 101 e
Table 11. Thermal Group Constants at 35.12C.
Core Reflector
C30 loading C35 loading C45 loading H,0
D (cm) 0. 24664 0.21971 O.‘19228 0.11399
S (em™1) 8.8521x 102 8.1043x10-2 6.9459x10-2 1.8558x10-2
s (em™Y) 6.5362x10-2 5.8276x 102 4.7486<10-2 e
¥»3iy (em™1) 1.5883x10-1 1.4161x 10"t 1.1539x<10-1 _

VI. Criticality Calculation and Temperature Coefficient

In this section we verify the validity of the constants prepared in Secs. [V and
Y by carrying out criticality calculation and temperature coefficient evaluation.
Both results are compared with measured values.

Criticality Calculation: A 2-D, two-group diffusion equation code “EQUIPO-
ISE-3713%) is used. Thus the real 3-D Critical Assembly had to be reduced to a 2-
D (x-y) model, the core being replaced by a fictitious one which is bare in the z-
direction (for x-z geometry calculation, the y-direction is modified to be bare).
For this modification we again replace the real flux by cosine distribution in z-
direction, with reflector saving &6, as in Sec. [V. The value of effective multiplica-
tion factor k.;; which is obtained by EQUIPOISE-3 as an eigenvalue is to be unity
as it is in criticality experiments.

We carried out calculations for two systems: for the x-y geometry of Fig. 8
and the x-z geometry of Fig. 9. The motivation for the x-z geometry calculation
is to verify the validity of §, assumed for x-y geometry calculation (it disclosed
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Fig. 10. Neutron Flux Distribution (in x-Direction) of C35 Loading.
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In Fig. 9, the x-y cross sectional shape is artificially made a rectangle
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in such a way that the number of fuel plates included is equal to that in Fig. 8&.
Thus the dimension «’s in Fig. 9 are different from the ¢’s in Fig. 8. The calcu-
lated effective multiplication factor k.;r for the systems of Figs. 8 and 9 are given
in Table 12. The buckling (B? and B32) used to simultate the leakage in the
directions omitted in the calculation are given in Table 4. We see that the calcu-
lation predicts slight subcriticality (k.:r<{1), contrary to the criticality in the ex-
periment. In Fig. 10 we illustrate the neutron flux distribution produced by
EQUIPOISE-3, which has been normalized to the fast neutron flux at the point
close to the center (x=1.065cm).

Table 12. Effective Multiplication Factor for Each Loading Analyzed.

C30 loading C35 loading C45 loading

x-y geometry (in Fig. 8) 0.98693 0. 99857 0.99343
x-z geometry (in Fig. 9) 0.99139 0.98739 0.99630

Temperature Coefficient: A 1-D, multi-group diffusion code EXPANDA-
25-IMPORT is used, which is a modified version of the original EXPANDA-2517
calculating adjoint flux. Define k.:(7) as the effective multiplication factor at
temperature 7. Because p(T)={kes: (1) —11/kors(T) and k.. (T) =1, the change of
reactivity is given by

do={kess(T+AT) —kes;(T)} /kess (T +4T), ®
and temperature coefficient ar as
a,=dp/4AT. (10

Here we give only the results for a temperature rise from 20.44C to 35.12C.

The system dimensions in y- and z-directions are treated with bucklings (B2,
B%) in the same manner as criticality calculation, so that the system is reduced to a 1-D
system. By use of the constants in Tables 6 and 10, criticality search at T=20.44C
is carried out to find the critical dimension in x-direction for which ke (T)=1.
With this dimension fixed, the calculation at the 35.12°C is carried ont, with the
change of reflector saving 4d,, 45, upon temperature rise being included through
B} and BZ. The relative change 46,/8,, for example, is calculated according to the
relation

43,/3,= 4D /D¢~ AD;/D;+ AL}/ L},
L;=Di/ST, an

where we intentionally relied on the fast group constants. These relative change
are given in Table 13, together with bucklings for two-directions (B3==B2%-+B2) at
both temperatures. With such consideration, and with constants of Tables 8 and 11, we
obtained ke (T+47) and ar tabululated in Table 14. The calculated temperature
coefficient @, and the measured coefficientsl8, 19,20 are compared in Fig. 11.
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Table 13. Fractional Change 40/8 of Reflector Savings Due to Temperature
Rise, and Buckling B2%’s at Two Temperatures.

C30 loading

C35 loading

C45 loading

48/8
(em~2) at 20.44C
(cm~2) at 35.12C

1.1342%
5.0651x10-3
5.0293x10-3

1.1153%
5.4960 103
5.4612x 103

1.1294%

5.6522<10-3
5.6172x 1078

Table

14. Calculated Temperature Coefficients and Multiplication Factors.

C30 loading

C35 loading

C45 loading

ar (4k/k/C)

keff
keff

(20.44°C)
(35.12C)

—9.22%x1075
1.0000
0. 99865

—1.60x10"4
1. 0000
0. 99766

—1.70x10-4

1.0000
0.99752

Temperature Coefficient
oly (21073 k/k/°C)
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o
A

~15} 4

-10F / J
=]
/A

-5k // -
./

0 _{r'l L 1 N 1 v
020 30 40

Temperature (°C)

Coefficient.
Calculation

e C30 loading Hg -+
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VI. Discussions on the Results and Plans for Future Investigations

First, we compare two sets of reflector savings: the first is the ones assumed
for each loading in Sec. ¥ in preparation of fast constants, which we call §;0, dyo,

and 620.

The others are the ones which are determined from output neutron flux
distribution of criticality calculation, and we call them 6., d,1, and ;.

The

values of 8,1, 051, and 8,7, although not given here, are seen to vary with loading.
For a given loading, however, it is found that §,,=~8,,~08,:=0;, with the differences
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within 0.6 cm. (This justifies our approximation of 8,0~dy0~08,0=0, in UGMG
inputs.) On the other hand, the value of §; varies from 6.0 cm in C45 loading to
7.0cm in C30 loading, and is smaller than &, in each loading. . For C30 loading, it
is found that 6,—2.4 cm=0,. From the 2-D preliminary criticality calculation, we
can infer that this much difference only in §, (and not in §, and 8;) would cause a
difference of 0.01 in kerr. Although we should improve the values of d4’s in future
so that dp=§,;, we judged that this much error in k. at the present stage can be
tolerated. As far as temperature coefficient calculation is concerned, this amount
is added to both ke (T-+4T) and ker(T), and the result is not affected.

Next we discuss the scheme of giving # as a UGMG input for light water
calculation in Sec. Y. We determined g by subtracting B? and B! from x?=
(—¢)~192¢/0x2 and used a single value po< ¢ for all loadings. As B%, B?Z, and
(—¢)~192¢/0x2 vary with loading pattern, different p’s must be taken for each
loading in principle. The variation of §, and 6, with loadings are, however, small
in comparison with the fixed dimension of the core (17.75cm for y-direction in
Fig. 8, and 28.5cm for z-direction in Fig. 9). Moreover, the values of (—¢)-10%29/
9x% in the reflector region do not vary much with loadings. Therefore a fixed
value of # for three loadings may be adequate. The more serious problem is the
fact that the value of (—¢@)~132¢/0x2 obtained by criticality calculation of Sec. V]
is 0.0l cm~2 larger than the initial guess UGMG input 0.03 cm~2, which had been
determined from the preliminary 2-D calculation (C35 loading). Another problem
is the fact that we artificially adopted g, to avoid negative flux.

These debatable points, namely

(a) the use of y,(<#) as input data of UGMG, and

(b) the fact that reflector savings for core regions have not converged in itera-

tion scheme between group constant preparation and criticality calculation,

have to be investigated in future. The constants we prepared here, however, can
be used without serious error for ordinary use, if any particular accuracy is not
required, because the difference in k., value between the criticality calculation
and experiments (kor:=1) was 1.0~1.5%. Because of this reason, and because the
publication of the constants of the Assembly has deadly been needed, we have
decided to present them here. The readers are encouraged to utilize these con-
stants, but with reservation regarding the above problems. We also add in passing
that 2-D, four-group diffusion calculation (which was performed by KAK?D code)
with similar group constants as those produced here has shown that (—¢)~192¢/0x?
of fast flux in the reflector region did not depend upon the group number, namely
on energy.

Next we examine the temperature coefficients. Three years ago, the tempera-
ture coefficients were calculated by our group with the use of a different set of
group constants. The resulting coefficients showed just the reverse dependence on
lattice pitch as compared with the experiments (the measured coefficients of C35
loading are more negative than those of C30 loading). Furthermore, to our dis-
appointment, the calculated coefficients of C45 loading turned out to be positive,
contrary to the measurement.

The present calculation succeeded in reproducing the lattice pitch dependence
consistent with the experiments as seen in Fig. 11. We consider that we owe the
success to the new set of group constant. To summarize the difference between
previous scheme and the present scheme in the constant preparation, they are

(1) the use of S-G approximations in dealing with hydrogen degradation mtegral
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(Goertzel-Greuling approximation was used previously),

(2) we determined the bucklings needed for UGMG more systematically,

(3) we included neutrons jumping over few-group energy intervals during mode-
ration.

We regard the present constants to be adequate, judging from the above success of
reproducing the pitch dependence, although at a single temperature 27.78C.

The possible improvement in future in group constants and in the method of
temperature coefficient calculations are the followings;

(1) The way to determine the reflector region buckling # has to be investigated
further. We found that the temperature coefficients were sensitive to the
way p is selected, and therefore to reflector cross sections. This is the
indication of the fact that the shift in space-energy distribution of reflector
flux near the reflector-core boundary plays a key role in the temperature
coefficients.

(2) We need to confirm the above consistency with experiment for higher tem-
peratures, covering a broader range.

(3) Although we have managed to evaluate the temperature coefficients with
1-D code EXPANDA-25-IMPORT, the 2-D calculation by EQUIPOISE-3 is
expected to be better in treating the effect of reflector on the coefficient.

(4) In evaluating the thermal diffusion coefficient D, anisotropy in scattering in .
laboratory system has to be included, rather than relying on Eq. (8).
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