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Abstract

Theories of the laminar boundary layers on spinning bodies of rev-
olution and experiments on the turbulent boundary layers on various
rotating bodies in axial flows with or without pressure gradients are
presented. The laminar boundary layer theories concern with a rotat-
ing body of arbitrary shape in a uniform stream or in a quiescent fluid
and with rotating thin cylinder in a uniform stream. For the first flow
problem a universal series solution is obtained and also a universal
series solution is calculated for the thermal boundary layer of the
second problem. A higher order consideration is developed for the
third flow. The acceleration phenomenon in the boundary layer induced
by the rotation of a thin cylinder is clarified by use of a perturbation
method.

The thick turbulent boundary layers on rotating cylinders with a
ring or a step in a constant pressure flow are examined. The roughness
element disturbs the velocity distribution in the turbulent boundary
layer, especially in the meridional direction strongly. The velocity
profile in the azimuthal direction is rather stable to such a disturbance.
An expression of generalized quasi-collateral condition of the velocity
distribution is obtained. The effect of pressure gradients on the turbu-
lent boundary layer on a rotating cylinder is clarified in the final
chapter. The imposed pressure gradients are adverse and favorable.
The shear stress distribution in the peripheral direction is calculated
and the existence of the constant moment layer is shown. A universal
logarithmic velocity distribution law in the peripheral direction is estab-
lished by use of a matching method. A role of a Richardson number
as a representative of a character of this flow is discussed.

* Emeritus Professor, President of Gifu Technical College.
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T General Introduction

The problem of rotating fluids has attracted the attention of a considerable
number of fluid dynamics researchers, who have analyzed their peculiar behaviors.
Nevertheless, many features of the flow remain to be clarified. This report is
concerned with the mechanics of the boundary layer on various axisymmetric rotat-
ing bodies in various types of axial flows. An assumption will be always made that
the flow is rotationaly symmetric, so the Magnus or Robins effect is excluded.
This boundary layer is influenced by factors which are absent in the plane boundary
layer, that is, the effect of centrifugal force produced by rotation and the effect
of transverse curvature.

In practical engineering problems, this boundary layer appears on a boss of
axial flow turbo-machinery, on spinning projectiles, on a rotor of a generator and
various other rotating machinery. The boundary layer is a special case of the
general three-dimensional boundary layer, and the authors investigated this flow as
an important step towards understanding the general three-dimensional boundary
layer. In practice, the authors faced the difficult problem of the higher order
effects, and the effects of roughness element of the boundary layer. Among the
former, the transverse curvature and the centrifugal force are particularly interest-
ing with respect to the so-called universal velocity distribution law, the law of the
wall and the velocity defect law. These two factors affect the turbulent boundary
layer in a complex manner. To make some contribution toward the establishing of
a universal velocity distribution law of the boundary layer is one of the main
objects of this research.

A first step in this area was made by Wieselsherger?> who measured drag and
torque in three types of rotating bodies in axial flow and indicated the strong
influence of the rotation speed. After his research, various investigators took up
the problem. Among them, the work of Schlichting?, Parr®), and the present
authors®’ may be mentioned. Schlichting solved the problem of the laminar boundary
layer on a spinning body in axial flow using the KAarméan-Pohlhausen method. Parr
measured for the first time the velocity profiles of this boundary layer and present-
ed a simple relationship between the meridian velocity profile and azimuthal veloc-
ity profile. The authors measured the boundary layer in various cases and the
results are presented in Ref. 4). Also other related references should be made to
that paper®.

Modern research has been concerned mainly with the turbulent structure and
its calculation®$~12, Cham & Head$» considered entrainment of the boundary layer.
A sophisticated calculation method for the turbulent boundary layer {first appeared
in this field was a paper of Koosinlin, Launder & Sharma®. They used an isotropic
eddy viscosity model and compared the calculated results with the authors’ experi-
ment. Koosinlin & Lockwood?®’ proposed a modification of the method. Related
calculations have heen put forth by Sharma!® and Launder, Priddin & Sharmall.
Turbulence measurements were made by Bissonnette & Mellors) and Lohmann?.
The latter authors considered this problem as a case of rapid distortion of the
turbulent flow and measured the flow which was developed on a stationary cylinder
then disturbed by a coaxial rotating cylinder. Bissonnette & Mellor®) showed that
turbulence energy increased quickly as a response to the step type disturbance and
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also that redistribution of the energy proceeded rapidly. Lohmann” measured the
energy spectrum of the turbulence in the mean streamline direction and clarified
that the large eddy was disrupted by the rotation, and that the strength of small
scale eddy increased. All of these researches indicate the strong effect of centrif-
ugal force on the structure of turbulence. A Richardson number recommended by
Bradshaw!®) proved its usefulness in many papers.

In this comprehensive report of our research, the following problems will be
discussed. In Chapter [, laminar boundary layer problems will be solved using a
series expansion in the case of thin boundary layer, and a solution will be obtained
by use of the momentum integral method for the thick laminar boundary layer. A
consideration will be made of the thermal boundary layer on a spinning body in a
quiescent fluid. Considering their practical importance, experimental studies of
turbulent boundary layers disturbed by a ring or a step on rotating cylinders in
axial flow will be described in Chapter [[. The pressure gradient is one of the
most important factors of the turbulent boundary layer, so the behavior of the
turbulent boundary layer on a rotating cylinder under the influence of wvarious
pressure gradients will be examined in Chapter V. A universal velocity distribution
law will also be presented in the same chapter.

I The Laminar Boundary Layer on a Spinning Body of Revolution

2. 1. Introduction

Laminar flow equations describing the boundary layer developing on a body of
revolution spinning around its axis of symmetry were treated by many researchers.
The salient feature of the flow is the effect of the centrifugal force acting on the
fluid particle in the boundary layer. In some cases it shifts the separation point
and the transition point. In this chapter three problems will be discussed: first, the
steady laminar boundary layer on a rotating blunt body in axial flow, second, the
thermal boundary layer on a rotating body in a quiescent fluid, and third, the thick
laminar boundary layer on a rotating thin cylinder.

Theoretical considerations were presented by Miss D. M. Hannah!4), Schlichting?,
Parr®, Rittmann'®), and Muracal®’ on the first problem. Related unsteady problems
were. treated by Illingworth!?, 18) and others!®, 20, Concerning to the second
problems, references should be made to Eox21’, Dorfman & Serazedinov22’, Banks23),
and Manohar?4, About third problem, there is no published work within authors’
knowledge, but studies on the flow on a thin needle without spin are numerous, for
example, theories of Seban & Bond?%, Glauert & Lighthill2®), Stewartson2?” and
others28)~32) ghould be mentioned.

2. 2. Blunt body

2. 2. 1. The laminar boundary layer on a spinning body of
arbitrary shape in axial flow

Introductory vemarks With steady axisymmetrical flow past a blunt nose body
of revolution the laminar boundary layer equations can be reduced to non-dimensional
forms which have no universal characteristic parameter such as Reynolds number,
and the same is true for the case of a rotating body in an infinite fluid at rest.
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On the other hand, the boundary layer on a spinning body in axial flow depends on
a parameter £ defined in Eq. (2.2) which represents the effect of the meridian
component of the centrifugal force produced by rotation. In the present section,
the solution is expanded in terms of the meridian coordinate and the functional
coefficients of the series are determined by the sequence of simultaneous ordinary
differential equations. It is shown that these functional coefficients can be split
into the universal functions which depend only on the parameter 2 but depend
neither on the shape of the body nor on the main flow. That is, two Blasius-
Howarth series are obtained.

Current methods for the boundary layer equations are mainly finite difference
or finite element calculations, but since the series solutions are still important for
its theoretical clarity and simplicity, then the authors considered the problems of
Chapter ] using series expansions.

Basic equations and the method of solution  With x as the distance meas-
ured along the meridian curve of the body from the foward stagnation point, z as
the distance from the surface, U and W as the corresponding velocities, V as the
azimuthal velocity component, U, as the main stream velocity, R as the radius of
the body, w and v as the angular velocity of the body and kinematic viscosity
respectively, the basic equations and the boundary conditions of steady incompress-
ible laminar boundary layer of the problem are in non-dimensional form,

G0,y [+ %{8,,,,]‘6’5(&7‘) —G0, [0, f+ 2%2g°G'+ GFF'} =0,

Gopng -+ (0,80:(CF) ~2,£0:(G)} =0, @.1)

7=0:f=0,f=0, g=G,
n—>co 1 o, f—F, g0,

where

U=3,0, W= —3,0—WR'/R,

E=2/R,, 7= 32U iR.2, Q=Ruw/U,,

FG& D= VIRRULT, 8¢ 1=V/Ryo, 2.2)
and

F&)=U,/Un, G(&)=R/R,,

where U, and R, are the representative values of U, and R respectively.
Let the blunt body contour and the velocity of main flow be expressed by the
series

G(é) :$+a353+d5§5+d757+ Tty
F(E) =64 P38+ Bs&°+ B+,

respectively. We put the series solution of Eq. (2.1) as follows:

(2.3)
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FE, 7)) =F16+2Ba f58° 4 3Bs fsE5+4Buf 167+ -,
and @5
(&, 1) =g:&+20:8,8% +305855° + 408,57+,

where fy, g1, f3, &3, -~ depend only on 7. Substitution of these expressions into
Eq. (2.1) yields a sequence of ordinary differential equations. The first set is
Hannah’s equation that is,

(= AU (D~ 8

gi'=—fg1+ 118 . (2.5)

7=0:f£i=11=0, &=1,

p—o0 . fi—1, g—0.
General terms have the following forms:

n-1 . 7 S v - -
éln'q:*“—l—-w[“ PIARL FERUPY cIIPY FYIRE D { ) @'2n+3—2(1:+j)<*@2J‘lﬁz’l‘“1
nf82n~1 i=1 i=1 \ j=1 2

XL —2(m+1=Df o fojort Q=10 2 af 2} — (20 =1) ]

#gzﬂ§;1é~_“zj-1 Z'J'{2n+3—2(i}]')}g2i~1g2;’—1>}:ly

and (2.6)
17 1 nol, 1" ! ni:_l_‘—i' .
gzn_lz_m—<" S U1 2 1825 1 H 2 [ 2 6 1B 1 ®anis saisi
Ny, 1 i=1 i=1 L j=1
5 (= (14 1=0) fosahiat (B 1= )f a1} ],
while the boundary conditions are
—0 - DY 1
77“‘0 . f2n—1"f2n_1'“07 g2n—1"_,)?7
. oo 1
77_>OO . on—I“_)"n‘““y g2n—1w>07 <2° 7)

where
n=2, ay=p =1,

It is possible to construct a recursive computer program for numerical calculation
of Eq. (2.6) without obtaining the expanded each equations of Eq. (2.6) by hand.
But the authors found that the numerical accuracy obtained by such a program
was poorer than that of the numerical results of the following method.

If we consider the linearity of Eq. (2.6), we can split the functions f3, fs, -,
gs, g5, -+, using general function as the same way as for the case of the stationary
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body, to obtain

fs=Fa, 1+ S5, 23/Bs, 83=83, 1783, 203/ s,

Fs=Fo1t S5, 2s/Bs+ 15, 385/ Bs -+ fs, 4¥sPs/Ps+ fs, 55/ Bs,

85= &5, 1 &s, 2Ps/ U5+ s, aB3/ s+ G5, 1Xsfs/ s+ &5, 503/ s,

Fr=Fo, 1 I, 200/ Brt fr, s@3B3/ Brtfr, B3/ Brt f1, 5253/ Pa
+ 17, 6B3Ps/Br+ f1, 123/ Brt fr, 8@l /Br+fr, 0sB5 /B, ) (2.8)
+ 17, 10205/ 61,

8187, 1 &1, 2B/ Ay &1, sX3Bs/ Ayt &1, B3/ U+ &1, sUsBs/ s
+ &1y oBals/Art G, 1003/ Urt 81, 8Ustls /Oy G7, 505/

+ 87, 1005/,

The simultaneous differential equations and the boundary conditions which determine
these functions are, for example, describing those for fs3, 1, g5, 1:

sh=Ff3,1]—1—92%g.83, 5,

(2.9
g 2:G}:g3, 2 fay 1,
(= FL sy 1= i S =2 (@180 1+ L 8,
(2.10)
g1=Gles, s, fu, 15 (S8~ figD,
=0 fs, 1=f5,1=fs 2= F3:=83, =0, &3, 1:%,
(2.1
7—>00 | f, 1"9‘;" f32=83, 2= &3, 1—0, o
where o K
Fl fo,id=—f1fs i +2(fifs i —f1fa o), ' (2.12)
and
G 83,4, [, ;1= —f18% +2f18s, i+ 8114 ; —281fs, ;. (2.13)

The. equations for other general functions are presented in Ref. 33). These general
functions do not depend on the coefficients ajy;_q, B2:;-1 which specify the par-
ticular problem, but depend on 2.

Results of calculations  The numerical solution of Eq. (2.5) constitutes a non-
linear boundary value problem, so the method of Nachtsheim & Swigert34 was
employed. The method uses a Newton-Raphson iteration scheme to reduce the
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problem into an initial value one. To perform the iteration, the auxiliary differen-
tial equations derived from the equation in question are calculated simultaneously.
Value of 7, which must be used in the calculation instead of actual boundary, that
is infinity, was taken as 10 and it was found by calculation reasonably far from the
wall. Another set of equations, for fi, j, g1, j, are linear and the two point boundary
value problem can be easily solved in principle by performing the calculation three
times for three inferred initial values. It was found, however, that to get the
accuracy of calculation the inferred value had to nearly coincide with the correct
value. All the calculations were performed with a step size of 0.005 and double
precision in computer. The outer limit of the boundary layer for the numerical
calculation was taken as 10. The method of integration was Adams-Moulton.

Since the number of universal functions of this problem is large compared with
the number of functions for the stationary case and they have parameter £, the
values of the derivatives of these functions at the wall are tabulated in Ref. 33).

Application and discussion  The separation point of laminar flow appears down-
stream of the shoulder of a sphere, if the main flow is expressed by the potential
flow as is well known. In this case rotation moves the separation point forward to
the shoulder and this phenomenon was surveyed by Hoskin35), On the other hand,
experiment shows the laminar separation occurs upstream of the equater of the
sphere. It is expected, in this case, that the rotation displaces the separation point
in the downstream direction. Now we will investigate this phenomenon using Fage's
date on a stationary sphere in a uniform stream.
According to Tomotika & Imai®8>, Fage’s date can be expressed as follows:

F(&)=£-0.2914£3+0. 09875°—0. 0282¢7, 0=£=1.48, (2.14)

Velocity distributions in the boundary layer based on this main flow velocity are
presented in Fig. 2. 1 and 2. 2. In Fig. 2. 1, it is clearly seen that the parameter
O affects the meridional velocity distribution more than the azimuthal velocity
distribution. Figure 2. 2 shows the velocity distribution at the separation point 0

T T T T T T T

7 05=80.62° [ 2=1}

.0 08 06 04 02 Q 22 04 06 0.8 1.0
VA U/ Ve

Fig. 2. 1. Velocity distribution on a rotat-
ing sphere using Fage’s main flow. 0
is meridional angle measured from the Y
foward stagnation point. U.: main flow VA Ve v/ ve
velocity, V@ azimuthal velocity of the Fig. 2. 2. Velocity distribution at the sepa-
body surface. ration point 0.
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with both £=0 and 2=1. Profiles in the meridional direction U/U, show that
rotation moves the separation point in the downstream direction. Figures 2. 3 and
2. 4 show polar plots of the velocity distributions in Figs. 2. 1 and 2. 2 respectively.

VNV

L%
\\ 05 =50.62"
\\\ (52=1)
A
\
\\

0 0.2 0.4 0.6 0.8 1.0
U e

Fig. 2. 3. Polar plots, where V/V4=1-U/U. Fig. 2. 4. Variation of polar plots with £
represents the quasi-collateral velocity at the each separation point of
distribution. £2=0 and £=1 respectively.

Apparently, the quasi-collateral condition 90° ' T ' T

is violated especially at the separation O
point. The movement of the separation

point with increasing value of 2 is pre- 85°
sented in Fig. 2. 5. Although at the
separation point, in due course we see

that (944f)y-0=0, note that (9,2)+-0 80° -
does not vanish there, which can be seen
in Fig. 2. 2. The shift of the separa-
tion point in the downstream direction 75° . B . :
was reported by Luthander & Rydberg?” 0 2 4 6 8 10
in early days by use of flow visualization Fig. 2. 5. Shift of the separf’cion point on
using smoke, but since they Fild not a rotating sphere with increasing
measure the main flow velocity and value of 02,

their determination of the separation

point does not seem sufficiently accurate,

a comparison with this calculation can not be made. The present authors reported
also the same phenomenon in the case of a rotating cylinder with a hemispherical
cap in a duct®, but the body shape and the pressure distribution on the body
surface can not be expressed sufficiently well by Eq. (2.3) within &7 to the junction
between the cap and the cylinder.
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Another peculiar velocity distribution observed on this rotating body at the

high value of 2 is shown in Figs. 2. 6-2. 859,
meridian velocity component appears in the boundary layer.

In this case, a maximum of the
With the present

method, this profile can not be predicted. Muraca’s numerical results®> should be
mentioned with respect to the profile.

. I T
Re=6X10% - Re=6X10* I
“+38.0 F=50mm b 8.0 F=T4nm e
] ;
o 0=0.65 5 o @=1065
25 L i 255 :
N PRI v ez
- Aog0 o 2.5 & r <§ 2.0 ° 25 o
// e 3 /'M «Qr 8 3 5:3
. ° 4 /O;%/’i". /I”'__15 ° 4 pi \.
~ g - o gk FI - 0 A
7z | GRYLN, P g3 %
I L0 FEEAh B Lo o3 &8 %
P A pAF #IF 554 %
&7 aal e 9-'9 o o5 - A
1 // 0.5 LA - // 0.5 /%///
& = Z e
1.0 0.8 0.6 04 02 0 0.2 0.4 06 08 10 1.0 0.8 0.6 0.4 0"2 0 02 04 0.6 08 10
V/ Ve U/ Ve V4 Ve U/ Ve

Fig. 2. 6. Velocity profiles on the hemi-
spherical nose at high £ at x=50mm.

Fig. 2, 7. Velocity profiles on the hemi-
spherical nose at high £ at x=74mm.

Re=6X10* o 0=0.65
& 1
@ 2
o 2.5
. ® 3
1.0 N ) 4
N
82 ©
5 0.8 %ég%ip". .
S 06 = Z=Tdmm
hY . N,
047 A fﬁ >
O )
= D 4 o
0.2¢ N, j‘,,/’ Fig. 2. 8. Polar plots of velocity distribution
. . , . “f%’,« E=50mm on the hemispherical nose at high £2.
0 g2 04 06 05 1.0
U/Ue

2. 2. 2. The theyrmal boundary layer on a spinning body of
arbitrary shape in an infinite quiescent fluid

Introductory remarks Heat transfer by convection to or from a body of revolu-
tion spinning around its axis of symmetry in an otherwise undisturbed fluid has
been investigated by many authors for its practical importance®®’, 390, This problem
can be classified into two categories according to the body shape. The first type
has similar solution and the typical one is well known K&rmén's rotating plate.
The second type has no similar solution and the typical case is a rotating sphere
and its boundary layer character has been a controversial problem*®~42). In this
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section, we treat the thermal boundary layer on a spinning body of revolution using
similar method described in 2. 2. 1.

Basic equations and method of solution  The coordinate system used is the
same one appearing in 2. 2. 1. Using non-dimensional quantities we obtain following
equations and boundary conditions for the velocity boundary layer:

Gy f+ 5 10 f:(GF ) — G0, f 04, £+ G} =0,

Gawg+%{angaé(Gf)—-&,fag(Gg)}:Ov (2.15)

n=0:f=0,f=0, g=0G,
700 | 9, =0, g0,
where
U=0,0, W=—0,0 ~WR'/R, é=x/R,, 1=/ 0" %,
V=vva,w/2 R, f(E, 1), V=R, aywg( 1),

and o is the angular velocity of the body. The body contour is assumed as follows:

} (2.16)

R/R,=0,G(5) =, (F+ QB8+ aE+ a2 4+, (2.17)

From above equations, we can obtain following Blasius-Howarth series solutions
which have no parameter such as 2 appearing in the problem of a spinning body
in axial flow:

U=wRuo { fi5+as i3+ as(f5, 1+ f5, 105/ 005) 50

Hay (fh 1, 208/ £ st /o) ET 4]
(2.18)

V=wR,a,{g.:5+a:8:53+as(gs, 1+ &s, 2:005/05)E°

+ 07 (g1, 1 G, 203/ 0 G, 05/ 0)ETH o

This type of solution was obtained by Fox21> who used Stokes stream function but
we employ other type of presentation as expressed first equation of Eq. (2.16)
which corresponds to the method in 2. 2. 1.

Considering above results, we will seek the series solution of thermal boundary
layer equation of this flow. Fundamental assumptions are as follows; the fluid is
incompressible and has constant properties, wall temperature 7, is constant, and
the bouyancy force and dissipation can be neglected. Then the basic non-dimensional
energy equation and boundary conditions are

G&ﬁ+%}@m@@ﬁj—G&f@ﬂ:Q

7=0:60=1; n—co: §-0,
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where (2.19)
o=(T-T.)/T,—T..), P, . Prandtl number.
We assume the series solution of Eq. (2.19) as follows:
0=0,+ 3052+ 5055+ 70,5+ -+, (2.20)
where 0, is a function of 7 only. Equations for ¢, and 8; are
0Y=—P,f10], 05=P.{—f10:+ 10— (f1+2/5)61}. (2.21)
Boundary conditions for them are
7=0:0,=1, 6;,=0; y—oo: 6,0, 0;—0, (2.22)

Since f; and f; are universal function, #; and #; depend only on Prandtl number
but do not depend on the shape of the spinning body and the angular velocity.
Equations correpond to 65 and 6, can also be split into universal functions, that is,

05=0s, 1+ 05, 203/ U5,  07=07, 1+ 07, 203/ 04, 52305/, (2.23)
Differential equations for these functions are
Os 1= P { —f105, 1+2f105, 1— (2f1+3 s, 1) 01}, 2. 24)
05 2= P {—f105 2+ 2105, o+ (f1—F5—3Fs, 2)01-- 03— (f1-+213) 03},
07 =P, {—f107,1+3f 104, 1— (3f 147, 1) 01},
7 2= P {107, 2+ 3f 100, 2= (f1—Fs+Ts, 2+ 417, 2) 0145, 203
+(fr—F3—3fs, 2) 03+ 21 305,0— (f1-+2f3) 05, 2}, H(2.25)
07 s=P,{—f107 5+3f107,5+ Bf1—2fs—Fs5, 1—4S1, 3) 01+ f5, 103
— (2f1+3fs, )0s+2 105, 1— (F1+213) 65,1},
Boundary conditions are as follows:
7=0":0,,;=0; n—oo:0,,;—0, (2. 26)

Results  Above equations also constitute a two point boundary value problem and
the values of f/1(0) and g’,(0) are most difficult to find out. We used the values

Table 2. 1. Values of derivatives of universal functions f3,; and gi,j at the wall.

F1(0) g'1(0) f's g's fs1 &'sn s 2
0.360789 | —0.435523 0.938835 | —1.050668 1. 34870 —1.40879 0.12259
g's1 S g1 2 &' 2 1,3 &', 3
—0.23132 1.75781 —1. 73806 0.19345 —0.07340 0.06652 | —0.43039
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Table 2. 2. Values of derivatives of 0; at the wall.
Pr 61(0) 0’3 05,1 0's, 2 07,1 ! 0’7, 2 07,3
0.7 | —0.228491 | —0.265690 | —0,388129 | 0.149876 | —0.49966 | —0.21872 0.47044
1.0 | —0.280191 | —0.328401 | —0.482385 , 0.188050 | —0.62326 | —0.27566 0. 59246
3.0 | —0.482658 | —0.576807 | —0.858243 | 0.340484¢ = —1.11889 | —0.50308 1.08170

of Rogers & Lance*® who solved Kidrmdan's rotating flat plate. Other equations are
linear and they can be solved by the same method described in 2. 2. 1. The values
for the calculation of torque and heat transfer are tabulated in Tables 2. 1 and 2. 2.
As an example, our results are compared with Bank’s solution?3) which is applicable
only for the sphere. The results showed excellent agreement.

2. 3. The thick laminar boundary layer on a rotating thin cylinder
n axial flow

2. 3. 1. Introductory remarks

The problem of the laminar boundary layer on a stationary thin cylinder in
axial flow has been investigated several times. For example, the solution of Seban
& Bond?5> using an expansion from the leading edge, Glauert & Lighthill’s solution
of Pohlhausen method?¢> and Jaffe & Okamura’s numerical result3® are known. In
the case of supersonic flow it was analyzed by Gersten & Gross using the method
of matched asymptotic expansions®2. In this section a solution is presented for the
laminar boundary layer flow on a rotating cylinder in axial uniform flow which is
affected both effects of centrifugal force and transverse curvature. The method is
based on the Glauert-Lighthill’s momentum integral solution for the cylinder without
rotation and extends it by a perturbation with respect of the ratio of circumferen-
tial velocity to uniform axial velocity. The results obtained show the effect of
rotation on skin friction. It should be mentioned that according to Rao’s construc-
tion of the law of the wall of the turbulent boundary layer on a thin cylinder4®,
the laminar flow solution has a fundamental significance to establish the law of the
wall of this type of the boundary layer.

2. 3. 2. Basic equations and the method of solution

Using the coordinate system shown
in Fig. 2.9, the boundary layer equations
taking into account the effects of trans-
verse curvature and rotation are

MAIN FLOW

Fig. 2. 9. Coordinate system.
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0, U480, W+W/(a+2)=0,
Ua,U+Wa,U=—8,P/p+v{0,U+8,U/(a+2)},

Ud,V+Wa,V+VW/(a+z2)=v{0,V+3,V/(a+z)—-V/(a+2)?}, 220
V?/(a+2)=0.P/p.
Boundary conditions are
z2=0:U=W=0, V=V,,
(2.28)

z—o0 1 U-U,, V-0,
A fundamental parameter of this problem is the speed ratio £, that is,
9=V,/U,

where V,, is the circumferential velocity of the cylinder and U, is the external

velocity.
We assume that the solution can be expanded with respect to 2, that is,

U:U0+Q2Uz+“', V:QV1+Q3V3+...’ }
W=yt QW, |-t PPyt Q2P 4o,

(2.29)

Of course £ is assumed to be a small parameter. Using these expansions and Eq.
(2.27), we obtain the following system of equations:

0, Uy +0, W+ W,/(a+2) =0,
Uyd, Uy +W,0,Uy=v{0,,U,+0,U,/(a+2)},
Uyd,V1+Woa,V,+V W,/(a+2)=v{0,V +0.V./(a+2z)—-V,/(a+2)*}, (2.31)
0, Uy +0,W,+W,/(a+2z)=0,
0, (U Up) +Woo,Up+Wy0,Uy= —0,P,/0+v{0,U,+0, U,/ (a+2)}, (2.32)
Vi/(a+2)=0.P,/p,

} (2.30)

Boundary conditions are
2=0:Uy=U,=--=0, Wy=W,=-.-=0,
Vi=U, V,;=--=0, (2.33)
z—oo  Uy—>U, U,, =0, V,, Vg, =0,

Equation (2.30) corresponds to the non-rotating cylinder in axial flow and has the
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momentum integral solution obtained by Glauert & Lighthill. They assumed a
velocity distribution including an unknown parameter a, as follows:

{Ueazlln(l-%c); (C<Zg=e*—1),
U, ; (=<0, (2.34)

0=

{=z/a,
where {y=0,,/a and a boundary layer thickness 8., is determined by the condition

81’0 = [Z]L70=Ue.

Contribution of U, to the wall shear stress in the x-direction is

Tz0 :ﬂ[azU0]z=0 :ﬂUe/aale. (2- 35)
The zeroth order momentum integral equation and its solution are
da,/ds=a;/{(2—3ay+208) e?* — (2+ ) }, (2.36)
£=02% 3207 (e2%—1) +S“° (et—1)t-1dt, (2.37)
0

respectively, where &=4vx/U, a2,

Now we apply the method to solve the equations for V; and U,. Putting z=0
in Eq. (2.31) and in an equation deduced from that equation by differentiating
with respect to z, we obtain

[azzvl+anl/a——Vl/azjz=0:0: }
(2.38)
[azzzvl+aszI/a_zazvl/az’ll—ZVl/as]zzO:O.

Equation (2.38) and the necessary wall condition fulfilled by V, suggest that as
z—0,

Vi=U,(14+O+B{{—=2/2+3/2+0(2H], (2.39)
where B depends on x. Equation (2.39) can also be written
Vi=U(1+O+B{C@2+0)/20+0+0(H]. (2.40)

It could be inferred that Eq. (2.40) is accurate near the wall, but an increase in &
(=4vx/U.a?) should decrease the role of the inertia terms, then V; becomes closer
to the form which deletes the term O({%) in Eq. (2.40). Therefore we put

U40+ULPL2+0/204+0) 5 [L=6=(1+28) 1],
Vl-;{ (2. 41)

where f; is an unknown parameter. The non-dimensional boundary layer thickness
{1=0y1/a appearing in Eq. (2.41) is measured by the condition,

8,1=[2Ty,0.
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The wall shear stress composed in the peripheral direction is

i =p[0.V1—Vi/(a+2) o= pnU./aP, (2.42)
Integration of Eq. (2.31) yields
%{gi’wovl(wz)zdz} - —ﬁi;L, (2. 43)
Introducing Eqs. (2.34), (2.41) and (2.42) into Eq. (2.43), we obtain
dp,/ds =P {ao f1(Br) —a3'f2(B)day/dE} 5 (820=0,1), (2.44)
dB./dé=P,[ {(1+281) Iy (aty) — hy(@o) YAy /dE—81/ {hs (o) + f5(B1)} ;}(2. £5)
(020=0,1).

Functions f,(81) and h,(a,) are presented in Appendix 2. 1.
Turning now to the equations for U, the pressure gradient term —0,P;/p in
the second equation of Eq. (2.32) is expressed from the third equation as follows:

— 0L g (Wit y a0 viar ) . 246)
z 1

Putting z=0 in the second equation of Eq. (2.32) and in an equation derived by
differentiation of that equation with respect to z, we obtain

(0.0 ,+8.U,/a T, 0= ﬁ_zl)_ga“ax{vmw') Nz, (2.47 2)
0
[azzzUz + azzUZ/a"azUz/azjzz():O. (2. 47 b )

U, satisfying Eq. (2.47) behaves as
U,=A{C—¢2/2+3/3+0(H}+C{282 203 /3+0(CH}, (2.48)

as z—0, where A depends on &, and C represents a contribution of the right-hand
side of Eq. (2.47a) as follows:

C=—U[f ol (V. /U A+ 0) Mz, (2.49)
Equation (2.48) can be rewritten
U= AlIn(1+0) + 09} +C{E@+0) -2+ 0+ 0], (2.50)
From Eq. (2.50) we can assume a suitable profile of U, as follows:
U7 n(1+0)
Us=]  +USoB) @B /dE) (240 ~2mA+0} /45 (=8, b (2.5D)
0 ; (=),

where a, is an unknown parameter and f3(8;) is given in Appendix 2. 1. Also U,
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introduce a boundary layer thickness 6.,

0z2=[ 2 lp.m0.

{, in Eq. (2.51) is non-dimensional boundary layer thickness 6.,/¢ and it has a
following relationship with a, :

az'=f3(B1)g.({)dB:/dz, (2.52)
The contribution of U, to the wall shear stress is written
Toe= pl .U o= nU,/act,, (2.53)

The momentum integral equation for U, is

d Oz2 - N , 051 N Oy1 V% , }—_ ar,,
755{.(0 U.(U. 2Uo)(a‘z)dzTS0 (a z)Sz % = (2.54)

Instead of the equation of @, we consider an equation of {, obtained by introducing
Egs. (2.34), (2.41), (2.51), (2.52) and (2.53) into Eq. (2.54). We should consider
whether 8,0 is greater than §,, or not, because Eq. (2.54) contains U,. Since the
calculated results showed that always the relation d,,=>0,, was satisfied, only the
equation for that case is shown as follows:

az,/dé=[ay{g:() —fi(B)}+ai'gs(lr)day/dE ;
—{(@?p:1/d&*)(dP,/dE) T —4P7f4(P1)AP/dE}{g4(L2) | (2.55)

+,g5(L2)}1/{82(C) — 083 ((2) 1 86(L2),
where gn(Cz) and d2?B,/dé&? are presented in Appendix 2. 1.

2. 3. 3. A solution near the origin
The boundary layer thickness at the origin is zero, then

Ly Je—0=[P1le=0=[{2Je-0=0. (2.56)

Although the behavior of all Egs. (2.36), (2.44, 45) and (2.55) appear as indefinite
at the origin, lael, |81 and |{,|<<€1 near the origin then an expansion of Eq. (2.36)
becomes

da,/ds =3a;' (1 -2+ ) /2, (2.57)
It has a solution
= /35(1—2+/35/3+ ). (2.58)
Using undetermincd multiplier A,, we put 8; as
Br=A.ay+ A5+ (2.59)

Considering Eq. (2.57), from Eq. (2.59) we obtain
dp/ds=3a; {A—2(A,—A)ap+-}/2, (2.60)



18 ( Y. Furuya, I. Nakamura and S. Yamashita

Expansions of Egs. (2.44, 45) are
dp,/de=3a }{(Ai—1) AT*/2+ (TA}/8— A, —21A7'/8
+ AT A+ Ap/2) A1 /25 (820 =051),
dp,/dé=3a[A,(1+3A,) (1-34) '+ A, (134D {1 +44,
+2A7°4,+124,—3(1+34,) 1—-34D) (1848 (2.62)
—4A4,4.)}0/2+4 /25 (8:0=0,1).

Comparisons between Egs. (2.61, 62) and Eq. (2.60) show that A;=-1 and A,=1
irrespective 0,9==6,1 Or 0,9<0d,1, then we obtain

(2.61)

Pr=—do+af+ e, (2.63)
Substitution of Eq. (2.58) into Eg. (2.63) yields
Bi=—+/35(1—-5+/35/3+ ). (2.64)
Similar method applied to £, gives a following expression :
{o=+/36(1—234/35/60+ ). (2.65)
Whence follows
a,=1-+314/35/20+---, (2.66)

Now we will examine the boundary layer thicknesses 8, 6y; and d,; near the
origin. 6,9 can be expressed by use of Eq. (2.34) and Eq. (2.58) as follows:

Ozo=a(A+at/2+ ) =a~/36(1—+/35/64 ), (2.67)
dy1 is obtained from Eq. (2.41) as
01 =a(—F+30/2+ ) =a~/36(1—/35/6+4 ). (2.68)
Oz i8S
0,2 =0a+/35(1—234/35/60+ ). (2.69)

Expansions of d,, and 6y, coincide at least to the second order term, then it may
be inferred that near the leading edge two boundary layer thicknesses have the
same value. Also the condition of 0,,=>0,5 on which Eq. (2.55) is based is sat-
isfied near the origin.

2. 3. 4. Numerical procedure

The problem reduces to the numerical calculation of Egs. (2.36), (2.44, 45) and
(2.55), but to obtain the result was found rather subtle and difficult because they
have a form 0/0 at the origin. We should seek some tricks. Egs. (2.36), (2.44, 45)
and (2.55) were transformed into the forms which contain a2, 8% and {} instead of
a,, B, and £, respectively. Still they behave as 0/0 at the origin, but we can infer
the limits by use of Egs. (2.58), (2.64) and (2.65) as follows:



The Laminar and Turbulent Boundary Layers on Some Rotating Bodies 19

[dat/d& T o=[dR/dE Jeoo=[dl}/dE so0=3, (2.70)

Near the origin we use the equations whose right-hand sides have expanded terms
respectively with assumptions, |a), |8:1] and |{z/<€1. Number of those terms which
should be contained in the expansions was determined to assure 8 significant figures
at the point where calculation of equations having expanded terms was changed to
the calculation of the original ones. From Eq. (2.36) we obtain an expanded equa-
tion for ai, ' ' ‘ :

doi/de=3/(1+20,+902/5+16a3/15). (2.71)

The other equations for 2 and (% are formaly same to the equations which are
obtained by the multiplication of 28; and 2{, to Egs. (2.44, 45) and (2.55) respec-
tively, but functions f,(B1), £.(¢2) and h,(ay), and d2B,/d&% contained m ‘those
equations are expanded; they are shown in Appendix 2. 2.

As a first step expanded equations were solved using initial values: Eqgs. (2. 56)
and (2.70), and then at the suitable point computation of the original equations
were started to match the value obtained by the expanded equations. Numerical
method used was Hamming’'s method and double precision arithmetic was employed.

2. 3. 5. Results and discussion . 7
. -Comparisons of two terms series solution near the origin using undetermined
multipliers, Egs. (2.58), (2.64), (2.65) and (2. 66), with numerical results are shown
in Fig. 2. 10. Agreement is excellent near the origin. In the present calculation
range 0§£§104, dy1 was greater than or equal to J;,, and the condition 0,0=042
was always satisfied.

Fig. 2. 10. Behavior of various parameters
near the origin; solid line represents
the numerical results, and dotted line
shows the series solution near the

L : origin.

0 0. 0005 0.001 0.0015

ve/Uga® :

Wall shear stress components are expressed in non-dimensional form as follows:
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ar,/nU,=aU7 [0,U],_o=a3'+ Q%3 + -,
ar,/uVe=aVy' {3,V —V/(a+2) i o=07"+ .

(2.72)

Calculated results are shown in Fig. 2. 11 as non-dimensional frictional forces
acting on the unit length of a cylinder. The effect of 2 on ar,/pU,. appears within
a limited range of vx/U.a?. This fact can be explained by the equation obtained
from Egs. (2.58) and (2.66), that is,

20 T T T - T T
1.5 _
log |o(k—2frary/,uVW')
Q=0
1.0 0.4 N
0.6 log 10(2rary/ 10 )
0.8
0.5
0 1 1 Il i f

-3 -2 -1 0 1 2 3
log w(vx/Ug a?)

Fig. 2. 11. Non-dimensional wall shear-force components per unit length of the cylinder.

ar,/pU,=a {14+ 224/35(1—1334/35/60+ )+ -], (2.73)

Then we can infer that the effect of 2 reduces with &€ —~>0. As &-— oo, on the
other hand, the variation of peripheral velocity distribution with x reduces, then
the effect of 2 on the wall shear stress also decreases.

In the same figure, non-dimensional wall shear force in the y-direction is
presented and it represents the result of zeroth order with respect to 2. It coin-
cides with the value of x-direction near the origin. This behavior reflects the fact
that 8;—> —a, when £->0, and physically it shows that the boundary layer thickness
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is thin with respect to the cylinder radius. Sufficiently far from the leading edge
the inertia effect becomes less significant, then the problem reduces to a rotating
cylinder in an quiescent fluid. In such a case we can solve the Navier-stokes
equation exactly and obtain the value 2 of —ar,/#V,. In Fig 2. 11 the trend
—aty/ MV, — 2 as vx/Uc.a? — oo is evident.

Displacement thickness 4, and momentum thickness @, of a thin cylinder have
the following non-dimensional expressions:

a

{1 )a+ou

< U L. 020Uz 11 | o g

~g)a+ﬂﬁ

>(1J_r)df‘+ Ozg U2< ><1ﬂ~ Oz -

1.0
0.5
S
N
8
N
s 0
oo
3
—0.5
___1.0 | 1 1 1 L
—2.0 -1L5 =10 —0.5 0 0.5 1.0

log 10()/1‘/Ue az)

Fig. 2. 12. Non-dimensional displacement thickness.
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Calculated results of 4,/¢ are shown in Fig. 2. 12
Table 2. 3 gives the value of log,¢(0./a).

small.

Y. Furuya, I. Nakamura and S. Yamashita

The effect of 2 is rather
Angular momentum thickness

Table 2. 3. Variation of logi0(fz/a) with the speed ratio £.

vy [2
Uea? 0 0.4 0.6 0.8
10-3 —~1.723 —~1.723 —1.723 —1.724
10-2 —1.194 —1.194 —1.194 —1.195
101 —0.621 —0.622 —0.623 —0.625

1 0.027 0.025 0.023 0.019
10 0.759 0.758 0.757 0.755
102 1.565 1. 564 1.564 1.563
103 2.420 2.420 2.420 2.420

0., and a parameter ©,, which represents the pressure variation due to the rota-

tion are written

oo

H

0

f

DUe Ue

oo

N l

0

~frasof

Calculated results of @,,/¢ and @,,/a are shown in Fig. 2. 13.

==l
Sg‘ v
=,

Q

U,

1+¢

v
Va

A+
L(142)2dC -
J )

i

1+

1 d//ld,v

1+e

L ardc+ .

(2.75)

Above mentioned

effect of £ on various quantities of the, boundary layer comes from the acceleration
produced by the pressure change due to the rotation. —@,, estimated from Fig. 2.
13 represents an equivalent parameter of external p1 essure appearing in the momen-

tum integral equation.
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,__4 L 1 i L
—3 —2 —1 0 1 2 3

logw(vx Uga?)

Fig. 2. 13. Non-dimensional momentum thickness 8,y and parameter Oyy.
6z0 represents the value of 6, at £=0.

Appendix 2. 1. Defining equations for fo(B1), €.(&3) and h.(ay), and second
order derivatives of B, with respect to €.

F1(B)=41+2p)%/{(1+48)In(1+281) —28:(1+3BD },

(B = (1+28) {In(1+28)) —28:(1 -8}
/{A+-48)1In(1+281) =28, (1+361) },

f2(B) =2B7{ (14 In(1+26,) — 204}, (2.76)

F4(B)={(3+84:+4BD)In(1+2p1) —24:(3+58:) }
/L4 +28) {(1+B01In(1+28,) —28,} ],

fs(B) =4(1+481)/(1+2B,)%.
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£1(0) = {2In(1+8) ~ 5 (2+ )} /Aln(1+3),
g8 =T A+ 22 (1+&,) —2In(A+&,)+1}—17/2,
g€ =LA+ (2 +8) 1)+ 17/4,
 8(E) =02 H0)& (8 I+ +285(8) (2.77)
—[(A4+E) A +¢) — 13 +17/8,
85(02) =52+ {6 (248 /A—gy(8) /In 1+,
25(02) = [2(1+8) (1 +5,) — L2+ 1/ (1422 (148,

hi(ay) =az?{1—(1—4ay)e ™}, h(a,) =4a;?{1—(1-—2a,)e?**},
By (@) =@ (3—Ae?® o) I, () = (2—3ety+202) 62% — (2+-aty).
430, /d5* = B7 (B 02+ BuL i o) (Ao dE)? — 0ry FA(Bs) (deto/2) (A2
LT AR + £ (B () [t Tiaty) — 2, (o) ety
Ca fiBDABJAEY (50,0,
A2, d2 = By (B, Y BT {(L-+28) () — MiCeta)} (o (ate) + o (B1)}
—{(A+28) k() —hy(aty) Yha(ay) (dety /dE)2 [ 2k, (aty)
K Uy () + o (B} — L (L 28 (@) — (@) LF4(B) (e /)
J82) [ {128, 7y (@) — 1o (@)} [ () £+ (B Yo ()
X [t i) — 2 (00) ) — BIi( ) Tdex, /2 -+ 8F (8, )dBs /2
[ (@) £ (B (Ba0=8,0),

(2.78)

(2.79)

where the prime denotes the differentiations with respect to the respective argu-
ments.

Appendix 2. 2. Expanded expressions of fn(B1), €.(L2), halas), and their
derivatives included in Eq. (2.79).

f1(B:) = —3p7°(1+21B,/4+70181/80) /4,
f2(B)=—(1+78,/4—1781/80)/2,

f5(81) =4(1—28,+1881/5)/3, (2.80)
fu(B) =B (1-88,/5+1481/5—892p1/175) /2,

fs(B1) =4(1—4B+1681—4881).
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8:1(&e)=—C(1+4,/6-3/180) /2,

g:(L2) =203(1—3/20+-23/24) /3,

83($) =8 (1+8,/3—3/12+4+£3/30) /2,

&4(%,) =C(1+42,/15—2/30-+23/630) /3,
g5(L2)=—0(1+2,/2+23/60—-23/120) /3,
86(L2) =2(1-+&,/3+83/180).,

iy (ay) =8(1-+8a,/3-+4a3-+ 64a3/15),

hy () =8(1+4a, /34 af+8a3/15),
hig(aty) = —4(1—40%/3— 20— 28at/15),
hy(ay) =203(1+ 200,492 /5+16a5/15) /3.
F1(By) =987 (1 +7B,/2+701p%/240) /4,
fe(B)=—7(1-17p,/70)/8, l
J5(B1)=—328,(1—60,+2467),
hi(a,) =641+ 3ay+2402/5) /3,
hy(ay) =32(1+3a,/2+602/5) /3,
hy(aty) =32, (1+ 9, /4--1402/5) /3,
hi(ay) =20:(1+8ay/3-+3a?).

25

(2.81)

(2.82)

(2.83)

(2. 84)

Il Experiments on the Thick Turbulent Boundary Layers on Rotating

Bodies with a Roughness Element

3. 1. Introduction

The turbulent boundary layers which develop on a spinning body of revolution
have the same salient features as the laminar ones studied theoretically in Chapter
I; the effects of the rotation and the transverse curvature of the body dominate
the behavior of these flows. Since the growth rate of the turbulent boundary
layers are greater than that of the laminar ones, these effects appearing in connec-

tion with the radius of the body are more important in turbulent flows.

Moreover, the phenomena of turbulent flows are so complex that no general
approach to the solution of the problems exists; it is still next to impossible to
make accurate quantitative prediction without relying heavily on empirical data.
The history of the developments of many researches on two-dimensional turbulent
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boundary layers indicates that a lot of experiments under various conditions must
also be made in order to resolve the present problems of these complicated turbu-
lent flows.

Generally speaking, of many factors that determine the behavior of the turbulent
boundary layers on a flat plate, two external conditions, i. e., the pressure gradient
in the free stream and the surface roughness, are fundamental and decisive. In the
present problem also it is apparently important to examine separately the effect of
these two factors, and perhaps the knowledge obtained through these researches
will serve for the practice in the design of fluid machinery.

This chapter deals with the effect of the roughness element; the experimental
investigation is made of those relatively thick turbulent boundary layers developing
on the spinning cylinder in a uniform flow which are strongly disturbed by a ring
or a backward step. The disturbance introduced in the boundary layer promote the
development of the layer so that the effect of curvature becomes significant.
Another important role of the roughness element is to destroy the quasi-collateral
condition which was confirmed experimentally in the previous ordinary cases*’ and
used as a basis of the prediction®.

Descriptions are made firstly of the preliminary consideration on the curvature
effect. Next, measurements of velocity distribution in the skewed turbulent bound-
ary layers affected by the roughness element are presented and discussed in detail.
Thirdly, the condition of the quasi-collateral relationship is extended to the thick
boundary layer and compared with the measured velocity profiles. In this connec-
tion, a shape parameter which may describe quantitatively the deviation of the
velocity profiles from that condition will be discussed.

3. 2. Basic consideration

The effect of curvature on the boundary layer may be clarified by use of the
equation of motion. Writing down the equation of mean motion in the cylindrical
coordinate and estimating the order of magnitude of each terms following to Hinze
45) then gives the following equations taking the second order terms;

8,(rU)+0,(rW) =0,
Ua,U+Wo,U=—03,P/o+3,(r=,) /o7,

G3.D
U, V+Wo,V+VW/r=a,(r?z,)/or?
V?/r=0,P/p+ (w?—v%) /7 +3,w°,
and boundary conditions are
y=qg . U=W=u=v=w=0, V=V,=auw,
3.2)
y—oo  U=U,, V, u, v, w—0,
where z, and 7, are shearing stress components represented as follows:
Tx:ﬂarUﬂpWy
N 3.3)
v, =p 0,V =V/r)—pvw,
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It may be plausible to express the effect of curvature by use of momentum
thicknesses. Then we derive the mometum integral equations:

e(9{}‘9;”‘@;1)}”Ax%+dx{PV2(8yy+ﬁy>>J = Toay

4 3.4)
a}(@UeVOQ.M) R ¥7)

where 74, and 7y, are the components of wall shear stress. Various thicknesses
appearing in above equations are defined by the integrals:

O A A T AT

a U, U, U.
(3.5a)
6,,= st U ;;( >dr 0,,= S;%S:é‘(%) —dr'dr,
and
I A A R
(3.5b)

2
ol 2 R

The thickness O,, is an integral of the static pressure variation due to the
rotation, and the thicknesses as ¢;, #;, and 05, introduced here, which express the
contributions of Reynolds normal stresses, make the equation to a simple form.
Since Hinze's estimation suppresses the term 9,u#? the corresponding thickness does
not appear. As Moore’s considerationt$’ in the case of stationary cylinder, we can
compare the boundary layer with potential flow using the thicknesses 6,, and 85,
defined by @, and 4., that is,

{(a+0,.)%—a?}/2a=6,, }
{(a+03.)%—a*}/2a=4,,

Inviscid flow rotating as rigid body may serve as a thickness which plays a role
for @,, as a reference as do the #,, and 6%, for @, and 4,. Then a thickness
8:5. can be defined by

(3.6a)

S“””“(%)Sdr:@w, (3.6b)

a

The thicknesses 63, 6, and 6., used so far mainly by authors are reduced when
a—>co with fixed z (=7r—a) in the definition of 4,, @, and ©,, respectively,
so it can be seen by comparing these thicknesses whether or not the effect of
curvature must be taken to account. Some values of these parameters evaluated
from the measured velocity distribution are presented in Table 3. 1. It may be
concluded that ©, and @,, must be considered instead of 6, and 6., respectively
when the boundary layer thickness grows about 20% of the cylinder radius. As the
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square of the distance from the cylinder axis appears in the defining equation of
0.y, the curvature affects this thickness more than 6,, so the curvature effect
appears in earlier stage of boundary layer development in the case of rotating
cylinder than with stationary cylinder.

Table 3. 1. The thicknesses of the boundary layer in the case of Cylinder.

x=>510mm x=657mm
.Qm 3/0 91‘/91’ Gzy/ﬁzy Lm 5‘/52 81/01 Qxy/axy
1] o022 1.07 1.15 1 0.34 1.10 1.19
2 11 o037 1.11 1.23 2 0.45 1.14 1.31

3. 3. Experimental apparatus and procedures

The tunnel employed is suction type with a circular working section of 350 mm
diameter. The details are described in Ref. 4). Experiments were carried out using
four shapes of rotating bodies as shown in Fig. 3. 1. They are as follows: )
cylinder with no roughness, ) cylinder
with a ring of 2.5mm height and 2.5
mm breadth, J[) cylinder with a ring

Measurin

"«
w
g
5
=
w0

28 gg2 2 8 2 3
of 5mm height and 2.5 mm breadth, and ]§§§j7 N85 5 ¥ B b
IV) cylinder with a backward facing step | 1| | ! P T T Ta=sel
. o H P 1 | 1 Um‘ Pm /

of Smrr} height. In whaF follows thgse s, - J“?tm — -
are designated as ] ) Cylinder, [[) Ring %?_-t_&?.___. S ggl— — R
2.5, ) Ring 5, and V) Step, respec- < i[ i lii ; i t :
tively_ N i‘f T ‘U:;, Pm' N

In order to generate disturbance in ,@p o] e . 1
the turbulent boundary layer, rings and k— 2125 Sk
a step were placed at the station where Fig. 3. 1. Experimental arrangements and
the values of Reynolds number based on measuring stations.

the momentum thickness of the station-

ary cylinder were greater than the

critical value which is a criterion of fully developed turbulent boundary layer given
by Prestont”. The measured value of Ry, at x=240mm was 530 and the total
thickness of the layer was about 8 mm at that position. Then the height of rings
and a step was determined to ensure that these elements immersed enough in the
layer.

A three-hole yaw probe with a flattened tip of 0.5mm height was used to
measure the velocity distribution and a static probe also used, orienting to the flow
direction which was determined by the yaw probe. The directional sensitivity of
the yaw probe and the detailed description of measuring method are presented in
Ref. 4).

The value of Reylolds number based on the reference velocity and the radius
of the body as shown in Fig. 3. 1 was fixed at 5x 104 throughout the experiments
and speed ratio 2,(=anw/U,) was varied from zero to 1 and 2.
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3. 4. Measured velocity profiles

3. 4. 1. The case of Cylinder

In the first place we will describe the results of measurements carried out
with a cylinder which provide a reference as a standard case for the other rotating
bodies.

Pressure distribution on the wall of the duct and at various heights from the
cylinder surface measured at £2,=0 is presented in Fig. 3. 2. This figure shows

0.4 T T T
q Re=5X10% &m=0
0.2 \J\o
\0\0
oF 0 == o Duct Surface
> \t\
a0 S o \}, z=15
N
;E\ 0 > O \b z=10
| :
Mo — Ot —0 z=7.5
0 o 2=5
0 ID\‘" 2 - o 2=:3 mm
—0.2 x10*
0 2 4 6 38 10
Z mm

Fig. 3. 2. Pressure distribution in the case of Cylinder.

that the static pressure is effectively constant between the stations of x=169 mm
and 657 mm.

Velocity profiles on the stationary cylinder are shown in Fig. 3. 3 using non-
dimensional velocity and distance from the cylinder surface specified by free stream
velocity outside of the layer U, and the momentum thickness @, defined in Eq.
(3.52), respectively. 1In the range of these experiments this figure clearly shows
similar velocity profiles of turbulent boundary layer.

The components of velocity in the axial direction and in the peripheral direction
are presented in Fig. 3. 4. The velocity scale in the peripheral direction is naturally
surface velecity V,, and the distance from the cylinder surface is divided by 8y
instead of @, since it was found that in the rotating case the non-dimensional dis-
tance 2z/0,, shows more similarity in the velocity profiles in both directions than
does z/60, when comparing the axial velocity distribution with Fig. 3. 3. The
profiles are not so similar as seen with a stationary cylinder even in the same
range of x. Obviously rotation fosters the development of the boundary layers in
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Fig. 3. 3. Velocity profiles in the turbulent boundary layer for Cylinder at £,=0.

such a way that they lose similarity in the form of U/U, vs. 2/0, or z/0,, within
the same range of axial distance as in the stationary case.

.él T 1 T T
5 Re=5X%10; Om=2
> | o w=169mm |-
) e 240
10 7, o
s | ) 510
-8 ° 657 B
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Fig. 3. 4. Velocity profiles for Cylinder at £n=2.

3. 4. 2. The cases of Ring 2.5 and of Ring 5

Pressure distributions for Ring 2.5 and Ring 5 are presented in Figs. 3. 5 and
3. 6, respectively. At the section of the ring, the pressure decreases considerably,
especially in the case of Ring 5, but it recovers immediately behind the rings and
is approximately constant over the downstream portion. The lengths of sepatation
bubbles in front of and rear of the rings were estimated by oil film method: in
the case of Ring 2.5, about 6 mm and 18 mm, and in the case of Ring 5, about 10 mm

and 60 mm, respectively.
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Fig. 3. 5. Pressure distribution in the case of Ring 2.5.

In Fig. 3. 7 velocity profiles for Ring 5 in the range from x=310mm to 657
mm at 2,=0 are presented. The velocity distribution at the station of x=310mm
which is 67.5mm downstream from the rear surface of the ring shows the profile
which is usually found in reattached boundary layer. It is seen from the figure
that the velocity profiles approach the ordinary pattern without disturbance but
does not recover the similar shape as shown in Fig. 3. 3.

Peculiar profiles measured at the station of x=270 mm in the case of Ring 5
when 2,,=1 and 2 are shown in Fig. 3. 8. Reverse flow near the wall is appreciable
in the axial velocity distribution and the velocity component in the peripheral di-
rection has a remarkable shape which has a maximum value at z==8mm. This
phenomenon might be explained as follows. Fluid particles close to the cylinder
surface obtain great peripheral velocities in the upstream portion of the ring.
Under the influence of the ring, the velocities become greater in the peripheral
direction through a “no-slip” condition at the outer ring edge. The boundary layer
separates again and reattaches to the cylinder surface, thus developing a new bound-
ary layer there. Comparison of the profiles of £2,,=1 and 2 suggests that the
separation bubble behind the ring diminishes with increasing speed ratio.

Figure 3. 9 shows the velocity distribution over the range from x=310mm to
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Fig. 3. 6. Pressure distribution in the case of Ring 5.
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Fig. 3. 7. Velocity profiles of reattached Fig. 3. 8. Velocity profiles at the station
flow for Ring 5 at £2,=0. of x=270 mm for Ring 5.

657 mm when 2,,=2. Separated boundary layer reattaches to the wall at the section
of x=310mm, then gradually recovers to the normally developed profiles. In con-
trast with the large deformation of axial velocity profiles, the change in the
profiles of peripheral velocity component is relatively small and limited near the
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ring as seen in these figures. It may be said that the velocity distribution exhibits
‘more stability in the peripheral direction than in the axial direction.

In Fig. 3. 10 the velocity profiles for Ring 2.5 at 2,=2 are presented. The
boundary layer is reattached to the wall at the station of x=270mm. The variation
of velocity profiles toward downstream gives the same feature as that for Ring 5.

3. 4. 3. The case of Step
Another method to produce disturbance in the boundary layer employed in these
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0 2 4 6 8
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Fig. 3. 11. Pressure distribution in the case of Step.
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experiments is to set a backward facing step of 5mm height at the same place
where the rings were placed. - '
Measured pressure distribution in the case of stationary body is presented in
Fig. 3. 11. The pressure change occurring at the step has a tendency which is
somewhat different from that existing in the case of Ring 5. Passing the ring,
pressure increases steeply, and remains approximately constant in the downstream
region; falso it: rises immediately behind the step but slightly decreases in the
downstream direction as seen in Fig. 3. 11. The length of separation bubble behind
the step was estimated at about 23mm by oil film method; this is considerably
shorter than that of Ring 5. "
Figure 3. 12 shows the velocity dis-

tribution on the body spinning at 2,,=2. Roms 10+ Qumz §
As in the cases of Ring 5 and Ring 2.5, © F=270 mn

change in the peripheral velocity profiles o

is smaller than that of axial direction. o us
Moreover it can be seen that the axial e 657

velocity profiles in this case exhibit less ’,fég
deformation than in the case of Ring 5 ) o;r"(’;ff
and this phenomenon may be ascribed to do"‘yﬂ J

the relatively small separation bubble and 10 08 0o 0L 07 0 oz ol o5 o o
slight favorable pressure gradient as men- V/Vo U/Ue
tioned above. Fig. 3. 12. Velocity profiles for Step at
Qm=2.
3. 4. 4. Momentum thicknesses

Since we usually express the development of boundary layers using integrated
thicknesses, some values of momentum thicknesses of these flows are presented in
Figs. 3. 13-3. 16. The values of @, of Ring 2.5 and Ring 5 exhibit strong effect
of disturbance by showing sudden enlargement behind the rings, as seen in Figs. 3.
13 and 3. 14. The developments of ©,, of Cylinder and of Ring 2.5 and Ring 5
are, except in the region immediately behind the rings, similar and they take the
same values approximately as presented in Figs. 3. 15 and 3. 16. Spatial stability
of the perpheral velocity distribution to the disturbance can explain this character.

There are some methods of calculation for momentum thicknesses of turbulent
boundary layer on a spinning body . in axial stream®, 48, but none of them take
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Fig. 3. 13. Developments of momentum Fig. 3. 14. Developments of momentum
thickness @; for Cylinder and thickness 0, for Ring 2.5.

Ring 5.
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account of the effect of curvature. Thus we can not compare the experimental
values of 6, and 6., with any theory.

3. 5. Relationship between axial and peripheral velocity components

Polar plots of velocity vector proved its utility to explore the characteristics
of the skewed boundary layer. According to the experimental results obtained by the
authors®’, the following equation is well satisfied in the most turbulent boundary
layers:

1-U/U0,=V/V,, 3.7

An implication of this equation is realized if we take the coordinate moving with
the body that is, if the Eq. (3.7) holds, then the relative velocity vectors at
various heights from the body surface in such a frame are coplanar and it can be
said that the boundary layer-is quasi-two-dimensional. Since the plane _containing
the relative vector is tangent to the relative velocity on the spinning cylinder in
uniform inviscid axial stream, it is questionable to apply Eq. (3. 7) to the present
problem of thick skewed boundary layer. :
Extension of the concept of ; quasi-
collaterahty may be obtained by the
following argument. Let the cylinder
rotates in inviscid flow and take a co- )
ordinate fixed to the cylinder in which Urel\ oy
&, is the relative main flow direction ol LY
at radius 7 and &, is the periperal di-
rection, as shown in Fig. 3. 17a, so the
frame is rotating non-orthogonal. The
magnitude of relative velocity U, at
radius 7 is b)

Ur=vVUiH(rw)?. (3.3) g 317

a) Rotating non-orthogonal frame

b) Relationship between various velocity
components. o o

rfSurface é2=consl.

Uy .

The coordinate surface made by &; and
v axes is a spiral surface. '

Let U,.; be the relative velocity in
the boundary layer, its components in
&;-and &,-directions in this coordinate are
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U1 = UIEU/ Ue’

(3.9)
U,=V—-ro(1-U/U,),

respectively, as seen from Fig. 3. 17b. If the velocity vector in the boundary layer

is tangent to the spiral surface of &; and » then we ‘call the velocity distribution

is quasi-collateral in a generalized sense and the condition which must be satisfied

in this case is obviously U,=0 and yields

1-U/U,=aV /rV,, (3.10)

Equation (3.10) reduces to Eq. (3.7) when the boundary layer is thin compared
with the cylinder radius. In what follows we use the term quasi-collateral in the
meaning of Eq. (3.10). The term quasi-collateral may not be appropriate in this
case but it is retained for apparent reasons.

A diagram of polar plots taking the ordinate as «V/rV, and the abscissa as
U/U, is used to compare the measured velocity distribution with Eq. (3.10).
Measured points fall on the line if the quasi-collateral condition is satisfied. Of
many experimental results, the typical two figures, that is, the polar plots of Cylin-
der and Ring 5 when 2,=2, will be shown here; the others are presented in Refs.
49) and 50).

Figure 3. 18 corresponds to the case of Cylinder. The boundary layer still
remains laminar at the section of x=74 mm and it has quasi-collateral profile,
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Fig. 3. 18. Polar plots of velocity distribu- Fig. 3. 19. Polar plots of velocity distri-

tion for Cylinder. bution for Ring 5.
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while the corresponding plots for £2,=1 has deviated from this condition. The
variation of the velocity distribution of  laminar flows in this region with speed
ratio can be explained by considering the centrifugal acceleration produced at the
nose part®. At x=104mm the transition is occurring and the polar plots show
the effect of the upstream portion. But a fully turbulent boundary layer in the
range from x=240 mm to 657 mm satisfies the relationship of Eq. (3.10) reasonably
well.

The polar plots of Ring 5 at £2,=2 are shown in Fig. 3. 19. A quasi-collateral
velocity distribution exists at x=169 mm in front of the ring and there the boundary
layer is turbulent. The section of x=240mm is the front surface of the ring.
The section of x=270mm is in the separated bubble region; the x-component of
the velocity distribution exhibits a reverse flow, and at x=310mm the boundary
layer reattaches to the wall. It is clearly seen from this figure that quasi-collateral
turbulent boundary layer upstream of the ring is greatly disturbed by the ring and
it deviates from the quasi-collateral condition., After passing the ring the boundary
layer recovers the quasi-collateral profile. In these experiments, however, the velo-
city profile does not satisfy the quasi-collaterality even at the most downstream
station.

Turning now to the appearance of the disturbance by the ring, it may be
inferred that the deviation of velocity distribution from the quasi-collateral condi-
tion at the ring would be provoked partly by the Coriolis force in the &,-direction,
adding to the retardation of axial velocity.

Of course the degree of deviation from the quasi-collaterality is varied accor-
ding to the type of roughness element, speed ratio and others. From these figures
the deviation of velocity distribution from this condition is clearly seen intuitively,
but it is desirable to define a suitable parameter to express the change of the
deviation along the current length. It may be reasonable to suppose a thickness
which relates to angular momentum produced by U, defined by Eq. (3.9) can serve
for the purpose. Also a displacement thickness 4; produced by velocity component
U, is able to exclude the effect of the total boundary layer thickness. So we will

define a shape parameter H,, as follows:
=B (e (T 7y /70 (1)
Hy=5F _Sa <V0> Tar S 1. (3.11)

The developments of the shape para-

meters with axial distance for various . .
kinds of rotating bodies at 2,=2 are e 2;:;"10“
shown in Fig. 3. 20. This parameter is ; o Cylinder
almost zero for Cylinder in all measuring 2 ,‘\ o Ring 2.5
stations corresponding to the quasi- 0.4 f © Ring 5 .
collateral distribution. An extreme peak ;' _.Step

value of this parameter appears at x=270 [

mm in the case of Ring 5 and it decreases 0.2 .

rapidly downstream. The cases of Ring lg \

2.5 and Step show approximately the N ‘:," \g\"‘\s-\ .
same peak value but the reduction of the 0 2 e e — 0
parameter is slightly more rapid in the Fig. 3. 20. Variation of shape parameter

case of Step than in the case of Ring 2.5. Hys at @m=2.
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The comparison between the results of two speed ratios in these experiments has
shown that the shape parameters have larger values and reduce more slowly in
the case of smaller speed ratio than in the case of higher speed ratio4®.

Consulting the polar plots and the change in the shape parameters, including
when 2,=1, it might be deduced that this parameter is fairly suitable one in
describing the deviation of the velocity distribution from the quasi-collateral condi-
tion irrespectively of the type of disturbance and speed ratio within these experi-
ments.

. 3. 6. Concluding remarks

Experiments were carried out to explore the turbulent boundary layers which
developed on a cylinder, on the cylinders with two kinds of rings and on the cylinder
with a step, rotating in axial flow. Detailed results of mean flow measurements
are presented. Some features clarified by this study may be summarized as follows:

First, the definition of momentum thicknesses require the consideration of
curvature when the total thickness of the boundary layer reaches about 20% of the
cylinder radius. The rotation promotes the effect of the curvature.

Second, the disturbance generated by a ring or a step affects on the axial
velocity profiles stronger than on the peripheral velocity profiles.

Third, the changes in the boundary layer produced by a roughness element are
analyzed using a generalized quasi-collateral condition. A shape parameter intro-
duced is able to show the recovery of the velocity distribution to the quasi-
collateral form in the downstream.

IV Experiments on the Thick Turbulent Boundary Layers on
a Rotating Cylinder under Pressure Gradients

4. 1. Introduction

In a previous chapter, we described the experiments on the effect of a single
roughness element on the flow structure in the turbulent boundary layer on a
rotating cylinder.

This chapter presents an investigation about the relatively thick turbulent
boundary layers on a cylinder spinning in axial flows with pressure gradients; the
influence of pressure gradient, as well as a roughness element, is an important
factor affecting the turbulent boundary layer. Firstly, descriptions are given of
mean velocity profiles measured in the turbulent boundary layers affected by adverse
and favofable pressure gradients. Next, similarity considerations of these flows
are made. That is, the distribution of peripheral shear stresses in the boundary
layer is calculated numerically from measured mean velocity profiles, and on the
basis of their near wall behaviors a formula for a logarithmic velocity distribution
in the peripheral direction is deduced; this expression is different from that for a
two-dimensional turbulent boundary layer on a flat plate. It is shown that the
expression deduced succeeds in depicting the measured velocity profiles. Further-
more, a Richardson number that has been proposed as a parameter describing the
turbulence character in such destabilized flow is examined.

Bissonnette & Mellor® and Lohmann? have investigated the similar flow to
the present one. But both their experiments were made using a cylinder model
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which consisted of two parts: a stationary section followed by a spinning afterbody.
The flow fields generated therein which are subjected to a disturbance due to a
sudden circumferential strain is rather different from that of the present experi-
ments.

4. 2. Experimental apparatus and procedures

The wind tunnel employed is the same one as used in the experiments in
Chapter J[. Experiments have been carried out in three turbulent boundary layers
on a circular cylinder rotating in the pressure gradient fields generated by means
of a tapered sleeve inserted in the tunnel. The experimental arrangements and the
measuring stations are shown in Fig. 4. 1. In this figure, cases (]) and (] ) are
the setups of the rotating bodies of 200 mm and 140 mm diameters, respectively, in
the flow fields of the adverse pressure gradients, and case (][) is the same rotating
body as in case ( ][) but in the favorable pressure gradient field. In what follows,

T Y U— 600
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L on B o ]

140 ¢
200 ¢

C 13, 134

—

x=540 :

H ! =t
| rUm,Pm{ °°‘I/'—

Fig. 4. 1. Experimental arrangements and measuring stations.
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use is made of the designations of AP(]), AP(I) and FP for cases (), (I)
and (J[) respectively. The experimental results with nearly constant pressure in
the previous chapter are cited as CP here. The taper-angle of the sleeve has been
determined such as not to induce the boundary layer separation on the inner surface
of the sleeve. In the case of AP(]), the value of Reynolds number Re is fixed at
8x 104, and the speed ratio £, is varied: 0, 0.65, 1, 1.5, 2 and 2.5. For the other
cases, the experimental conditions are the same as in Chapter J[. The present
chapter is concerned mainly with the experimental results at £,=0, 1 and 2, es-
pecially at 2,=2. '

4. 3. Experimental results

The static-pressure distribution at z=0mm for AP(]) and z=3mm for the
others when the bodies are at rest is shown in Fig. 4. 2. Each gradient of the
curves is nearly constant except in the region where the nose effect exists, and is
not so steep as to induce separation or relaminarization. The distribution of
Clauser’s equilibrium shape factor G, which is defined in a two-dimensional turbulent
boundary layer, is presented in Fig. 4. 3. The figure shows that the adverse pres-
sure gradients affect this shape factor more than the favorable pressure gradient
does.

1.0 T 133 e e -
} om=0" -
2 0'8\ ® AP(I) Re=8X10*
'J?“ 0 6_5 e APGD |
X" o cp {Re=sxuot C s : _
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b o~ - , I e AP(D Re=8x10*
E*/0‘2-\& / °\q,\ o o i eég(m}lz 5%10%,
o e=o o ]
\ Io\o 0 m\ © © L © FP f g
0 eSS B> o . LR —
& e
L [ s//"/>&\"’ 6 i
B e 1 L <
_ 7 B j g
0.4t | &7 s S P
/ Ve ‘ 0 2 £ _ 6 10
0.6} S ] wm
i / , Fig. 4. 3. Distribution of shape factor
-0.8F 4 8
'S . . ngo{(Ue~U)2/U72}dz/
—1.00 : 2 —t ya— 6 x10~ 58
e Loxmm.. B {(UG_U)/UT}dz_
Fig. 4. 2. Static-pressure distribution. 0

Axial and peripheral velocity profiles in the turbulent boundary layers for
AP(]l) and FP at 2,=2 are presented in Figs. 4. 4 and 4. 5, respectively. In the
case of AP(]), the axial velocity profiles are nearly similar; this result is in
contrast with non-similar profiles for CP in the previous experiments. The adverse
pressure gradient in the present experiments is acting as a compensation for the
acceleration effect owing to the rotation, so that the axial profiles have good
similarity. The profiles for FP are not similar in both components.
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Fig. 4. 5. Velocity profiles in the turbulent

boundary layer for FP at 2,=2.

The velocity profiles at the upstream and the downstream stations for AP(])
and FP are shown in Fig. 4. 6, solid curves being for CP. The axial profiles in the
three turbulent boundary layers, which nearly coincide at the upstream station,
deviate considerably from one another at the downstream station due to the effects
. On the other hand the peripheral profiles nearly coincide
with one another at the downstream station as well as at the upstream station.

of the pressure gradients
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4
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Fig. 4. 6. Comparison between velocity profiles for FP, CP and AP(I).
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These features indicate that there is al-
most no effect of pressure gradients on
the peripheral velocity components within
the limits of these experiments.

Figure 4. 7 shows the polar plots of
the velocity distribution compared with
the extended quasi-collateral condition
given in the previous chapter. At the
station of x=169 mm, which is taken to be
most upstream for the fully developed
turbulent flows in these experiments, the
polar plots for AP(J) and FP satisfy
fairly well the condition of the quasi-
collaterality, but the deviations from this
condition appear downstream. These de-
viations are attributed mainly to the
changes in the axial velocity profiles
because of the pressure gradients. That
is, the distribution for AP{] ) shifts to
the deceleration side and that for FP
does to the acceleration side.

The developments of integrated thick-
nesses, @, and 0., are shown in Figs.
4. 8 and 4. 9 respectively. It is obvious
that the pressure gradients affect 6., less
sensitively than @, and this character may
also be attributed to the stability of pe-
ripheral velocity distribution.

3 T 2
Re=5X10% ::AP(ID /
/’ /
P

e~

nN

®xmm
-

r ©° Qm=0
,./

x10*

0 2 4

Fig. 4. 8. Developments of momentum thick-
ness 6. Experimental points
represent the case of FP.
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Fig. 4. 7. Polar plots of velocity distribution

for AP(II) and FP.
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4. 4. The character of the turbulent boundary layer

4. 4. 1. Shear-stress distribution in the layer

Shear-stress distribution, especially near the wall,
the law of the wall in a turbulent boundary layer.

is important in relation to
Here the peripheral shear-stress

distribution is examined, because the experimental results described above show the



The Laminar and Turbulent Boundary Layers on Some Rotating Bodies 43

insensitivity of the peripheral velocity profiles to the effect of the external pressure
gradients. The peripheral shear-stress component is obtained as

A7) o (&) -G 3 g e,
— 2 —_—— =
~_Wgag,{ G2 L) ar—evava (52 —dr 4.1
through integration of the third equation of Eq. (3.1). Introducing the values of
measured mean velocities into Eq. (4.1), ¢, can be calculated numerically. Calcu-
lated values of ¢, and 72r, made dimensionless with reference to those values on
the wall are shown in Figs. 4. 10 and 4. 11, after the curves have been made

Viza
v T
Fig. 4. 10. Distribution of peripheral shear stresses in the turbulent
boundary layer for CP.

smooth. The abscissa is a wall variable appearing in an expression for the loga-
rithmic velocity distribution as seen in the next section. These figures show that a
region of #Zzy=const. exists near the wall rather than that of r,=const. corre-
sponding to the flat plate flow.

This feature is also confirmed from the basic equation as follows. When we
consider the proximity of the wall, it may be possible to neglect the inertia terms
on the left hand side in the basic equation in the peripheral direction. Hence we
obtain

0, (r*c,)/pr*=0, (4.2)
whence follows

¥%r,=a%c,,=const, 4.3)
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Fig. 4. 11. Distribuéion_of eripheral shear stresggs in the fufbulént
boundary .layer for AP(I). ’

This equation states the existence of a layer where the moment of the peripheral
shear force per unit depth at radius » is constant. This layer is equivalent to the
constant-stress layer in the turbulent boundary layer on a flat plate.

4. 4. 2. Universal velocity distribution in the turbulent boundary layer

As to the mean velocity distribution in the turbulent boundary layer on a flat
plate, a similarity law holds independently of Reynolds number for the first approx-
imation. In particular the logarithmic velocity distribution law is, as well known,
applied in a region near the wall with and without external pressure gradients.
This formula is possibly applicable to the flow on a stationary cylinder, if the
boundary-layer thickness is so small in comparison with the radius of the cylinder
that the transverse curvature effect is negligible. However, when the thickness is
comparable with the radius of the cylinder, many authors have discussed what
type of the law of the wall must apply in the turbulent boundary layer affected by
the transverse curvature. These considerations are relevant to the problem of the
turbulent boundary layer on a rotating cylinder, and a brief description of them
is given as under for reference.

Two typical proposals among them are as follows:

Richmonds®) : U/U,=Alog, {(U.z2/v)(1+z/2a)}+B, (4.4)
Raot® : U/U,=Alogo{(U.a/v)In(r/a)}+B, (4.5)

where A and B are empirical constants for the flat-plate flow. Equation (4.4)
has been obtained by an application of Coles’ streamline hypothesis to an axisym-
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metrie -flow. - On-the-ther-hand,-Rao -has- derived -Eq.-(4.5)- on- the -basis. of ~the
velocity distribution in a sublayer where the axial shear force per unit depthé of a
cylinder surface at radius # is constant. He has concluded that this formula depicts
much experimental data including those of Richmond better than Eq. (4. 4) “does.
Both thé equations reduce to the expression for the flat-plate flow as a — co.
 Willmarth & Yang®2 and Bissonnette et al.®> have applied Eq. (4.4) to‘ -their
eXpermdéntal data, and some papers®3),5% on numerical studies have made use of
Eq (4.5). ‘Chase’5) has recommended Rao’s hypothesis, not only because Eq.. (4.5)
represents quite well the expemmental data, but  also because the mean velocity
d;str:butlon in the ‘wall layer on a thin cyhnder is expressed by a single function:
U/U- =F{(U. a/v)In(r /a)} including the exact velocity profile in the sublayer.”  On
the contrary, Bradshaw & Patel6) pointed out an uncertainty in the basis of! Rao’s
argumept,and threw doubt on any. law of the wall analysis itself in the case “where
z/a is large. Nevert’heless for netwextremely large values of z/a, they derived
from the so- called mixing- lencth formula a -logarithmic expression different--from
both Egs. 4. 4) and (4.5). However, this equation differs little from Eq. (4.5)
numerlcally over a wide range of z/d¢. Therefore, Eg: (4 5) in which the. wall
variable (U.a/v)In(r/a) is natural]y included is utilized to -express the present
experlmental data on a stationary cylinder. Although Rao. & Keshavan®5” have
suggested in their later experiments that the values of A and B in this equation
vary with Reynolds numbers, in this report Sarnecki’s constant values for the flat-
plate flow are used.

The experimental values for AP(]), CP and FP arranged by Eq (4 5) are
piesented in Fig. 4. 12, where U, is determined from the so-called Clauser: chart
based on this expression. The scale numbers on the ordinate in the figure corre-
spond to the exper1mental values for CP, The effects of the pressure gradlents are
perceptible in outer regions, but Eq '(4.5) describes the measured profiles “very
well. However, whether or not there is an advantage in Rao’s hypothesis is not
completely concluded here, because the values of §/a in these cases are relatively
small, i. e, 0. 3 at most.

Turning now to the problem on a universal velocity distribution in the skewed
turbulent boundary layer on a rotating circular cylinder, a few considerations have
been made. The turbulence in the boundary layer is affected by the rotation of
the cylinder and the mean velocity profiles also have different forms from those
with no rotation. These features can be examined from the consideration of a
universal velocity distribution. In authors’ earlier study?’, a logarithmic velocity
distribution for the peripheral flow on a rotating conical body was deduced in the
same expression as that for a two-dimensional turbulent flow. That formula has
succeeded in describing the measured peripheral profiles. However, the comparison
of the peripheral velocity profiles in the present experiments with the Clauser
chart based on this expression showed that there was no definite linear portion of
the measured profiles; this formula is not suitable for the thick turbulent boundary
layers. In this section, a consideration is made of the peripheral velocity distribu-
tion, as a contribution to the clarification of a universal velocity distribution law
valid in this turbulent boundary layer.

The universal law of the wall which might be expected to hold near the wall
in a turbulent boundary layer states that the mean velocity distribution in this
region is completely determined only by local physical quantities. We may expect
the main parameters governing the peripheral flow to be c¢y, V, Vo, @, 7, p and .
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Fig. 4. 12. Logarithmic velocity distribution in the boundary layer with no rotation.

The measured velocity profiles show that there is no effect of ro, for the first
approximation. Therefore, a general relation of the law of the wall is written in a
functional form

V/VT :f(VTa/U} T/CZ, VO/VT). (4' 6)

We deduce its actual form more legitimately than Rao*#’ did, who conjectured the
law of the wall in axisymmetric flow on a stationary cylinder from the velocity
distribution in the sublayer.

Near the wall there exists the region where Eq. (4.3) is valid. Substitution
of the second equation in Eq. (3.3) into Eq. (4.3) yields

(73 a®V ,)a,(aV ¥V ,) —riow/a?Vi=1, 4.7

Dimensional coefficient v#3/a3V; can be absorbed in a new dimensionless variable
z*+ defined by the following equation,

9,2t =V .a /v, (4.8)
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Then Eq. (4.7) is transformed into
0z+(aV/rV ) —7’221—25/an§=1‘ 4.9

Implicit assumption deriving Eq. (4.3) is that we can neglect the variation of flow
condition in the axial direction if we limit the consideration near the wall. So it
may be legitimate to expect the solution of Eq. (4.9) has a form:

aVv/rV,.=F(z"%), (4.10)
Putting zt=0 at r=g¢, then integration of Eq. (4.8) yields
2r=V,a/v)(r*—a?)/2r?, (4.11)

Above consideration shows that z* is a relevant wall variable in description of
various quantities near the wall concerned only in the peripheral direction. Let
a -» oo with fixed z, then z* — V.z/v, which was used in our previous paper#. At
the cylinder wall V=V, so we obtain V/V.=F(0). We seek the correspondence
between the law of the wall in the flat-plate flow and that of the peripheral
direction in this flow. Let

f(zH)=F(0)—-F(z"), (4.12)
and then
aV/rV.,.=F0)—f(z"), (4.13)
that is,
Vo—(a/m)V}/V.=f(2"). (4.14)

This is the law of the wall that we looked for. Since in the viscous sublayer
Reynolds stresses may be negligible, we obtain from Eq. (4.9)

Vo= (a/n)V}/V,=2", (4.15)

This is an equation corresponding to the linear profile of the sublayer in flat-plate
flow.

Now we research the universal velocity distribution law in the viscosity negli-
gible region which is still in the wall layer, using a matching method according to
Millikan®®. For the purpose, we must establish the law to which the velocity in
the outer region obeys. If it is permissible in the outer region to consider the
peripheral velocity is also independent of the axial component, governing parameters
in the region are gy, V, @, #, 6 and p. Then dimensional reasoning defines a
relationship :

V/V.=g(r/a, d/a), (4.16)

This equation is an equivalence of the defect law in some sense, so we may call it
simply “defect law” without leading to confusion in this problem. If we assume
the existence of the overlap region where both the law of the wall (4.14) and the
defect law (4.16) are valid, then in that region we have

LV a/){(r/a)y*=1}/2(r/a)? 1+ (a/r)g(r/a, 8/a)=V,/V. (4.17)
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Generally speaking, V,o/V. is a function of V.a/v and d/a, so if we put V.a/v=§,
r/a=n, 6/a=C and Vo/V.=h(&, §), Eq. (4.17) is rewritten

fLE@* =) /2n* 1+gCp, O /n=h(E, O). (4.18)

Differentiating Eq. (4.18) by & and 7 respectively and comparing the results, we
obtain

£0¢h (5, O =—{n(n*—1)/2}3,{g(n, O/7}, (4.19)

which can hold only if either term is equal to a function of § only, A({) say. Thus,
osh (&, O=AQ)/4,
0x1g(n, O /nt=—-2A) /n(n*—1),

(4.20)

and
df/dz*=A(0)/z", (4.21)

Equation (4.21) shows that A({) must be a constant, A say, and the universal
velocity distribution in the overlap region expressed by the wall variable z* is

fzY={V,—(a/r)V}/V,=Alnz"+C,, (4.22)

where C, is a constant of integration. Using the common logarithms and turning
the variable z+ to the intelligible one, Eq. (4.22) can be rewritten

Vo—(a/r)V}/V.=Cilogi{(V.2/) (a/r)} +Cs))

~ - (4.23)
where z=(r?—a?)/2r, J
The variable Z has an evident geometrical meaning.
From Eq. (4.20) we obtain
h(é, O)=AnE+-B(0), (4. 24)
and
g(n, O /m=Aln{2n*/(* =D} +B() —Cy, (4.25)

where B() is the constant of integration dependent on {. The latter equation is
a concrete form of the defect law in that region.

Equation (4.23) is equivalent to the well-known universal logarithmic velocity
distribution for the flat-plate flow.

Measured profiles arranged on the basis of this formula are given in Figs. 4. 13
and 4. 14, where V, is estimated from Eq. (4.1). These figures show the existence
of a linear portion expressed in Eq. (4.23); the logarithmic velocity distribution
obtained succeeds in describing the peripheral profile in the thick turbulent boundary
layer on a rotating cylinder, and the wall variable (V.2/v)(a/7) is relevant.

The validity of Eq. (4.16) on which the formula of the logarithmic velocity
distribution is based is verified as follows. An example of velocity profiles accord-
ing to the usual expression of defect law without the effect of transverse curvature
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is given in Fig. 4.15..-As illustrated, the experimental values do not fall on a
single curve, and the usual defect law for the flat-plate flow is invalid. InjFig. 4.
16 measured profiles represented on the basis of the defect law (4.16) with the
curvature effect are shown. It can be concluded that the defect law (41 16) is
varid for this peripheral flow, although the data compared with one another ‘m this
figure are restricted because this equation is a funtion of two variables. |
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Fig. 4. 15. Logarithmic plots of penpheral velocity profiles for CP on the ba51s of
the velocity-defect law in two- dxmensxovnal turbulent boundary layer.

Although the peripheral velocity dlstrxbutlon is characterlzed by the loganthmlc
fo1m expressed by Eq. (4.23), there is a problem that C1 and C, in this equatlon
so far considered to be constant are not exactly constant. The solid lines in Figs.
4. 13 and 4. 14 are drawn such as to be in accord with the k.measured.“ values under
?the same experimental conditions, in relation to a Richardson number given in the
next section. The value of C; is different from that for the two-dimensional
logarithmic velocity distribution but is roughly constant within the present experl—
ments, whereas the value of C, varies considerably. These features may be inves-
tigated in connection unlike the dimensional ‘analysis as employed above. - Hence, in
the first place, it is to be desired that the physical significances of C; and C, be
clarified.

Using the eddy kinematic viscosity ¢, the equation for the peripheral shear



The Laminar and Turbulent Boundary Layers on Some Rotating Bodies 51

8 T8 T T TTTTT T T
e
& o
L ) o © . A
® o) < -
6 - ® o® SO e
& L)
o® N %o
N o ol e @ ¢ -1
= ® (1)
N 88 ¢ ® o ° O@ )
>4k 0% ®° . e® y
o® . & o (2) =
OGO. ® & & e @
I e 15 °o oo 1
. (1‘){ ® FP  x=240mn ofe, °° °,
2F 7l 0 AP () =440 % o “”;O @8 -
. F=9 °
(2){ @AP(HJE: c® @ %o
» ] OAP(I)X—‘ 370 e(; @01 -
| o oCP =375 O;;':
OF ) @ AP E=375 o
. o FP f:: 75 @@@*
oL | e AP (I) £=600 &Poese0—
0 ) 1 | PR S SO T D ! L ! { P N S B | : %QQ}
1072 o b 107
z/a

Flg 4 16 Loganthmxc plots of peripheral velocxty profiles in the turbulent boundary
‘ " layers on the basis of the defect law (4. 16) : (1) Pm=2, 0/a==0.156,
(2) 2n=2, 8/a==0.124, (3) &n=1, o/afO 165, ; )

stress is rewritten

=@V =V/r). (4 26)

"'Assummg a length scale to be za/f appearmg in the wall var 1able, we obtam
' =V, Za/r, (4.27)

where « is an empirical constant. The validity of Eq. (4.27) has been found using
the calculated values of r,. The value of « has been in the range from 0.6 to 0.7,
unlike the Kdrman constant. Substituting Egs. (4.3) and (4.27) into Eq. (4.26),
and through integration, we obtain

(a/r)V=—./c)(nza/r+C), (4.28)

where C is a constant of integration that should be determined from the condition
at the other edge of the sublayer. Equation (4.28) corresponds to Eq. (4.22), but
further assumptions are needed for reducing the former to the latter. However,
from the comparison between these equations, it becomes evident that A=1/¢ or
C1=(1/k)In 10, and that C, depends on » and on the condition of the sublayer,
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Although C; and C, have the same meanings as those in the flat-plate flow, in
order to elucidate their distinction it is desirable to make further experiments
under various conditions. Nevertheless, as @ — oo, Eq. (4.23) should tend to the
equation for the flat-plate flow. Therefore, these fearures of C; and C; seem to
be owing to the effect of the curvature; this effect is discussed in relation to the
Richardson number in the next section.

' Bissonnette et al.5) have also dealt with the problem of the transverse curvature
effect on the flow in a logarithmic region. Their argument is complicated and does
rinot have so simple a meaning as in this research. It is difficult to compare the
two cases. Instead, an example of their measured profiles rearranged on the basis
}gf Eq. (4. 23) is given in Fig. 4. 17, where V. is determined from experimental
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Fig. 4. 17. Logarithmic plots of peripheral velocity profiles measured by Bissonnette
& Mellor®) on the basis of Eq. (4. 23) : the value of C; in Eq. (4. 23) is 3.7.

values obtained using a hot-wire anemometer. There exist the linear portions
expressed in Eq. (4.23) and their gradients are nearly equal to those of the present
experiments. But the profiles do not fall on a single line; this is probably because
of unreliability of V. determined by means of a hot-wire anemometer and because
of the unusual condition of the sublayer caused by the peculiarity of the boundary
layer flow as mentioned in section 4. 1. Bissonnette et al. have mentioned nothing
about the sublayer.
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4. 4. 3. Effect of the rotation on the turbulent boundary layer

The flow in the turbulent boundary layer on a rotating body is affected by the
destabilizing centrifugal- force. According to -Bradshaw3)- who-—-showed that the
effect of rotation or streamline curvature on a turbulent flow is expressed by
parameters analogou§ to the Richardson number in mnieteorslogy,  an appropriate
“Richardson number can be considered as the ratio of the square of the Brunt-
Viisild frequency wy,y, to the square of the turbulent frequency. Thus Cham &
Head*® have given the analogous Richardson number for the flow on a rotating
cylinder as

Ri=Q2V/r*){0,(V)}/@.U,)?% (4.29)
where U,.; is the mean velocity in a frame rotating with‘t\he cylinder. Cham et al.
simplified Eq. (4.29) ' extremely on the assumptions that.the boundary layer is so
thin as to be 7/¢=1 and that the velocity profile is qua\si;collateraly. However,
their assumptions are invalid in the present experiments, where.the boundary layer
is not very thin. For example, using a typical one of the measured velocity profiles
that satisfies fairly well the quasi-collateral condition, the minimum value of R;
calculated from the simplified expression is five or six times as small as that from
Eq. (4.29). Hence, Eq. (4.29) is used here itself as a convenient parameter.

The calculated values of R; using the experimental data for CP and AP(])
are presented in Figs. 4. 18 and 4. 19. R; is always negative, that is, the flow is
subjected to the destabilizing effect, and it can be expected that the turbulent
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—0.08! , . : : :
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: Fig.y 4. .18. Distribution of Richardson number in the turbulent boundary layer for CP.

mixing is increased. This parameter tends to decrease downstream.
In this report, the concern is with the region where the logarithmic velocity
distribution describes well the real velocity profiles. The comparison of the profiles
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Fig. 4. 19. Distribution of Richardson number in the turbulent
boundary layer for AP(T).

of R; with measured velocity profiles represented by Eq. (4.23) indicates that the
logarithmic region coincides roughly with the region where R; takes the minimum
value. The same was also true for the other cases in these experiments. Therefore,
its minimum value Rin:, can be possibly regarded as a representative one. Thus
the value of C; in Eq. (4.23) which has so far been somewhat arbitrary is defi-
nitely determined from the several experimental points_in that region. In order to
examine the effect of R; on the logarithmic region, the value of C, obtained above at
each station of x in the present experiments including for CP is plotted in terms
of Rimin in Fig. 4. 20. "The scatter is somewhat large but C; is effectively con-
stant in the range of the present experimental conditions. Since the Richardson
number tends to zero as & — oo, it can

be expected that C; tends to-the value

5.5 for the flat-plate flow as Rimin—0. =~ & e .

The variation of mixing length [ is N : , |
expressed, for example, by the Monin- o“a \\ .
Oboukhov formula 1 el 2 a 000 0% et o1

IR : Co e e P el ey
1-8Ri=1/1, 3 ° e .

where B is a positive coefficient which 25 5 R 3 X107
varies from one flow situation to an- —Rimin

other and the suffix ‘0’ represents the
flat-plate flow (in what follows, the
same is used). The Monin-Oboukhov
formula here is possibly rewritten

Fig. 4. 20. Change in the value of C; in
Eq. (4. 23) in terms of the minimum
value of Richardson number.

1—=BRiy,=1/l,~C10/Cy
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by use of the representative Rin;, instead of R;. Therefore, the constancy of C,
indicates that SRin:, is approximately constant.

In curved flows, the rate of mixing-length variation normal to the solid bound-
ary is reasonably estimated from the ratio of the energy determined from wj, to
the turbulent energy of fluctuating component normal to the wall. Hence the
change in the mixing length becomes

A1 Iy~ (W)
On the other hand, we have
Ri~w?,/(u?/13),
from the physical meaning of ®; by Cham et al. Thus we obtain
Bti? /10?

through the Monin-Oboukhov formula. It can be considered that an increase in
|Rimin| is tends to make the turbulence near the wall isotropic, that is, the value of
g decreases because of an increase in w? with £2,. Therefore, the value of BRinin
becomes constant irrespective of the variation of Rin;, within the limits of these

experiments.
Hughes & Horlock59 have also dis-
cussed the change in the mixing length 9 e
in connection with the conservation of o
the momentum of fluid. The expression 8 54
deduced, however, turns out to be es- Sl L
sentially the same as the Monin- : . @ /oofw/ o
Oboukhov formula. S e 2 ]
The effect of R; on C, in Eq. (4. sk T |
23) is presumable since the sublayer .
may be affected by the instability. Var- Yo T T, R" s s
~Rimin

iation of C, with Rini, is presented in
Fig. 4. 21. As illustrated, C, is likely Fig. 4. 21. Change in the value of C; in
to increase with a decrease in Riun, Eq. (4. 23) in terms of the minimum
but this result is somewhat unreliable value of Richardson number.

since the value of C, depends heavily

on the accuracy of V.. Nevertheless,

C, tends surely to the value 5.4 of the flat-plate flow as Rimin —> 0.

4. 5. Concluding remarks

On the basis of the mean flow measurements and discussion on the turbulent
boundary layers about a rotating cylinder, the following conclusions can be made :

First, mean velocity profiles in the peripheral direction are insensitive to the
influence of the pressure gradients in comparison with those in the axial direction.
The profiles in the polar diagram tend to deviate to the acceleration side or to
the deceleration side, according as the boundary layer undergoes the effect of the
favorable or the adverse pressure gradient.

Second, distribution of the peripheral shear-stresses in the turbulent boundary
layer has been calculated from the measured velocity profiles. The result shows
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the existence of a layer near the wall where the moment of the peripheral shear
force per unit depth at radius » is constant, and not the existence of the so-called
constant-stress layer in the flat-plate flow; this feature can also be deduced from
the basic equation.

Third, the similarity considerations for the peripheral flow near the wall have
been made, on the basis of the dimensional reasoning and of the near wall behavior
of the shear-stress profile, then a logarithmic velocity distribution law has been
obtained using the matching method. This formula succeeds in depicting the meas-
ured peripheral profiles in these turbulent boundary layers.

Forth, distribution of Richardson number, i. e., one of the parameters describ-
ing the effect of instability, indicates that its minimum value Rin;, is a representa-
tive one in the logarithmic region. The changes in C; and C, in the logarithmic
formula in terms of Rinm:, Show that the former is effectively constant within the
limits of the present experiments and the latter tends to increase with a decrease
in Rimin. :
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Nomenclature

meridian coordinate ; distance measured along the meridian curve of the
body from the foward stagnation point.

axial coordinate; axial distance from the foward stagnation point.
azimuthal angle.

distance from the body surface.

radius of the body, R=R(x).

radial distance from the axis of revolution.

radius of the cylinder.

boundary layer thickness.

radius of the outer edge of the boundary layer,
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angular velocity of the rotating body.

mean velocity components in the x-, y-, and z-directions respectively.
fluctuating velocity components in the x-, y-, and z-directions respectively.
mean static pressure.

reference mean static pressure.

reference main stream velocity.

local main stream velocity.

reference radius of the body.

reference radius of the cylinder.

peripheral velocity of the body surface in Chap. 1.

peripheral velocity of the cylinder surface in Chaps. Il and IV.

Reynolds number=UnpRp/v or Unan/v.

speed ratio=Rmw/Un,. In Chaps. Il and IV it designates local speed ratio
Vo/Ue.

reference speed ratio in Chaps. Il and W=anw/Umn.

shearing stress components in the x-, and y-directions respectively.
friction velocity components in the x-, and y-directions respectivety.
displacement thickness of the thick boundary layer; Egs. (2. 74) and (3.
5a). .

momentum thickness of the thick boundary layer; Egs. (2. 74) and (3.
5a).

angular momentum thickness of the thick boundary layer; Egs. (2. 75)
and (3. 5a).

integrated thickness which shows the variation of pressure in the bound-
ary layer due to the rotation; Egs. (2. 75) and (3. 5a).

integrated thicknesses determined by the fluctuating velocities; Eq. (3.
5b).

Clauser’s equilibrium shape factor zgz{(Ue~U)2/Urz}dz

/Si{(Ue-—U)/U-r}dz.

shape factor of the velocity profile in the polar plot; Eq. (3. 11).
Richardson number ; Eq. (4. 29).





