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Abstract

Statistical hydrodynamics, which is the generalization of the clas-
sical statistical mechamics for the Hamiltonian dynamical system, is
outlined (in ). Statistical hydrodynamics is much more complicated,
because the hydrodynamical system has continuous, infinite degrees of
freedom, although the Hamiltonian system has discrete, finite degrees
of freedom. Three solution methods of the initial value problem for
the Hopf equation, which is the basic epuation of statistical hydrody-
namics, are proposed (in [, Il and Iy). They are applied to the Burgers
turbulence, which is the simplified model turbulence of the Navier-
Stokes real turbulence. Numerical calculations are carried out for
some examples of the homogeneous turbulence, in which the initial
energy spectra are chosen as the typical ones. The three methods are
compared and criticized (in V).
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1. Basic Concepts in Statistical Hydrodynamies

1. Introduction

Since O. Reynolds!?® investigated turbulent flow in a circular tube experi-
mentally in 1883, many works on the turbulent flow have been done. In these, the
Orr-Sommerfeld theory of the onset of turbulence based on the linear stability of
laminar flow, the mixing length theories based on the analogy between momentum
and energy transfers among molecules in kinetic theory of gases and those among
fluid particles in turbulent motion and so on are the famous ones.

Many studies concerning statistical theory of homogeneous, isotropic turbulence
have been made since Taylor’s poineering paper!® in 1938. The Karmdan-Howarth
equation®’, Kolmogoroff’s®? and Heisenberg’s? spectral theory and the theory of
Proudman and Reid'V and Tatsumil!® based on the quasi-normal distribution may
be the most important contributions to this subject.

In 1953, E. Hopf® proposed an equation, which is called as the Hopf equation.
It includes completely the statistical features of turbulence, but is mathematically
very complicated. He combined hydrodynamics and the theory of probability, and
we call his theory of turbulence as statistical hydrodynamics. In this paper, we
propose three methods of solution for the Hopf equation.

J. E. Burgers® proposed a simplified model equation which is one-dimensiona-
lized one of the Nevier-Stokes equation, in order to study the turbulence. In his
equation, the nonlinear and dissipative properties, which play the essential role in
the turbulent motion, are retained. We will apply our methods for solving the
initial value problem of the Hopf equation to the model turbulence governed by the
Burgers equation. Thus, we will call such a turbulence as the Burgers turbulence.

Other aspects of the Burgers turbulence, i. e. equilibrium spectra in the inertial
subrange etc. are reporteds,1® and not touched here.

2. Basic Equation of Statistical Hydrodynamics —— The Hopf Equation

We consider only the turbulent flows in incompressible viscous fluid, because the
turbulent features are realized in such flows. The basic equations and the boundary
condition of the incompresible fluid are written as

dive=0, xeV 2.1)

%_+ (v.grad)v:: ——_]{.;_grap p+vpiv, xeV (2. 2)
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v=v, =x€0V (2.3)

where x= (%1, ¥, %3)=(%, ¥, 2) are the cartesian coordinats, ¢ is the time, v=
v(x, 1) the velocity vector, p the pressure, @ the mass density, v the kinematic
viscosity, V the volume in which the fluid is filled, 9V the boundary of V and v,
the velocity vector on the boundary.

We can always construct the Green function:

72G(x, ¥)=0%*(x—x"), x, x €V }
G(x, #)=0, xeV-+aV, s’ eV, &'+«

2.4)

where 63(x—x")=08(x;—x,)0(x;—x,)0(xs—x5"). If f(x) is an arbitrary funct-
ion differentiable up to the second order, we have

f0={ 6, wyprranw+| 268X rag, (2.5)

from the Green theorem. Here, the prime denotes that the argument of the
function is x’ and the operator is that with respect to x/, and n’ the outward
normal on oV.

Taking grad div of (2.2), we have

p?(grad p/p) = —grad[div{v.grad)v}]. (2.6)
Application of (2.5) for f=ap/ox, 0p/dy, and 9p/0z gives
grad p/o= ~§ yG(x, x)grad [div'{(v'-grad)v'} 1d*x’

— Sav { aa‘; + (v'-grad’) V”uy'zvi%-nqrds’. 2.7

Substituting (2.7) into (2.2), we have

%}t-% (v-grad)v——vmv:g G grad[div'{(v/-grad)v'} Jd*x’

! v’ ., AN oG ’ 7
Tgav[_éf+<v grad) v —up Zv:lan, ds’, (2.27)

which is an integro-differential equation only for v, but does not includ . From
(2.2"), the initial data of » in V and on 9V and the boundary data of » on 9V in
the time after the initial instant determines the complete development of v. From

%—div v=0, the incompressibility condition is always satisfied if it does at the
initial instance.
1f we choose a function space £ of v(x), which satisfies

div v=0, (2.8)

the turbulent state of one dynamical system is expressed by a point in 2. Thus,
the turbulent phenomena, i. e. the turbulent states of the dynamical system at all
times correspond to a trajectory in £.
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From the statistical point of view, it is convenient to introduce a phase space,
and the probability distribution function in the phase space. In the turbulent case,
the phase space should be the function space £ from the above consideration and
the distribution should be a functional in £:

P[97=1, P[A]<1 for ACL. (2.9)

It is more convenient to use the probability distribution density D, which is a
functional of v(x) and ¢. Thus, corresponding to (2.9), we have

S D[vpv=1, S D[vlov<1 for ACQ, (2.10)
i) A

where dv(x) is the measure in 2. The ensemble mean </"> of a variable I (v)
concerning v(x) is expressed as

<F>() :SﬂF(v)D[v, £5v. 2.11)

We should derive the basic equation for D. It comes from the law of con-
servation of probability. We consider a box turbulence. The box is divided into
cubic cells and the flow field is represented by the L lattice points x;, (I=1, 2, ...,
L). The box turbulence is assumed to be approximated by the 3L variables v,=
v(x;). Approximating the differential and integral operators by the differences
and sums, we have

ov
"‘52?”: L(vh Uy, vv vy UL> lzl, 2, ey L (2. 12)
from (2.2). Thus, we have a 3L-dimensional Euclid space as the phase space in
this case.
In this space, the probability distribution is expressed by D (vi, v, ..., @z, ).
The law of conservation of probability is the continuity equation in this space:

3D+2 (QD)z%%+i f:

I=1a&

D) =0, (2.13)

where a=1, 2, 3 denote the vecotor components and /=1, ..., L the lattice points.

This consideration is assumed to be valid for arbitrary volume (even an infinite
volume) and the infinitesimal cells. In this limit, the summation term in (2. 13) is
changed to

L
3
lim Mglxnla_)o ;21 A3xlavl (Q.D) 4 xz—g 50 ( ) @) D)d’>  (2.14)
where 43x, is the cell volume at x,, and 6/dv(x)=(6/6v,(x), 8/6v,(x), 6/0v3(x))
is the functional derivative. In general, the functional derivative is defined as
follows: F[y(x)] is a fuctional of a vector function y(x). If we change y(x) for
y(x)+0y(x) by an infinitesimal difference dy(x), and the corresponding change of
F: 0F=F[y(x)+6y(x)]—F[y(x)] is expressed by

F={4,@)y.()d%+0((y)?), (2.15)
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we call

oF
A= 2.16
T 0y.(®) (2.16)
as the functional derivatives of F, with respect to y,(x). In (2.15), the summation
convention for « has been used. Analyzing the process of limit, (2.14) is recog-
nized to be valid. Thus, the law of conservation of probability in 2(v(x)) can be
written as

%?+S 5:‘:?1)) QD) d'x=0. @10

This is an analogue of the Liouville equation in classical statistical mechanics for
the dynamical systems with discrete degrees of freedom, to that with infinite, con-
tiuous degrees of freedom. Thus, we call (2.17) as the generalized Liouville
equation.

In the probability theory, the characteristic function, which is the Fourier trans-
form of the probability distribution, is used widely. In statistical hydrodynamics,
we can introduce a characteristic functional which is defined as

DLy (%), L‘]=SQD[v(x), 1expli(y, v)}ov(x),
(2.18)
(o, ”):Svy(x).v(x)d%.

The merit to use the characteristic functional is for the mean values to be derived
not from the integration but from the differentiation. From (2.18), we have

0D

ECH v — . 2.19
Z < (xl) dl(xl)> 53&,,(”1) .... Bya;(xl) !y=0 ( )
From the definition of @, the following formulas can be obtained,
o0, t1=1, OLy(x), t1<1,
(2.20)
@[—‘9’; Z]:@[yy t]*

where * denotes “the complex conjugate of”. Since

(grad ¢, v):&(%%u+%v+—g§w>d3x

for arbitrary scalar function ¢ with the boundary condition ¢=0 on 9V, we have

(y+gradg, v)=(y, v),
thus

O y+grad ¢ ]=0[y], (.21
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for any ¢ which is subject to the boundary condition ¢=0 on V. From the con-
tinuity equation and

20 i<l (wexnli(y, »)}>,
Ya
we have

0 00

WE‘;O (2 22)

(2.21) and (2.22) are the conditions imposed on @.
From (2.18) and (2.17),
D .
0 — [ exnlity, w)ov=—[{[- @D)dxfexpliCy, »)}ov

ot
s . Y s ‘
—1gy(x) Q< i8y>$d x (2. 23)
is obtained. If we use
Q=—(v-grad)v-+yp?v -—%grad b, (2.24)
we have
ob . 0 020 o0 .0l 7 4,
ot ”’gv “[1 %, 3y.09, T %y, 1axd}dx (2.25)
where
:S Ggrad’[div { grad’} [1%_%%
0 , g O
g 5v7 grad —ivp 5y ]ds (2.26)
If we choose y(x) as
divy=0 =xeV, } @.97)
y=0 xedV, '
the pressure term /I is dropped, and we have
00 _ . 0 0%0 2 00 s
ot “‘Svy“[lax,; 5v.00, 7 (Sy,jd *. (2.28)

(2.25) and (2.28) are the equation derived first by E. Hopf in 1952. But our
derivation is different from his. We emphasize for the Hopf equation to be the
correspondence of the generalized Liouville equation.
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3. Homogeneous Turbulence
If statistical mean value F(x,#) concerning a turebulence has a property,

F(x+a, t)=F(x, t) for any a, @1

we call the turbulence homogeneous. We now consider a turbulent flow in an
infinite volume. In this case, we can express the flow as the Fourier transform
u(k,t) of the velocity field v(x, 1):

u(k, Z):—(Z—}[—)—é—ﬁogv (%, Dexp{—ik-x}d3x,
o (3.2)
v(x, z‘):gggu(k, texp{ik+x}d?k.

From (3.2), we have
u(—k)=u(k)* 3.3)

v(x, ) would be an ordinary vector function of x. In conventional analysis,
v(x) should belong to L; and L,, i. e.

oo

[{§1vl @<,

3. 4)

oo

ngv (x)2d®x<co,

—oco

for the Fourier transform of v(x) to exist, according to the Plancherel theorem.
But, (3.4) are not satisfied by the velocity field in homogeneous turbulence, because
v(x) does not damp for |x|->c0. Therefore, u(k) could be assumed not to be an
ordinary vector function, but a distribution.

Carrying out the Fourier transform of (2.1), (2.2) and (2.6), we have

keeu(k) =0, (3.5)
jgl;_+igu<k'){k’u(k—k')}dgk’+uk2u: —kq(k)/p, (3 6)
kiq(k)/p=—k S{k.u(k—-k’) HEuu(k)}d2K, (3.7

where ¢g(k,?) is the Fourier transform of p(x, t):

q(k, t):—(#gp(x, Hexp(—ik-x)d3x,

(s, =a(k, Dexp(ik-x)d’k.

(3.8)

Substituting ¢ in (3.7) into (3.6), we have
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(_g_t'{—vkz)u,, (k) +igk v, (k—k)4,, (k)u, (k) d*k, 3.9

Aop(B)=0us —kak,/R%, (3.10)

(3.9) is the basic dynamical equation for u(k).

For u(k), we can derive the generalized Liouville equation and the Hopf equa-
tion. In this case, the phase space is the space of distribution 2(u(k)). A
turbulent state of a dynamical system corresponds to a point in 2(u(k)), and the
turbulent phenomena is expressed by a trajectory in 2 (u(k)).

If we introduce 'a functional of the probability distribution density Dlu(k), ¢]
in 2(u(k)), we have similarly

| Drum, foum =1,

(38.11)
S Dlu(k), tPou(k)<1 ACQ,
A
and the ensemble mean of F=F(u(k), t)
<F>(t}:SF(u)D[u, t]0u. (3.12)

In the similar manner to the former case, we have the generalized Liouville equa-
tion,

oD 0 37,
ot + Juchy (@D k=0,
3.13
Qu=—i{ku, (k=K 4s (W), () AK’ @49
—vk?u, (k).
We define the characteristic functional as
O =(k), f]:SD[u(k), tJexp{i(s, u)*}ou(k),
' (3.14)
(s, u):gz(k)*u(k)d%.
The ensemble mean of velocity product is given by
Bt ().t () > = 0 I . @3.15)
“ 02,, (k). ... 0Z2ay (k) o
For the definition of @[z,] in (3.14) to be valid,
a(—k) =s(k)¥,
} (3.16)
z(k) -0, for |k|— oo,

should be satisfied. From the definition of @, we have
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ar0, 11=1, 0= 111, ]

3.17)
Of 5 1]=0[s (7% |

Since
(#(k) +o(k)k, u(k))=(s(k), u(k))
for any scalar complex function ¢ (%),
O[=(k)+¢(E)E]=0=(k)] for any o(k). (3.18)
From (3.5) and (3.10), we have

k.90 __q. (3.18)

Tom(k)

(3.18) and (3.18) come from the continuity equation. These conditions represent
that @[ z(%)] does not depend on the component of z(%k) parallel to %k, but depends
only on normal two components to %.

In the homogeneous turbulence, the vector field v(x) is in one-to-one corres-
pondence with u(#%) each other. If we put a relation between y(x) and z(k) as

=)= [y () exp (i) d%,
. _ (3.19)
¥ (@) =y R exp k)b,

we have

O[=(k), t]=0 y(x), 1]. (3. 20)

In the similar manner to the case with the independent variables y(x) and 7,
the Hopf equation with respect to the independent variables z(%) and ¢ is obtained
as

00 _ s (bl 020 -
e Gt k2, G i 0z (kyoz, (i O POk
_ b
ugkzza(k)wd k. (3.21)

If we confine ourselves for z(k) to be
kes(k)=0, (3.22)
(3.21) reduces to

00

a@__ ~ A X 31.43%.7
Gt = e eI R gy

_ySkZZa (k)foﬁ;\%;)-dsk. (3.21)



254 S. Kuwabara

Since
(y(x), v@)=(yx), v(y—a)=(y+a), v(®)),
for any @, in the homogeneous turbulence, we have
Ol y(x+a) =0 y(x)] for any a. (3.23)

From (3.19), the Fourier transform of y(x-+a) is z(k) exp(ik-a). Thus, the
homogeneity condition (3.23) becomes

O[5(k)exp(ik-a) J=0=(k)] for any a, (3.23)

by use of (3.20).

When we consider the initial value problem of the Hopf equation (3.22), we
should choose the initial value of @ to satisfy (3.17), the incompressibility condi-
tion (3.18) or (3.18). If these conditions for @ are satisfied initially, O[z(%), (]
would satisfy them after the initial instant.

Similarly as (2.19), we have

. 5l
<t ()t () > = s

. 3.24
..... 62&; <k1,> Vo ( )

4. The Burgers Turbulence

In a one-dimensional incompressibl flow, i. e. u=u(x, t), v=w=0, and p=p(x,
t), (2.1) and (2.2) reduce to

ou
% O

ou _ 1 0p

or o ox’

(4.1)

Thus, we have only a rigid motion #=u(t), which is a very trivial solution. Burgers
proposed a model equation, which correspods to a simplification of the Navier-
Stokes equation to the one-dimensional flow, and has the nonlinear and dissipation

feaures:

ov . ov _ 0%
R TR TR (4.2)

in order to study a turbulence. The basic equation of the Fourier transform u(k,
1) of v(x, t) is obtained by transformation of (4.2),
ou

—a—F+iSk/u(k~k’)u(k’)dk’+uk2u:0, (4.3

where

u(k, z):gv(x,' Hexp(—ikx)d,

. (4.3)
v(x, z):_%_gu(k, Dexp(ikx)dE.
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Correspondingly to »(x, ), we have the phase space 2(v(x)) and the charac-
teristic functional @[ y(x), 7] which is subject to

o200, t]=1, |oLy(®), t]/=1,
OL—y, t]=0 y, t]* }

(see 2.20)), and the homogeneity condition:
O y(x+a)]=0[y(x)] fos any a, (4.5)

(see (3.23)). The Hopf equation for @[ y(x), ¢] is from (2.28)

(4.4)

00 (.7 9 0 | 9 o0
ot wSmyP ox oyZ  Tox? 5y ]dx. (4.6)

Similarly, we have the phase space 2(u(k)) and the characteristic functional
O[z(k), t] for u(k, t). (4.4) ~ (4.6) reform as

200, t]=1, |0[z(k), t]|<1, |

4.7)
O —z, £]1=00z, t7* )
(see (3.17)),
[z(R)exp(ika)]=[z(k)] for any a, (4.8)
(see (3.237),
_%%:—_SS:z(k%—k’) k%> drdr'— ez (k)00 e 9

(see (3.22)).

II. Method for Solving the Hopf Equation by Expanding the
Argument Function into the Orthonormal Functions

5. Formulation of the Initial Value Problem of the Hopf Equation

In this and the following two chapters, we propose three methods for solving
the initial value problem of the Hopf equation for @[z(k), ¢]:

o0

S+ AD=0, .1

_ B b 80 , 1
A__-ngz(wk)kmdkdk Skz(k)a(k)dk (5.2)

@[ z(k), t] should satisfy the following conditions
o[01=1, |0z]|=], }

(5.3)
Ol —z]=0[zJ*,
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and
Ol zexp(iaz) ]=0[z] for any a. (5.4)

Here and in the following lines, the normalization is done:
v(R) /UL —> v(k),
2(BYUL —> z(k),

RL —> k, (5.5)
t/(L/U) —> 1,
UL/v=R,

where the factors in the left hand side are dimensional ones and the non-dimen-

sionalized variables are put as those in the right hand side, which is the same

letters as the dimensional ones, and U and L are representative velocity and leneth.
The definition (3.14) of @ gives

520 ‘

Ek, 00 (k-+ k) =5 <u(R)u(k)>= (5.6)

T 5z(RY0z(R)

where E(k, 1) is a spectrum of the turbulent field.

Now we shall consider the initial value problem of the Burgers turbulence, and
examine how the energy spectrum E(k, ¢) is changed from a given initial spectrum
E(k, 0)=E (k). We choose the initial condition for @ as

oz exp[—-—%gﬁ (k)zz*dk]. (5.7)

The reason why we choose (5.7) as the initial condition, is that it is the simplest
expression which satisfies the conditions (5.3) and (5.4).

6. Method of Solution by Expanding the Argument Function into
Orthonormal Functions

The possibility of the integration in the first of (3.4) demands that
z2(k) —> 0 for |k] —> oo,
z(k) is real, (6.1)
or equivalently 2(—Fk)=2z(k)*

In general, a function of bounded variation can be expanded into a series of the
complete set of continuous functions in the sence of L,-norm. We assume that
z(k) is of bounded variation and choose the following complete set of functions

BB} 4=0,1,2, ...), (—oo<h<oo)
(= k) =0, (R)¥,
0. (k) —> 0 for [k —> oo, (6.2)
R SERTIOLROLIEN
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Then z(k) may be expanded as
2(R) = Z_]Oa,gﬁt(k), (6.3)

where ¢, is real variables. The functional @[z(k), ] may be interpreted as a
function of infinite number of variables {a,}:

OLz(R), t]=0(a,, a,, Gy ...... , D). (6.4)
From (6.2) and (6.3), we have

a={e. (R (R)dk= (s, 2). (6.5)

Thus, the coefficient ¢, of the expansion of z(k) is a functional of z(k). From
the definition (2.15) and (2.16) of the functional derivatives and (6.5), we have

oa,
=p#(k). 6.6
Then, the functional derivative with respect to z(k), which can be expanded into a
series of the complete orthonormal functions, can be expressed by an infinite sum
of ordinary derivative:

5__‘°8a,8_°°*k8 7
S2(k) 2 oz(ky aa, = B e 6.7
where the functional, which is operated, is recognized as the right hand side of
(6.4). ‘
Substituting the expansion (6.3) of z(k) and the transformation (6.7) of the
functional derivative into (5.2), we have the transformed equation for ®(a,, @,
Aoy, .., Z‘):
00 & 00 1 & 00
— A Qe - = A = .
at + Z tma n aaladm R 1, m=0 b O’ <6 8)

m*m -
1, m, n=0 8a,

A ={{" 0y 0, (R0, (- )k }
- (6.9)
A=\ #20,(k)*s, () dk.
In this scheme, the energy spectrum expression (5.6) is transformed into
= 00 %
E<k7 t)"I.%:O(W)a:O(l) ¢m(k>>¢ (k>. (6. 10)

7. The Application of the Method by Expanding the Argument Function
into Orthonormal Functions to the Burgers Turbulence

The domain of 2(k) is —eco<{k<{oo and z(k) should satisfy (6.1). Then, z(k)
may be assumed to be expanded into the Hermite functions:
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2(k) = i a8, (k),
(7.1

1/4 25" —
wB=(Z) g R XD (k).

The expansion which is retained the first three terms, i. e. o, a1, and «,, is
substitued into (6.9) to give the transformed equation:

at —i (23722:/4 {—a(,(\/? aa?;al h aa?;az >+a1<vj7§?z%
+2 aaf;az "vé“g aac;)'“?(g aa?;al _\/%3 aa?;az )]
Tl aio g a; +V2“°a ‘“/3“232
+58,0 ~Jo=0. | (7.2)

The domain of the truncated @ are —co<lag, @y, @o<loo, tz=0. The boundary
conditions are

0=0 for a, a,, and @, —> oo, (7.3)

The initial condition is chosen as (5.7). For the initial energy spectra, we consider
two cases:

(1) E(k)= (bell shape),
7‘
, (7.4
(i) E(k)— exp(—k?) (double-bell shape),
which have been normalized
S“ E(k)ydk=1. (7.5)

Substituting (7.1) whose first three terms are retained and (7.4) into (5.7), we
have the initial conditions for & as

(i) 0(a,, a, az):eXp[—%“EE(doz'ﬁ'%af \/32 0
o)
o (7.6)
(il) @(ao, a,, dg):exp[—\/ggﬂ <%002+a12 (

+ \/12 aoa2+%—az ﬂ
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The total energy density TE(#) is defined by
TE(t) = g E(k, H)dk. (7.7)
Then, the initial total energy density TE is
TE=TEWO)={" E(k)dk=1, (1.8
from (7.5).
It is noted that the representative values of length and velocity, i. e. L and U,
are related to the initial energy spectrum and the initial total energy density in

the dimensional form. If the initial total energy density in the diminsional form
is taken as (1/2)U2, and the dimensional initial energy spectra are expressed by

(1) E (k)=Aexp(—ak?),
. (7.9
(i) E (k)=Bk* exp(—ak?),
we have
L=2n+ar,
1/4
(i) U=(Z)" 4, (7.10)
1/4
(i v=(Z) "
By use of (7.1), (6.10) gives
sl 00 1 9°0 ssof 00
Bk, H=-v72]( 90, 2 oay ). .2 90,04,
1 0% 2 Y
) Jexn (=), (7.11)
which gives the total energy density
TE(t):Sw E(k, t)dk
—[/ 0?0 1 09°0 —( 00
=—Vr [( 0a.: 2 04, >+V2< 00,00,
1 2%
TV7 eay ). 7.12)

8. Numerical Calculation

We now proceed to solving the initial value problem of the differential equation
(7.2) subject to the boundary conditions (7.3) and the initial condition (7.6). It
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is difficult to solve (7.2) analytically and a numerical method, i. e. the finite
difference method is used.

The symmetry of the initial and boundary conditions, as well as the basic
equation simplifies the problem, so that we may consider only the region —oco<{
@y<oo, and 0=<La,, a,<loo. @ may be expected to decrease rapidly to zero in the
region far from the origin. Thus, we may confine ourselves to the region: —10<
@0<<10, and 0<a,, a,<10. This region is divided into a set of equal cubic cells,
whose edge is h=10/N (N =integer) long. For the boundary conditions at ;=0
and a,;=0 appropriately to be applied, we extend our region to the negative sides
of tha a; and @, direction one mesh more, i. e. we have —A<{a; <10 and —h=<a;
<10. The symmetry conditions imply that

O(mh, —h, 0)=0(mh, h, 0)% \
O(mh, —h, —h)=0(—mh, —h, B)¥ m=—N, ..., N} (&1
O(mh, 0, —h)=0(—mh, 0, k).

We have also the boundary conditions corresponding to the vanishinging @ at in-
finity :

O(+Nh, Lh, mh)=0, [, m=-1,0,..., N
O(lh, Nh, mh) =0, {=—N, ..., N (8.2)
O(lh, mh, Nh)=0. m=—1,0,..., N

We take k=1 in this calculation.

The characteristic time for the change of @ may be expected as K for R<1
and 1 for R>1, respectively. The integration with respect to time is carried out
by means of the implicit scheme and the time increment is taken as 0.0l in the
(t/R)-scale for R<1 and 0.05 in ¢-scale for R=1.

The temporal development of the energy spectrum and the total energy density
are carried out for the various Reynolds numbers, and for the initial energy spec-
trum of two types mentioned in 7.

Fig. 1 shows the temporal development of the energy spectrum with respect
to the initial energy spectrum of the “bell shape”, (a) for R=0, 0.01, 0.1 and 1
and (b) for R=1, 10, 100 and co. In Fig. 1 (a) and (b), the total energy density
TE(t) are also shown.

Fig. 2 shows the similar results for the initial energy spectrum of the “double
-bell shape”.

We can summarized the results as follows:

i) This method seems to give reasonable results in 0<Lf/R<1 for R<{1 and
in 0<¢ <1 for R>1.

ii) The temporal developments of energy spectrum are very similar both for R
smaller than 1 and for R larger than 10, when the changes are measured in the
time scale /R and {, respectively. Between R=1 and 10, the features of the tem-
poral developments of the energy spectrum seem to be abruptly changed.

iii) The paradox of negative values of energy spectrum occurs in the range of
large wavenumbers after some time from the start.
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iv) The constancy of energy spectrum for small wavenumber, i. e. E(0, 1)=the
temporal invarience, is not satisfied in this method.

2™k
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Fig. 1. Temporal developments of energy spectrum E(k, ¢#) and total energy
density T'E(¢) from the initial bell shape spectrum (a) for R=0, 0.01,

0.1 and 1, and (b) for R=1, 1, 10, 100 and oo, calculated by the first
method in 1I.
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(a)

05
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(b)

Fig. 2. Temporal developments of energy spectrum E(k, t) and total energy
density TE(¢) from the initial double-bell shape spectrum (a) for

R=0,0.0, 0.1 and 1, and (b) for R=1, 10, 100 and oo, calculated by
the first method in 1.

Il. Semigroup-Theoretic Expression for the Solution and its
Application to the Perturbation Method

9. Semigroup-Theoretic Expession for the Solution of the Hopf Equation
The Hopf equaion (5.1) with (5.2) is rewritten as

00

o+ AD=0, 9.1)

Az—ssmm%@lklz, (9.2)

where

D, :Sdklz(kl)Dl (9.3)
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Dy :SSdkzdk1z<kz+kl)szl 9. 4)
5
D=ty =12 (9. 5)
For the initial condition:
o[ z(k), 0]1=0[z(k)], 9.6)
we put
é)[z(k)]:exp[-%gﬁ(mz(k)*z(k)dk]. 9.7)

The boundary condition is given by
OCz(kR), t]=0 for z2(k) —> oo, t=0. 9.8

Since the operator A of (9.2) does not include ¢, we may express the formal
solution of (9.1) as

Oz, t]=exp(—tA)I z(k)],
— ?Z‘o._le(—-l)‘tlAl@[z(k) 1. 9.9

Since (9.9) inclues infinite-times differentiation, we have to assume that §[z(k)]

is infinetely differentiable, in order that the expression (9.9) is meaningful. The

boundary condition (9.8) is easily proved to be satisfied by @[z, ] given by (9.9).
The operator exp(—tA) has the following property:

exp{— (s+1)}=exp(—s)exp(—1). 9.10)

The operator which has the property (9.10) is called a semigroup of operator.
The perturbation theory for semigroup of operator have been extensively studied?.
But, only the last expression of (9.9) will be considered here.

10. The Perturbation Method

The coefficients of A! in the last expression of (9.9) are further expanded
into a power series of R-! as

Al= STRmA,©®, (10. D

=0

where

An® = sum of permutations of the term
(D) (DR, (10.2)

for example,
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AP =Dk,
A1(3>:@5k52@43k4@21k2+@54k5©3k32 (10' 3)
Dy1ks+ Vs 1k5Dy.k:D: k4%

The initial functional (9.7) is also expanded into a power series of square of

Z:
BLz(k)J= 3 6, (10.4)
1=0
where
@(0’—1,
6= LK, 2,2
- 2 21271,
do=1 1k, K
oyt 2840 v Ry, (10.5)
0© = VS]“:‘!*%KGSKAtSKZlZG ... &,
K= |dludt, (k)0 (R 2) ete (10. 6)
and
z,=2(k,) etc.
The energy spectrum E(k, t) is derived from the relation
E(k, )o(k'+k)=—D'D0[z(k), 21— (10.7)
where
o ) ;L 0
D_——"“Bz(k) , and D TR
Then the temporal development of the energy spectrum is expressed as
E(k, =3 _}T-t‘E‘”(k), (10. 8)
1 =0 B
where
EO8(k' +k)=—D'DO®,
EV§(R +k)= ___D/DAI(D@(Z), )
E®3(k'+k)= _D/D<AO(2>@<4)_%_R—lAZ(Z)@‘m)’
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E®3 (R + k)= ~D’D(R‘lAl‘g)@<47+R’SAg‘S)@(Z), (10.9)
E(")B(kurk) — —D’D(AO(‘”@“”H%R'?"Az“)@“)—%R“*AQ‘“@”),

................

We have obtained the expressions for the enmergy spectrum (10.8) with (10.9
in a power series of time. In working out each terms of this series, we have to
calculate functional derivatives D’ D and those included in A,» which operate on
the functional @¢*». From the definition of the functional derivative, we obtain

_ 02(ky) _5eq
Dz(k, =52k =0(k—Fk,). (10.10)
The first term of (10.9) is easily obtained as
E©(R)=E (k). (10.1D)

In order to work out the second term:
ED(R)o(k'+k)=D'DR A, V0,

M _¢
AT =Dk, (10.12)

> = ——%“Kuzzzl,

we carry out the operation AV and D’ D as follows:

Al‘“@m:@3/832(—%}{212221)

- ~é—”gdksdkzdklzskSZDSE(kz)B(kz+ R))2,2,

— —ggdkzdklkzzﬁ<kz)a<k2+k1>zzzl, (10.13)

D'DA, 0@ — —ggdkzdklkzz.a”‘(kz)a(kﬁ k1) D'D(2,2,)
= —2E (kYRS (R + k). (10.14)
Substituting (10.14) to (10.12), we have
EW(k)=—2RE(k)k= (10.15)

In the similar manner we can express higher order terms as functions of E(k),
and we obtain the energy spectrum and the total energy density TE (1) as

E(k, 1)=F— (2R’1t)k2E+§1Tt2kz{ — 2B Ex E+ (2R )2k?E)

+-817(2R“1)z3k2{6(k2+ (%2, E))E‘-%{k2<}2‘ % B)-+-2(k?E) x £}
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- (212‘1)2k4E]+-111—1t4k2[4k2{3E~3(E %« B+ Ex (E*E))

— (2R1)?{2(6k*+13(k?, E)k2+6(ki, E))E—12k*(R*E) x E

—T(B2E) % (B*E)}+ (2R V)RE]+ ... ., (10.16)
TE(t):r E(k, t)dk

—1— (2R (B, E)t+%fz{—2(k2, EY+ (B2, ExE)

+ QR (B, B)) g QROEL6(RY, B)+6(k?, B)?

~%(k4, B BY—3(k2, (kE) % E)— (2R-D2(k8, £)]

+ert4[12(k4, EY—12(kt, E E)+4(kt, Ex (E+E))
— (2R-V)?{12(k°, E)+38(k2, E)(k', E)—12(k*, (R2E) % E)
—7(k?, (RE) % (RPEN}+ QR V) (R, EY T+ ..., (10.17)
where
(B2E) E:Slk’%‘(k’)ﬁ(k-k’)dkg
(k2,E) = Slk@(k)dk,

and simlilar abbreviations have been used. The first isAthe convolution of kZE(k)
and E(k), and the second the scalar product of %22 and E(k).

11. Some Examples

We cansider typical three examples, in which the initial energy spectra have
the form of the d-function, the bell shape and the double-bell shape. The last two
cases have also been studied in the previous chapter.

(1) The é-function type spectrum

E(k) :é—-{é‘(k—l) Lok, (11.1)
E(, zf):E(k)—(2R'1t)E(k)+~§th[—2E‘(k)+E‘(k/2)

+ (2R'1)ZE(k)]J,—%(ZR‘I)ﬁ[lZE(k) —9E(k/2)
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— (2R~ 1)2E(k)]~z— (1'C16E (k) —48E (%/2) + 27E (k/3)

- (2]8‘1)25{10]5(}3) —11E(k/2)}+ (2R DE (R)]
+ (11.2)

TE(t)=1-2R"1t+ 1 (ZR )2 1 57 2RI 6+ (2R71)?)

~1-,—(2R'1)2t4{60+ @R} +...... (11.3)

In (11.2), the second harmonics E(k/2) comes from convolution in (10.15), i. e.
E*E (/e *E)*E and the third harmonics E{k/3) from the triple convolution
Ex(ExE).
In following two cases, we show only the initial spectrum, the expressions for
convolution and the values of scalar product which appear in (10.16) and (10.17).
(2) The bell shape spectrum

1 oxp(—Fo), (11. 4)

EW=_rn

~

ExE E(k/v2)

:7:

(BB B=-p o (W +DE(R/ v D),
(11.5)

(WE) x (B B) =g (k=285 1D E (/1 2),

B (B *E”>:Vl_—§.é<k/«/§>,

(B2, Ey=(20—1)11/2:, (I=1, 2, 3, 4)
(k2, E % E)=1, (k4 Ex E)=3,
(k2 (R2E) % E) =1, (k*, (R2E) % E)=9/2,
(k% (R2E) % (R2E))=3/4, (k*, Ex (E % E))=27/4,

(11.6)

where (2/—1D)!1=(2/—-1)(2/—3) ... 3.1 is the double factorial.
(3) The double-bell shape spectrum

Ek) = mGzexp( k%), (11.7)
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~

ExE=

\/424 2k +-3) kB (k) 2),

(B2E) *E:—E——l\fi(k‘i—~k4~—3k2+15>k‘2E(k/\/7),
(B2E) % (R*E) =57 75 64\/ (k®—4k°®+18k*—60%?+-105) (11.8)
EPE(R/\2),

Fx(BExE)— 2431\/“- (2k5—18k*+ 81k 1-81)
k2E(R/\/3),

(k2 Ey=l+1)11/2, (I=1,2, ..) y
(B2, E % E)=3, (k') Ex E)=21,
o o (11.9)
(k?, (B*E) % E)=6, (k*, (kB*E) % E)=105/2,
(B2, (R2E) x (R2E)) =45/4, (k*, E % (E % E)) =207 /4.

The temporal devleopments of energy spectrum subject to three kinds of the
given initial energy spectrum, i. e. the §-function type (Fig. 3), the bell shape
(Fig. 4), and the double-bell shape (Fig. 5), are calculated (a) for R=0, 0.01, 0.1,
and (b) R=1, 10, 100 and changes of the total energy density are also shown in
these diagrams.

In summarizing the results, we have

i) Our theory seems to give reasonable results in 0<s/R<0.8 for R<0.1
and in 0<<#<C0.4 for R=>1, when the expansion is taken up to {4

ii) The temporal developments of the energy spectrum are very similar both
for R smaller than 0.1 and for R larger than 10, when the change are measured
in the time scale s/R and ¢, respectively. ‘

iii) The paradox of negative values of energy spectrum occurs in the range
of large wavenumbers after some time from the start for the initial energy spectra
of the bell shape and double-bell shape. The occurence of the paradox is much
complicated for the initial energy spectrum of the dJ-function type.

iv) The constancy of energy spectrum for small wavenumber is very satis-
factory.
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(b}

Fig. 3. Temporal developments of energy spectrum E(k, #) and total energy density
TE(t) from the initial spectrum of §-function type, (a) for R=0, 0.01, 0, 1
and 1, and (b) for R=10, 100 and oo, calculated by the second method in I[.
The energy spectrum is not original one, which is singular at £=1, 2, ...

n+a
and vanishes otherwise, but 25 E (k, t) dk (0<a<1, and n is an integer).
n—a
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Fig. 4. Temporal developments of energy spectrum and total energy density from
the initial bell shape spectrum (a) for R=0, 0.01, 0.1 and 1, and (b) for
R=1, 10, 100 and oo, calculated the second method in I[.
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Fig. 5. Temporal developments of energy spectrum and total energy density from
the initial double-bell spectrum (a) for R=0, 0.01, 0.1 and 1, and (b) for
R=10, 100 and co, calculated by the second method in .
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IV. The Interaction Representation of the Hopf Equation and the
Perturbation Method Based on this Representation

12. The Interaction Representation for the Hopf Equation

Our formulation of the initial value problem of the Hopf equation for the
Burgers turbulence is put as

oD _
W+ Ad=0, (12.1)
. . 020
A= XSdkzdklkzz(kz AT
ofahikz (k)50 (12.2)
the initial condition is
O[z(k), 0]=0d[z(k)], (12.3)
and the boundary condition is
O[z(k), t]=0 for |z] —> oo, t=0. (12. 4)
We choose the initial value of @ as
0C2(k)1=exp|— S Kuz(k)z(ky)|, (12.5)
Koy = (dudh,E (k)0 (ks o), (12.6)

where E(k) is the initial energy spectrum and v=1/R. (12.5) with (12.6) satisfies
the imposed condition on @:

oL0]=1, 0O[z]=1,
O[2)=0] —z k. (12.7)
and Ol zexp(iaz]=0[z] for any a.

Here we express the Hopf equation in the interaction representation'®’, in
which the independent variables z(k). and ¢ are transformed into new independent
variables {(k) and s,

((R)=z(k)exp(vk*1), }
(12.8)
s=t.

We use the time s for ¢, for keeping away from the confusion of the differentia-
tions, i. e. 8/0¢=0/0t|;oconst. and 9/85=0/0t|s-const. . By use of the transformation,
we have
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o 9
5= 55— JakRiD,

o _ _ope
W——SXD( X)k S)D,

where

90
D= se ey

Substituting (12.9) into (12.1), we have

00 _
*a-s—-tudLO,

B=—([dk.dk, k.2 (R, + ky)exp(2kok.5) DD,

where

0

Di= 52 (&)

=1, 2.

277

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)

This is the Hopf equation in the interaction representation. From (12.13), we see
that the viscous term disappears formally, and B includes the nonlinear interaction

term only. B depends on the time in this representation.
The initial condition is

OLL(R), 01=DBLL(R)],
and the boundary condition is
O Z(k), t]1=0 for [{(R)] —> oo, and £=0.
We assume the following form of 0,
@[C]:eXD<“%Kz152:1>,
Ifm::SSdkzdkLE(kz)a(kz4—kl)

The energy spectrum can be obtained by

E(k, 1)0(k'+k)=— 3z(k(?)2gz(k) r

320
oL (koL (k) |

The total energy density is obtained by

YYZU):XE(k,wdk.

(12.15)

(12.16)

(12.17)

(12.18)

(12.19)



278 S. Kuwabara

13. The Perturbation Method Based on the Interaction Representation

We assume that @ can be expanded into a power series of time s:
oe k), s1= > .Zl_rstmw (13.1)
1 =0 H

Substituting (13.1) into (12.11) with (12.13), we have the recurrence formulas
for @™ ;

@(0):@’
(m+1) — = _..__‘_77%,!___* =\m—L m—r1+1
0 o go [T(m—D! (20) Dy ks
klm'-lm(t) m:O, 1, 2, ..

@21=SSdkzdklc(k2+ k1>DzD1-

(13.2)

OL¢] cam be expanded into a power series of square of {:
oL )= > 6, (13.3)
[ =0

where

@(2>: ”‘%*KuCzCl,

03@):%—[{43[{21:4. . (13.4)

@(6>=—~~41§K65K43K2166 ------ ':1:

CL:C<kl>) l:]-’ 2'

- In order to get @® successively, we should make the operation ©,; in (13.2)
to a polynomial of ¢ with the k-dependent coefficient like (13.3). We should make
also the functional defferentiation to get the energy spectrum by (12.18). These
operation can be done by use of

e 0C(R)
D%:i 7
ol (k")

-=0(k—Fk'") etc. (13.5)

The total energy density of turbulence can be obtained by (12.19).
Thus we have the expressions for the energy spectrum and the total energy
density as

E(k, ) —exp(—20k*) [EA—F.ZET:%%—zE#E « F) +_§1T3(2a) £2R?
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(202, E)E+Jgk2<ﬁ « B — (k2B % B} +Zl~rz‘4k2{4k2(3£“
~3(ExE)+Ex (ExE))—(2)2(2E (k?, E)k*+6(k*, E))

_7(R2E) % (B2EY) )+ .. ] : (13.6)

TE ()= (1, E exp(— 2uk2t))~;-*z‘2{ 2(k2, E exp(— k1)
+(k?, E % E exp(—2R'D)}+4y z‘33(2y){2(k2 B
(k2 Eexp(~2§k2t))+—é~(k4, E % F exp(—2ok2t)) — (B2, (R2E)

% B exp <ﬁ2ak2z>)}+%t4[12(k4, E exp(—20k?t)) —12(k*,

E % E exp(—20k%)) +4(k*, E % (E % E)exp(—20k*)) — (25)*
(2(k?, E)(k*, E exp(—20k2))12(k*, E) (k?, E exp(—20k*t)
—77(R%, (R?E) % (B*E)exp(—20k)) ] +...... (13.7)

In (13.6) and (13.7), we have changed s fer ¢, because the meaning of time would
be clearly expressed, and the confusion due to the differentiation does not occur in
this stage.

If we expand the exponential factor exp(—25k2f) in (13.6) and (13.7) into a
power series of time for E(k, ) and) TE(f). These expressions agree with
(10.15) and (10.16).

Relation between this theory and Kawahara’s should be mentioned. Kawahara
dealt with the same problem, i. e. the initial value problem of th Burgers turbulence
based on the Hopf equation, using the expansion of the logarithm of the characte-
ristic functional, which, if truncated at a finite state, is equivalent to the cumulant
discarding approximation. His expression for the energy spectrum is also of the
form of exp(—20k2t) F(k,t) like ours. We can expand F(k,) into a power series
of t. Comparing his series with ours, we find that they are in agreement up to 72
but the higher order terms are different. This may be because the initial condi-
tions are different; although all initial energy transfer functions (of 3rd, 4th, ...)
are put to vanish in his theory, those of odd order vanish but those of even order
do not vanish in our theory. In our theory, the initial transfer functions F'® of
the [-th order can be obtained as

FOky o k)Rt ..+ k)

< u (k). u(k) >
=i"Dy ... DOTC(R) T eeo (13.8)
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We have given only the initial energy spectrum, but have not given the initial
energy transfer functions higher than 3rd explicitly. But the form (5.7) of the

initial characteristic fnnctional results in prescribing automatically the initial energy
transfer functions.

14, Some Examples

as in 11, we consider three examples, in which the initial energy spectra are
of the J-function type, of the bell shape and of the double-bell shape.
(1) The d-function type spectrum

E<k>z%{a(k—1)+a(k+1)}, (14.1)
E(k, t)=FE(k)exp(— 2ut)q——~t2{ 2F (B)exp(—20t)
+E(k/2)exp(—81)} + 3(2u}t3{2E(k)eXp( %t)

+E(k/2)exp(— 8vt)}+A—~t4{15E(k)eXp( %t)

—48E (k/2)exp(—8ot) +27E (k/3)exp(—180t)
—7(2v) (2E (k)exp(—25t) —E (k/2)exp (—8t) }
e, , (14.2)

TE(t):[1—~z2+2w3+—t4(15 14(29)2) +. .. ]

exp (—258) + [+ ()1 + L 264 (— 48+ 7(2)")

. Jexp(—85t) + ((81/4 Dt 4. .. Yexp(— 185t)
ol (14.3)

In following two cases, we show only the initial spectrum, and the functional
forms of scalar product included in (13.6) and (13.7). The expressions for the
convolution and the values of scalar product are also necessary for obtaining the

spectrum and the total energy density, but these are given in (11.5)~(11.9) and
we do not write these here.

(2) The bell shape spectrum

E®) :vl_;_exp(wkz), (14. 4)



Statistical Hydrodynamics for the Burgers Turbulence 281

(1, E exp(—20k%)) = (1-+25) 712,

(k2, E exp(—2k%t)) :-12—(1%-295‘)“3/2,

(kt, B exp(—ZDkzt)):%(1+ZDZ)‘5/2,
(B2, E x E exp(—20k2t)) = (1+-45)~3/2,
(k*, E % E exp(—20k%t)) =3(1+40t)"52, (14.5)
(k?, (B2E) % E exp(—20k2t)) = (1+5t) (14 458) 752,
(B2, (R2E) « (kzﬁ)exp(~«2§k2t))=%(1+ (250)%)

(A+4vr)~ 772,

(k*, E % (E % E)exp(—20k*1)) :_?.4?.<1+6w)*5/2.
(3) The double-bell shape spectrum

()= krexp(— k), (14.6)
V'
(1, E exp(—20k?t)) = (1+251) 7372,

(kz, E eXp(—2Dk2t)) —_—_2_(1 _}_2,;,[)—5/2’

(R EeXp(42f)k2t)):%(1—%291‘)’7/2,

(B2, E % E exp(—20k%)) =3(14 (201)2) (1+45t) 72,

(B¢, E % Eexp(—25k?))=3{7—2(2t) +3(21)?}
U+SHT (14.7)

(B, (R?E) *Eexp(—29k2t)):%{4+2§t+6(2ﬁt}2
L 5(258)%} (1 d5t) 972,

k2, (R2E) * (kZE)eXp(—ZDkzt)):—%{3—}—6(2%)2

—8(258)7—5(25t)*) (1 -+ dot) 1172,
(4, B % (E*E)exp(—zwk%)):%{23-}-2(25;)

+126(20t)2+36(201)°} (1+60t) 1172,
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The developments of the energy spectrum and the total energy density subject
to given initial spectrum, i. e. the §-function type (Fig. 6), the bell shape (Fig. 7)
and the double-bell shape (Fig. 8) are calculated for R=0, 0.01, 0.1, 1, 10, 100 and
co as in 8 and 11.

We summarize the results:

i) Our theory seems to give reasonable results in 0<<{/R<1 for R<1, and
in 0<<#<0.5 for R<<10 when the expansion is taken up to f.

ii) The temporal developments of the energy spectrum and the total energy
density is almost similar for R=<0.1 and in the time interval 0<¢{/R<1, for all
types of the initial spectrum. The similarity of those for larger R is not so
satisfactory.

iili) The paradox of the negative energy spectrum seems not to appear for
R<1 for alltypes of the initial spectrum. But it appears for {<1, R=10 and all
types of initial spectrum.

iv) The constancy of the energy spectrum for small wavenumber is very sat-
isfactory.

Fig. 6. Temporal developments of energy spectrum and total energy density from
the initial spectrum of &-function type, (a) for R=0, 0.01, 0.1 and 1, and
(b) for R=10, 100 and oo, calculated by the third method in ¥. For the
energy spectrum, see the note in the last paragraph of Fig. 3.
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Fig. 7. Temporal developments of energy spectrum and total energy density from
the initial bell shape spectrum (a) for R=0, 0.01, 0.1 and 1, and (b) for
R=10, 100 and oo, calculated by the third method in IV.
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Fig. 8. Temporal developments of energy spectrum and total energy density from
the initial double-bell shape spectrum (a) for R=0, 0.01, 0.1 and 1, and (b)
for R=10, 100 abd co, calculated by the third method in IV.
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V. Conclusions

15. Comparison of Thiree Perturbation Methods

The generalized Liouville equation or the Hopf equation whose derivation and
physical meanings have been shown in 2 and 3, give the complete mathematical tool
to investigate the statistical featurs of turbulence. We have investigated the
methods for solving the initial value problem of the Hopf equation for the Burgers
turbulence, which is a simplified model of real turbulence to the one-dimensional
coordinate space.

From the mathematical point of view, the Hopf equation is the functional-
differential equation of evolution type in the function space, which is the dual z(%)-
space to the velocity x(%)-function space in the sence of the Fourier transform

Séa(k} exp (i(z. z)). The first method, which is described in T, is based on the

assumption that z(%) can be expanded into the complete orthonormal functions. In
this case, the function z(k) is equivalent to the infinite set of the expansion coef-
ficients. The functional-differential equation reduces to the conventional differential
-equation in the space of the expansion coefficients. We have retained only 3 coef-
ficients. Thus we considered the equation of evolution type in 3-dimensional space.
The calculation after this stage is purely numerical. The energy spectrum can be
calculated from the curvatures of the solution at the origin (see (7.11)).

The second method is based on the expansion of the semigroup-theoretic
expression for the solution of the Hopf equation into a power series of the exponential
argument. We have carried out the perturbation up to the 4th order. The energy
spectrum and fotal energy density can be obtained both in an analytical form of a
pure power series of time.

In the third method, the Hopf equation is written in the interaction representation,
in which the viscous term disappears formally, and the nonlinear interaction term,
as well as the unsteady term, remains. The perturbation method in this case is
similar to the second method, i. e. the expansion into a power series of time. But
the expression of the energy spectrum has always the factor exp (—25k2{) and
another factor is expanded into a power series of time. If we expand exp (—20k2f)
intc a powere series of time and combine it with the other factor, the resultant
expression agree with that of the second method.

The constancy of the energy spectrum for the small wavenumber, i. e. the
temporal invaiance of £ (0, 1), is not satisfied in the first method but is satisfied
in the second and third methods.

We have estimated that the characteristic time of the change is R for small &
and 1 for large X. The conjecture seems to be valid, because the similarity of the
temporal developments of the energy spectrum and total energy density with respect
to the same initial energy spectrum is rather satisfactory for 0<XR<0.1 and 10<
R =oo, when the changes are measured in the time scale /R and #, respctively.

The paradox of the negative energy spectrum occurs all in the three methods.
But, it seems to be improved in the third method, i. e. reduction of the range of
occurrence of negative energy in the wavenumber and time.

Judging from the numerical calculation, i. e. the constancy of the negative
energy spctrum for the small wvenumber, the occurrence of negative energy, the
convergence of power series etc., degrees of approximation seem to be improved
step by step from the first to third method.
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